

Where the wild things are: galaxy evolution and radio source properties in the High-z COBRA survey

Golden-Marx, E.; Blanton, E.; Cai, Z.; Paterno-Mahler, R.; Brodwin, M.; Ashby, M.; ... ; Sarkovic, V.

Citation

Golden-Marx, E., Blanton, E., Cai, Z., Paterno-Mahler, R., Brodwin, M., Ashby, M., ... Sarkovic, V. (2021). Where the wild things are: galaxy evolution and radio source properties in the High-z COBRA survey, 51. doi:10.5281/zenodo.5009014

Version:Publisher's VersionLicense:Creative Commons CC BY 4.0 licenseDownloaded
from:https://hdl.handle.net/1887/3275260

Note: To cite this publication please use the final published version (if applicable).

Where the Wild Things Are: Galaxy Evolution and Radio Source Properties in the High-*z* COBRA Survey

Emmet Golden-Marx emmetgm@bu.edu Tsinghua University

BOSTON UNIVERSITY

Galaxy Cluster Formation 2021 – June 18, 2021

Elizabeth Blanton, Zheng Cai, Rachel Paterno-Mahler, Mark Brodwin, Matt Ashby, Brian Lemaux, Emily Moravec, Lu Shen, Lori Lubin, Roy Gal, Adam Tomczak, Huub Röttgering, Reinout van Weeren, Victorine Buiten, Vanja Sarkovic

The High-z Clusters Occupied by Bent Radio AGN (COBRA) Survey

- Sample of 646 bent, double-lobed radio sources selected from the VLA FIRST SURVEY (Paterno-Mahler et al. 2017)
 - 0.3 < z < 3.0
- 41 spectroscopically confirmed quasars
- Observations: Optical (Lowell Discovery Telescope 4.3m), IR (Spitzer)

Waveband	Number of fields
<i>3.6</i> µm	646
4.5µm	135
<i>i</i> -band	90
<i>r</i> -band	38

Bent, Double-Lobed Radio Sources

- The unique "C" shape of bent radio sources is caused by ram pressure acting on the radio lobes
 - Most commonly, this pressure is caused by the relative motion between the galaxy and the ICM (e.g., Owen & Rudnick 1976)
- At low redshift, bent sources are commonly in galaxy clusters (e.g., Blanton et al. 2000, Wing & Blanton et al. 2011, Garon et al. 2019)

Question 1 Are high-z bent, double-lobed radio sources found in galaxy clusters characterized by strong red sequences?

The Search for Red Sequence Galaxies

Golden-Marx et al. 2019, 2021

Estimate the red sequence color based on the host galaxy
+/- 0.15 (red circles) (e.g., Blakeslee et al. 2003; Mei et al. σ 2006, 2009; Snyder et al. 2012; Lemaux et al. 2012; Cerulo et al. 2016)

• Search the combined Spitzer/LDT fov for all red sequence galaxies to best identify the peak surface density of red galaxies

• Define cluster candidates as a 2σ overdensity in a 1' region relative to the background

Further Verification – The Combined Overdensity

- Weight the likelihood of each galaxy (red sequence, redder, and bluer) being a cluster member at our redshift estimate
 - Using spectroscopic and photometric redshifts and optical/IR imaging from the ORELSE survey (Lubin et al. 2009)

• Identify 39 high-z cluster candidates at 0.35 < z < 2.2

The Location of Bent Sources in COBRA Clusters

Sakelliou & Merrifield 2000

- Sakelliou & Merrifield (2000) found that the 11 of 16 of their low-z bent sources are within 300kpc (1 cluster core radius) of the cluster center
- Similarly, Golden-Marx et al. (2021) found 24 of 39 are within 300kpc of the cluster center

Are Bent Radio Source Host Galaxies Proto-BCGs?

- Identify the BCG as the brightest red sequence galaxy (exclude quasars)
- 55% of our radio hosts are BCGS (Golden-Marx et al. 2021)

Do COBRA proto-BCGs trace the overall cluster richness?

- Among the richest COBRA clusters (> 3.5σ), we find a strong correlation between the absolute magnitude of the BCG and the combined overdensity
 - Could hint at the possibility of these systems being further along their evolutionary paths (e.g., Lin & Mohr 2004, Wechsler & Tinker 2018)

Question 2 What are the radio properties of the bent radio sources and are they linked to environment?

Measuring the Opening Angle

 Measure the opening angle based on the detected radio components in the VLA FIRST catalog

• 75% are WATs (> 90°)

Does the Opening Angle Correlate with Environment?

• Find a negative correlation between the size of the opening angle and cluster richness

• If richer clusters have a denser ICM, this may imply the ICM density is the dominant driver of the bent morphology (not infall velocity); (e.g., Hardcastle et al. 2005, Morsony et al. 2013)

Where is the Bent Radio Source?

• Sakelliou & Merrifield (2000) found that the overwhelming majority of their low-z bent sources are infalling

Have bent AGNs passed through the cluster center?

- 11 sources are outgoing, 3 are infalling, and 22 are intermediate
 - The farthest sources from the cluster center are infalling or intermediate
- This might imply that high-*z* bent sources don't follow radial paths or the ICM is not dense enough to thoroughly disrupt the radio lobes

Additional Radio ObservationsLOFAR (0.143GHz)VLA FIRST (1.44GHz)VLASS (3.0GHz)

Golden-Marx et al. (in prep)

- 21 COBRA red sequence clusters have radio observations in LOFAR
- Aim to characterize the energetics of bent radio sources and trace any lobe asymmetries

Preliminary Correlations between the Spectral Index and Radio/Host Parameters

Golden-Marx et al. (in prep)

• Brighter host galaxies have radio sources with flatter core spectral indices

Conclusions

- Identify 39 red sequence cluster candidates at 0.35 < z < 2.2
 - The bent AGN is not necessarily centrally located
- 55% of host galaxies are proto-BCGs
 - In the richest clusters, these proto-BCGs appear to trace overall cluster richness
- Richer clusters on average host narrower bent radio sources
- Identify many potentially outgoing radio sources
 - May indicate these galaxies follow non-radial/circular orbits, or are not disrupted upon falling through the cluster center
- Began the first study of high-*z* bent radio source spectral indices