
Identifying SQL misconceptions of novices: findings from a think-aloud
study
Miedema, D.; Aivaloglou, E.; Fletcher, G.; Ko, A.J.; Vahrenhold, J.; McCauley, R.

Citation
Miedema, D., Aivaloglou, E., & Fletcher, G. (2021). Identifying SQL misconceptions of novices:
findings from a think-aloud study. Proceedings Of The 17Th Acm Conference On International
Computing Education Research, 355–367. doi:10.1145/3446871.3469759
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3250272
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3250272


Identifying SQL Misconceptions of Novices: Findings from a
Think-Aloud Study

Daphne Miedema
d.e.miedema@tue.nl

Artificial Intelligence and Data
Engineering (AIDE) Lab

Eindhoven, the Netherlands
Eindhoven University of Technology

Eindhoven, the Netherlands

Efthimia Aivaloglou
e.aivaloglou@liacs.leidenuniv.nl
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

Open Universiteit
Heerlen, The Netherlands

George Fletcher
g.h.l.fletcher@tue.nl

Artificial Intelligence and Data
Engineering (AIDE) Lab

Eindhoven, the Netherlands
Eindhoven University of Technology

Eindhoven, the Netherlands

ABSTRACT
SQL is the most commonly taught database query language. While
previous research has investigated the errors made by novices dur-
ing SQL query formulation, the underlying causes for these errors
have remained unexplored. Understanding the basic misconcep-
tions held by novices which lead to these errors would help improve
how we teach query languages to our students. In this paper we
aim to identify the misconceptions that might be the causes of
documented SQL errors that novices make. To this end, we con-
ducted a qualitative think-aloud study to gather information on
the thinking process of university students while solving query
formulation problems. With the queries in hand, we analyzed the
underlying causes for the errors made by our participants. In this
paper we present the identified SQL misconceptions organized into
four top-level categories: misconceptions based in previous course
knowledge, generalization-based misconceptions, language-based
misconceptions, and misconceptions due to an incomplete or in-
correct mental model. A deep exploration of misconceptions can
uncover gaps in instruction. By drawing attention to these, we aim
to improve SQL education.

CCS CONCEPTS
• Information systems → Structured Query Language; • So-
cial and professional topics → Computing education.

KEYWORDS
SQL, novice, error, misconception

ACM Reference Format:
Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2021. Identi-
fying SQL Misconceptions of Novices: Findings from a Think-Aloud Study.
In Proceedings of the 17th ACM Conference on International Computing Edu-
cation Research (ICER 2021), August 16–19, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3446871.3469759

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICER 2021, August 16–19, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8326-4/21/08.
https://doi.org/10.1145/3446871.3469759

1 INTRODUCTION
Databases and the Structured Query Language (SQL) are core top-
ics in Software Engineering and Computer Science curricula in
higher education [33]. While the syntax of SQL is relatively simple
in comparison to most programming languages, SQL is not a trivial
language to learn. Several works have reported on common errors
in the SQL queries written by students and novices, identifying
various categories such as syntax errors, logical errors, semantic
errors and complications [3, 8, 21, 31, 32, 34]. In the area of re-
search surrounding SQL education, the main focus has been on
the errors made, without expanding on the underlying causes or
the misconceptions that novices may hold. The identification of
misconceptions is an important first step towards devising instruc-
tional approaches that address students’ difficulties. In the area of
programming education, on the other hand, misconceptions have
been well studied. Even though SQL is a query language, not a
programming language, parallels between the two can be drawn.

Early works on programming misconceptions identified them as
conceptual bugs in how novices program and understand programs
[20], difficulties of learning to program, and errors based on the
misapplication of analogies [7]. Since then, a large body of work has
focused on misconceptions on introductory programming, and es-
pecially on imperative and object-oriented programming languages,
identifying a wide range of errors in their conceptual understanding
[9, 24]. One of the causes of difficulties and misconceptions that
has been widely reported on is the misapplication of students’ prior
knowledge [12, 24]. When considering SQL education, relevant
prior knowledge may come from several domains. Mathematics, set
theory and relational algebra are some possible prerequisites for
learning SQL and may thus influence learning of the material. More-
over, SQL borrows keywords from natural language, and could thus
be susceptible to linguistic transfer [7, 9]. Prior exposure to other
programming languages has also been found to cause misconcep-
tions [25], for example due to the differences in the notations and
their use, and SQL learners will commonly have been taught pro-
gramming as part of the curricula they they follow. These different
types of prior knowledge could be potential causes of misconcep-
tions leading to SQL errors that have been documented in prior
work. Early research on the causes of SQL errors hypothesized
about five underlying causes: working memory overload, absence
of retrieval cues, procedural fixedness, incorrect procedural knowl-
edge, and misperception [27]. Recently, errors in the SQL queries
submitted by students were mapped to these five causes by Taipalus
[31], without however utilizing qualitative input from the students.

355

https://orcid.org/0000-0003-3507-677X
https://orcid.org/0000-0002-6531-2166
https://orcid.org/0000-0003-2111-6769
https://doi.org/10.1145/3446871.3469759
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3446871.3469759


ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

In this paper our goal is to understand the difficulties that novices
face when formulating SQL queries and the underlying causes of
their errors. The research question that we are aiming to answer is:
What are the misconceptions of SQL novices that cause difficulties or
errors during query formulation? To this end, we ran a think-aloud
study in which we asked 21 students to solve query formulation
problems. Similarly to other works identifying student miscon-
ceptions (for example, [13, 28]) a think-aloud study allows us to
collect qualitative input on the students’ thought process. Using the
transcripts along with the students’ notes, we identified the under-
lying causes of their errors which we categorize into four top-level
categories: misconceptions based in previous course knowledge,
generalization-based misconceptions, language-based misconcep-
tions, and misconceptions due to an incomplete or incorrect mental
model. To the best of our knowledge, this is the first study on the
causes of SQL errors based on qualitative input on the students’
thought process.

2 RELATEDWORK
SQL education research has mainly focused on the errors made
by novices, without expanding on the underlying reasons. Some
previous work did explore causes by looking at human cognition
and task analysis. One of those is Smelcer, who developed a model
to explain known errors [27]. Unfortunately, their list of errors
is very short, and focuses on basic errors such as omissions and
misspellings. They list five underlying causes: working memory
overload, absence of retrieval cues, procedural fixedness, incorrect
procedural knowledge, and misperception. Misperceptions accord-
ing to Smelcer are task-related, such as perceiving ‘lc’ as ‘k’, and
thus lead to misspellings. This is largely unrelated to the miscon-
ceptions we discuss in this paper.

More recent work has expanded on the basic types of errors
beyond omissions and misspellings. A typical split is for studies to
focus on syntax errors [1], semantic errors [3, 8], or both [2, 21]. In
their discussion of semantic errors, Brass and Goldberg distinguish
between two types of answers [8]. Those queries for which we need
to know the question to see whether they are correct, and those
where the query is incorrect regardless of the question (for example
due to a conflicting WHERE clause resulting in an empty answer).
Taipalus and Siponen also use these two classes: they call the former
category logical errors, and the latter semantic errors [34]. In addition,
they add complications to their categorization. Complications are
those unnecessary additions that muddle understanding of a query,
but do produce the correct result table.

To get a better insight into which errors are more significant
than others, Taipalus and Perälä consider persistent errors in stu-
dent work. They define persistent errors as those that are present
in the student’s final answer [32]. They found that logical errors
and complications had the highest incidence, and that syntax and
semantic errors occurred least in final attempts. As a recap, logical
errors are those that we can only evaluate as incorrect once we
know the question the query tries to answer. This means that stu-
dents wrote a query that in principle could be correct, but does not
match the question they were asked. It would be interesting to take
the students’ perspective into account, to see where the mismatch

between the question and query formulation occurs. This is where
misconceptions come into play.

Research into misconceptions is one of the essential areas to
understand when aiming to improve education. If we want to help
our students learn to use SQL more effectively, we need to know
the nature of the misunderstandings that result in difficulties or er-
roneous code being written. Unfortunately, there is not much work
on misconceptions in SQL so far. In one paper we know of, Taipalus
[31] discusses causes that could be behind the persistent errors
explored in [32]. They map the errors to four cognitive explana-
tions as introduced by Smelcer [27]. Unfortunately, this mapping is
speculative [31], as they only use the plain text query as submitted,
without qualitative discussion with students.

On the other hand, there is ample qualitative work on miscon-
ceptions in programming. Although SQL is a query language, not
a programming language, parallels can be drawn. In our work on
querying misconceptions, we draw from the research on program-
ming misconceptions.

Misconceptions on introductory programming have been catego-
rized into difficulties in syntactic knowledge, conceptual knowledge,
and strategic knowledge, referring to knowledge about planning,
writing, and debugging programs [24]. Towards identifying mis-
conceptions, novice programmer errors have previously been cate-
gorized in syntax errors, semantic errors, and logic errors [17]. It
was recognized early that an important source of misconceptions
are properties that students assume of the machine that executes
their code [7] or the superbug that Pea recognized as the assump-
tion that “there is a hidden mind somewhere in the programming
language that has intelligent, interpretive powers” [20]. Research
on programming misconceptions has focused on the understanding
of concepts in imperative and object oriented languages [15, 28] –
an extensive list of misconceptions in presented in [29]. Apart from
languages commonly taught in CS1, recent work onmisconceptions
has focused on visual programming languages used by younger
learners [30], functional programming languages [11], as well as
difficulties with the understanding of data structures [38].

Misconceptions have been considered as “faulty extensions of
productive prior knowledge” that should be identified and refined
rather than replaced [12]. In programming, students’ prior knowl-
edge, especially from natural language and mathematics, has been
found to be transferred and cause misconceptions [9, 24]. Linguistic
transfer is especially relevant to our work on SQL errors, since pro-
gramming keywords borrowed from the English language can have
ambiguous or different meaning [7, 22], such as the word and, which
is a conjunction in natural language but a Boolean operator in pro-
gramming. It has been found, for example, that novice programmers
believed that an if statement was continuously actively waiting
for the Boolean condition to be true, as used in natural language
[20]. Several works have attributed misconceptions on the misap-
plication of prior knowledge on mathematics, especially algebraic
notation. It has been observed, for example, to cause confusion on
variable assignment statements [4] and affecting the understanding
of execution sequences [28]. Prior exposure to different program-
ming languages has also been found to cause misconceptions [25],
for example due to the differences in the notations and their use
for the definitions of variables and arithmetic operators.

356



Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

Question Summary of answers

What languages can you program in? Java, C#, Python, JavaScript, C++, R
Have you been introduced to functional pro-
gramming?

13/21

Have you studied the Relational Algebra? 17/21
Have you studied Set Theory? 14/21
Do you have work experience in the indus-
try with programming- or query languages?

5/21 (all programming experience)

How would you rate your SQL proficiency?
(1- Extremely novice, 10 - Complete expert)

mean: 5.35, standard deviation: 1.7

What interface do you use for writing SQL
queries?

DataGrip, Jupyter, terminal,
Microsoft Access, web interface,
text editorwith syntax highlighting.

Table 1: Questions on prior knowledge and experience of the participants.

Table
name

Attributes

customer cID, cName, street, city
store sID, sName, street, city
product pID, pName, suffix
shoppinglist cID, pID, quantity, date
purchase tID, cID, sID, pID, date, quantity,

price
inventory sID, pID, date, quantity, unit-price

Table 2: The database schema used for the
questions in Table 3. Underlined attributes
together form the primary key for each
table.

With this knowledge on SQL errors and programming exercises,
we aim to further the work in SQL education by identifying learn-
ers’ difficulties and misconceptions. In contrast with the work by
Taipalus [31], we ran a qualitative think-aloud study in which we
asked students to solve query formulation problems. Based on the
students’ processes, we hypothesize on the underlying causes for
their errors. In the following sections we elaborate on our study and
findings, and present a first SQL misconceptions categorization.

3 METHOD
To collect information on the errors that SQL novicesmake and their
underlying reasons, we ran a user study of semi-structured, think-
aloud interviews. In the interviews, we presented participants with
query formulation and evaluation problems of increasing difficulty.

The study took place in the Netherlands, through two univer-
sities and one high school. The interviews were held via Skype
due to shelter-in-place measures. Participants wrote their notes
and answers on paper, which they showed in front of the webcam.
After the interview, they submitted pictures of their notes and an-
swers to the researcher. The interviews were scheduled to take
approximately 30 minutes. No compensation was provided.

3.1 Materials
Questionnaire Before the start of the interview, we asked the
participants to asynchronously fill in a questionnaire to give us
some insight into their knowledge of SQL and related subjects. The
questions can be found in Table 1.
Interview questions The question pool for the think-aloud in-
terview is available in Table 3, with the schema for the database
represented in Table 2. We will refer back to these questions when
discussing our results. The questions were designed to capture all
basic SQL concepts that novices should be familiar with, while
staying within the designated time frame for the study. In Table
3 we also mention covered concepts. These are based on the seven
types of SQL queries defined by Ahadi et al. [2].

The starting question was chosen based on the self-reported SQL
score. For participants with score of 5 or lower, we started from
question 1. All others started with question 3. We found that many
participants scored themselves either too low or too high, which
meant that we sometimes deviated from this procedure by going
back or skipping questions, to get the most out of the interview.

3.2 Participants
For our participant pool we were looking for students who had
recently learnt SQL. For recruitment, we reached out to database
course instructors the authors knew. Interested instructors for-
warded our interview invitation to their students, who could then
register for a time slot.

We had 21 participants, of whom 3 were female and 18 male. No
participants reported disabilities. Only two of the participants in
our study were native English speakers; the others had different
first languages. To make the study available to all participants, the
questions were posed in English. As the native language of the
interviewer and most of the participants was the same, 15 of the
interviews were held in that language.

Regarding their education level, our participants fell in two cate-
gories. One group (n=4) were high school students who were taking
Informatics as part of their curriculum, had been taught and had
just been tested on SQL by their teacher. The second group were
university students from two different universities (U1: n=4, U2:
n=13) who had taken one course on Databases before the interview,
which included 2 lectures on SQL. Most of our participants could
be called novices with regard to SQL.

Table 1 summarizes the reported prior knowledge and experience
of the participants. For SQL proficiency, they graded themselves on
average as 5.35 (on a scale of 1 to 10), with a standard deviation of 1.7.
All participants knew how to program in at least one programming
language, with most people knowing two or more programming
languages.

3.3 Procedure
All interviews were held online via Skype by the first author, who
was not a member of the teaching team of the databases courses.
The participants were sent the questionnaire and informed consent
form before the start of the interview, and could return pictures or
scans of these documents. The interviews started with the partic-
ipants being introduced to the ideas behind the study and to the
think-aloud protocol. We also checked whether they had pen and
paper ready, and we ran quickly through the main points of the
informed consent to allow for questions. Then the interviewer let
the participant know that a recording would be started, and the
study began.

357



ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

Question
type

Question Covered
concepts

Tried
by

1 Execution What is the result of Query 1? What is the natural
language equivalent?

11

2 Formulation List all IDs&names of customers living in Eindhoven. Simple query 12
3 Formulation List all pairs of customer IDs who live on a street with

the same name but in a different city.
Self-join 21

4 Formulation List all customer IDs, dates and quantities of transac-
tions containing products named Apples.

Natural join 21

5 Advanced
formulation

Find the names of all inventory items that have a
higher unit price than Bananas.

Single
subquery

16

6 Advanced
formulation

Return a list of the number of stores per city Group By 7

7 Advanced
formulation

Return the stores table ordered alphabetically on city. Order By 5

8 Execution What is the result of Query 2? What is the natural
language equivalent?

6

9 Advanced
formulation

A store-chain consists of at least two stores with the
same name but different IDs. Find the names of the
store-chains that on average sell product in quantities
of more than 4.

High
complexity

3

Table 3: The pool of questions available for the interview.

SELECT c.cID, s . sID, c . city
FROM customer AS c,

store AS s
WHERE c.street = s . street
AND c.city = s . city

Query 1: First execution trace
question.

SELECT AVG(price), pName
FROM product AS p,

transaction AS t
WHERE p.pID = t.pID
GROUP BY pName
HAVING AVG(price) > 1

Query 2: Second execution
trace question.

We introduced the database schema and some example data (see
Figure 1) that were the basis of the query formulation problems,
and gave the participants time to study it and ask any questions
they may have. Depending on their self-reported SQL skill-level, we
started either with question 1 or question 3 of Table 3. Students were
asked to read each question out loud and express their thoughts, to
encourage discussion on their problem solving process.

During query formulation, and especially upon the occurrence
of mistakes, the participants were asked to elaborate on the how
and why of their approach, to try to uncover the reasons behind the
errors. Sometimes, the query would be corrected by the students
(who were asked to leave the erroneous answer visible), sometimes
they made new mistakes and the discussion would start again.

In general, the study was ended after the designated time had
passed and nomore problems were presented, except in cases where
participants suggested we continued longer. Then, the participants
were asked if they had any questions or remarks. The recording
was stopped, and the interviewer asked the participant to submit
pictures of their notes and queries. Finally, the interviewer asked
the participant whether they wanted to be kept up to date with the
research, and the participant was thanked for their participation.

3.4 Data processing
For data analysis, we used the notes of the participants on their
intermediate and final answers to the interview questions in Table
3 and the transcribed interviews.

The first step in our analysis was to extract all errors, both in
intermediate and final attempts. We made a list of all distinct errors
that occurred, and classified each error according to the SQL key-
word they were associated with. Those errors were then organized
according to categories of SQL errors identified in existing work
[8, 34]. The error categorization is presented in Section 4.

Following the identification of the errors, we used the transcribed
interviews to explore the causes of the errors. For every identified
error in the final or intermediate query result, we searched for indi-
cations of its cause in the thought process as it was expressed by the
participant. The causes were identified either in the thought process
leading to the errors, or in their answers to clarification questions
of the interviewer. We followed a data-driven approach, generat-
ing appropriate labels according to the expressed misconceptions
[6]. Once this process was finished, the three authors separately
looked at the labels, along with representative quotes for each, and
independently came up with misconception categorizations. Dur-
ing the categorization we took into account the interference and
transfer of existing knowledge in the development of new concepts.
The researchers then compared and discussed their categorizations,
and agreed on four top-level categories: misconceptions based on
previous course knowledge, generalization-based misconceptions,
language-based misconceptions, and misconceptions due to an in-
complete or incorrect mental model.

4 IDENTIFIED SQL ERRORS
After the interviews, the first intermediate step towards exploring
students’ misconceptions was the labeling the errors they made in
their queries. For this we used all intermediate and final queries as
written by the participants.

As our focus is on exploring the misconceptions that lead to
these errors, we will not present this full list of errors in this paper.
Instead, we grouped the errors into categories and report on this
summary. We split up semantic and logical error categories into
smaller groups, as we believe these categories are too coarse, and
thus not descriptive enough. We used the following categories: syn-
tax issues, incorrect or missing table/column, incorrect or missing
keyword, returning incorrect results, issues with the schema, alias
problems, contractions, and complications.

358



Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

Customer Shoppinglist
cID cName street city cID pID quantity date
0 Noah Koestraat Utrecht 1 2 1 2020-05-13
1 Sem Rozemarijnstraat Breda 1 3 6 2020-05-13
2 Lucas Oude Leliestraat Amsterdam 3 1 2 2020-05-15
3 Daan Kalverstraat Amsterdam

Inventory
Store sID pID date quantity unit_price
sID sName street city 0 1 2020-05-15 55 0.55
0 Coop Kalverstraat Amsterdam 0 2 2020-05-15 32 2.3
1 Lidl Hoogstraat Utrecht 1 4 2020-05-15 12 1.8
2 Lidl Molenstraat Eindhoven 1 1 2020-05-15 46 0.6
3 Hoogvliet Rozemarijnstraat Breda
4 Sligro Stationsplein Breda

Product
Transaction pID pName suffix
tID cID sID pID date quantity price 1 Milk ""
0 0 4 3 2020-05-12 5 0.4 2 Mushrooms ""
1 0 4 1 2020-05-13 2 0.65 3 Apples ""
2 2 0 4 2020-05-13 2 1.3 4 Tea ""
3 3 0 1 2020-05-15 1 0.67 5 Banana ""

Figure 1: The sample data presented to the participants. The database schema is based on a group of supermarkets.

The presentation of the errors below is a first step in the analysis
of our data. The labeling of these mistakes helps us to order the
data before we examine their underlying causes in Section 5.

4.1 Syntax issues
Syntax errors is a common error category, present in various other
papers on SQL errors [1, 21, 34–36].

As is to be expected when writing in a language as strict as
SQL, many syntax errors occurred during the interviews. Some
of these were very basic, such as forgetting commas and brackets,
as well as the quotes around string data. These can be attributed
to distractions and sloppiness. Others were more involved, and
show some problems with understanding how SQL works. A basic
example is incorrect writing of operators. For ‘not equals’, both
<> and != are valid ways, but some participants wrote , or ‘IS
NOT’. For ‘equals’, SQL requires =, but some participants wrote ==.
Other errors concerned the usage of comma and AND, which are
not interchangeable. Participants substituted comma for AND, or
skipped the AND or comma altogether.

Another subcategory of syntax issues is that of incorrectly or-
dered keywords and clauses. We found participants incorrectly
placing the GROUP BY keyword at the beginning of the query, and
reordering SELECT, FROM and WHERE.

4.2 Incorrect or missing table/column
A similar problem to the missing or incorrect keywords also hap-
pened for the data itself. Some participants used incorrect tables or
confused table- and column names. Others projected only on part
of the required columns, or forgot to include a table for self-join.

Ahadi et al. collect errors in this and the previous category under
‘omission errors’ [3]. From Presler-Marshall et al. this category may
include wrong subclauses in the WHERE clause, missing JOIN and
column mismatch. It is also related to Taipalus et al.’s undefined
database object and projection errors [34], and Welty et al.’s minor
operand error [36]. Errors regarding attributes and their types are
categorized by Welty as complex errors [35]. This category does
not occur in Brass et al.’s list of semantic errors [8].

4.3 Incorrect or missing keyword
Other researchers classify these errors as syntax errors [8, 34], but
we feel that there is a difference between missing commas and other
minor elements on the one hand, and complete missing clauses on
the other hand. Presler-Marshall et al. include this as missing or
extra operator in their semantics category [21]. We include the
switching up of keywords in a separate category. Sometimes there
were mix-ups, but there were also some creative inventions by our
participants.

Some participants also made mistakes based on synonyms: SUM
versus COUNT and SORT versus ORDER BY. We also had some
cases of missing keywords: dropping BY from ORDER BY, missing
ON for explicit JOINs, and missing FROM. The questions we posed
were all retrieval queries. Nevertheless, one participant wanted to
use INSERT instead of SELECT. Finally, one participant thought
that for taking the first item of a list, they should use DISTINCT.

4.4 Returning incorrect results
This category includes queries that were syntactically correct, but
would result in incorrect results. Some queries include incorrect
operators (= instead of !=) or incorrect functions, such as adding
COUNTwhen not required. Incorrect results also happened because
of issues with the JOINs, such as omitting the JOIN condition, incor-
rect JOIN conditions, and comparing unmatchable items (street =
city). Projections also went wrong regularly. Participants projected
in the wrong order, on extra columns, or missed columns.

Taipalus et al. call these logical errors in the subcategories on
operators and joins [34]. Similarly, it includes some errors listed by
Welty and Stemple: minor language error, minor substance error
and major substance error [36]. Incorrect results also includes some
errors reported by Presler-Marshall et al.: wrong values in where,
wrong ordering, wrong operator in WHERE [21]. It does not occur
in Brass et al.’s list of semantic errors [8].

4.5 Issues with the database schema
This category is related to the process of the participants, and thus
has not been reported in previous research before.

359



ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

As we discussed in the related work section of this paper, prob-
lems with query formulation can arise from the need to remember
the database schema. We found various mistakes that are closely
related to the schema, most of which involve confusion on which
table or attribute to use. Other schema issues include confusing a
table name for a column name, and misspellings in both the table
and column names.

4.6 Alias problems
One thing that many participants struggled with were aliases. It
seems that students do not always have a correct grasp of what
aliases are meant for, and when to use them. This relates both to
alias syntax (writing the alias behind the column name, using an
alias but not defining it), and to its applicability. For example, some
queries contained ambiguous column names as a result of missing
aliases. Other queries included aliases when they were not required.

Taipalus et al. classify some of thesemistakes under syntax errors
and others in complications [34]. From Presler-Marshall et al., alias
problems are captured under column reference error [21]. This
category is not included in Brass et al.’s list of semantic errors [8].

4.7 Contractions
This is a set of errors that overlaps with syntax errors, but reflects
cases where our participants wanted to write the queries in shorter
form, even if this was not syntactically allowed (e.g., Query 3).

Some participants had lost the basic SQL syntax, and made mis-
takes in which they combined or confused various parts of the
queries. One participant merged the SELECT and FROM clauses,
andwrote: SELECT customer AS a, customer AS b, where customer
is a table name in the schema. Something similar happened to the
SELECT andWHERE clauses, where participants projected on items
that should be selected on.

Other confusions included subqueries, where conditions were
not placed on the correct level of nesting, and aggregation. Ag-
gregation was already shown by other researchers (see [8]) to be
difficult. The main aggregation issue we found is on where GROUP
BY is required, which resulted in several incorrect answers.

SELECT customer AS a, customer AS b
WHERE a.street = b. street
AND a.city <> b. city ;

Query 3: Participant 16, question 2, an example of a con-
tracted query.

4.8 Complications
Complication is a common category supported by previous liter-
ature [8, 34] that describes those parts of the query that do not
alter the answer, but complicate the query formulation and make
the query more difficult to interpret and check. Examples include
GROUP BY on singleton groups, unnecessary JOIN, or using aliases
when not necessary.

Some of these complications were purely visual. For example,
one participant wrote out all column names instead of using *.
Other participants wrote unnecessary brackets, renamed columns,
or defined aliases but did not use them. Another complication for

aliaseswas impractical naming.Most participants had learned to use
the first letter of the table name. Other participants had not learned
this, and instead used A, B, C as aliases. This significantly reduces
readability, and for these participants we saw some swapped aliases,
where incorrect sets of alias and column were combined.

Other complications were functional, and would result in extra
processing of the query. This includes applying DISTINCT on a
result that contains no duplicates, and adding an extra condition
that is already captured by something else in the query. Another
process we saw a few times was participants including tables in
the FROM clause if they needed to return this table’s primary key,
regardless of whether this was also included as foreign key in
another table. This resulted in extra JOINs that were not required.

5 RESULTS
In this section we present the misconceptions that were revealed
from the analysis of the SQL query formulation process of our par-
ticipants, organized into four high-level categories: misconceptions
based on previous course knowledge, generalization-based miscon-
ceptions, language-based misconceptions, and misconceptions due
to an incomplete or incorrect mental model.

5.1 Misconceptions based on previous course
knowledge

SQL is a topic in most university programs in Computer Science.
However, even in those programs, it will not be the first thing
taught to the students. In the authors’ institutions, the introductory
Databases course is taught only in the second year. Additionally,
students place knowledge in the context of what they already know.
Anything they have learnt so far can influence new knowledge. The
cause of several of the errors that our study participants made was
themisapplication of previous course knowledge frommathematics,
programming, and databases.

5.1.1 Mathematics.
Believing , is a valid comparison operator in SQL. Students
take knowledge from mathematics and use this as information
on what operators are valid. For example, some students wrote
queries containing ,, instead of != or <>. The latter two are a
valid operation in SQL, whereas the first is not. However, , is
often used in Mathematics courses, and the students are familiar
with it. Several participants mentioned that they did not remember
which symbol(s) to use for non-equality, and apparently , is most
accessible in their memory.

5.1.2 Programming.
SQL is a query language, and therefore close to programming lan-
guages and susceptible to knowledge transfer. Our participants had
experience with various programming languages, such as Python,
Java, C# and JavaScript. Therefore, some misconceptions we found
are similar to those in programming misconceptions literature.

Confusing == and =. Students use these interchangeably in var-
ious contexts, as has been shown by research on programming
misconceptions. We also found this confusion in our SQL experi-
ments. This mistake makes sense, as in programming languages = is

360



Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

for assignment and == for comparison. However, in SQL, == is not
used. Instead, = is used for comparison, and there is no assignment.

WITH u AS (SELECT i.sID, i . date , i . unit_price
FROM inventory AS i, product AS p
WHERE i.pID = p.pID AND
p.pName = "Bananas")

SELECT p.pName
FROM inventory AS i, product AS p
WHERE u.sID = i.sID AND

u.date = i . date AND
i . unit_price > u. unit_price AND
i .pID = p.pID

Query 4: Participant 3, query 5, misunderstanding the scope
of the query.

Misunderstanding the scope of elements in a query. As dis-
cussed in the related work, some misconceptions within program-
ming have to do with the scope of the code. Issues that have been
shown to cause confusion include variable assignments and when
if-statements are checked. In a similar vein, we found two errors
that have to do with a misunderstanding of the scope in SQL.

First, students defined a view by writing a query with a WITH
clause. However, a view still needs to be called in the main query, in
order to be used appropriately. In the case of Query 4, the student
thought that as they had defined the query, this would be sufficient.

Second, a common error occurred in the self-join. A self-join
query is often used to retrieve pairs of entries from the same table,
in which case the same table needs to be called twice with different
aliases. However, various participants only called the table they
wanted to use once (see an example in Query 14), then tried to figure
out how to project a distinct pair. This is impossible without calling
twice and thus led to unfinished attempts. Participants expressed
their confusion on how to solve this problem, either because they
did not understand that they had to use the same table twice, or
because they did not know the notation.

5.1.3 Databases.
Typically, students following a course on Databases are taught
Relational Algebra first, with SQL taught afterwards. As the two
are closely related, it is likely that students apply knowledge of
Relational Algebra to SQL, which may lead to mistakes. In our
population, this applied to 13 of our 21 participants.

SELECT B.pName
FROM inventory A, product B
WHERE A.pID = B.pID
AND B.unit_price >

(SELECT C.unit_price
FROM inventory C, product D
WHERE C.pName = "Banana"
AND D.pID = C.pID)

Query 5: Participant 10, question 5.

Believing DISTINCT takes the first item of a list. For question
5 in Table 3, there was a follow-up question to gather more insights

in the understanding of subqueries. Suppose a user writes a sub-
query to find the price of ‘Bananas’. Now, as pID by itself is not a
primary key in the inventory table (see Table 2), the subquery may
return more than one correct price. The follow up question to the
students was: “How do you select one price, to make sure the query
does what you want?” Most students suggested using MIN, MAX
or TOP to select one price. Participant 10 wanted to use DISTINCT,
and believes that this will make sure the subquery only returns one
result. For reference, this student’s query is available in Query 5.
Here is what they have to say about solving this problem:

“If I would have used aDISTINCT before, on the unit price,
then you’d have taken the first unit price and compared
it with the unit price of the primary query [...] If I used
DISTINCT over this C.unit_price, I’d have given only one
unit price and probably that would have been the first
one, because that is what it will find first.” -
Participant 10

When the interviewer asked for clarification on whether this would
still be true when the Bananas have different prices, the student
said:

“Yes, only in the case of [...] if they have two prices. If they
have the same [price] then it does not make a difference
also right?” - Participant 10

This quote clearly illustrates the student’s misconception. We be-
lieve that such a misconception can arise from students being pre-
sented with very selective examples only.
Believing , is a valid comparison operator in SQL. This mis-
conception, also mentioned in Section 5.1.1, can be caused by vari-
ous sets of existing knowledge. We already discussed the possibility
of a relationship with mathematics, but another option is that stu-
dents apply knowledge from the Relational Algebra, where , is
regularly used.

5.2 Generalization-based misconceptions.
One large source of mistakes that we identified is the generalization
of previously learned, SQL-related items. This might involve exam-
ples in a book or other course material, or a query that worked out
previously but might not work in all cases. Within this top-level
category, we consider two types: templates and consistency.

5.2.1 Applying an incorrect query template.
Templates are (parts of) queries that students have used before,
with success, leading the students to reuse them.

The first template we found is to equate primary keys. Typically,
when using a Cartesian product to create a JOIN, one would take an
attribute from both of the tables and equate them. During our study,
we found evidence of students applying such a template. However,
this is not correct in all cases. When looking for all permutations
or trying to find distinct pairs, as we ask for in question 3, no keys
should be equated.

Another indication of the use of a template is to look at what
items should be projected, which of these are primary keys, and then
include the tables for each of these primary keys in the query. This
might not be necessary, as tables may be connected by foreign keys.
One could argue that this is not necessarily incorrect, just inefficient,
but it leads to longer queries and thus decreases readability.

361



ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

SELECT city, COUNT(city)
FROM store
GROUP BY city;

Query 6: Participant 15, question 6, counting the column
they group on.

Finally, a concrete template that we found being misapplied was
regarding the COUNT keyword. For question 6 in Table 3, Return
the number of stores per city, one participant counted the same
column they grouped on, as can be seen in Query 6. The question
implied the counting of the store IDs (the primary key in the table).
The interviewer asked whether grouping by an attribute and then
counting it would result in a count of one. The student expressed
that he was sure that this was not the case, because they had used
this type of query a lot recently, for a project. However, they could
not explain why this worked. When the researcher hinted that they
should count a different column, the student said:

“Then I don’t really know [which one].” - Participant 15
This indicates that they applied a template without being able to
reason why.

5.2.2 Misunderstanding SQL syntax and its internal (in)consistency.
The consistency category is similar to the templates one, but instead
considers SQL syntax elements that students has difficulty with
because they are applied differently in different cases.

First, there is the usage of commas. In both the SELECT and
FROM clauses, commas are used for the separation of items. How-
ever, the WHERE clause requires the usage of AND to separate
conditions. This inconsistency in the SQL syntax was difficult to
distinguish for some of the participants and led to them using a
comma instead of an AND in the WHERE clause.

Second, a consistency misconception was identified for aggre-
gates. In SQL, aggregates are only allowed in the SELECT or HAV-
ING clause. However, some participants used them in the WHERE
clause. An aggregate cannot be applied here, as there is no group
over which to aggregate, but that is not clear to students. We believe
that part of the error stems from WHERE and HAVING being loca-
tions to place conditions. Everything that can be used in WHERE
can be used in HAVING, but not vice versa, which is an inconsis-
tency that caused confusions and led to mistakes.

SELECT cID.transaction , date . transaction ,
quantity . transaction

FROM transaction AS t , product AS p
JOIN product
ON transaction .pID = product .pID
WHERE product.pName = "Apples";

Query 7: Participant 21, question 4, tablename behind the
attribute in SELECT.

Another consistency misconception we found relates to the use
of aliases. In this specific case, we discuss the inconsistency between
defining the alias behind the relation, and calling the alias in front of
an attribute. In the SELECT clause, users should write alias.attribute,
whereas for definition it is relation (AS) alias. The option to use the

keyword might make this latter case more salient, which leads to
more errors in the former case. Three of the interviewed students
were affected by this inconsistency, making mistakes such as in
Query 7 and Query 8.

SELECT pName p
FROM product p
WHERE pID IN (SELECT pID

FROM inventory
WHERE unit_price > 2.3);

Query 8: Participant 4, question 5, alias behind the attribute
in SELECT.

Finally, there is the question of semicolon usage. Students typi-
cally learn that every query should be terminated with a semicolon.
Participant 19 took this to heart, as we can see in Query 9. However,
semicolons should not be used in subqueries. Depending on the
number of examples shown to the students, and the method of
teaching, this exception may not be clear to all students. Thus, they
may consistently apply the rule they have learned: every query
should be terminated with a semicolon.

SELECT p.pName
FROM inventory AS i
WHERE i.unit_price > (SELECT i.unit_price

FROM inventory AS i
JOIN product p ON i.pID = p.pID
WHERE p.pName = "Banana";);

Query 9: Participant 19, question 5, using a semicolon in the
subquery.

5.3 Language-based misconceptions.
Although clauses in SQL can be read as something close to Natural
Language, inherently, there is still a big difference between the two.
Therefore, language can be a source of misconceptions too.

Believing IS NOT is a valid comparison operator in SQL. In
Section 5.1.1 we already mentioned that many students did not
remember how to write down inequality. Besides the option of
writing ,, some students in our study wrote IS NOT. This would
make sense if we look at the keywords available in SQL, as IS exists
too. IS may not be usable for asserting (in)equality in the WHERE
clause, but in natural language it is, which led to students using IS
or IS NOT instead of = or !=/<>.

Remembering only the core part of a keyword. A second lan-
guage aspect of SQL is that many keywords include prepositions:
INSERT INTO, GROUP BY, JOIN ON. In various questions, we found
that students dropped these prepositions during query formulation,
and thus only wrote INSERT, GROUP and JOIN (see Query 10).
From a Natural Language standpoint, these keywords might be the
main part of the clause, as the prepositions are not required to make
sense of the query when reading it. Unfortunately, syntax-wise the
clauses don’t work without the addition of the preposition. The
clauses may have been mistakenly stored in memory just by their
‘main’ part, disregarding the prepositions.

362



Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

SELECT transaction.cID,
transaction . date ,
transaction . quantity

FROM transaction
JOIN transaction .pID = product .pName
WHERE pnamed = "Apples";

Query 10: Participant 18, question 4, various issues.

Using synonyms of SQL keywords. The error category of syn-
onyms used while formulating queries has been noted by various
authors [19, 27]. We found the occurrence of synonyms in table-
and attribute names, as well as in SQL keywords. The former indi-
cates a lack of knowledge about the database schema used in the
exercise, or a relation to the question asked such as in Query 10, but
the latter may indicate a language-based misconception. One such
example is shown in Query 11, where a student wrote SORT BY
instead of ORDER BY. SORT is not a valid SQL keyword. We believe
that the word sort is more commonly used as a verb than order,
and thus may have been more accessible to the student during the
study. This is interesting, as question 7 (see Table 3) actually did
not mention sort, but instead used “ordered alphabetically”.

SELECT ∗
FROM store
SORT BY city ASC;

Query 11: Participant 14, question 7, participant used SORT
instead of ORDER.

Usage of a non-native language. Finally, during the study we
noticed some language issues. Many non-native English speak-
ing participants translated the problems to their native language
and reasoned in that language before translating back to English
for SQL. For example, question 4 contained the word ‘quantities’,
which indicated a column in one of the tables. Some participants
translated the question to their native language, which changed
the implications of the question. In the end, some of our translat-
ing participants (such as participant 20, Query 12) arrived at the
conclusion that they needed to count something, and thus applied
the COUNT keyword.

SELECT cID, COUNT(tID), transaction.date
FROM customer c
JOIN transaction t ON c.cID = t . cID
JOIN product p on t .pID = p.pID
WHERE p.pName = "Apples";

Query 12: Participant 20, question 4, including the customer
table when this is not required.

5.4 Misconceptions due to an incomplete or
incorrect mental model.

Although all of the misconceptions we discuss above arise from
incorrect mental models, some errors show this more explicitly
than others. In this section we discuss all those SQL concepts that

students struggled with because of incomplete or incorrect mental
models.

SELECT cID, cName
FROM customer
WHERE (city = "Eindhoven");

Query 13: Participant 17, question 2, participant used extra-
neous brackets.

Using brackets as a crutch. First of all, we start with a general
indication of incomplete mental models. Some of the students in
this study included extra brackets where they do not make sense,
such as in the WHERE clause (see Query 13). Although this is
not explicitly incorrect as SQL can ignore these brackets, they do
reduce readability. Also, the participant probably had a reason why
they included these brackets. This might be because they associate
WHERE with brackets, through subqueries. Existing work shows
that participants use brackets to try to fix errors [18] instead of
trying to find the actual mistake and fixing it. This shows a gap in
the knowledge of the students.
Lacking knowledge on primary keys. Several participants indi-
cated confusion with the use of primary keys in different situations.
For example, when trying to connect two tables through a Cartesian
product, one participant said:

“I need to connect the two tables with a primary key. Or
did I do that already? I’m not sure...” - Participant 8

In actuality, they had already written down the correct WHERE
clause to appropriately connect the tables.

Furthermore, we saw evidence of this difficulty in the applica-
tion of DISTINCT on attributes that were primary keys. When an
attribute is a primary key, by definition it should only occur once
in the data. Therefore, these keys are unique by definition and
thus DISTINCT is not required. There were some participants who
noted that it was probably not needed, but apparently were not
sure enough to leave it off, which indicates a lack of knowledge on
the effects of primary keys.

SELECT cID
FROM customers
WHERE street = street
AND city <> city ;

Query 14: Participant 18, question 3, an attempt at a self-join
without a second table present.

Thinking of the DBMS as a black box. The self-join error, de-
scribed in Section 5.1.2 under scoping, can also be explained by
a different misconception, namely that of thinking of the DBMS
as a black box. For example, after the participants had failed to
include the second table for answering question 3 in Table 3, the in-
terviewer hinted for some participants that they needed to include
a JOIN, or another copy of the table. One participant, who had used
‘copies’ of the attributes in the SELECT and WHERE clause, said
in response: “I’d ask you why..”, indicating that they could not see
that they needed two copies. This means they thought the DBMS
could resolve Query 14.

363



ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

Another participant did not understand in which cases they
needed to add JOIN conditions. Query 15 is their initial query.
Participant 9 elaborates:

“I’m not sure how they join. Or if they join. If they join
on the pIDs automatically, or if I have to say something.
[. . . ] Because I’ve already filtered on the rows that have
Apples, and I’m selecting from both.” - Participant 9

Taking an incorrect perspective. From the reasoning of the par-
ticipants during the study, another misconception we found was
that of an incorrect perspective. The majority of the participants
approached each problem from the problem description. However,
some participants focused on how the result table should look, with-
out thinking about the implications for the query. One example of
this is Query 10. This participant tries to join two tables but makes
various mistakes and has selected two incompatible attributes, try-
ing to compare a pID to a pName. When the interviewer asked why
they did not use the same column twice (pID = pID), they discuss
how pID is already covered as it is in the transaction table. Because
the question requires them to find the pName belonging to each
pID, they want to ‘move’ the query to product, where pName is
encoded. The fact that transaction.pID is already included in the
query, does not necessarily mean anything to the DBMS. In this
case, it specifically inhibits answers, as the JOIN condition is incor-
rect. This participant thus approached the problem from the wrong
perspective, leading to an empty results table.

Another example of the incorrect perspective happened for Par-
ticipant 9. After reading the posed question, they took a look at the
database schema to see which table(s) contained all the attributes
they needed. As shoppinglist was one of the tables shown at the
top of the schema, and it contained the required elements, they
decided to compose the query using shoppinglist (see Query 15).
However, the query stated that they needed to use the transaction
table. As their perspective was incorrect, their query in turn was
also incorrect.

SELECT s.cID, s . date , s . quantity
FROM shoppinglist s , product p
WHERE p.pName = "Apples";

Query 15: Participant 9, question 4, missing JOIN condition
in Cartesian product.

5.5 Other observations
All participants made syntax errors. This includes omitting quotes
around strings, incorrectly writing table and column names, omit-
ting the semicolon, and using non-standard operators. Most of these
syntax errors were likely due to lapses in focus and were usually
subsequently fixed.

During our interviews we saw that participants were often con-
fused. Major confusion arose around JOINs and aliases. Participants
did not know when to use them, whether they had already com-
pleted this aspect of the query, what each type was called (Cartesian
product, inner join, natural join), and so forth.

Another cause for confusion were query formulation problems
where the data matching the question (that what would be included
in the result table) is not included in the sample database. In those

cases, students struggled significantly with writing the query be-
cause they would look at the data and not understand how to write
the query if the data was not in there. For example, for problem 5
in Table 3, several participants concluded that no price for Bananas
was available.

“What is the unit price that I can use? In this case, no one
has Bananas, so... There are no Bananas, so there is no
point.” - Participant 8

This is interesting, as typically, we would only look at the schema
(not the data) when writing a query. Finding the data (in this case
the Banana price) is the goal of the query, so looking at the data
itself seems unproductive. Moreover, checking whether data is
present before writing a query is infeasible in normal situations.
Databases are much too large to look through manually. Therefore,
it is interesting to see that three of our participants engaged in this
practice (participants 4, 8 and 15).

Another issue with the schema is that, instead of reading the
question attentively, the participants would look at the attributes
they need to return, and check in the database schema for which
of the tables contain these elements. This disregards the meaning
of the data completely. For example, in our schema, shoppinglist
and purchase contain similar columns. However, if you blindly
substitute one for the other, the meaning of the query completely
changes.

On the other hand, some participants showed higher levels of
insight by discussing primary keys and what this meant for the
query formulation. For example, for question 5 in Table 3, some
participants noted that date was part of the primary key for the
inventory table. This means that these participants wrote a different
query than those who did not notice this. Another aspect where
primary keys play a role is on whether DISTINCT is required for
solutions.

5.5.1 Lack of knowledge or experience. Another noteworthy fact
is the prevalent lack of knowledge or experience on various SQL
concepts. These include GROUP BY, JOIN, aliases and subqueries.
The issues with these concepts were so major for some participants,
that it is unfeasible to uncover specific misconceptions.

For GROUP BY, we found issues with placement within the
query, as well as confusion on when it is required. For example,
when attempting to solve problem 7 from Table 3, which requires
ordering a table, participant 7 also included a GROUP BY clause:

“I think GROUP BY is very annoying. Sometimes you
need it, and sometimes you don’t. In this case, I think
ORDER BY is probably enough. So then I’d say to remove
the GROUP BY, but I don’t know (I can’t test) whether it
influences the answer. [...] As far as I know it can’t hurt.”
- Participant 7

When we are looking for the reordering of a table, adding GROUP
BY in most cases significantly changes the answer. In this case,
grouping on a column and then ordering on the same column
discards a lot of the rows of the table. It would be interesting to
look at these situations in more detail in follow up studies.

364



Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

SELECT c1.cID, c2 . cID
FROM customer, customer
WHERE c1.street == c2. street
AND c1.city != c2 . city

Query 16: Participant 12, question 3, using an alias without
defining it.

For aliases, we found they were used inconsistently by our
participants. We had participants defining aliases and not using
them, or using aliases without defining them properly (Query 16).
When discussing in more detail, we found that some participants
thought that the DBMS looks at all column names, instead of only
the ones of tables that are included in the FROM clause. One such
example is participant 20. For problem 2 in Table 3, participants
need to use only one table, and thus no aliasing is required. When
we discuss this, they say the following:

“The customer table has city, which is what you want to
filter on. But because we also have city in the store table,
you can’t just put city in this query, because if you do
that [the DBMS] does not know what to filter on. There-
fore you need to specify that you want customer.city.” -
Participant 20

Other participants discuss that they are always applying them
automatically, without thinking:

“I’m always doing it automatically, but for one table I
don’t believe we have to do it like this.” - Participant 13

On the other hand, there were participants who made it sound like
aliases are optional, whereas in some cases they are required:

“Sometimes it saves trouble, but sometimes it’s just more
complicated. It depends how complicated you’re getting.
It saves typing more, I suppose.” - Participant 9

SELECT t.cID, t . date , t . quantity
FROM transaction t
WHERE t.pID IN (SELECT p.pID

FROM product p
WHERE pName = "Apples")

Query 17: Participant 4 using a subquery instead of a join.

The final concept that participants did not seem to have a good
grasp on were subqueries. They were used even in cases where
they did not make sense and made the problem solving and the
understanding of the query more difficult.

Participant 4 decided to use a subquery for problem 4 in Table 3.
This query formulation problem is relatively straightforward when
using a Cartesian product (as they used for problem 3) or a natural
join, but this participant did not use them. Instead, they wrote
Query 8 and Query 17 using the IN keyword. This is a cross-over of
lack of understanding of JOIN as well, but with a creative solution.
The clarification that they did not know how to use subqueries
came from Query 8. Here, they explained that they did not know
how to have the subquery return a single integer. They should
retrieve the price for a certain ID, but instead suggest to hardcode
the price in their subquery.

“I don’t know how to do this. I did it before, it was one
of the exercises in my assignment. Then it was also very
difficult for me to extract the number.” - Participant 4

Another misunderstanding on subqueries is shown by participant
5. About question 5 and subqueries returning results, they say:

“The subquery returns the product where the name is
Banana, so there is only one answer, but I will take the
average because it requires aggregation. If I don’t, [the
DBMS] will see it as a list of answers.” - Participant 5

This is not the case. If there is only one record in the subquery,
leaving the aggregation out results in a valid query too.

6 DISCUSSION
It is already known from existing work in computing education
that programming misconceptions are often caused by the transfer
of students’ prior knowledge from natural language, mathematics,
and other programming languages [9, 24]. Our findings confirm
that this is also the case for SQL, highlighting the areas where
this transfer occurs and the errors that it causes. The identification
of the faulty transfer of prior knowledge is the first step towards
knowledge refinement and reorganization [12]. Several approaches
have been proposed for addressing misconceptions in introductory
programming [24], which could apply to SQL instruction. One of
the approaches that has been lately demonstrated to be effective
in facilitating transfer of revised knowledge are refutation texts,
which explicitly state and refute misconceptions [5].

One of the most challenging concepts for our study participants,
causing various problems in their query formulation process, were
table joins. We believe that this might have its origin in the variety
of methods available for combining tables. Participant 21, for ex-
ample, combined two methods in one query (Query 8). Our overall
impression is that joining is a confusing concept to many students.
This has been shown by other researchers too. Kearns et al. write
that “Students often struggle with the concept of the relational join,
and they find it hard to visualize what joined tables look like.” [14,
p. 226]. More recently, Taipalus and Perälä state that “Join errors
(LOG-2) were common in almost all multi-table queries, both all
and final.” [32, p. 202]. We also found students who had no problems
with Cartesian products or natural join, but got stuck on the self-
join. This has also been shown by Ahadi et al.: “62% of all students
who could answer a natural join could not provide a correct self-
join.” [2, p. 204]. We unfortunately have not gained much insight
into why joins appear to be such a problematic concept.

Our participants were also often led to errors because of taking
an incorrect perspective in query formulation. Research in pro-
gramming misconceptions has revealed that students often show
difficulties in understanding the task and decomposing the prob-
lem [24]. In SQL this is especially hard because it is a declarative
language. SQL query execution can thus not be traced in the same
way as programs written in imperative programming languages
can. In programming education, tracing programs means running
a mental model that encompasses both the notional machine and
the traced program [29]. The inherent impossibility to trace the
execution of SQL queries limits the mental status representations
that novices can have of the query elements and might support their
‘black box’ view of the DBMS. Solutions that have been proposed

365



ICER 2021, August 16–19, 2021, Virtual Event, USA Daphne Miedema, Efthimia Aivaloglou, and George Fletcher

for assisting in the visualization of intermediate query results are
the eSQL tool [14] as well as, more recently, concept maps of the
evolution process of intermediate results of SQL statements [26].

Several of the misconceptions that we identified are specific to
SQL and its instruction. From existing work, it is known that the
application of templates to achieve a divide-and-conquer approach
is effective in SQL instruction [23]. In our study, however, we ob-
served students being confused or making errors when attempting
to apply query templates that were not appropriate for the query
formulation problem they were presented with. Another source of
confusion were the semantics of SQL notation. This last cause of
misconceptions relates to the internal consistency of the SQL syn-
tax. There is ongoing discussion on this topic, with several aspects
of the SQL syntax being considered counter intuitive [10, 16, 26].
In contrast, Taipalus attributes many of the most common SQL
formulation errors they found previously [34] to ignorance [31].
Two examples of errors that they attribute to ignorance are omitting
a join and incorrect comparison operator, or value compared. In our
study we go beyond this perfunctory category and find evidence
for more serious issues, such as complete confusion regarding the
JOIN concept.

Limitations. We note several possible limitations of our study.
First, the identified errors and misconceptions could be the result of
the applied instruction strategies and teaching styles. The students
that participated in our study were taught by one of at least three
different teachers, but still the misconceptions that they hold and
expressed might not be representative of another student popula-
tion, taught by other instructors and in other institutions. However,
our goal in this study was to understand misconceptions of novices
independently of teaching style, and variations across the three
participating subgroups do not significantly impact our findings.
Second, the paper-and-pencil medium used during the interviews
perhaps facilitated some syntax errors that might not have appeared
while working on the computer. Nevertheless, students did use in-
correct syntax regardless of the medium and hence the impact of
the paper medium on our findings regarding syntax is quite limited.
Third, the encoding and analysis of errors by the authors followed
an existing error taxonomy [34] and hence inherits any limitations
of this prior work. However, as categorizing errors was not the fo-
cus of our work, this has limited impact on our findings. Finally, two
students reported difficulties solving the problems while thinking
out loud. Whalley and Kasto [37] introduce a retrospection phase
in their study of programming errors using audio playback. We
follow a similar approach, but did not play back audio to students.
Such an explicit audio playback might have been helpful for us to
obtain further insights.

7 CONCLUDING REMARKS
In this paper we present a categorization of misconceptions for
SQL learners. We base this categorization on a qualitative study
in which we used a think-aloud methodology to understand the
thought process of novices during query formulation problems. We
found that misconceptions fall into four broad categories: miscon-
ceptions based in previous course knowledge, generalization-based
misconceptions, language-based misconceptions, and misconcep-
tions due to an incomplete or incorrect mental model.

Our findings provide a basis for further research into improv-
ing query language education. We close by indicating two natural
avenues for future work. First, the prevalence of misconceptions
and the extent to which misconceptions are context dependent
(e.g., sensitivity to teaching style) should be investigated. Second,
query language instructional approaches and materials should be
revisited to understand their (in)adequacy in effectively addressing
the misconceptions of novices.

REFERENCES
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Raymond Lister.

2016. Students’ Syntactic Mistakes in Writing Seven Different Types of SQL
Queries and its Application to Predicting Students’ Success. In Proceedings of the
47th ACM Technical Symposium on Computing Science Education. 401–406.

[2] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-
titative Study of the Relative Difficulty for Novices of Writing Seven Different
Types of SQL Queries. In Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education. 201–206.

[3] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2016. Students
semantic mistakes in writing seven different types of SQL queries. In Annual
Conference on Innovation and Technology in Computer Science Education, ITiCSE.
272–277. https://doi.org/10.1145/2899415.2899464

[4] Piraye Bayman and Richard E. Mayer. 1983. A Diagnosis of Beginning Program-
mers’ Misconceptions of BASIC Programming Statements. Commun. ACM 26, 9
(Sept. 1983), 677–679. https://doi.org/10.1145/358172.358408

[5] Katinka Beker, Jasmine Kim, Martin Van Boekel, Paul van den Broek, and
Panayiota Kendeou. 2019. Refutation texts enhance spontaneous transfer of
knowledge. Contemporary Educational Psychology 56 (2019), 67–78. https:
//doi.org/10.1016/j.cedpsych.2018.11.004

[6] Erik Blair. 2015. A reflexive exploration of two qualitative data coding techniques.
Journal of Methods and Measurement in the Social Sciences 6, 1 (2015), 14–29.

[7] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/3LFX-
9RRF-67T8-UVK9

[8] Stefan Brass and Christian Goldberg. 2006. Semantic errors in SQL queries: A
quite complete list. Journal of Systems and Software 79, 5 (2006), 630–644.

[9] Michael Clancy. 2004. Computer Science Education Research. Taylor & Francis
Group, Chapter Misconceptions and attitudes that interfere with learning to
program, 85–100.

[10] Mohammad Dadashzadeh. 2003. A Simpler Approach to Set Comparison Queries
in SQL. Journal of Information Systems Education 14, 4 (2003), 345–348. https:
//aisel.aisnet.org/jise/vol14/iss4/1

[11] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (Glasgow,
Scotland, United Kingdom) (ICER ’14). Association for Computing Machinery,
New York, NY, USA, 35–42. https://doi.org/10.1145/2632320.2632346

[12] John P. Smith III, Andrea A. diSessa, and Jeremy Roschelle. 1994. Misconceptions
Reconceived: A Constructivist Analysis of Knowledge in Transition. Journal of the
Learning Sciences 3, 2 (1994), 115–163. https://doi.org/10.1207/s15327809jls0302_1

[13] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York,
NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[14] R. Kearns, S. Shead, and A. Fekete. 1997. A Teaching System for SQL. In Proceed-
ings of the 2nd Australasian Conference on Computer Science Education (The Univ.
of Melbourne, Australia) (ACSE ’97). Association for Computing Machinery, New
York, NY, USA, 224–231. https://doi.org/10.1145/299359.299391

[15] L. Ma, J. Ferguson, M. Roper, and M. Wood. 2011. Investigating and improving the
models of programming concepts held by novice programmers. Computer Science
Education 21, 1 (2011), 57–80. https://doi.org/10.1080/08993408.2011.554722

[16] Victor M. Matos and Rebecca Grasser. 2002. A Simpler (and Better) SQL Approach
to Relational Division. Journal of Information Systems Education 13, 2 (2002),
85–88. https://aisel.aisnet.org/jise/vol13/iss2/2

[17] D. McCall and M. Kölling. 2014. Meaningful categorisation of novice programmer
errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. 1–8.
https://doi.org/10.1109/FIE.2014.7044420

[18] Daphne Miedema. 2019. Towards successful interaction between Humans and
Databases. MSc Thesis. Eindhoven University of Technology. https://pure.tue.
nl/ws/portalfiles/portal/143091031/Miedema_D.pdf

[19] William C. Ogden and Susan R. Brooks. 1983. Query languages for the casual
user. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems - CHI ’83. ACM Press, New York, New York, USA, 161–165. https:
//doi.org/10.1145/800045.801602

366

https://doi.org/10.1145/2899415.2899464
https://doi.org/10.1145/358172.358408
https://doi.org/10.1016/j.cedpsych.2018.11.004
https://doi.org/10.1016/j.cedpsych.2018.11.004
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://aisel.aisnet.org/jise/vol14/iss4/1
https://aisel.aisnet.org/jise/vol14/iss4/1
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1207/s15327809jls0302_1
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/299359.299391
https://doi.org/10.1080/08993408.2011.554722
https://aisel.aisnet.org/jise/vol13/iss2/2
https://doi.org/10.1109/FIE.2014.7044420
https://pure.tue.nl/ws/portalfiles/portal/143091031/Miedema_D.pdf
https://pure.tue.nl/ws/portalfiles/portal/143091031/Miedema_D.pdf
https://doi.org/10.1145/800045.801602
https://doi.org/10.1145/800045.801602


Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study ICER 2021, August 16–19, 2021, Virtual Event, USA

[20] Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Pro-
gramming. Journal of Educational Computing Research 2, 1 (1986), 25–36.
https://doi.org/10.2190/689T-1R2A-X4W4-29J2

[21] Kai Presler-Marshall, Sarah Heckman, and Kathryn T Stolee. 2021. SQLRepair:
Identifying and Repairing Mistakes in Student-Authored SQL Queries. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE, 199–210.

[22] Ralph T. Putnam, D. Sleeman, Juliet A. Baxter, and Laiani K. Kuspa. 1986. A
Summary of Misconceptions of High School Basic Programmers. Journal of
Educational Computing Research 2, 4 (1986), 459–472. https://doi.org/10.2190/
FGN9-DJ2F-86V8-3FAU

[23] Gang Qian. 2018. Teaching SQL: A Divide-and-Conquer Method for Writing
Queries. J. Comput. Sci. Coll. 33, 4 (April 2018), 37–44.

[24] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3077618

[25] Z. Scherz, D. Goldberg, and Z. Fund. 1990. Cognitive Implications of Learning
Prolog—Mistakes andMisconceptions. Journal of Educational Computing Research
6, 1 (1990), 89–110. https://doi.org/10.2190/UHFF-4LNQ-63VA-Q60C

[26] S. Shin. 2020. Structured Query Language Learning: Concept Map-Based In-
struction Based on Cognitive Load Theory. IEEE Access 8 (2020), 100095–100110.
https://doi.org/10.1109/ACCESS.2020.2997934

[27] John B. Smelcer. 1995. User errors in database query composition. International
Journal of Human-Computer Studies 42, 4 (1995), 353–381.

[28] Juha Sorva. 2008. The Same but Different Students’ Understandings of Primitive
and Object Variables. In Proceedings of the 8th International Conference on Com-
puting Education Research (Koli, Finland) (Koli ’08). Association for Computing
Machinery, New York, NY, USA, 5–15. https://doi.org/10.1145/1595356.1595360

[29] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Educa-
tion. Ph.D. Dissertation. Aalto University, Espoo, Finland.

[30] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. 2018. Programming
Misconceptions for School Students. In Proceedings of the 2018 ACM Confer-
ence on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery, New York, NY, USA, 151–159.
https://doi.org/10.1145/3230977.3230995

[31] Toni Taipalus. 2020. Explaining Causes behind SQL Query Formulation Errors.
Proceedings - Frontiers in Education Conference, FIE 2020-October (2020), 1–9.
https://doi.org/10.1109/FIE44824.2020.9274114

[32] Toni Taipalus and Piia Perälä. 2019. What to expect and what to focus on in SQL
query teaching. In SIGCSE 2019 - Proceedings of the 50th ACMTechnical Symposium
on Computer Science Education. 198–203. https://doi.org/10.1145/3287324.3287359

[33] Toni Taipalus and Ville Seppänen. 2020. SQL Education: A Systematic Mapping
Study and Future Research Agenda. ACM Trans. Comput. Educ. 20, 3, Article 20
(Aug. 2020), 33 pages. https://doi.org/10.1145/3398377

[34] Toni Taipalus and Mikko Siponen. 2018. Errors and Complications in SQL Query
Formulation. ACM Transactions on Computing Education 18, 3 (2018), 29 pages.

[35] C Welty. 1985. Correcting user errors in SQL. Technical Report. 463–477 pages.
[36] Charles Welty and David W. Stemple. 1981. Human factors comparison of a

procedural and a nonprocedural query language. ACM Transactions on Database
Systems 6, 4 (dec 1981), 626–649.

[37] Jacqueline Whalley and Nadia Kasto. 2014. A qualitative think-aloud study of
novice programmers’ code writing strategies. ITICSE 2014 - Proceedings of the
2014 Innovation and Technology in Computer Science Education Conference (2014),
279–284. https://doi.org/10.1145/2591708.2591762

[38] Daniel Zingaro, Cynthia Taylor, Leo Porter, Michael Clancy, Cynthia Lee,
Soohyun Nam Liao, and Kevin C. Webb. 2018. Identifying Student Difficul-
ties with Basic Data Structures. In Proceedings of the 2018 ACM Conference on
International Computing Education Research (Espoo, Finland) (ICER ’18). As-
sociation for Computing Machinery, New York, NY, USA, 169–177. https:
//doi.org/10.1145/3230977.3231005

367

https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.2190/FGN9-DJ2F-86V8-3FAU
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.2190/UHFF-4LNQ-63VA-Q60C
https://doi.org/10.1109/ACCESS.2020.2997934
https://doi.org/10.1145/1595356.1595360
https://doi.org/10.1145/3230977.3230995
https://doi.org/10.1109/FIE44824.2020.9274114
https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/3398377
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/3230977.3231005
https://doi.org/10.1145/3230977.3231005

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Materials
	3.2 Participants
	3.3 Procedure
	3.4 Data processing

	4 Identified SQL errors
	4.1 Syntax issues
	4.2 Incorrect or missing table/column
	4.3 Incorrect or missing keyword
	4.4 Returning incorrect results
	4.5 Issues with the database schema
	4.6 Alias problems
	4.7 Contractions
	4.8 Complications

	5 Results
	5.1 Misconceptions based on previous course knowledge
	5.2 Generalization-based misconceptions.
	5.3 Language-based misconceptions.
	5.4 Misconceptions due to an incomplete or incorrect mental model.
	5.5 Other observations

	6 Discussion
	7 Concluding remarks
	References

