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Abstract. The field of AI is rich in scientific and technical challenges. Progress
needs to be made in machine learning paradigms to make them more efficient
and less data intensive. Bridges between data-based and model-based AI are
needed in order to benefit from the best of both approaches. Many real-life
situations cannot yet be addressed by current robots, demanding progress in
perception, scene interpretation or group coordination. This chapter addresses
some of the major scientific and technological challenges in core AI technology.

1 The Need to Address Scientific and Technological
Challenges for an AI for Humanity

AI for Humanity is not only a matter of regulations, normative frameworks, legal,
ethical, political, and social issues. AI for humanity needs also to address key scientific
open problems. In spite of several AI success stories in the past, even going back to the
90’s and before (see e.g., [1]), there is no doubt that the current impact and high
expectations raised by AI is due, to a large extent, to recent successes in data intensive
(supervised) machine learning, and especially to deep learning. Deep learning has led
to impressive gains on most key areas of AI, such as computer vision, natural language
understanding, speech recognition, and game playing. Considering the field for
instance of computer vision, in the last ten years, deep learning techniques have
achieved incredible results, moving the capability of machines to recognize thousands
of everyday objects, sometimes better than humans (see, e.g., [2]). It is well known that
certain important tasks in health care, like screening for diabetic retinopathy, are better
performed nowadays by deep learning AI techniques than by doctors [3].

In spite of this significant progress, we still need a lot of work in research and a
paradigm shift in AI to develop a real AI for humanity - a human centric AI. We need
research to build AI systems that are able to augment and enhance people rather than
replacing them, and to help humans by interacting with them and collaborating with
them. Some key open research challenges are the following (see chapters 2 and 3).
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• Less data-intensive AI. Most of the current deep learning techniques require a
huge amount of training data. However, in certain applications, high volumes of
data are not available, and in most cases, training deep neural networks is time
consuming and requires a lot of effort. We need less data intensive approaches, e.g.,
along the lines of representation learning, such as unsupervised learning, unsu-
pervised pre-training, domain adaptation, transfer learning, one-shot learning, zero-
shot learning (see [4] for an overview).

• Explainable AI. One of the major problems of deep neural networks is their
opaqueness, i.e., the lack of explainability of the results, the lack of explanation of
how they work and why they lead an AI system to take some decisions. Most often,
deep neural networks are essentially “black boxes”. In several cases however,
human-centric AI must be explainable. It must be, as much as possible, a “white
box”. A major research challenge is to develop techniques that provide the ability to
understand deep neural networks such that humans can debug, interpret, control,
and reason about them. AI systems should be able to explain the assumptions and
criteria under which they take some decisions or provide some results. AI systems
should be “auditable”, i.e., they should be able to answer questions asked by
humans and interact with them in an understandable way for humans. Moreover, if
AI techniques are not understandable by humans, it is very difficult to build systems
that interact with humans. As a result, it is difficult to keep humans in the loop and
to give them true control over AI systems.

• Trustworthy and verifiable AI. One of the major potential outcomes enabled by
AI techniques is the ability to build autonomous systems, such as self-driving cars.
More generally, AI can be a key technology for the new generation of intelligent
robots, drones, automated plants for Industry 4.0, transportation systems, medical
systems for diagnosis and health care, etc. Most often, AI technology is part of
safety-critical systems, where errors can have a tremendous impact on human life
and/or the environment. The complexity and opacity of some AI techniques (e.g.,
deep learning) do not help. Research should provide trustworthy and verifiable AI
techniques that guaranty safety for humans and environmental preservation. There
is a need for interdisciplinary research joining competences in AI with competences
in formal methods and software engineering, such as techniques for theorem
proving, model checking, testing, and simulation.

• AI for security and privacy. Simple but very effective adversarial examples and
attacks with even small imperceptible perturbations can compromise the results of
deep learning systems, e.g., in image understanding. AI systems should be secure
and resilient to such attacks. Moreover, most AI systems rely on personal data.
Human-centric AI should guarantee confidentiality and privacy. AI systems col-
lecting personal data can also give rise to societal and political problems. For
example, personal profiling can lead to threats to democracy, as in the well-known
case of Cambridge Analytica. Security and privacy should, however, be balanced
with the need for sharing data for individual and social good. As an important
example, take the case of personal health care data. We should guarantee the
privacy of sensitive data for individuals but, at the same time, we should open up
the way to science and progress in medicine by analyzing health data. We should
not get to the point that we will fail to discover cures for chronic disease because of
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privacy! Finding the right balance between privacy and the need for sharing data for
social good is not only a matter of regulations and laws. A good example is the idea
of the “Web of Clinical Data” (see [5]), where privacy and equality are guaranteed,
but a huge amount of data about our health is available to researchers (even from
private companies), who can use it for principled experimentation with new AI
techniques for improved health care. There is a compelling need for an interdisci-
plinary research involving computer scientists, lawyers, and sociologists to address
this issue.

• Integrative AI. Most of AI applications for individual and social good require
integrating different kinds of AI technology. They require the computational
modeling/mechanization of a diverse range of cognitive tasks, the scientific and
theoretical/formal integration of different representations and reasoning techniques,
e.g., symbolic (knowledge based and semantic representation) and sub-symbolic
(numeric and probabilistic) representations, as well as data-driven learning and
model-based (e.g., deductive) reasoning1. Human-centric AI systems should be able
to combine data from different, highly heterogeneous sources (video, audio, social
networks, crowd-sourced data, IoT, remote sensing, natural language source, non-
structured and structured data) and to reason from these disparate data sources,
using a variety of approaches (e.g., machine learning, deduction and knowledge
reasoning).

• The integration of perception, action, and human interaction. Current AI
techniques have been very successful in recognizing images, analyzing natural
language text and speech, and playing games. The “AI superiority” over human
champions in the difficult game of Go has been clearly demonstrated. However,
most games have a relatively small set of precise rules, and take place in a well-
defined, strictly limited setting, even though they may permit a huge number states
or moves between states. “Teaching an AI system to play a game” is much easier
than teaching a machine to “develop intelligence step by step from the learning by
interaction with humans and the natural environment”, where perceiving, acting,
and interacting with humans are tasks that cannot be devised in isolation, but that
deeply influence each other. There is a big step and a change in paradigm to move
from games, images, and text to AI systems that can interact with humans and the
world. Acting in the world and interacting with the environment influences per-
ception, and vice versa. The integration between perception, action, and human
interaction deserves novel research, and perception and action/interaction require
tight integration. Models for planning, acting, and interacting depend on perception
capabilities, and perception tasks should be informed by actions and interactions.

• Reducing the barriers in designing, delivering, and maintaining AI systems. AI
systems are very challenging to build, deploy, monitor, and maintain. Most of the
problems mentioned above - such as AI systems that are not safe, secure,

1 The Integrative AI research challenge is beyond and not only a matter of software engineering, i.e.,
of putting together different components based on different AI representations and techniques. Notice
that we do not mean that software engineering is a minor issue for the development of AI systems,
especially from the point of view of democratization. An interesting question is what new
fundamental research questions in software engineering are motivated by AI systems.
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trustworthy, difficult to verify, and difficult to understand - are in part due to the
intrinsic difficulty in building AI systems. Building “good” AI systems requires
high expertise, but there is a need to “democratize” the use of AI in a way that AI
can be developed by more and more people, including those that do not have the
high level of expertise required today for building high-quality AI systems. This
gives rise to an important research challenge: to devise techniques and tools that
could help humans in designing, delivering and maintaining AI systems.

All these challenges are interconnected. For instance, the challenge of trustworthy
AI has clear overlaps with the challenge of security, privacy, explainable, and inte-
grative AI. The integration of perception, action, and interaction with humans is closely
related to integrative AI, and to less data-intensive, trustworthy, and explainable AI.
Only long-term, integrative, and interdisciplinary research can address the highly
interconnected and interdisciplinary scientific challenges for AI for humanity. Unfor-
tunately, current research evaluation methods and academic criteria tend to favor
vertical, short-term, narrow, highly focused, community- and discipline-dependent
research. It is the responsibility of all scientists in the academic world to foster a
methodological shift that facilitates (or at least does not penalize) long-term, horizontal,
interdisciplinary, and very ambitious research.

In the remainder of this chapter, we propose a more in-depth discussion of some of
the research challenges mentioned previously, and some ideas of possible approaches
to address these challenges and open a way towards AI for humanity.

In Sect. 2, we will deal with the requirement to understand how deep neural net-
works can debug, interpret, control and reason about their results. A possible approach
is to measure the influence of the inputs and the relevance of the filters of a deep neural
network, and their importance in providing results and possible decisions of an AI
system. A major challenge here is to generate narratives (e.g., through text generation
techniques) that can explain the network and can be easily understood by humans.
Generating explanations and narratives can open up the possibility to build systems that
interact with humans, such that humans are in control of the learning and reasoning
process. This provides the basis for meaningful human control of AI systems.

Section 3 deals with the problem of building trustworthy AI systems. It provides
some interesting examples that show how current AI systems for computer vision and
natural language understanding based on deep learning are not trustworthy. The major
issue is the “lack of context” of such techniques. The research challenge is to build
robust AI systems that are resilient to errors, explainable, transparent, and safe by
integrating learning techniques with background and common-sense knowledge,
including knowledge about common facts, intuitive physics and intuitive psychology.
An intermediate goal is to build “auditing AI programs”, i.e., AI systems that are
required to answer questions about some specific cases.

Finally, Sect. 4 addresses the problem of reducing the barriers in designing,
implementing, delivering, and maintaining AI systems. This will help to address the
pressing problem of the “talent bottleneck” in AI, i.e., the lack of highly skilled experts
in building AI systems. The research challenge is that of “AutoAI” - Automated
Artificial Intelligence, i.e., the automated design of AI systems, based on advanced
statistics, optimization, and machine learning, a significant extension of the concept of
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Automated Machine Learning (AutoML), since it considers methods and techniques
across the entire spectrum of artificial intelligence.

2 Endowing Deep Neural Networks to Show and Explain
Behavior and Decision Making2

Deep Neural Networks (DNN) have become ubiquitous. They have been successfully
applied in a wide range of sectors including automotive, government, wearable, dairy,
home appliances, security and surveillance, health, and many more, mainly for
regression, classification, and anomaly detection problems. The neural network’s
capability of automatically discovering features to solve any task at hand makes them
particularly easy to adapt to new problems and scenarios. Since the initial successes,
the development of innovative deep learning approaches has accelerated rapidly. Deep
learning approaches are becoming more complex, with new forms and architectures,
learning more parameters and becoming increasingly better. Consequently, it is not
easy to understand which architecture would best fit to which input and task. In order to
be able to see through the forest of alternative architectures, network types, components
and tools available to support individual tasks, Subsect. 2.1 introduces a TagTool,
based on a faceted browsing approach which gives an orientation for users to select the
right approach for a given problem.

Although many of these systems provide high accuracy, all those models reveal a
black-box nature, i.e. they are lacking of transparency/intelligibility of their decisions.
The applicability of DNN has also been compromised due to the lack of understanding
the network decision processes well as the deficiency of explaining the decision [6].
This is specifically true for domains like business, finance, natural disaster manage-
ment, health-care, self-driving cars, industry 4.0, and counter-terrorism where reasons
for reaching a particular decision are equally important as the prediction itself. In this
respect we may distinguish between two areas:

• Interpretability refers to the observation and representation of cause and effect
within a system, without necessarily knowing why something happens

• Explainability, on the other hand, concerns the ability to explain the inner function
of a system in human terms (e.g. by means of a given example).

In many cases full transparency may not be always possible or even required. In
general, AI systems are designed to optimize behavior, i.e. to maximize accuracy with
respect to a given goal. But they depend on the data, which might have a bias, e.g.
when the data is not objective, complete, and balanced. At least, we should be able to
understand the decision processes and identify the data responsible for the decision.
One step towards the interpretability of DNN is addressed in Subsect. 2.2 Specifically,
we describe a method to quantify the amount of information that CNNs extract from
their input by investigating different best practice architectures for image classification.

2 Sheraz Ahmed, Joachim Folz, and Sebastian Palacio contributed to this section.
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However, if we are considering non-visual input, such as time series, it is even
more difficult to decode and understand intermediate states in a deep network because
of the automated feature engineering. In other words, features, which are extracted by
these models, are hard to interpret and understand for humans, especially in cases with
high-dimensional data. In Subsect. 2.3, we introduce a method that measures and
visualizes the influence of the input data on the output or decision of the network.
Furthermore, we extract and visualize the patterns which are present in most of the
influential filters to finally generate a textual explanation easy to be understood by the
user.

2.1 AI Landscape and Architecture Search

Advances in neural network accuracy have been driven by improvements to archi-
tectures [7–9] and training methods [10–12], but also availability of compute power
[13, 14] where the number of parameters increased from millions to hundreds of
millions and operations per sample exceed several billions within the last ten years.
This increase in model size and complexity is even more evident in recent models for
natural language processing. Comparing representative models from 2018 to 2020
shows a more than 10-fold increase in the number of parameters per year:

• 355M - BERT-Large [15]
• 1.5B - GPT-2 [16]
• 11B - T5–11 [17]
• 175B - GPT-3 [18].

GPT-3 shows accuracy on NLP tasks increases with the power law in terms of
parameters. While performance is impressive, especially on unseen tasks without fine-
tuning, this growth of model size is not sustainable as it outpaces the growth in
available memory more than 100-fold. Eight GPUs with the largest currently available
memory capacity (Nvidia Quadro RTX 8000 48 GB; assuming 2 bytes per parameter
half-precision is used) are required to hold the parameter set, which makes just
inferencing with this model challenging. Training takes hundreds of GPU-years and
several million dollars of cloud budget to complete within a reasonable timeframe.
Hence, more specialized architectures are still required for most use cases.

All GPT models are trained as next-word predictors: during training, the model
output is compared word for word against large text corpora. No additional metadata is
required and, most importantly, labor-intensive manual labelling is not necessary.
Similarly, recent work on self-supervised learning on images, where training does also
not require additional data, shows that several times as many parameters are required
compared to supervised training [19–22]. These models are trained with so-called
contrastive losses, where one or more model should output similar values for inputs
that are known to be similar, and conversely dissimilar outputs for dissimilar inputs.
For images, this is achieved by manipulating them in various ways, such as spatial and
color transformation. Best results are currently achieved with very large batch sizes of
several thousand images to ensure that sufficiently dissimilar images can be found.
Hence, it can be argued that there is a tradeoff between dataset quality/cost and model
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size/training effort with self-supervised learning, though the state-of-the-art at least with
respect to required parameters is improving quickly.

Finding appropriate network architectures that strike a good balance for a given
dataset and task has traditionally been a manual process of trial and error, involving
highly skilled researchers and engineers adapting and/or extending existing known
good examples. Given the number of meta-parameters (number and type of neurons,
graph connectivity, transfer functions, etc.) an exhaustive search may never be feasible
for what would be considered reasonably sized models and datasets at the time. While
the idea of systematically creating the architecture and optimizing a neural network
from scratch is not new [23], it has only recently been demonstrated that state-of-the-art
accuracy on large-scale datasets with millions of samples can be achieved [24–26].
These first examples of neural architecture search employ methods borrowed from
reinforcement learning. A generator produces model candidates that are trained on a
target dataset and the achieved accuracy is transformed into a reward for the generator.
This approach is computationally intensive, requiring hundreds of GPUs for relatively
simple datasets. Further improvements, such as predicting the accuracy of a model [27,
28] or reusing parameters of identical blocks that had already been trained previously
[29, 30], made it feasible on single GPUs. More recently, approaches foregoing rein-
forcement learning entirely have been proposed [31]. The problem is reformulated as a
continuous search problem and can thus be optimized by standard gradient descent
methods, providing further efficiency gains.

Making these rapid advances in deep learning techniques available to practitioners
is another core issue. New forms of organizing and sharing knowledge are necessary to
keep up with the rapidly growing body of work surround this topic, but it is also
necessary to reduce the effort required to evaluate the efficacy of an existing model
towards a new problem. Two systems illustrate possible.

The TagTool allows to create, interlink, and share several tag clouds at once. One
such instance3 of this tool is configured to collect and show six simultaneous views
about deep learning models:

• Signal Types (image, text, time series, etc.)
• Network Types (CNN, RNN, GAN, etc.)
• Tasks (classification, detection, forecasting, etc.)
• Network Architectures (ResNet, ReNet, Siamese Networks, etc.)
• Components (convolution, activation, normalization, etc.)
• Links to external resources (papers, reference implementations, tools, etc.).

Tags can be linked within or between clouds and selecting an element shows what
it is linked to. This can be used to, for example, find out what kind of networks are
useful for image segmentation and what operations they a comprised of. There are also
two advanced selection modes: AND and OR, where multiple tags can be selected to
show either the intersection or the union of linked tags. For example, we can look for
image segmentation networks that use an encoder-decoder type architecture. The

3 tag cloud for our project DeFuseNN: https://defusenn.letstag.it/.
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external links view provides resources for further reading, such as papers and reference
implementations. Figure 1 shows an activation example of the TagTool.

The second tool, the Deep Learning Sandbox, complements the TagTool by
making it easy and fast for exploring existing models and datasets and testing fully
trained networks on new data. It allows to interact with a variety of models via a Web
interface. Capabilities and performance metrics are displayed, allowing the user to
make a pre-selection of interesting models that may be applicable to a new use case.
Images, audio, and text input modalities are currently supported and can be uploaded to
a Web interface for testing purposes. Each model specifies that it requires one or more
samples of each modality to operate. The sandbox matches available inputs to appli-
cable models and runs those selected by the user.

The approach is complemented by an intelligent scheduler, which reduces latency
during inferencing process. Low volume requests may be handled faster by CPU-only
operation, since initialization of a GPU-accelerated model can take longer than pro-
cessing on the CPU. This implies that models are moved to a GPU if there are enough
requests and one is available. Results are displayed next to each model and can be
compared to each other (see Fig. 2).

2.2 Interpreting Deep Neural Networks

Current methods for interpreting modern ML pipelines have focused on a variety of
narrow properties at play. Said properties can be broadly categorized as model-based
explanations and data-based explanations. For the former, a common strategy in the
image domain consists of reverse-engineering a neural network in order to find an input
which elicits a high response from a particular neuron or layer [32, 33]. Having an

Fig. 1. The TagTool provides the opportunity to interact with the landscape of deep learning via
faceted browsing and narrows down the solution space by combining different facets.
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image pattern expressed in the input domain makes said pattern more amenable for
humans to infer what the neural network is looking for or reacting to.

An orthogonal approach consists on analyzing valid, existing samples individually
and recording high activation patterns as they traverse the neural network. These
activations can be traced back to the original input and visualized as relevance scores
for that particular sample [34–36].

However, patterns affecting the entire model (not just a single layer or neuron)
remain undetected under these interpretability strategies, since they influence all input
samples equally.

In order to unveil these kinds of global patterns, we wish to capture properties of
the input space that are relevant not only to individual samples but also to the entire
dataset. Once these properties are conveyed, the most relevant ones can be selected for
further analysis. Parametrization of the input space can be done via Autoencoders [37]
where a neural network learns a parametrized approximation of the respecting identity
function.

In order to achieve a low reconstruction error for the input space of arbitrary natural
images (and therefore, a better approximation of the input distribution), a large
autoencoder known as SegNet [38] is used. Preventing overfitting for such a large
network usually requires the use of extensive and careful regularization techniques.
Alternatively, the unsupervised optimization objective for autoencoders allows more
relaxed constraints at the expense of using a larger training set. The YFCC100m [39] is
a weakly supervised image dataset that provides the scale needed to train the SegNet

Fig. 2. The DL Sandbox offers a right set of pretrained models, which may be individually
applied to uploaded data samples or may be compared respecting their accuracy.
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autoencoder with low reconstruction error, requiring only one pass (one epoch) before
having fully converged.

Once the input space has been parametrized by the differentiable autoencoder, a
pre-trained image classifier is evaluated with the reconstructions of the autoencoder,
i.e., the parametrized version of the input space. This ensemble yields a composite
function, where the identity Function is used as input for the classifier.

Intuitively, it is expected that the pre-trained classifier is selectively processing
information contained in each input sample (e.g., ignoring the background and iden-
tifying salient parts of the image). More generally, any ML model will selectively use
information in the input, depending on its task. To unveil exactly what information is
being used by the classifier, one adapts the autoencoder described above. Thanks to the
parametrized (and end-to-end differentiable) version of the input space, a further
optimization of the autoencoder allows the reconstructed samples to match the infor-
mation that the pre-trained classifier expects. Concretely, decoding layers of the
autoencoder are fine-tuned with gradients from the classifier according to its classifi-
cation objective. The resulting fine-tuned autoencoder is referred to as a structure-to-
signal network (S2SNet) [63]. Once an S2SNet has been obtained, we can verify that a
distinct artifact is introduced when reconstructing original samples with it. This artifact
is constant for all samples in the dataset and indicates that information conveyed by
values where the artifact is now present, do not carry information that is useful for the
classifier. To quantify the constancy of said artifacts, the normalized mutual infor-
mation (nMI) [40] is computed between the original samples and corresponding
S2SNet reconstructions. This is referred to as the intra-class nMI and measures the
information that has been dropped w.r.t. the original input. Furthermore, the nMI is
computed between S2SNet reconstructions of random samples, with high values
indicating the degree of constancy that comes from the reconstruction process.

Through these two nMI metrics it is possible to establish the amount of information
used (i.e., “useful information”) by high-performance image classifiers like Alexnet
[41], Resnet50 [8], VGG16 [42] and Inception v3 [43]. Based on this notion of “useful
information” we see (cf. Fig. 3) how Alexnet takes in the least amount of information,
followed by Resnet50, Inception v3 and VGG. The constancy of reconstruction arti-
facts (according to nMI measurements) does not directly correlate with accuracy,
network depth, normalization or pooling operators, and has links to the informal notion
of “model capacity”: a term often used in the literature to convey the ability of a neural
network to approximate a richer set of functions.

For instance, heatmap reconstructions based on Deep Taylor Decomposition [44]
exhibit higher resolution when computed on Inception networks compared to results
based on Alexnet. From the standpoint of useful information this behavior is expected,
as the latter model produces more tenuous reconstruction artifacts, and therefore, more
useful information from the input is projected back into the heatmap. Similarly, the
high amount of information used by VGG justifies its use for building convolutional
autoencoders or networks for image segmentation; a common practice seen, for
example, in the architecture of SegNet itself.

One additional property of image reconstructions using S2SNets is that the constant
artifacts (i.e., reconstructed pixels with a constant value, regardless of the values in the
original samples) represent a projection of the original input into a lower dimensional
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space. This is especially valuable when the model has to cope with adversarial attacks
[45]: maliciously perturbed samples intended to cause an ML model to fail. Adversarial
perturbations have shown to be less effective when created and evaluated on an S2SNet
compared to their performance against a classifier alone [46]. A comprehensive eval-
uation for different gradient-based adversarial attacks like FGSM [47], BIM [48] and
CW [49] provides compelling empirical evidence that S2SNets mitigate the malicious
effects of these attacks [64]. This robustness is achieved without the need for additional
assumptions regarding the attacks and preserves the accuracy of the original classifier
when clean images are evaluated; a compromise that is often made by some alternative
defense mechanisms.

In short, global interpretability measures can be extracted by parametrizing the
input space and enhancing its properties with respect to a given task (e.g., image
classification). Instead of focusing on individual samples or a particular module of an
ML model, S2SNets make use of fine-tuned autoencoders to filter the amount of
information that a classifier effectively uses from the input. Characterizing the amount
of “useful information” elucidates on multiple reports of the otherwise informal notion
of “model capacity” often found in the literature and serves as a robust alternative to
mitigate the effects of adversarial attacks.

2.3 Explainable AI

In the domains where human lives are directly or indirectly linked to a machine's
decision or high-stakes decisions are based on them, the trustworthiness of the
decision-making system is more important than accuracy. This trustworthiness can be
achieved by enabling a system to answer the “HOW” and the “WHY” of a decision.

Fig. 3. Randomly selected image samples and results on different classifier architectures.
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The HOW part can be addressed when a system is capable of showing how it has taken
a particular decision. In this process, the system must highlight the major observables
to show how they are behaving and changing. The WHY part can be addressed when a
system provides an explanation of a decision. It is important to provide reasons for a
particular decision taken by a system. The attached facts to an explanation make an
explanation more transparent which eventually makes the whole system trustworthy.

There have been significant attempts to uncover the black-box nature of deep
learning-based models [33, 50–54], where visualization of the model has been the most
common strategy. Almost all of the proposed visualization systems are image-centric
where visualizing the image is directly interpretable for humans (natural association to
similar looking objects like eyes, faces, dogs, cars etc.). These visualizations help
humans understand the thinking process of an Artificial Neural Network (ANN). Most
of these visualization and interpretability ideas are equally applicable to time-series, but
the unintuitive nature of the time-series data makes it difficult to directly transfer these
ideas to aid human understanding. To demystify a deep model for time-series analysis,
Siddiqui et al. [55] proposed a framework – TSViz. This framework introduces an
influence tracing algorithm to compute the input saliency map, which enables an
understanding of the regions of the input that were responsible for a particular pre-
diction. In addition to that, an approach to compute the filter’s influence using the
proposed influence tracing algorithm is also introduced in this framework. Filter
importance is computed based on its influence on the final output. This information
provides an idea to the user regarding the filters of the network that were important for
a particular prediction. These visualizations enable a system to answer the HOW part.

Though a picture is worth thousand words, still it provides an overview, not a
detailed explanation. To understand the details, it is necessary to have a logical
description of the picture. It has been well established in the prior literature that an
explanation of the decision made by a DNN is essential to fully exploit the potential of
these networks [56, 57]. With the rise in demand for these deep models, there is an
increasing need to have the ability to explain their decisions. For instance, big industrial
machines cannot be powered down just because a DNN predicted a high anomaly
score. It is important to understand the reason for reaching a particular decision, i.e.
why the DNN computed such an anomaly score. Adequate reasoning of the decision
taken increases the user’s confidence in the system. To address this WHY part,
TSXplain is introduced by Munir et al. [58]. This framework is inspired by the human
psychology of logical reasoning for a particular decision. It contributes to the WHY
part by generating natural language explanations of the decisions made by a DNN.
Powerful statistical features are aligned with the most influential data points to generate
textual explanations as they are exemplarily shown in Fig. 4. The two-level explanation
provides ample description of the decision made by the network to aid an expert as well
as a novice user alike.
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3 The Challenge of Trustworthy AI

The recent excitement about GPT-3, the latest autocomplete language tool from
OpenAI, is a stark reminder of the need for trustworthy AI. It’s been heralded as
“astonishingly powerful”. GPT-3 is, indeed, surprisingly powerful and fluent but it is
also utterly untrustworthy. In one experiment run by Summers-Stay, Marcus, and
Davis, GPT-3 presented this [59]: (Prompt) You are having a small dinner party. You
want to serve dinner in the living room. The dining room table is wider than the
doorway, so to get it into the living room, you will have to… (GPT-3 generated text)
remove the door. You have a table saw, so you cut the door in half and remove the top
half. One can imagine how quickly the comical text turns to terrifying if such an error
appeared in a legal document or medical chart.

In fact, if you type “trustworthy AI” into Google, you are met with over 14 million
results. Articles, books, blogs, and even entire websites are dedicated to defining
trustworthy AI and offering solutions and frameworks for building it.

AI systems today are entrusted with making decisions that deeply impact our lives,
such as who gets a mortgage or determining medical diagnoses. Yet, how and why
these decisions are made remains a mystery, even to the creators of the technology. So,
it’s no surprise that when these systems make egregious errors, trust in them quickly
erodes.

When courts across the country began using a risk assessment tool to determine
who should receive parole, ProPublica uncovered a disturbing trend: black defendants
received higher risk scores than white defendants with similar profiles. Because the
tool’s creator would not divulge information about the proprietary algorithm, we may
never know why Gregory Lugo, who crashed his car into another one while drunk, was
rated 1 (low risk) despite the fact that it was at least his fourth DUI, but Mallory
Williams was rated 6 after one DUI.

Fig. 4. Two levels of explanation are generated by the system depending on what an end-user-
desires: abstract or detailed explanation.
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Since algorithms “learn” based on the data they are fed, any bias in that data can
become amplified. For example, when Amazon created an automated tool to review
resumes, they soon realized the hiring algorithm taught itself something unexpected: it
was excluding women from technical jobs because their resumes included words like
“women’s” and downgrading graduates of certain all-women’s colleges. The tool was
ultimately abandoned, but it shined a spotlight on the perils of using automated systems
for important decisions in the absence of transparency.

In response to challenges, like these, there has been a push for explainable AI,
ensuring decisions can be understood by a human. For instance, your loan application
would be accompanied by specific reasons for a rejection. On the surface, this approach
sounds like a no-brainer, but in practice it is a formidable mandate for three key reasons
[60]. The most common retort is that explainable AI can reveal proprietary data and
trade secrets. A bigger challenge is the inherent difficulty of explaining the behavior of
nonlinear neural network models trained over massive data sets. It is virtually
impossible to explain decisions made in this way- not in a linear, logical, feeling,
human way, but conclusions derived from a weighted, nonlinear combination of
thousands of inputs, each contributing a microscopic percentage point toward the
overall judgement. For example, if you’ve watched Netflix, you’ve likely noticed the
“Because you watched” category which recommends other shows to watch based on
your viewing history. These seemingly simple recommendations are actually built on
complex algorithms factoring in multiple inputs. While Netflix viewing recommen-
dations are a harmless oversimplification of the process, such generalizations can prove
dangerous in more high-stakes settings.

Finally, AI models are vulnerable to a common phenomenon known as Simpson’s
paradox, which occurs when trends in groups of data reverse as that data is combined.
Perhaps the most well-known example of Simpson’s paradox involves graduate school
admission data from UC Berkeley from 1973. When the data was viewed in aggregate,
it appeared that men were admitted at a significantly higher rate than women. When
that same data was viewed differently, focusing on individual departments, it showed a
small but statistically significant bias in favor of women. This example is not unique,
and additional data is not the solution.

Given these challenges with explainable AI, perhaps a better, more transparent
approach is auditable AI: AI systems that are queried externally with hypothetical
cases. These hypothetical cases can be real or imagined and allow for instant, auto-
mated monitoring. This is an especially useful way to screen for bias. For example,
loan applications can be run through models that change gender or neighborhood to see
if approval changes with each tweak.

Auditable AI has several advantages. Primarily, auditable AI is investigated by a
neutral third-party immune from any bias or control of the algorithm's creator. It also
eliminates the concern that explaining AI systems exposes trade secrets and proprietary
data since the audit would not reveal this. Audited AI is a welcome counterbalance to
explainable AI; auditing can help investigate, endorse, or even invalidate AI expla-
nations. For example, if Pandora recommends Elton John because I listened to Billy
Joel, will it also recommend other classic rock musicians? Does it recommend Elton
John to everyone who’s listened to Billy Joel?
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Auditable AI is already gaining traction. The Best Student Paper Award at the 2019
AAAI AI Ethics and Society Conference was focused on an audit of software like
Amazon’s Rekognition tool which was nearly twice as likely to misidentify people of
color. While still short of perfect, the audit paved the way for a reduction in error rates
and deeper awareness of flaws in these systems which are becoming more broadly used.
The private sector is also moving toward creating and using these key capabilities.
WhyLabs is a startup out of the Allen Institute for AI Incubator creating products for
tracking and auditing model performance post launch to verify they are performing as
expected. Yet, auditable AI is not a bullet-proof solution. There are, indeed, high-stakes
decisions, like medical diagnostics, that warrant an accurate and understandable
explanation, not just an audit. While these use cases and paths to explanation undergo
the essential research they should, auditable AI can increase transparency and combat
bias.

Ultimately, to make AI trustworthy, we must create robust, intelligible AI systems
where it is clear what factors caused the system's action and users can predict the
system’s behavior with input changes. The degree to which an explanation is available
or provided with AI decisions will vary based on use case. Psychologists have studied
explanation for decades, and those learnings can shape how we build interactive sys-
tems to ensure a data scientist or developer debugging a system and a loan seeker can
glean the different details important to them from the same system [61].

As the field of AI rapidly develops, oversight must also adapt. In the future, we can
envision a comprehensive auditing ecosystem providing deeper insights into AI and
“AI guardians” that address challenges and respond to the potential risks associated
with increasingly autonomous AI systems. These systems are not meant to be overly
strict or rigid, but to ensure AI systems remain aligned with the guidelines of their
programmers. AI systems are learning systems, and like us, learning humans, latitude
for trial and error is required. However, clear boundaries and understanding of risk so
AI systems adhere to laws and ethical norms are crucial.

4 Addressing the AI Talent Bottleneck by Automating
Artificial Intelligence

Roughly since 2011, there has been a marked increase in research activities, applica-
tions and public interest in artificial intelligence, accompanied by ample speculation
about future capabilities and uses of AI technology, as well as of the benefits and risks
they may bring. This development is triggered, to a large extent, by impressive progress
in a specific area of AI, namely that of machine learning, and focused around the
concept of learning with deep neural networks. It is important, however, to realise that
this is not the first wave of enthusiasm for AI, and that the reasons underlying this latest
surge in interest run far deeper than deep learning. In the following, we will outline
these reasons and their consequences, discuss a serious threat associated with the
current and ongoing boom in AI applications, and explain how this threat can be
mitigated by judiciously automating the design, deployment and maintenance of future
AI systems, following an approach dubbed AutoAI, with an emphasis on the
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technological challenges arising in this new and exciting area. We will conclude with
some thoughts on the future of AI technologies and their applications.

4.1 Causes and Consequences of the Current Boom in AI

Interest in AI has peaked before and then waned. Common wisdom has it that the main
factor causing past downturns in AI was the inevitable disillusionment following wildly
exaggerated expectations [65]. This, of course, suggests that the current boom in AI, or
“AI summer”, may be similarly destined to be followed by a bust, or “AI winter”, a
marked decrease in public interest (see, e.g., [66]). While a detailed discussion of the
history of AI, and specifically, the causes of previous “AI summers” and “winters`̀ , is
beyond the scope of this chapter, it is illuminating to discuss the causes of the latest,
marked increase in interest. In our view, these include advances in computing hard-
ware, advances in AI techniques and algorithms, a dramatic increase in the availability
of useful data, and a high degree of “AI readiness” across industry and society.

The first of these factors, impressive and sustained progress in hardware, is well
known, so we refrain from covering it in detail; it is instructive, however, to note that
computations that would have taken 10 h in 1991 could be performed in less than
3 min by 2007, thanks alone to sustained progress in computer hardware (see, e.g.,
[67]). What is less widely known is the fact that advances in algorithms (i.e., in
software) are even more dramatic - especially when it comes to solving the kinds of
problems that fall into the area of AI, problems that when solved by humans require
significant intellectual effort, often in combination with substantial amounts of
experience.

A well-known example comes from the area of solving an optimisation problem
known as mixed-integer linear programming (MIP), which has a broad range of real-
world applications in industry and academia (see, e.g., [68]). Progress in MIP algo-
rithms in the widely used commercial MIP solver CPLEX was shown to have achieved
a more than 28000-fold speed-up between 1991 and 2007 when solving the same
benchmark instances on the same hardware, while the speed-up due to improvements in
hardware over the same 16-year period corresponds to a factor of 218 [69]. By com-
bining the hardware- and software-related speedups in this example, an astonishing 6.2-
million-fold speed-up was achieved over a period of only 16 years. A recent study on
hardware- vs software-related improvements in solving the propositional satisfiability
problem (SAT) - one of the most intensely studied AI problems, which plays a key role
in verifying the correctness of computer hard- and software - yielded qualitatively
similar results, indicating the dramatic effects of algorithmic improvements over a
period of about 20 years [62].

The third factor, an increase in the availability of useful data, is certainly of key
importance in the area of supervised machine learning, where the amount and quality of
training data is known to play a crucial role for the performance obtained from state-of-
the-art techniques. There are several reasons for the increased availability of data;
firstly, more data is being produced, as a result of advances in the design of sensors and
their increasingly broad deployment, but also as a direct consequence of the transition
to digital media and storage formats, including the global rise of social media; sec-
ondly, an enormous amount of data has been collected for several decades now,
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facilitated by cheap storage and easy transmission of large volumes of data; and finally,
much of this data is now broadly and efficiently available via the internet. Interestingly,
the dramatically increased availability of data benefits many areas of AI beyond
machine learning, since the development of new algorithms often depends on perfor-
mance assessments on large sets of benchmark instances (this is the case, for example,
in the previously mentioned areas of MIP and SAT solving).

The fourth factor, “AI readiness”, is a consequence of the broad use of computation
across all sectors of industry and many aspects of our daily lives. Modern production
environments, aircraft, ships, medical equipment and administrative processes (to name
but a few examples) are now run by algorithms and operate routinely on large amounts
of digital data. As a result, in many cases, a transition to AI techniques requires merely
a change in software rather than dramatically more costly and disruptive changes in
specialised hardware. Furthermore, in cases where AI techniques require substantially
higher computational resources than currently available, upgrades or virtualisation of
general-purpose hardware components are far easier and cheaper to achieve than the
earlier transition to algorithmic data processing and control. This means that there is
now an increasingly low barrier to the first-time adoption of AI techniques, and an even
lower barrier to subsequent transitions to more advanced techniques.

While most AI experts would agree that these four factors played an important role
in the large increase in broad interest in AI, there are two further, perhaps more
contentious factors at play. The first of these is directly related to the fact that many
regard the present AI boom as mostly caused by fundamental advances in the area of
multi-layer neural networks. While advances in neural networks - enabled by readily
available, high-performance hardware (notably, GPUs), innovation in algorithms (both
in terms of the neural network models themselves, as well as in the algorithms for
training them) and large amounts of training data - have doubtlessly played a key role,
the impact of these advances has been amplified by the fact that for at least two decades
prior to 2011, neural networks were marginalised, and on many occasions outright
dismissed, by large parts of the mainstream AI community. This led to a situation
where relatively few researchers seriously worked on and with neural networks, a set of
versatile AI techniques with a history dating back to the 1940s. As a result, progress in
this area was likely artificially slowed, but poised to accelerate rapidly as soon as it
became a major focus of attention. This brings us to the second additional factor at
play, which is a combination of the inherent interest, especially among young
researchers and the broader public, in biologically inspired techniques, such as neural
networks, which are far more relatable than other, more abstract AI approaches, and the
enormous publicity generated by companies that chose to invest into this “new wave of
AI”.

With this analysis of causes for the present AI boom in mind, we will now argue
that this boom is different from previous peaks in interest in AI, in that it will likely
have far broader and more lasting consequences. The last two factors - relatability and
marketing of a specific set of techniques, and the penned-up impact and innovation
potential of these techniques - fail to provide a compelling basis for this argument, and
in fact could be seen as evidence to the contrary. The combination of the remaining
four factors - advances in hardware, AI algorithms (broadly defined), markedly
increased availability of data and general AI readiness in real-world application
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contexts - does, however, suggest that AI techniques have now reached a critical level
of usefulness at which they can and do provide substantial value to industry and
society, at relatively moderate cost and effort - in other words, in a rapidly increasing
range of applications, they enable new and valuable products, services and experiences.

This now rapidly occurring, broad and accelerating valorisation of AI technology is
what distinguishes the current boom from previous waves of interest in AI. The use of
AI brings tangible competitive advantage in many sectors of industry; this advantage
increases further with the power of the AI techniques that are being deployed suc-
cessfully, which creates a powerful incentive for industry and society to invest into
research and innovation in AI. It is for this reason that, while the enthusiasm for
particular AI techniques or approaches, such as deep neural networks, will continue to
wax and wane, the overall high level of interest in AI is here to stay. Because of their
broad applicability, across all sectors of industry and society, and in light of their
emergence as key enablers of scientific and technological progress, AI systems and
techniques are poised to fundamentally transform the way we live and work (see, e.g.,
[70]).

4.2 The Biggest Risk Associated with AI

In much of the main-stream fictional depiction of AI and some of the contemporary
debate on the topic, the focus is firmly on broad-spectrum, super-human AI turning
antagonistic and causing harm - a scenario we may dub “strong AI going bad”. While,
in our opinion, this is a concern that deserves being taken seriously (for reasons beyond
the scope of this section), it is by far not the most pressing risk associated with the
development and use of AI technology. The main reason for this is that we are still
quite far from being able to realise broad-spectrum, human-level or super-human AI.

Another commonly emphasised risk is that of a massive loss of jobs due to AI
systems outright replacing human workers (see Chapter 4). This is doubtlessly a more
pressing risk, since the increase in automation afforded by broad use of AI brings a
large potential for eliminating, or at least much reducing, the need for human labour
across an increasingly broad spectrum of occupations. However, it is possible that new
kinds of occupations will in part make up for these effects, and that mechanisms for the
fair distributions of the benefits derived from this kind of automation can further
mitigate the inequities that may otherwise be caused by broad use of AI. Still, job loss
caused by sharply accelerated, AI-enabled automation is a serious issue that needs to be
addressed in the near future.

However, by far the biggest risk associated with the pervasive use of AI is of a very
different nature, and requires no assumptions on further progress in AI technology: the
risk of well-intentioned, yet incompetent use of weak AI - of the kind of AI systems
and techniques available right now. This risk necessarily arises from the combination of
three facts: one, that AI technology is complex and difficult to develop, deploy and
maintain; two, that the highly specialised expertise required for effectively and
responsibly developing, deploying and maintaining AI systems and techniques is rel-
atively rare and difficult to acquire; and three, that the demand for this expertise far
exceeds the supply. The last of these is what we call the talent bottleneck, since not
only the number of competent AI developers and users is low compared to the demand
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for them, but also the number of those that with a moderate amount of additional
training can reach the required level of expertise. The high demand for AI expertise is
directly caused by the usefulness and rapidly increasingly scope for successful val-
orisation of the technology and can be expected to further increase, quite rapidly, for
the foreseeable future.

The consequences of this bottleneck in talent and expertise are obvious: Increas-
ingly, AI systems will be developed, deployed and maintained by people who are
lacking the proper knowledge and experience. As a result, these systems and their use
will be prone to malfunction and unintended side effects; they will cause problems
which will often be difficult to detect before significant damage has occurred. This is of
particular concern in situations that involve the use of complex machine learning
techniques and large amounts of data in a black-box fashion, as is the case in most deep
learning approaches. The degree to which even moderately complex software (and
hardware) is difficult to design in a correct and robust fashion is evident from well-
known examples of costly, and sometimes deadly, malfunctions, such as the MCAS
system that caused the loss of two Boing 737 Max aircraft in late 2018 and early 2019
[71], and this difficulty is much more pronounced when dealing with even more
complex AI systems (see, e.g., [72]). To make matters worse, the highly undesirable
consequences of well-intentioned, underqualified use of weak AI will be particularly
pronounced in areas where it is difficult or impossible to successfully compete for
properly trained AI experts - notably, in the public sector and in non-profit
organisations.

The most obvious way to address this talent bottleneck is to step up AI education.
Currently, competent development and deployment of AI systems requires post-
graduate, and in many cases PhD-level training specifically in AI, typically on the basis
of a bachelor-level degree in computer science. There are much-needed efforts
underway to expand these programmes, and to start suitably chosen components of AI
education earlier, but the available and interested talent still forms a serious bottleneck.
To address this, it is crucial to further develop the effectively accessible talent pool -
first and foremost by taking measures to increase the participation of women, and
secondly by tapping further into the enormous potential present in developing
economies.

Clearly, stepping up education, in terms of improved and broadened educational
offerings, an earlier start, and the development of AI-related professional occupations
(e.g., related to the deployment, monitoring and maintenance of AI systems) is crucial
in terms of addressing the talent bottleneck, but it will not close the gap between supply
and demand of AI expertise, since current AI technology is simply too difficult to
develop and use responsibly. Therefore, it is of crucial importance to lower the level of
expertise required for effectively and responsibly working on and with AI systems,
which brings us to the technical challenges that are at the core of this section.

4.3 Automating Artificial Intelligence

Within the last decade, there have been two revolutions in machine learning (ML), one
of the most prominent areas of AI even prior to these developments. One of these, the
(re-)emergence of neural networks as a dominant paradigm, has played out with great
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fanfare and substantial resonance far beyond the field of AI. The other has been quiet in
comparison, and largely hidden from the eyes of the broader public, but is nonetheless
at least as relevant: the birth and rise of the concept of automated machine learning
(AutoML).

AutoML is an approach that aims to automate a set of task associated with making
effective use of ML methods and tools, including the choice of ML techniques and the
settings of the hyperparameters that determine their performance in particular use cases
(see, e.g., [73]). The concept arose, under that name, around 2013, and has rapidly
gained traction in the machine learning community and beyond. From the very
beginning, work in the area of AutoML has sought to not only help ML experts to
obtain better performance from existing ML algorithms, but also to lower the threshold
for the effective use of a broad range of ML techniques [74].

Interestingly, while programming can be understood as the principled automation
of well-structured tasks, machine learning fundamentally concerns the automation of
programming for tasks such as classification, regression and interaction with complex
environments, and hence corresponds to the automation of automation. This explains in
part why the rise of broadly applicable and successful machine learning techniques can
be legitimately seen as a technological revolution. Under this view, AutoML takes
automation to the next level, enabling an even higher degree of substitution of broadly
and readily available computation for scarce and expensive human expert knowledge.

AutoAI is based on the same idea, applied to all of AI rather than just machine
learning. This is extremely relevant, since firstly, contrary to widely held beliefs, there
are other areas of AI that are remarkably successful in terms of real-world impact,
including automated reasoning (which forms the basis for the design of all modern
hardware, and is increasingly used for ensuring software correctness), optimisation
(with a broad range of applications across industry and academia), and multi-agent
systems (which play an increasingly crucial role in the automation of decision making
in situations involving multiple actors or agents with possibly conflicting goals and
preferences). Most AI experts are convinced that next-generation AI systems need to
combine learning, reasoning and other techniques, in order to achieve robust perfor-
mance and effective interaction with human users and stakeholders.

Concretely, AutoAI aims to automate critical aspects of the development,
deployment and responsible operation of AI systems. This includes task such as
selection of AI techniques and algorithms that are suitable in a given use context,
optimisation of the performance of these algorithms for the data characteristic of that
use context, and monitoring of the behaviour of AI systems after deployment, with the
goal of detecting, and clearly signalling, when the operational conditions deviate far
enough from those considered at the time of development and deployment to cause
problems.

This gives rise to several technical challenges. Firstly, fully or partially automated
selection of AI techniques and algorithms for a given use case is a daunting task,
considering that many real-world problems do not easily map to a small set of well-
know AI problems, and require non-trivial combinations of techniques to be tackled
effectively. Furthermore, where mappings to existing problems (such as MIP) exist,
these are often not unique, but rather admit a potentially very large range of encodings,
the choice of which can have dramatic impact on the performance of standard
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algorithms for those problems. Secondly, while automatic performance optimisation
techniques exist (see, e.g., [75]), these are far too limited to be applied broadly to AI
systems with many design choices and parameters that can potentially impact perfor-
mance. In particular, with very few exceptions (see, e.g., [76]), these general-purpose
automated algorithm configurators are restricted to optimising a single performance
objective, such as solution quality or running time, while in realistic scenarios, there is
often a need to find good trade-offs between multiple, competing performance criteria,
such as solution quality and resource consumption. Thirdly, broadly applicable tech-
niques for monitoring the operation and performance of AI systems in relation to
changes in the environment they operate in, and for signalling when these systems get
“out of their depth”, are largely unexplored; we refer to the automated combination of
AI systems with such monitoring capabilities as self-monitoring AI.

At the same time, recent progress in AI techniques for algorithm selection, con-
figuration and performance modelling provide a solid basis for work towards meeting
these challenges, and hence for effective AutoAI methods and tools. It is important to
realise that the goal of AutoAI, as we see it, is not full automation of the previously
mentioned tasks, but rather effective support for the humans that tackle them, at various
levels of expertise, ultimately substituting substantial amounts of costly and scarce
human expertise with large amounts of readily available computation. At the same
time, by automating key aspects of building, deploying and maintaining AI systems,
AutoAI makes explicit the assumptions, practices and insights brought by human
experts to these tasks, and thus not only renders these accessible to a broader range of
developers and users, but also facilitates their critical assessment and improvement.
Finally, by making it substantially easier to realise the performance potential inherent
in AI algorithms and components in a broader range of specific application situations,
AutoAI can be expected to make it possible to decrease the complexity of the systems
and methods that need to be brought to bear to achieve desirable performance in many
use cases.

4.4 The Way of the Future

The idea of machine intelligence has fascinated humankind for centuries; it is inex-
tricably linked with the development of computing technology that, since the 1980s,
has become the main driver for technological progress and innovation. The advanced
computational methods developed in AI represent the next major step on this path.
While interest in AI has shown several distinct peaks and troughs since the inception of
the field in the 1950s, as we have argued in Sect. 4.1, there are good reasons to believe
that the latest boom is of a different nature, as AI technologies have begun to rapidly
change the way we design and use computation across all sectors of industry and
society, and will thus bring about a lasting transformation in the way we live and work.

There is a rather high sensitivity to the risks associated with the development and
use of AI technologies; unfortunately, as we have explained in Sect. 4.2, the most
serious risk in the near and medium term is rarely recognised: the well-intentioned, yet
incompetent use of weak AI systems, such as the ones we presently build and deploy,
that is inevitably going to occur increasingly and on a large scale, especially in the
public sector and non-profit organisations, as a result of the dearth of properly trained
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and qualified AI experts, in combination with the inherent complexity of current AI
technology. This gives rise to the formidable challenge of enabling the effective and
responsible design, deployment and maintenance of AI systems at significantly lower
levels of expertise.

The technical direction for addressing this challenge we have outlined in Sect. 4.3
known as AutoAI (automated AI), is based on the idea of harnessing AI techniques for
the effective and responsible design, deployment and maintenance of AI systems. We
have outlined several challenges for AI technology in this area, including the concept
of self-monitoring AI, which permits the automated construction of AI systems that can
detect and signal when they are no longer operating in a safe and effective fashion.

AutoAI can bring a broad range of benefits beyond alleviating the talent bottleneck;
these include markedly increased performance and robustness of AI systems; sub-
stantial savings in the energy required for building and operating AI systems along with
the associated costs of these systems; broader effective applicability and easier cus-
tomisation of AI systems; reduced requirements for data; and broader access to AI
technology (e.g., in the context of citizen science). AutoAI thus aims to facilitate work
on and with AI systems across many levels of experience and expertise, from highly
skilled specialists to technically adept laypersons.

Naturally, the concept of AutoAI brings its own challenges, which need to be
addressed by research on this topic as well as in the way AutoAI technologies and tools
are used. This includes the potential for creating even more complex AI systems that
perform better, but end up being more opaque, less reliable and more difficult to use
responsibly, as well as the potential acceleration of research and developments aimed at
artificial general intelligence.

We are deeply convinced that AutoAI is the next logical step in the development of
AI technology, with the potential to fundamentally transform the way we design,
deploy and maintain AI systems. Of course, as is the case with present-day AI tech-
niques and many other powerful technologies, AutoAI can be used in ways we find
problematic, troubling or outright objectionable - in particular, for constructing AI
systems whose use undermines human rights, freedom or dignity, or the fair and
responsible use of critical resources. In our view, such objectionable uses include the
development of AI that aims to replace, rather than augment, human intelligence.
Therefore, it is of the utmost importance to complement work on the technological
challenges associated with AutoAI with work on mechanisms, including regulation,
that ensure responsible use. This requires skills beyond those required for the technical
work on AutoAI (and AI in general), as well as political determination.

The way we develop and use AI will doubtlessly shape our future. The transfor-
mative power of AI technology can be readily glimpsed from recent applications, and
will become more evident in the near future. AutoAI will further amplify this power,
but developed and used judiciously, it will also allow us to better harness it not only for
the benefit of relatively narrow segments of society, but also for the collective welfare
of humankind, while avoiding many of the risks associated with the careless devel-
opment and use of AI technology. It will thus play an important role in paving our way
into the future - a future that much depends on our values, choices and determination.
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