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ABSTRACT
Soon, the combination of electromagnetic and gravitational signals will open the door to a new era

of gravitational-wave (GW) cosmology. It will allow us to test the propagation of tensor perturbations
across cosmic time and study the distribution of their sources over large scales. In this work, we show
how machine learning techniques can be used to reconstruct new physics by leveraging the spatial
correlation between GW mergers and galaxies. We explore the possibility of jointly reconstructing
the modified GW propagation law and the linear bias of GW sources, as well as breaking the slight
degeneracy between them by combining multiple techniques. We show predictions roughly based on
a network of Einstein Telescopes combined with a high-redshift galaxy survey (z . 3). Moreover, we
investigate how these results can be re-scaled to other instrumental configurations. In the long run, we
find that obtaining accurate and precise luminosity distance measurements (extracted directly from the
individual GW signals) will be the most important factor to consider when maximizing constraining
power.

1. INTRODUCTION

The first direct detection of gravitational waves (GWs)
by Abbott et al. (2016) triggered a rapidly increasing
interest in exploiting this new field for cosmological in-
formation. GWs alone are not particularly useful be-
cause the data provides only a sky position and a mea-
sure of the luminosity distance to the source. However,
GW sources can serve as powerful cosmological probes
when combined with electromagnetic (EM) data, from
which redshifts can be extracted. This idea dates back
to Schutz (1986) and has two main variations.
The first, simplest, possibility is the observation of

so-called standard sirens (Holz & Hughes 2005), GW
sources with EM counterparts from which a redshift can
be observed. As an example, a population of binary
neutron stars, such as the already observed GW170817
(Abbott et al. 2017a), can be used to reconstruct the
luminosity-redshift function and constrain cosmological
observables. In this context, the aforementioned obser-
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vation has already lead to promising results in constrain-
ing the Hubble parameter H0 = 100h km/s/Mpc (Ab-
bott et al. 2017b).
The second possibility is to use dark sirens with a

statistical counterpart. The likely counterpart is identi-
fied using the rough sky-localization offered by current
GW detectors in combination with deep galaxy catalogs.
This technique, sometimes combined with the first, has
also been used to extract a measurement of H0 (Soares-
Santos et al. 2019; Abbott et al. 2021) and a more com-
plex variation of it is the focus of this work. Assuming
that both galaxies and the hosts of GW mergers are
biased tracers of the same cosmological structure, it is
possible to measure a non-zero cross-correlation signal
between the two (see section 3). At the linear level, in
particular, the description of this signal is especially sim-
ple. It should be noted that this idea has been explored
by others before, sometimes using a different formalism
(see, e.g., Mukherjee &Wandelt 2018; Scelfo et al. 2018)
and that similar methods have already been employed
to provide a measurement of H0 (Finke et al. 2021).
We also mention that, in principle, the same idea can

be used in the absence of resolved events. Previous
works, however, have shown that a detection of this ef-
fect from a stochastic background signal is unlikely to
happen soon due to the low signal-to-noise ratio (SNR)
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attainable by current and proposed experiments cover-
ing the optimal wavelength range (Cañas Herrera et al.
2020a; Alonso et al. 2020).
In this paper, we discuss the possibility of using the

non-zero correlation between the distribution of EM
galaxies and resolved GW mergers to jointly extract in-
formation about the two main quantities in the field of
GW cosmology: the luminosity distance as a function
of redshift, describing the propagation of gravitational
waves across cosmic time, and their linear bias, describ-
ing their clustering properties.
It is already established that GWs carry the potential

of constraining the fundamental laws of gravity. This is
the case because the propagation of gravitational waves
in modified gravity scenarios differs from predictions of
the general theory of relativity (GR) in multiple ways
(see, e.g., Deffayet & Menou 2007; Garoffolo et al.
2020; Ezquiaga & Zumalacárregui 2020). One of the
clear signatures is the speed of tensor modes which can
be both sub- and superluminal as opposed to the GR
case, where GWs propagate at the speed of light. The
tight constraints on speed deviations imposed by the
multimessenger observations of GW170817, for exam-
ple, have ruled out a wide parameter space of other-
wise viable scalar-tensor theories of gravity (Lombriser
& Taylor 2016; Sakstein & Jain 2017; Ezquiaga & Zu-
malacárregui 2017; Creminelli & Vernizzi 2017; Baker
et al. 2017). Similarly, implications for bi-gravity mod-
els have also been demonstrated in the literature (see
Max et al. 2017, 2018; Akrami et al. 2018; Belgacem
et al. 2019).
Another striking difference between modified gravity

and GR is the modified friction of GWs (Amendola et al.
2018; Belgacem et al. 2018). This feature arises in mod-
els with non-minimal coupling of a scalar field and grav-
ity which manifests itself as a redshift-dependent grav-
itational coupling. As a result, the inferred luminosity
distance to GW sources differs from the corresponding
EM luminosity distance. This interesting phenomenon
is explained in section 2, and in this work, we will inves-
tigate the possibility of testing this hypothesis.
The discovery of the first LIGO-Virgo binary black

hole has been used to motivate alternative scenarios
where the binary did not represent the endpoint of stel-
lar evolution, but originated either as a pair of primor-
dial black holes (PBH) or some exotic compact objects
(see, e.g., Bird et al. 2016; Sasaki et al. 2016; Bustillo
et al. 2021). In particular, the last half-decade has seen
a resurgence in interest for PBHs (see, e.g., Clesse &
García-Bellido 2017; Sasaki et al. 2018; Raccanelli et al.
2016, 2018). The main difference between the PBH and
stellar evolution scenarios is the spatial distribution of

GW mergers, measurable both in the redshift and sky
distribution of the sources. In subsection 3.1 we expand
on how to model this difference through the linear bias
and present a few models used in this work.
In addition to our formalism, for both the cluster-

ing and modified gravity effects we investigate a possi-
ble method to precisely reconstruct the redshift evolu-
tion of these quantities in the upcoming decades. Our
study is based on Gaussian processes (GPs), a well-
known hyper-parametric regression method (Rasmussen
& Williams 2005). The structure and implementation of
this pipeline are presented in section 4.
GPs have been widely used in the literature to recon-

struct the shapes of physical functions such as the dark
energy equation of state w(z) (Shafieloo et al. 2012; Ger-
ardi et al. 2019), the primordial inflaton’s speed of sound
(Cañas Herrera et al. 2020b) or the mass function of the
merging binary black hole systems (Li et al. 2021). GPs
are very useful for such functional reconstructions due to
their flexibility and simplicity. In general, binned recon-
structions, such as the framework employed by Critten-
den et al. (2009, 2012) and Zhao et al. (2012), as well as
parametric reconstructions with high-degree polynomial
functions can be reproduced using GPs with a handful
of hyper-parameters.
Unless stated otherwise, our fiducial cosmology is

based on the best fit results from Planck 2018 (Aghanim
et al. 2020). In our analysis, we use COLOSSUS (Diemer
2018) and Astropy (Robitaille et al. 2013; Price-Whelan
et al. 2018) for cosmological calculations, sklearn
(Scikit-learn 2018) for the GP implementation, emcee
(Foreman-Mackey et al. 2013) as our posterior sampler
and GetDist (Lewis 2019) to plot the final contours.
Our analysis pipeline is made publicly available1.
The paper is organized as follows. In section 2 we sum-

marize the essential concepts concerning the GW propa-
gation in modified gravity models. In section 3 we detail
the modelling of the clustering correlations between the
GW source population and galaxies. In section 4 we ex-
plain our reconstruction pipeline for the GW luminosity
distance and the bias. Our findings are presented in
section 5 and further discussed in section 6.

2. GRAVITATIONAL WAVE PROPAGATION

In GR, and around a background Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, the ampli-
tude of GWs evolves according to

h′′α + 2Hh′α − ~∇2hα = 0, (1)

1 https://github.com/valerivardanyan/GW-Cosmo

https://github.com/valerivardanyan/GW-Cosmo
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where hα denotes the amplitude of either polarization
(α ∈ [×,+]), primes denote derivatives with respect to
the conformal time, andH is the conformal Hubble func-
tion. In this equation, the prefactor of the gradient term
controls the propagation speed, which we have set to co-
incide with the speed of light in c = 1 units.
The second term is the standard cosmic friction

term which causes the strain amplitude to decay as
hα(z) ∝ D−1

L (z), with DL being the FLRW luminosity
distance:

DL(z) = (1 + z)

∫ z

0

dz̃

H(z̃)
, (2)

where the Hubble function H(z) is given in terms of
the Hubble constant H0, present-day dark matter abun-
dance Ωm and dark energy abundance ΩDE(z) as

H(z) = H0

[
Ωm(1 + z)3 + ΩDE(z)

]
. (3)

Throughout this paper we assume a constant equation
of state w0 for dark energy, such that its energy density
is given by

ΩDE(z) = (1− Ωm)(1 + z)3(1+w0). (4)

The standard ΛCDM cosmology corresponds to
w0 = −1.
It is now established that modifications of GR can

affect the propagation of GWs. The important effect for
us is the modified friction term with respect to the GR
expectation in Equation (1),

h′′α + [2 + αM (z)]Hh′α − ~∇2hα = 0, (5)

where we have again imposed the GW speed to be unity
as suggested by observations. The modified friction term
introduces a new scaling hα(z) ∝ 1/DL,GW(z), with
DL,GW(z) 6= DL(z) for non-zero αM (z). The luminosity
distance to GW events can be written as:

DL,GW

DL,EM
(z) = exp

{
−1

2

∫ z

0

dz̃
αM (z̃)

(1 + z̃)

}
. (6)

In this work, we assume that the luminosity distance for
EM sources DL,EM is unaffected and is equal to the ex-
pression in Equation (2). The function αM corresponds
to the running of the effective Planck mass, i.e.,

αM =
d log(Meff/MP)2

d log a
, (7)

where MP is the Planck mass and Meff is its effective
value at redshift z = 1/a− 1. This function encodes in-
formation about extensions of GR such as scalar-tensor
theories (Horndeski 1974; Bellini & Sawicki 2014) or,

more broadly, quantum gravity (Calcagni et al. 2019).
The modified friction term is also a natural prediction
of non-local modifications of gravity (Dirian et al. 2016)
From an effective field theory point of view αM (z)

is a free function of order unity. In practical studies
of modified gravity and dark energy, however, αM is
often assumed to take simple parametric forms. The
main guiding principle is the assumption that its effects
should be negligible in the early universe, which prompts
to choose αM (z) to be proportional either to the dark
energy abundance or simply to some power of the scale
factor a.
Such parametrizations make it possible to find a closed

form expression for the ratio in Equation (6) and have
inspired a widely used parametrization of the ratio as
a monotonic deviation which goes to 1 at present day
(Belgacem et al. 2018)

DL,GW

DL,EM
(z) = Ξ0 +

1− Ξ0

(1 + z)n
. (8)

In this expression, Ξ0 and n are two constant parame-
ters, which are typically of order O(1).

3. ANGULAR POWER-SPECTRA

3.1. GW sources

We consider GW mergers with a distribution in red-
shift written as

nGW(z) =
n0

1 + z
, (9)

where n0 corresponds to the comoving number density
of observed events as a function of redshift, and the term
(1+z) takes into account the cosmological time dilation.
In our analysis, we use a constant value of n0 ≈ 3×10−6

h3Mpc−3 (with h denoting the usual normalized Hub-
ble constant), motivated by current LIGO constraints
(Abbott et al. 2020).
For a given selection of sources along the line of sight,

the average number of projected sources can be written
using the comoving distance χ(z):

n̄gw =

∫ ∞
0

dz
χ2(z)

H(z)
S(z)nGW(z). (10)

The function S encodes the selection and the scatter
due to observational errors. In this paper, simple bins
in a range [DL,min, DL,max] are used and we assume a
lognormal distribution with fixed scatter σlnD for the
individual sources (Oguri 2016). In this case, S can be
written as:

S(z) =
1

2
[xmin(z)− xmax(z)] , (11)
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with

xmin(z) = erfc

[
lnDL,min − lnDL,GW(z)√

2σlnD

]
, (12)

and similarly for xmax. Including this effect makes S
resemble a top-hat function with damping tails dictated
by σlnD.
The angular power spectrum of these sources can be

written using the Limber approximation

CGW(`) =

∫ ∞
0

dz
H(z)

χ2(z)
W 2

GW(z)

b2GW(z)P

(
`+ 1/2

χ(z)
, z

)
,

(13)

where P (k, z) is the matter power-spectrum at redshift
z and comoving scale k, bGW is the bias of the GW
sources, and the window function can be written as

WGW(z) =
χ2(z)

H(z)

nGW(z)

n̄GW
S(z). (14)

For the purpose of illustration, we will make use of
a few simple parametrization for the GW bias. We will
consider either a constant bias bGW with a value of order
O(1) or a more complex form:

bGW(z) = b0

(
1 +

1

D(z)

)
, (15)

where D(z) represents the growth factor. The first
model, with its low constant value, mimics a PBH ori-
gin for the mergers (Bird et al. 2016; Raccanelli et al.
2016), while the second mimics the stellar evolution case
by tracking the galaxy linear bias (Oguri 2016).

3.2. Galaxies

Similarly to the GW population, we again as-
sume a constant comoving number density of galaxies.
Throughout our analysis we fix

ngal(z) = 10−3h3Mpc−3, (16)

and we write the autocorrelation signal of galaxies under
the Limber approximation as

Cgal(`) =

∫ ∞
0

dz
H(z)

χ(z)2
W 2

gal(z)

b2gal(z)P

(
`+ 1/2

χ(z)
, z

)
.

(17)

In this expression the definition of Wgal is the same
as WGW used in the previous section except for using
ngal(z), a different selection function, and bgal(z) is the

linear galaxy bias. In our analyses, we assume a known
galaxy bias in the form of

bgal(z) = 1 +
1

D(z)
. (18)

In general, this function is expected to be accurately
measured from the galaxy autocorrelation signal alone.
In this paper, we employ a top-hat selection func-

tion for Wgal, which assumes no uncertainty in galaxy
redshift estimates. This choice mimics a spectroscopic
galaxy survey or a general redshift survey with negligi-
ble uncertainties. As an example, another choice com-
monly found in the literature is a Gaussian distribution
N (z, σgal), where σgal should be much larger than the
expected redshift uncertainty for each individual galaxy.
By combining the distribution of GW sources and

galaxies one can construct a cross-correlation map. In
our formalism, we write the cross-correlation between a
GW bin i and a galaxy bin j (fully specified by their
respective window functions) as:

Cij× (`) =

∫ ∞
0

dz
H(z)

χ2(z)
W i

GW(z)W j
gal(z)

× bGW(z)bgal(z)P

(
`+ 1/2

χ(z)
, z

)
.

(19)

We conclude this section by pointing out that the
power spectra in Equations (17), (13) and (19) do not
include relativistic terms and do not capture the effects
of evolution and lensing bias (see, e.g., Scelfo et al.
2018, 2020, for a detailed treatment). Specifically, while
the effects of lensing are expected to be negligible at the
redshifts considered here (z<3, see, e.g., Oguri 2016;
Contigiani 2020), the same is not true for relativistic ef-
fects. Therefore, we choose not to consider small values
of ` in our analysis since the signal at these large angular
scales is dominated by them.

4. RECONSTRUCTING GW PHYSICS

The primary goal of the paper is to demonstrate how
to reconstruct the properties of GW propagation and
source clustering as a function of redshift. We do so by
showing how to recover an assumed fiducial model by
using mock angular power spectra with cosmic-variance
or shot-noise limited uncertainties.
Our methodology hinges on the fact that by cross-

correlating a GW luminosity distance bin with multiple
galaxy redshift bins we can determine the redshift of the
GW sources by matching the clustering properties of the
two at the true redshift (Oguri 2016; Bera et al. 2020).
We demonstrate this idea in Figure 1, where we have

considered GW sources located at redshift [0.9, 1.1] in
a GR cosmology where DL,GW(z) = DL,EM(z). In this
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0.8 1.0 1.2 1.4 1.6
zgal

10 7
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10 4
C

×
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=
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0)
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0.6
1
1.4

Figure 1. The cross-correlation signal between GW
sources at z = [0.9, 1.1] (shaded area) and galaxies at
different redshifts (zgal). If the luminosity distance ratio
DL,GW/DL,EM(z) in Equation (8) is different from its GR
assumption (Ξ0 6= 1), the location of the predicted cross-
correlation peak is also affected.

figure, we show the expected cross-correlation signal be-
tween the angular distribution of these sources and the
angular distribution of galaxies located at various red-
shifts. As expected, in GR (Ξ0 = 1) the signal peaks
inside the correct redshift range (shaded area). How-
ever, as we depart from the GW luminosity distance
relation, the location of this peak is affected.

4.1. Mock data and fiducial model

In this section, we describe the recipe used to gen-
erate the mock angular power spectra (Cgal, CGW, and
C×) that are fed into our reconstruction pipeline to-
gether with their error covariance matrix. When de-
scribing real data, these angular power-spectra are ex-
tracted from the autocorrelation and cross-correlation
maps representing the sky distribution of galaxies and
GW sources. The recipe has three main ingredients: the
details of the fiducial model, a description of the instru-
mental configuration and a definition of the dominant
source of error.
The first ingredient is the fiducial model. Our decision

in this case is based on the results of Baker & Harrison
(2021), where present-day constraints on the function
αM appearing in Equation (6) are presented. As shown
in Belgacem et al. (2019), the results of the αM ∝ a

parametrization found in that work can be mapped to
the Ξ(z) function in Equation (8). Using this transfor-
mation, we find that the 3σ upper limit roughly corre-
sponds to

Ξ0 . 1.4, (20)

with n = 1. Thus, we assume a fiducial model with
Ξfid

0 = 1.4 and nfid = 1, representing the limit of our
present understanding.
The second ingredient of our forecast is the instrumen-

tal configurations. The size of our data vector is given
by the number of multipoles ` and window functions
that we include in our analysis. Since both are largely
dictated by observational considerations, in this work
we assume an optimistic combination of a network of
three Einstein Telescopes (Maggiore et al. 2020; Hall &
Evans 2019) capable of a log-scatter in measured DL,GW

of σlnD = 0.05, and a high-z redshift survey with large
sky coverage and negligible redshift uncertainties (such
as, e.g., SKA, Weltman et al. 2020).
The range of angular scales that we consider is lim-

ited by two factors. On small scales, large multipoles
(` > 100) are excluded due to the angular resolution of
about 1 degree expected for our GW detector configu-
ration of choice (Hall & Evans 2019). On large scales,
we do not explore values of ` < 10 because our mod-
elling does not take into account the relativistic effects
dominating the signal at these scales. Nevertheless, we
stress that these multipoles contribute relatively little
information compared to larger multipoles since they
are dominated by cosmic variance.
Our window functions are distributed in the redshift

range [0.1, 3]. We assume Ngal = 12 galaxy bins equally
spaced in redshift, and NGW = 8 GW luminosity dis-
tance bins equally spaced in DL,GW. We mention in
particular that this choice is not completely arbitrary.
The number of GW bins is motivated by forcing well-
defined bins such that their width is at least three times
the luminosity distance uncertainty σlnD that we have
assumed. Furthermore, we have also verified that the
exact number of galaxy bins does not dominate our re-
sults as long as Ngal > NGW.
As for the last ingredient, we assume cosmic-variance

or shot-noise limited uncertainties. In this case, we can
write the covariance matrix of the auto-correlation and
cross-correlation signals defined in Equations (13), (17)
and (19) as the following:

Cov
[
Cij(`)Cmn(`′)

]
=

δ``′

(2`+ 1)fsky
×(

C̃imC̃jn + C̃inC̃jm
)
,

(21)

where the indices i, j,m, n can represent both galaxy
or gravitational wave bins. The terms C̃im contain the
shot-noise contribution when they represent the auto-
correlations in the same bin:

C̃im(`) = Cim(`) +
δim
n̄
, (22)



6

where n̄ is the average density of projected objects from
Equation (10). In this work, we assume a survey cover-
ing a sky fraction equal to fsky = 0.5.
Let us point out that we do not use the cross-bin cor-

relations for the bins of the same type as a signal. How-
ever, we properly take into account the C̃im terms for
overlaps between two different GW bins. Similar terms
for galaxy bins are completely negligible as there are no
overlaps between the spectroscopic redshift bins.
For the setup described in this section, we find a total

SNR of the GW-gal and GW-GW angular power-spectra
of ∼ 37. This value is dominated by the GW-gal cross-
correlations since the GW-GW auto-correlations are not
well measured (SNR. 6).
To generalize our choices, in subsection 5.2 we expand

on how different combinations of instrumental specifica-
tions can affect the precision of the reconstruction.

4.2. Reconstruction Pipeline

In this section, we describe how the mock data pre-
sented in the previous section can be used to reconstruct
DL,GW and bGW as a function of z. For ease of inter-
pretation and visualization, in our analysis we do not
fit these functions directly, but instead focus on the ra-
tios DL,GW/DL,EM (z) and bGW/bgal (z). We point out
that we do not marginalize over different possibilities
for bgal (z). This is because we are not interested in ex-
ploring the properties of the galaxy population, which
are expected to be very well constrained by the galaxy-
galaxy correlation signal alone.
As emphasized earlier, our approach makes use of a

GP regression. This method is often used when the func-
tion of interest is directly measured at certain redshifts.
These measurements are used as a training sample of
the GP model, which then can predict the values of
the reconstructed function at redshifts lacking any di-
rect measurements (Belgacem et al. 2020; Renzi et al.
2020; Mukherjee & Mukherjee 2021; Said et al. 2021;
Perenon et al. 2021).
However, this is not directly applicable for our cur-

rent problem as neither the DL,GW/DL,EM (z) nor the
bGW/bgal (z) are directly observable. Instead, these
functions determine the auto- and cross-angular power
spectra, which constitute our direct observables. In or-
der to use GPs for our problem, we consider a certain
number of redshift nodes for the two functions, referred
to as training nodes with a slight abuse of terminology.
The amplitudes of the nodes are free and, given a node
configuration, we consider GPs which pass through all
of these nodes exactly. To render our scenario compu-
tationally feasible and not consider many functions for
each node configuration, we use the GPs regressor of the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0

0.5

1.0

1.5

2.0

2.5

D
L,

GW
/D

L,
EM

L = 0.2
L = 0.7

Figure 2. Example of GP reconstruction. The function
DL,GW/DL,EM (z) is constructed using 4 nodes at fixed red-
shifts (filled black dots). By varying the amplitudes of the
nodes and the correlation length (L), it is possible to ob-
tain different functional forms. The dashed lines represent
a few possible realizations, while the thick lines represents
the GP best fit from sklearn used in our sampling. Larger
correlation lengths produce smoother lines.

python package sklearn to output the best fit and use
this as our function.
Our use of GPs can be thought of as a binning of the

functions of interest in redshift space, and imposing a
certain prior correlations between the bins. These cor-
relations are specified by the GP kernel function, which
in our case is chosen to be

κ(zi, zj ; L) ∝ exp

{
−1

2

(
|zi − zj |

L

)2
}
, (23)

where L is the so-called correlation length. This kernel
is flexible enough for our purposes, and we do not ex-
pect the detailed choice to have any significant impact
on our results. For computational purposes, we generate
the GPs using a baseline around DL,GW/DL,EM (z) = 1.
This baseline makes the GPs reconstruction to efficiently
return to DL,GW/DL,EM (z) = 1 when not pushed to-
wards other values by the training nodes.
This process is described in Figure 2 for two values

of correlation length L. While pictured in this example,
for physical reasons in our analysis we exclude negative-
valued functions when exploring DL,GW/DL,EM (z) and
bGW/bgal (z), and also non-monotonic realizations of
DL,GW (z).
The goal of our statistical analysis is to ex-

plore the possible constraints on the shape of both
DL,GW/DL,EM (z) and bGW/bgal (z). For that, we aim
to sample the posterior distributions of the amplitudes
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Parameter Prior

Node amplitudes [0, 11] (Uniform)
Correlation length (L) [1, 10] (Uniform)

Ωm 1% (Gaussian)
h 1% (Gaussian)
w0 5% (Gaussian)

Table 1. Summary of the priors imposed before re-
constructing bGW/bgal (z) and DL,GW/DL,EM (z) using 4
nodes each. The GP hyper-parameters (i.e., the 2
correlation lengths and the 4 × 2 amplitudes) are ex-
plored independently. The fiducial model is given by
Ξ0 = 1.4, n = 1,Ωm = 0.31, h = 0.67, w0 = −1.

of the nodes as well as the cosmological parameters. The
correlation length L can in principle be fixed based on
theoretical priors. Lacking such priors in our case, we
only impose a wide uniform prior on L and consider it
as a free parameter (see Table 1).
Each step of the sampling process consists of produc-

ing two GP curves – one for each DL,GW/DL,EM (z) and
bGW/bgal (z) – given the current set of training node
amplitudes. The curves are used in the calculation
of theoretical auto- and cross-correlation power spectra
described in section 3. The theoretical power spectra
enter the Gaussian likelihood together with the gener-
ated mock data. The theoretical predictions are com-
puted using our python code which is interfaced with
the emcee sampler. The typical runs with varying cos-
mology take approximately 10 hours on a modern ma-
chine.
After obtaining the posterior distribution of the nodes,

we reverse-engineer the problem to obtain confidence
contours for each DL,GW/DL,EM (z) and bGW/bgal (z).
For all the sampled node amplitudes we generate the
corresponding GP profiles on finite but sufficiently many
redshift points and calculate the 68% and 95% con-
fidence intervals at each redshift using the statistical
python package GetDist.
To assess the impact of different cosmological back-

grounds and clustering properties, we include in our re-
construction three nuisance parameters: the dark mat-
ter abundance Ωm, the Hubble constantH0 and the dark
energy equation of state parameter w0. A summary of
our model parameters and priors used in this work is
presented in Table 1.
We would like to point out that upcoming galaxy sur-

veys will measure these parameters with very high pre-
cision. While GWs alone might be able to provide com-
petitive constraints, the focus of our analysis is not in
constraining them. Rather, we would like to quantify
how accurately the GW luminosity distance and source

0.8
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1.2

1.4

1.6

D
L,

GW
/D

L,
EM

0 = -1 0 = -0.5

0 = 0.5

0 = 2M = 0[H0/H(z)]2

Fiducial

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0
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1.0

1.5

2.0

b G
W

/b
ga

l
bGW = 0.5

bGW = 1
bGW = 2

Constant bGW(z)
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Figure 3. Confidence intervals (68%, in black, and
95%, in lighter grey) of the jointly reconstructed functions
DL,GW/DL,EM (z) and bGW/bgal (z). Together with the as-
sumed fiducial model, we also plot the expectation for dif-
ferent models (see text for more details). The vertical lines
mark the fixed location of the nodes used in the GP recon-
struction.

properties can be measured. These properties are not
accessible to generic redshift surveys and can only be
measured with the use of GW-specific observables. This
reasoning justifies our tight Gaussian priors on the afore-
mentioned cosmological parameters.

5. RESULTS

5.1. Reconstructions

In our reconstructions, we always impose the
DL,GW/DL,EM (z) to become unity at redshift zero by
placing a fixed node at z = 0 with an amplitude of 1.
Besides this fixed node, we have 4 nodes for each of the
reconstructed functions. We have arrived at this num-
ber by gradually increasing the number of nodes and
monitoring the goodness of fit. In practice, we have
monitored the AIC information criterion for 1-, 2- and
3- node setups for the GW luminosity distance. Our ex-
periments suggest that, as expected, the 1-node config-
uration is significantly worse than the presented 4-node
setup. The 2- and 3- node setups have similar perfor-
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mance compared to the 4-node case, but the latter still
outperforms the former two. We then use the same num-
ber of nodes for the bias reconstruction.
In our main analysis, the redshift positions zi of

the nodes are fixed. We have, however, performed
an experimental run to assess the impact of letting
them free in reduced uniform prior ranges. The re-
sult of this experimentation is that the node locations
remain unconstrained, and the final posterior of e.g.
DL,GW/DL,EM (z) does not change when the node red-
shift locations are being sampled as free parameters.
This implies that the exact locations of the GP notes
are unimportant given they are uniformly distributed in
the redshift range of interest.
It is worth emphasizing that when applying our

methodology to real data, the number of nodes, as
well as their exact redshift placements, should be con-
strained by performing similar, but more systematic ex-
periments. Particularly, more accurate measures, such
as the Bayesian evidence ratios, should be employed.
Also, if enough data is used, some possible constraints
could be found by letting the training nodes be com-
pletely free in the entire redshift range of interest. As
the resulting posteriors are expected to be multimodal,
this should be investigated using nested sampling algo-
rithms.
As mentioned earlier, we also explore the GP corre-

lation lengths both for the bias and the luminosity dis-
tance. On physical grounds, we are interested in smooth
GP functions and have imposed the minimum of the uni-
form prior range for L to be of the order of the inter-node
distance so that the smoothness is maintained. We find
that, as expected, both of the correlation lengths remain
unconstrained within the imposed wide prior ranges.
The results of our joint reconstruction is presented in

Figure 3. In the same Figure, we also compare these
constraints to different theoretical models. In the case
of DL,GW/DL,EM (z), we use the parametrization

αM (z) = α0

[
H0

H(z)

]2

, (24)

where we use the Equation (3) with w0 = −1 to obtain
the plotted lines (Belgacem et al. 2019). On the other
hand, for bGW/bgal (z) we plot the lines corresponding
to constant values of bGW (z), while keeping the galaxy
bias fixed to the expression in Equation (18).
As expected, we observe how the fiducial models for

both DL,GW/DL,EM (z) and bGW/bgal (z) are well en-
coded within the reconstructed confidence contours in
both panels of Figure 3. The constraints at higher red-
shift (z ≈ 3) for both reconstructions are broader. This
is an effect that could not be seen if a parametric func-

0.4 0.2 0.0 0.2 0.4

Correlation coefficient

0.0 0.5 1.0 1.5 2.0 2.5 3.0
bGW/bgal(z)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
L,

GW
/D

L,
EM

(z)
Figure 4. Correlation matrix for the reconstructed func-
tions bGW/bgal (z) and DL,GW/DL,EM (z). The figure dis-
plays how mild, but non trivial correlations can arise from a
joint reconstruction.

tion was used for DL,GW/DL,EM (z), for instance, as the
parametrization would have fixed the behaviour simi-
larly at low and higher redshifts.
Finally, in Figure 4 we show the correlation between

these functions. We observe weak but non-zero corre-
lations between the GW bias and the luminosity dis-
tance. In general, parametric models might induce non-
physical correlations. GPs are expected to behave better
in this regard, but they can still induce spurious correla-
tions due to finite correlation lengths. For consistency,
we have also performed a reconstruction using a redshift
binning approach and concluded that we can recover a
very similar correlation structure with both of the meth-
ods.

5.2. Signal-to-Noise scaling

The constraining power of our method crucially de-
pends on a number of observational specifications. The
most relevant parameters are 1) the angular sensitivity,
specified by the maximum multipole `max of the angu-
lar power spectra; 2) the number of GW sources, which
is specified by the comoving number density nGW; and
3) the precision of the GW luminosity distance mea-
surements σlnD. In the case of nGW, we adjust the
value of n0 in Equation (9) as a way to explore differ-
ent values of the total number of observed GW events,
N = 4πfskyn̄GW. This, in principle, should include se-
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Figure 5. Scaling of the observed constraints with the
cross-correlation SNR. Using a parametrized model for
bGW/bgal (z) andDL,GW/DL,EM (z) we explore the constrain-
ing power of our method as a function of the number of ob-
served GW sources N = [0.7, 4, 7, 13, 20] × 104, angular res-
olution `max = [20, 40, 60, 80, 100] and luminosity distance
uncertainty σlnD = [0.5, 0.3, 0.2, 0.075, 0.05]. As visible from
the figure, the data SNR completely captures the effect on
the observed uncertainties ∆b0 and ∆Ξ0 in the first two
cases. In the case of σlnD, we observe that the increase in
constraining power for DL,GW/DL,EM (z) is steeper due to
the larger number of window functions that we can build to
sample DL,GW (z).

lection effects not captured by our formalism. Obvi-
ously, for a given experimental configuration the men-
tioned three variables are not independent, but it is still
interesting to find the dependence of our results on each
one of them separately. This allows us to reach con-
clusions without relying on specific experiments, and to
suggest potential design guidelines for future GW detec-
tors.
To attain such insights, in this subsection we con-

sider constraints on the parametric expression in Equa-
tion (8), as well as the parametric GW bias given by
Equation (15). For simplicity, we fix n = 1 and only
constrain the parameter Ξ0.
When varying `max and N we keep the rest of the con-

figuration (including the luminosity distance binning)
fixed. Each case of σlnD, on the other hand, is accom-
panied by an adjustment in the number of luminosity
distance bins. This is done to be consistent with our

binning strategy, namely that the luminosity distance
width of each bin is at least O(3) times wider than σlnD.
Our results are summarized in Figure 5, where we plot

the anticipated uncertainties in Ξ0 (upper panel) and b0
(lower panel) as a function of the SNR of the cross-
correlation in Equation (19).
For a fixed σlnD the constraining power on Ξ0 and b0

is almost completely determined by the cross-correlation
SNR. This fact suggests that no matter how the given
SNR is realized (either by increasing the number of
sources or by improving the angular sensitivity), the ex-
pected constraints will be the same. This implies that
the results presented in this paper can be easily scaled
to different configurations. Unsurprisingly, we find that
the constraints scale as 1/SNR.
The situation is somewhat different for the case of

varying σlnD (and the number of luminosity distance
bins). The constraints on the bias still follow the same
form (see the lower panel), but the scaling of the Ξ0 con-
straints, on the other hand, is much steeper than in the
cases of varying `max and nGW, roughly 1/SNR3. This
fact can be qualitatively understood by remembering the
importance of the relative positions of GW and galaxy
window functions demonstrated in Figure 1. Sampling
this relation with a larger number of window functions
increases the precision of our reconstruction.
The results presented in this section quantify the im-

portance of accurate luminosity distance measurements
and demonstrate the benefit that smaller values of σlnD

can bring to a binned approach.

6. DISCUSSION AND CONCLUSIONS

In this paper, we have shown how the combination of
GW observations and redshift surveys can be exploited
in the era of GW cosmology. We have identified two
essential quantities that characterize this new research
field: 1) the luminosity distance relation, a clear imprint
of modifications to the propagation of tensor modes (see
section 2), and 2) the bias of the sources, regulating their
spatial distribution and betraying their origin.
Proposed GW detectors such as the Einstein Telescope

(Maggiore et al. 2020) or Cosmic Explorer (Reitze et al.
2019) are expected to probe a sizeable fraction of the
visible Universe and produce large statistical samples.
In this context, we point out that the number of sources
assumed for our main analysis, 2 × 105, is particularly
conservative and differs from expectations by at least an
order of magnitude (Maggiore et al. 2020). This differ-
ence is primarily due to our assumption of a constant
comoving density of events. While we do not explore
other assumptions for the distribution of GW sources
over cosmic time, we have investigated similar effects in
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subsection 5.2, where we have shown how our results
can be rescaled to other instrument configurations or
number of observed sources.
Our formalism, based on binned angular power-

spectra and sky maps, is optimal for a large number of
sources with no known counterpart. Its main advantages
are related to the simple modelling of the theoretical sig-
nals and their data covariance matrix. Because no re-
construction of the underlying density field is necessary,
the predictions display a clear separation of scales. For
example, the angular scales that we have considered hare
are all within the linear regime (k . 0.1 Mpc−1). Fur-
thermore, because this formalism is well established, our
shot-noise limited covariance matrix can be easily gen-
eralized to include additional sources of (co-)variance.
Although a comprehensive comparison between mul-

tiple approaches is outside the scope of this work, it
is worth discussing how our results compare to others
found in the literature. We preface this by saying that
one-to-one comparisons, however, are often complicated
either by significantly different assumptions or the im-
possibility of directly translating these assumptions from
one prescription to another. Despite this, here we draw
a parallel between our method and two other methods.
The first method is the one used in Mukherjee et al.

(2020), which has also been shown to be extremely suc-
cessful in measuring both bGW (z) and DL,GW (z) us-
ing parametric models. Similarly to this work, the in-
formation is also extracted from the cross-correlation
with redshift sources, but no binning of the GW data
is performed. In this case, we have verified that such
methods perform significantly better than our map-
based approach in the case of a low number density
of GW sources and large uncertainty in the measured
DL,EM (z). These features, in particular, make it es-
pecially useful for near-future samples of a few tens of
objects.
The second promising method to measure DL,GW (z)

that has been proposed in the literature is offered by
GW sources with known counterparts. Such observa-

tions give direct access toDL,GW as a function of redshift
and can be combined with similar measurements in the
EM spectrum to obtainDL,GW/DL,EM (z). The analysis
of Belgacem et al. (2020) is based on this methodology
and, similarly to ours, also employs GPs to reconstruct
this ratio from an Einstein Telescope sample with ∼ 102

sources.
Ultimately, we expect this counterpart-based formal-

ism and the one described in this work to be comple-
mentary: a direct measure of DL,GW (z) can be used to
break the degeneracy between bias and luminosity dis-
tance shown in Figure 4. However, because the fraction
of events with known counterparts that will be observed
is heavily dependent on both the GW source distribution
and multiple instrumental setups, we do not attempt to
combine the two methods here.
In conclusion, the combination of GW resolved events

and the clustering of galaxies is expected to improve our
current knowledge of the physical properties of the Uni-
verse. Our work shows how to reconstruct these proper-
ties as a function of redshift in a generic way, and high-
lights the need for accurate and precise measurements
of DL,GW. This will require control over the instrument
calibration uncertainties (Cahillane et al. 2017), but also
the degeneracy between the inclination of the source and
its luminosity distance (Ghosh et al. 2016). In the fu-
ture, we aim to apply our current analysis pipeline to
the next generation of large scale structure surveys and
incoming GW observations.
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