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ABSTRACT

Context. The number of known strong gravitational lenses is expected to grow substantially in the next few years. The statistical
combination of large samples of lenses has the potential of providing strong constraints on the inner structure of galaxies.
Aims. We investigate to what extent we can calibrate stellar mass measurements and constrain the average dark matter density profile
of galaxies by statistically combining strong lensing data from thousands of lenses.
Methods. We generate mock samples of axisymmetric lenses. We assume that, for each lens, we have measurements of two image
positions of a strongly lensed background source, as well as magnification information from full surface brightness modelling, and
a stellar population synthesis-based estimate of the lens stellar mass. We then fit models describing the distribution of the stellar
population synthesis mismatch parameter αsps (the ratio between the true stellar mass and the stellar population synthesis-based
estimate) and dark matter density profile of the population of lenses to an ensemble of 1000 mock lenses.
Results. The average αsps, projected dark matter mass and dark matter density slope can be obtained with great precision and accu-
racy, compared with current constraints. A flexible model and the knowledge of the lens detection efficiency as a function of image
configuration are required in order to avoid a biased inference.
Conclusions. Statistical strong lensing inferences from upcoming surveys have the potential to calibrate stellar mass measurements
and to constrain the inner dark matter density profile of massive galaxies.

Key words. Gravitational lensing: strong – Galaxies: fundamental parameters

1. Introduction

Strong gravitational lensing is one of the few available meth-
ods for measuring masses of galaxies at cosmological distances.
Strong lensing has been used to determine the average density
profile of massive galaxies (Koopmans et al. 2006; Auger et al.
2010a; Sonnenfeld et al. 2013b) and to put constraints on the
stellar (Treu et al. 2010; Auger et al. 2010b; Barnabè et al. 2013;
Spiniello et al. 2015; Sonnenfeld et al. 2015; Smith et al. 2015)
and the dark matter content of these objects (Sonnenfeld et al.
2012; Oldham & Auger 2018; Schuldt et al. 2019).

There are two possible approaches to inferring the proper-
ties of the mass distribution of galaxies from strong gravitational
lensing data. The first one consists of focusing on a selected sam-
ple of objects with high-quality data and obtaining as much in-
formation as possible from each individual lens. This is the ap-
proach adopted, for example, with time-delay lenses for the mea-
surement of cosmological parameters (Suyu et al. 2017; Millon
et al. 2020). It typically involves modelling deep high-resolution
images of a lens and combining lensing data with complemen-
tary information such as stellar kinematics (Shajib et al. 2018;
Yıldırım et al. 2020).

The second approach consists in combining measurements
from a large sample of lenses and inferring the properties of
the lens population statistically. This requires making assump-
tions on the functional form of the distribution of the param-
eters describing each lens. In the simplest case, lenses can be
assumed to be homologous systems that are scaled-up versions
of each other. Under that assumption, the problem reduces to the
? Marie Skłodowska-Curie Fellow

determination of a handful of parameters describing the aver-
age of the distribution and possible scaling relations between the
mass parameters of each lens and some galaxy properties (see,
for example, Rusin & Kochanek 2005; Grillo 2012; Oguri et al.
2014; Schechter et al. 2014). A more general method for infer-
ring the statistical properties of an ensemble of lenses is hierar-
chical modelling, in which lenses are still assumed to be drawn
from a common distribution to be inferred from the data, but
where the parameters describing individual objects are allowed
to vary independently of each other (see Sonnenfeld et al. 2015,
2019a; Birrer et al. 2020; Shajib et al. 2020). The advantage of a
statistical approach to strong lensing inference is that it allows to
constrain, at population level, parameters that would otherwise
be under-constrained on an individual lens basis.

The constraining power of a statistical sample of strong
lenses increases with the number of objects. So far, statistical
strong lensing analyses have been carried out on samples of tens
of lenses at most, the limiting factor being the availability of
spectroscopic data: the redshift of both the lens and the source
galaxy is needed to convert angular measurements obtained from
the analysis of strongly lensed images to physical measurements
of the lens mass. In the next few years, however, both the number
of known lenses and the number of lenses with available spec-
troscopic observations is expected to grow substantially. On the
one hand, current imaging surveys such as the Hyper Suprime-
Cam survey (Aihara et al. 2018), the Dark Energy Survey (Dark
Energy Survey Collaboration et al. 2016) and the Kilo Degree
Survey (de Jong et al. 2015; Kuijken et al. 2015) are leading
to the discovery of hundreds of new lenses (Sonnenfeld et al.
2018; Wong et al. 2018; Petrillo et al. 2019; Jacobs et al. 2019;
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Chan et al. 2020; Sonnenfeld et al. 2020; Li et al. 2020) and
the total number of known lenses is expected to reach the order
of 105 with Euclid1 and the Vera Rubin Observatory2 (Collett
2015). On the other hand, new spectroscopic facilities such as
the Prime Focus Spectrograph3, the Dark Energy Spectroscopic
Instrument4, the 4-metre Multi-Object Spectroscopic Telescope5

and the Near Infrared Spectrometer and Photometer on board of
Euclid will offer the opportunity of obtaining spectroscopic data
for samples of lenses of unprecedented size.

In this study, we investigate what aspects of the mass dis-
tribution of galaxies can be best determined with the statistical
combination of strong lensing measurements on a large sample
of lenses. We focus on two properties: the mass-to-light ratio
of the stellar component and the inner density profile of the
dark matter halo. Being able to accurately determine the for-
mer is crucial for calibrating galaxy stellar mass measurements
and therefore obtaining an unbiased account of the baryon cycle
in the Universe. The latter is currently very poorly known and
could hold important clues on the relative importance of bary-
onic physics processes in galaxy formation and evolution (see
Schaller et al. 2015) or even on the nature of dark matter itself.

Statistical strong lensing studies are usually carried out in
two steps: at first, each lens is modelled in isolation and its infor-
mation content is compressed into a handful of parameter sum-
marising the mass distribution of the lens. Then, these inferences
on the individual lens parameters are combined to constrain a
model for the lens population. Here we focus mostly on the sec-
ond step.

We simulate samples of 1000 lenses and then try to recover
the properties of their population distribution with a Bayesian
hierarchical inference method. We adopt a simplified model ap-
proach, in which each lens is assumed to be spherical and the
observational constraints are compressed into the positions of
the two brightest images of a strongly lensed source and the ra-
tio of the radial magnification at these two locations. This choice
allows us to simplify greatly the lens modelling step, while still
enabling us to explore the sensitivity of the inference method to
a variety of possible systematic effects. These include non-trivial
variations in the functional form of the distribution of individual
lens parameters, departures of the true dark matter density pro-
file from the family of parameterised models assumed in the fit,
and uncertainties in the lens selection function. We base our sim-
ulations both on existing constraints on the structure of strong
lenses and on predictions from hydrodynamical simulations.

While it is common to add stellar kinematics constraints to
strong lensing data, we do not explore such a possibility here.
This is because in order to model stellar kinematics measure-
ments it is necessary to make a series of additional assumptions,
for instance on the geometry of the lens and the distribution of
the stellar orbits, each of which could introduce a systematic bias
that is difficult to quantify. Instead, we are interested in know-
ing how precisely and how accurately can strong lensing alone,
with the addition of spectroscopic measurements of the lens and
source redshift, constrain the stellar and dark matter distribution
of a large sample of galaxies.

The structure of this paper is the following. In Section 2 we
introduce the basic concept of strong lensing, including a sub-
section describing what aspects of individual lenses can photo-

1 https://www.euclid-ec.org/
2 https://www.lsst.org/
3 https://pfs.ipmu.jp/
4 https://www.desi.lbl.gov/
5 https://www.4most.eu/cms/

metric observations typically constrain. In Section 3 we describe
the simulation of the lens population on which our experiments
are based. In Section 4 we describe the inference method used to
analyse the lens sample. In Section 5 we show the results of our
inference, among with several tests aimed at quantifying the im-
portance of various possible systematic effects. In Section 6 we
discuss our results and conclude in Section 7. The Python code
used for the simulation and analysis of our lens sample can be
found in a dedicated section of a GitHub repository6.

2. Strong lensing theory

2.1. Basics

Throughout this work we assume that lenses are i) isolated, that
is they consist of only one galaxy and its dark matter halo, and
ii) circularly symmetric. Under these assumptions and in the
thin lens approximation, always valid in the galaxy-scale regime
(Schneider et al. 1992), the lensing properties of a galaxy de-
pend exclusively on its surface mass density projected along the
line-of sight, Σ(θ), where θ is the angular coordinate along an ar-
bitrary axis in the lens plane, also referred to as the image plane,
with origin at the lens centre. A background source at angular
position β will form images at positions θ in the lens plane that
are solutions of the lens equation:

β = θ − α(θ). (1)

The variable α(θ) is the deflection angle and can be calculated
from the mass distribution of the lens:

α(θ) =
2
θ

∫ θ

0

Σ(θ′)
Σcr

θ′dθ′. (2)

The integral in the above equation is proportional to the pro-
jected mass enclosed within θ, divided by the critical surface
mass density Σcr. This is defined as

Σcr =
c2Ds

4πGDdDds
, (3)

where c is the speed of light and Dd, Ds and Dds are the angular
diameter distances between the observer and the lens, the ob-
server and the source, and the lens and the source, respectively.
The ratio between the surface mass density of the lens and the
critical surface mass density of the lens-source system is defined
as the dimensionless surface mass density:

κ(θ) ≡
Σ(θ)
Σcr

. (4)

An axisymmetric lens with surface mass density that de-
clines monotonically with distance from the centre can produce
either one, two or three multiple images of the same background
source, depending on the source position and on the dimension-
less surface mass density profile κ(θ). Assuming that β > 0, one
image is always produced at θ1 > θEin, where θEin is the radius
of the tangential critical curve or Einstein radius, defined as the
solution of the lens equation for β = 0:

θEin = α(θEin). (5)

Depending on the source position, a second image may appear
at position θ2, with −θEin < θ2 < 0, in which case the source is

6 https://github.com/astrosonnen/strong_lensing_tools
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θ − α(θ)

θθE−θE

γ = 1.6

γ = 2.2

Fig. 1. Solutions of the lens equation for axisymmetric power-law lens
models. The coloured solid curves show θ − α(θ) as a function of θ
for two lenses with the same Einstein radius and different values of
the density slope parameter γ. The horizontal dashed line marks the
position β of a background source. Its images form at solutions of the
lens equation, β = θ − α(θ), indicated by the vertical dotted lines with
the colour of the corresponding lens model. For the lens with density
profile shallower than isothermal, γ < 2, three images form, while the
γ > 2 lens produces only two images. The slope of the θ − α(θ) curve
is the inverse of the radial magnification. Stationary points, only visible
in the γ < 2 case, correspond to the radial critical curve.

strongly lensed. A third fainter image may be present at position
θ3 with θ2 < θ3 < 0.

As an illustrative example we consider the case of a power-
law lens, with deflection angle given by

α(PL)(θ) = θEin
θ

|θ|

(
|θ|

θEin

)2−γ

. (6)

This corresponds to the deflection induced by a spherically sym-
metric mass distribution with 3D density profile ρ(r) ∝ r−γ.

In Figure 1 we plot the quantity θ − α(θ) for two different
values of the power-law index γ and fixed Einstein radius. For
each lens, images of a background source at position β form at
values of θ where the horizontal dashed line intersects the curve,
as these points are the solutions to the lens equation. If γ < 2,
corresponding to a shallower-than-isothermal density profile, the
curve θ − α(θ) has two stationary points at non-zero values of θ
and, as a result, three images form, provided that β is sufficiently
small. These stationary points correspond to the radial critical
curve, that is the curve in the image plane where the magnifica-
tion in the radial direction of an image is infinite.

The radial magnification is given by

µr =

(
1 −

dα
dθ

)−1

. (7)

This is the inverse of the derivative of the function θ−α(θ), hence
it is infinite at the stationary points of the function plotted in
Figure 1. The total magnification of an image is given by the

product between the radial magnification and the magnification
in the tangential direction, which is given by

µt =

(
1 −

α(θ)
θ

)−1

. (8)

As θ approaches the centre of the lens, the ratio α/θ becomes
very large, and µt tends to zero: for this reason, images close to
the centre are typically very faint.

By mapping the radial critical curve to the source plane
through the lens equation we find the position βr of the radial
caustic, which delimits the region in the source plane where
sources can be strongly lensed: sources with β > βr are not
strongly lensed into multiple images. Not all lenses have a radial
critical curve, though, as can be seen in Figure 1 in the γ > 2
case. Lenses of this kind always produce two images. How-
ever, as the source position moves farther away from the lens,
the position θ2 of the second image gets progressively closer to
the centre. Both its tangential and radial magnification approach
zero, making it practically invisible. Regardless of the number
of multiple images, in our analysis we will only consider the
two brighter ones, θ1 and θ2, as central images are hardly ever
observed in galaxy-scale lenses (see Schuldt et al. 2019 for a
notable exception).

2.2. Constraints on lens models

The standard approach to obtaining information on the mass dis-
tribution of a lens galaxy is by fitting a lens model to strong
lensing data. Here we discuss what properties of a lens can be
recovered with such a forward modelling approach. Two image
positions can be used to constrain two degrees of freedom in a
lens model. One of these degrees of freedom must be the posi-
tion β of the source, while the other one can be a quantity re-
lated to the mass distribution of the lens, for instance the Ein-
stein radius, which can be determined very robustly (that is in a
model-independent way) when the image configuration is close
to symmetric.

When the background source is extended, the two main im-
ages have arc-like shapes. If they are well resolved, it is possible
to obtain additional constraints on the density profile of the lens
by modelling their full surface brightness distribution. In partic-
ular, the width of each arc is proportional to the radial magnifi-
cation of the lens at its position. While the radial magnification
of a single arc is degenerate with the size of the source, which
is unknown unless it is a standard ruler, the ratio between the
two arc widths is independent of source size and can be used to
constrain an additional degree of freedom in the density profile
of a lens. To be more precise, the radial magnification ratio is
closely related to the third derivative of the lens potential around
θEin (see for example Sonnenfeld 2018).

In principle, the elongation and curvature of the arcs can also
be used to constrain a lens model (see Wagner 2017). In practice,
however, those constraints are mostly sensitive to the azimuthal
structure of a lens, which, under our assumption of circular sym-
metry, we are already taking to be known exactly. Image posi-
tions and radial magnification ratios are therefore the main lens-
ing observables that we will consider in our simulations.

When lens models with a power-law radial dependence of the
deflection angle, described by Equation 6, are used to fit high-
resolution images of strongly lensed extended sources, the slope
γ of the density profile can be determined from the radial mag-
nification ratio information. The inferred value of γ, however,
can be more or less sensitive to the radial magnification ratio,
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ξasymm = 0.6
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Fig. 2. Radial magnification ratio between image 1 and 2 for a lens
with a power-law density profile, as a function of the power-law index
γ. Curves obtained for image configurations with different values of the
asymmetry parameter ξasymm, defined in Equation 10, are shown. The
vertical shaded region indicates the typical uncertainty on the power-
law slope, ∆γ = 0.05, obtained by modelling high-resolution images
of strongly lensed extended sources (Shajib et al. 2020). The horizontal
shaded region is the uncertainty on rµr corresponding to an error on
the power-law slope of ∆γ = 0.05 in the case of an image asymmetry
ξasymm = 0.4.

depending on the image configuration. We illustrate this concept
in Figure 2, where we plot the radial magnification ratio between
image 1 and 2,

rµr =
µr(θ1)
µr(θ2)

, (9)

as a function of the slope γ, for a few values of the asymmetry
parameter ξasymm, defined as

ξasymm =
θ1 + θ2

θ1 − θ2
. (10)

For more asymmetric image configurations (larger values of
ξasymm), the curve rµr (γ) is steeper, meaning that a small change
in the density slope of the lens model results in a relatively larger
change in the predicted radial magnification ratio, compared to
a case in which the image configuration is close to symmetric. If
rµr is determined with a given uncertainty ∆rµr , the propagated
uncertainty on γ is then larger the smaller the value of ξasymm. In
the limiting case in which the image consists of a perfect Einstein
ring, when the source is at β = 0, the radial magnification ratio
between the images is one, independently of the mass model,
and therefore it does not have any constraining power.

Based on the above argument, and owing to the popularity
of power-law lens models, it is sometimes said that by mod-
elling the full surface brightness distribution of a strongly lensed
source it is possible to measure the local slope of the projected
density profile at the location of the Einstein radius. While this
statement is true under the assumption that the true density pro-
file of a lens is strictly a power law, it does not hold in general:
given a power-law lens model that reproduces the observed im-
age positions and radial magnification ratio, it is always possible
to find alternative solutions that fit the data equally well and have
different values of the local density slope, due to the mass-sheet
degeneracy Falco et al. (1985).

3. Simulations

In this section we describe the procedure that we used to sim-
ulate a sample of strong lenses. We generated strong lenses di-
rectly, as opposed to first simulating a population of galaxies and
then applying a strong lensing selection. As we explain in sub-
section 3.4, though, we still took into consideration the fact that
some strong lenses are more easily detectable than others when
assigning a source to each lens.

Each lens in our sample consists of the sum of a stellar com-
ponent and a dark matter halo, both concentric and with axial
symmetry. For the sake of saving computational time, all lenses
were taken to be at the same redshift, zd = 0.4, and all sources
placed at redshift zs = 1.5. These values are close to the average
of the expected distribution in lens and source redshift from a
survey like Euclid (Collett 2015). Our experiment, however, can
be generalised to the more realistic case of lenses and sources
being distributed in redshift space. In the following subsections
we describe in detail the properties of each element of the lenses
and their population distribution.

3.1. Stellar component

We describe the stellar mass distribution within each galaxy as a
de Vaucouleurs profile:

Σ∗(R) = Σ0 exp

−b
(

R
Re

)1/4
, (11)

where

Σ0 =
M∗b8

2πR2
eΓ(8)

, (12)

M∗ is the total stellar mass, b '= 7.669 is a numerical constant
that ensures that the mass enclosed within a radius equal to R =
Re is M∗/2 (Ciotti & Bertin 1999) and Γ is the complete gamma
function.

With M(true)
∗ we indicate the true stellar mass of a galaxy.

In addition, we introduce a ‘stellar population synthesis stellar
mass’, M(sps)

∗ , defined as the stellar mass an observer would mea-
sure by fitting a stellar population synthesis model to multi-band
photometric data with no errors. The quantity M(sps)

∗ is directly
accessible from observations, while M(true)

∗ is not. The former is
needed to simulate stellar mass measurements on the lens sam-
ple. The relation between M(sps)

∗ and M(true)
∗ is described by a

parameter αsps, which is defined as

M(true)
∗ = αspsM(sps)

∗ . (13)

We refer to αsps as the stellar population synthesis mismatch pa-
rameter.

In past studies, the ratio between the true stellar mass and
M(sps)
∗ is usually called the initial mass function (IMF) mismatch

parameter, based on the fact that the dominant source of system-
atic uncertainty when measuring stellar masses photometrically
is the choice of the IMF. However, other choices made during the
stellar population synthesis phase, such as priors on the metallic-
ity or the details of the treatment of various evolutionary phases
of a stellar population, can also introduce systematic biases in
the observed stellar masses. At the precision level that can be
reached with large samples of lenses, such systematics can be
important. We therefore use a more general definition for αsps.

Article number, page 4 of 16
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We drew values of log M(sps)
∗ from a Gaussian distribution

with mean 11.4 and dispersion 0.3:

log M(sps)
∗ ∼ N(11.4, 0.32). (14)

This matches roughly the stellar mass distribution of known
samples of strong lenses, when measured under the assumption
of a Chabrier IMF (Auger et al. 2010a; Sonnenfeld et al. 2013a,
2019a). We then assigned a half-mass radius to each lens, drawn
from the following log-Gaussian distribution with a mean that
scales linearly with log M(sps)

∗ :

log Re ∼ N
(
1.0 + 0.8(log M(sps)

∗ − 11.4), 0.152
)
, (15)

where the values of the coefficients were chosen to approx-
imately reproduce the observed stellar mass-size relation of
strong lenses from the Sloan Lens ACS Survey (SLACS, Auger
et al. 2010a). Finally, we set logαsps = 0.1 for all lenses in
the sample. This is in the middle of the range of values of the
IMF mismatch parameter of strong lenses found in the literature
(Smith et al. 2015; Posacki et al. 2015; Sonnenfeld et al. 2019a).

3.2. Dark matter halo

We drew dark matter halo masses from a log-Gaussian distribu-
tion with mean that scales with the stellar mass of a galaxy:

log M200 ∼ N
(
13.0 + 1.5(log M(sps)

∗ − 11.4), 0.22
)
. (16)

The halo mass M200 is defined as the mass enclosed within a
spherical shell with mean density equal to 200 times the critical
density of the Universe.

We used results obtained from hydrodynamical simulations
to define the density profile of each dark matter halo. These con-
sists of modifications to the halo profile found in dark matter
only simulations, where halos follow an universal profile that is
well described by the Navarro, Frenk & White functional form
(NFW; Navarro et al. 1997):

ρ(r) =
ρ0

r/r(NFW)
s

(
1 + r/r(NFW)

s

)2 . (17)

For simplicity, in our mocks we imposed a fixed relation between
r(NFW)

s and M200. In particular, we set

r(NFW)
s =

r200

5
, (18)

where r200 is the virial radius, that is the radius of the spherical
shell enclosing a mass equal to M200. This corresponds to all
halos having the same concentration, c ≡ r(NFW)

s /r200 = 5.
The condensation of cold gas at the centre of their halos and

the growth of the stellar component leads to deviations (e.g. Blu-
menthal et al. 1986; Gnedin et al. 2004) from the NFW profile
that are largest in the inner regions of halos, which is the very
regime probed by strong lensing. We calculated the changes in
the dark matter distribution using the Cautun et al. (2020) rela-
tion which has been empirically derived from the eagle and Il-
lustris simulations (Vogelsberger et al. 2014; Schaye et al. 2015).
The enclosed 3D dark matter mass, MDM(< r), as a function of
distance from the halo centre is taken as

MDM(< r) = (1 − fbar)M(NFW)(< r)
[
0.45 + 0.38 (ηbar + 1.16)0.53

]
, (19)

where fbar is the cosmic baryon fraction and M(NFW)(< r) is the
enclosed mass of the NFW profile that describe the halo in a dark
matter only simulation. The ηbar(< r) parameter characterises

107
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Σ
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⊙
kp

c−
2
)
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Stars

Original NFW halo

100 101 102

Projected distance, R (kpc)

1

2

R
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io

Ratio w.r.t. ”Original NFW halo” case

Fig. 3. Projected surface mass density of a dark matter halo with mass
log M200 = 13, contracted following the procedure described in sub-
section 3.2 (magenta line). Cyan line: original, pre-contraction, dark
matter halo, described by an NFW profile. Blue dotted line: gNFW pro-
file fitted to the contracted dark matter halo. Black line: stellar compo-
nent of the lens, consisting of a de Vaucouleurs profile with total mass
log M∗ = 11.5 and half-light radius Re = 7 kpc. The values of the halo
mass, stellar mass and half-light radius are close to the median of the
distribution of the simulated lens sample.

how radially concentrated are the baryons with respect to dark
matter, and it is given by the ratio between the actual enclosed
baryonic mass and the expected mass distribution, fbarM(NFW)(<
r), if baryons would follow the same radial profile as the dark
matter.

In Figure 3 we show as an example the projected dark matter
density profile obtained with the above procedure for a galaxy
with stellar mass log M∗ = 11.5, half-light radius Re = 7 kpc and
halo mass log M200 = 13. In the same plot we show the original
NFW density profile of an uncontracted dark matter halo with
the same mass (cyan line).

By applying the prescriptions described so far, we generated
a sample of 1000 lenses. In Figure 4 we show the distribution in
Einstein radius of the sample.

3.3. Generalised NFW approximation

The dark matter density profile introduced above is not described
by an analytic expression. When fitting lensing observations,
however, it is convenient to work with analytical models. A rela-
tively popular choice for the parameterisation of the dark matter
density profile of strong lenses is the generalised Navarro Frenk
& White (gNFW) profile:

ρ(r) =
ρ0

(r/rs)γDM (1 + r/rs)3−γDM
. (20)

A gNFW profile has one additional degree of freedom compared
to the standard NFW model: the inner density slope γDM. As we
explain in Section 4, this is the dark matter density profile that
we adopt in the model that we use to fit the simulated data.

Article number, page 5 of 16
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Fig. 4. Distribution of the Einstein radii of a sample of 1000 lenses,
simulated following the procedure described in Section 3.

With the goal of understanding how well a gNFW profile can
approximate our simulated dark matter halos, we fitted the pro-
jected dark matter density of each lens with a gNFW profile. The
fit was done by finding the values of γDM and rs that minimise
the difference in projected density on a grid of points logarith-
mically spaced between 1 and 30 kpc, while keeping the value
of the halo mass fixed. The best-fit gNFW model correspond-
ing to the contracted dark matter halo of Figure 3 is shown as a
red-dotted line in the same plot. The best-fit values of the inner
slope and scale radius are γDM = 1.57 and rs = 180 kpc (approx-
imately a factor of 2.3 larger than the scale radius of the original
NFW halo).

Since the amount of halo contraction depends on the ratio
between baryonic and dark matter mass and on the final distri-
bution of the baryons, we expect the inner dark matter slope to
be steeper in galaxies with a larger ratio between stellar and halo
mass and with a smaller size for a given stellar mass. Such cor-
relations are indeed observed in our simulated sample, as shown
in the left and middle panels of Figure 5.

In the right panel of Figure 5 we plot γDM as a function
of the concentration parameter c(gNFW)

200 , defined as the ratio be-
tween the virial radius and the scale radius of the best-fit gNFW
profile, r(gNFW)

s . We see that γDM is negatively correlated with
c(gNFW)

200 and that the latter is almost always smaller than 5, which
is the value of the concentration adopted for the initial (pre-
contraction) NFW dark matter density profile.

3.4. Background source position

In a complete sample of strong lenses the position of the source
and that of the lens are not causally related, therefore drawing
source positions from a uniform distribution in space appears
to be an appropriate choice in such a case. However, the farther
away the source is from the optical axis the more asymmetric the
image configuration is. Strong lenses with a highly asymmetric
image configuration are very difficult to find and model, because
the second image tends to be highly de-magnified.

We want to simulate exclusively lenses that can realistically
be part of a strong lens sample, therefore we set a limit to how
far from the optical axis a source can be for a given lens, based
on the corresponding magnification of the second image. In par-

ticular, we found the smallest value of β for which the magnifi-
cation of the second image reaches a minimum allowed value of
µmin = 1. We called this value βmax and then drew a value of β
from a uniform distribution within a circle of radius βmax. The
resulting distribution in ξasymm is shown in Figure 6.

3.5. Observational data

For each lens we assume that the positions of the two brightest
images, θ1 and θ2, are measured exactly. This is a good approxi-
mation, because the observational errors on image positions are
typically very small (much less than a pixel). We then assume
that the radial magnification ratio between the two images can
be measured with a Gaussian error of ∆rµr = 0.05. We model
this by adding a Gaussian random error with mean zero and dis-
persion 0.05. We indicate the observed radial magnification ratio
as r(obs)

µr , to distinguish it from the true value. As Figure 2 shows,
for an image configuration asymmetry of ξasymm = 0.4 (a stan-
dard value of this quantity), this translates into an error of 0.05
on the slope of the density profile of a power-law model, which
is the typical uncertainty achieved in lens modelling with current
high-resolution data (Shajib et al. 2020). Finally, we added a log-
Gaussian noise of 0.15 dex to the stellar population synthesis-
based stellar masses and indicate the resulting values as M(obs)

∗ .
Lens and source redshifts and lens half-light radii are assumed to
be known exactly. These can be typically determined with very
high precision when spectroscopic measurements are available
(see for example Sonnenfeld et al. 2019a).

4. Inference method

We have a mock sample of 1000 strong lenses, each with mea-
surements of two image positions, radial magnification ratios
and stellar population synthesis-based stellar masses, generated
as described in Section 3. We want to use these data to char-
acterise the distribution of the parameters describing the inner
structure of strong lenses. We adopt a Bayesian hierarchical ap-
proach for this purpose.

We assume that the density profile of each lens can be de-
scribed with a handful of parameters. We then assume that these
parameters are all drawn from a common probability distribu-
tion describing the population of lenses. This population distri-
bution is in turn summarised by a small number of high-level
parameters, which we refer to as hyper-parameters. Our goal is
to constrain the hyper-parameters describing the population. In
the following subsections we describe in detail the different ele-
ments of this technique. For past examples of applications of the
hierarchical inference formalism to samples of strong lenses we
refer to Sonnenfeld et al. (2015, 2019a).

4.1. Individual lens parameters

We describe each lens as the sum of a stellar component and
a dark matter halo. We model the stellar component with a de
Vaucouleurs profile, which we parameterise by means of the
true stellar mass M(true)

∗ and the half-light radius Re. In order to
compare our model to the observed stellar mass measurements,
however, it is also necessary to provide the value of the stellar
population synthesis stellar mass, M(sps)

∗ . Three parameters then
describe the stellar component.

We model the dark matter component with a gNFW profile.
As explained in subsection 3.3, a gNFW profile has three degrees
of freedom. However, we are only interested in constraining the
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Fig. 5. Left panel: inner density slope of the dark matter halo of the simulated lenses, γDM, obtained by fitting a gNFW density profile to the
projected surface mass density of a lens, as a function of the logarithm of the ratio between the stellar and dark matter halo mass. Middle panel:
γDM as a function of the logarithm of the ratio between the stellar half-mass radius and the average half-mass radius of galaxies with the same
stellar mass. The latter is given by Equation 15. Right panel: γDM as a function of the gNFW concentration parameter, defined as the ratio between
the virial radius and the scale radius obtained from the gNFW profile fit. The vertical dashed line marks the value of c200 adopted for the NFW
profile describing the initial (pre-contraction) density profile of the dark matter halo.
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Fig. 6. Distribution in the image configuration asymmetry parameter
ξasymm, defined in Equation 10, of 1000 lenses simulated following the
procedure described in Section 3.

average dark matter mass and density slope on the scales probed
by strong lensing observations. We believe that a model with two
degrees of freedom in the dark matter density profile is sufficient
for that purpose, therefore we fixed the scale radius to a value of
rs = 100 kpc for the sake of reducing the dimensionality of the
problem7. With the goal of working with quantities that are well
constrained by our data, we parameterised the dark matter dis-
tribution with the projected mass enclosed within 5 kpc, MDM,5,
and the inner slope γDM.

7 One could argue that an NFW profile could be used instead, as it
naturally has two degrees of freedom, but varying the scale radius of an
NFW profile has only a small effect on the density slope in the inner
regions of a dark matter halo

Each lens system is then described by a set of six parameters:
the true stellar mass, the stellar population synthesis stellar mass,
the half-light radius, the projected dark matter mass within 5 kpc,
the inner dark matter density slope and the position of the source
galaxy. We refer to these parameters collectively as

ψ ≡ {log M(true)
∗ , log M(sps)

∗ ,Re, log MDM,5, γDM, β}. (21)

We point out that, on an individual lens basis, the model is
underconstrained, as only five observables per lens are available:
the two image positions, the radial magnification ratio and the
observed stellar mass and half-light radius. We rely on the large
sample size and on our statistical model to gain precision on the
properties of the lens sample as a whole.

4.2. Lens population distribution

The individual lens parameters defined in the previous subsec-
tion are drawn from a probability distribution P(ψ|η), where η are
the hyper-parameters describing the population of lenses, that we
want to infer. We have the freedom to assert a functional form
for this distribution. Our model must have sufficient flexibility to
capture the key features of the lens population that we want to
measure. In our case, these features are the average dark matter
mass, the average inner dark matter slope, the intrinsic scatter
of the dark matter distribution and the average stellar population
synthesis mismatch parameter. One of the simplest models that
can allow us to constrain these properties is the following:

P(ψ|η) =S(M(sps)
∗ ,Re)A

 M(true)
∗

M(sps)
∗

 H(MDM,5)×

G(γDM)B(β|M(true)
∗ ,Re,MDM,5, γDM). (22)

Each term in the above equation describes the distribution of a
different property of the lens-source system. We now proceed to
describe these terms and provide a motivation for each choice.
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The term S in the above equation represents the distribution
in the stellar population synthesis stellar mass and half-light ra-
dius of the lenses. In order to simplify our calculations, we as-
sume that it is known exactly, which means that we fix S to the
product of the two Gaussians of Equation 14 and Equation 15.
This is a reasonable assumption, as the distribution in stellar
mass and half-light radius of a sample of thousands of galaxies
can be determined with high precision (see for example Sonnen-
feld et al. 2019b).

The next term in Equation 22, labelled as A, describes the
distribution in the stellar population synthesis mismatch param-
eter αsps, defined in Equation 13. In principle, this parameter can
vary from lens to lens. For simplicity, we assume a single value
for the whole population of lenses, in our model. Therefore, we
writeA as a Dirac delta function:

A = δ

 M(true)
∗

M(sps)
∗

− αsps

 , (23)

where αsps is a hyper-parameter of the model, in the sense that
it describes the distribution of the stellar population synthesis
mismatch parameter of the whole population.

The termH describes the distribution in dark matter mass of
the lens sample. We assume that it has a log-Gaussian functional
form,

H(MDM,5) =
1

√
2πσDM

exp
− (log MDM,5 − µDM)2

2σ2
DM

, (24)

with mean µDM and intrinsic scatter σDM.
The termG describes the distribution of the inner dark matter

slope. We assume a Gaussian distribution for it, truncated for
γDM < 0.8 and γDM > 1.8:

G(γDM) =
Aγ
√

2πσγ
exp

− (γDM − µγ)2

2σ2
γ

. (25)

The coefficient Aγ is a normalisation constant that ensures that
the integral over γDM of G on its support, (0.8, 1.8), is one.

The motivation for the upper bound on γDM is that we assert
that the density profile of the dark matter halo must be shallower
than that of the total matter. Since typical lenses have a total
density profile close to isothermal, ρ(r) ∝ r−2 (Koopmans et al.
2006), this is achieved by truncating the distribution of the dark
matter slope at γDM = 1.8. The lower bound at γDM = 0.8 is im-
posed purely to speed up computations by reducing the volume
of the parameter space. We verified that the results do not change
by modifying the value of the lower bound.

Finally, the term B describes the distribution in the source
position β. As explained in subsection 3.4, this is directly related
to the selection function of the strong lens sample: at fixed lens
density profile, the position of the source determines the bright-
ness of the multiple images and therefore their detectability. For
simplicity, we assume that the source position distribution, and
implicitly also the lens sample detection efficiency, is known ex-
actly. We discuss the impact of this assumption in subsection 6.1.
Given the procedure that was used to assign source positions to
the mock lenses, then, the term B is

B(β|M(true)
∗ ,Re,M200, γDM) =


2β
β2

max
if 0 < β < βmax

0 elsewhere

. (26)

In other words, the source position distribution is uniform within
a circle of radius βmax, where βmax is the smallest8 value of β for
which the magnification of the second image is equal to µmin = 1.
The value of βmax depends in turn on the lens structural parame-
ters M∗, Re, M200 and γDM.

We refer to the model described so far as the “base model”,
to distinguish it from more complex models that we will intro-
duce in the next Section. We stress out that this model does not
correspond to the true mass distribution of the simulated sample
of lenses for any value of its hyper-parameters, due to the differ-
ences in the description of the dark matter density profile (both
on a single lens basis and in terms of the population distribution).
This was a deliberate choice aimed at reproducing the conditions
of an inference on real data, in which any model that is fitted is
inevitably only an approximation of the truth.

4.3. Inference technique

We need to estimate the posterior probability distribution func-
tion of the model hyper-parameters given the data, P(η|d). From
Bayes theorem, this is proportional to the product between the
prior probability of the hyper-parameters, P(η), times the likeli-
hood of observing the data given the hyper-parameters, P(d|η):

P(η|d) ∝ P(η)P(d|η). (27)

Since measurements performed on the different lenses are in-
dependent from each other, the likelihood can be written as the
following product over the lenses:

P(d|η) =
∏

i

P(di|η), (28)

where di indicates the observational data of the i−th lens. These
consist of the two image positions (θobs

1 , θobs
2 ), the radial mag-

nification ratio r(obs)
µr , the observed (stellar population model-

dependent) stellar mass M(obs)
∗ and related uncertainties.

In addition to the hyper-parameters, these data depend on the
parameters describing each lens, ψi. In order to evaluate P(di|η),
then, it is necessary to consider all possible values taken by the
individual lens parameters ψi, that is to marginalise over them:

P(di|η) =

∫
dψiP(di|ψi, η)P(ψi|η). (29)

Formally, ψi is a 6−dimensional variable. Of the integrals over
these dimensions, the one over Re is a trivial one, as we assumed
that the half-light radius is measured exactly (the likelihood in
the half-light radius is a Dirac delta function centred on the true
value). Then, at fixed true stellar mass M(true)

∗ , the integral over
log M(sps)

∗ returns the value of the integrand evaluated at M(sps)
∗ =

M(true)
∗ /αsps. In other words, the value of the hyper-parameter αsps

and the value of M(true)
∗ determine M(sps)

∗ exactly. Equation 29
then becomes the following 4-dimensional integral:

P(di|η) =

∫
dγDM

∫
d log MDM,5

∫
d log M(true)

∗

∫
dβ

P
(
di|M

(true)
∗ , αsps,Re,MDM,5, γDM, β

)
P
(
M(true)
∗ ,Re,MDM,5, γDM, β|η

)
, (30)

8 The magnification of the second image is not necessarily a monotonic
function of β
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where we omitted the subscript i on the lens parameter variables,
for the sake of keeping the notation compact. Because the two
image positions are measured exactly, two of these integrals are
integrals over Dirac delta functions, which can be computed an-
alytically. As we show in Appendix A, integrating over β and
log M(true)

∗ we obtain

P(di|η) =

∫
dγDM

∫
d log MDM,5 |detJ|(M(true)

∗ ,β)=(M(true)
∗,Ein ,βEin)

P(r(obs)
µr
|γDM,MDM,5,Re,M

(true)
∗,Ein , βEin)

P
(
M(obs)
∗ |M(true)

∗,Ein , αsps

)
P
(
M(true)
∗,Ein ,Re,MDM,5, γDM, βEin|η

)
. (31)

In the above equation, M(true)
∗,Ein and βEin are the values of the stellar

mass and source position that, for a given combination of the pa-
rameters (MDM,5, γDM), are needed to reproduce the two image
positions, θobs

1 and θobs
2 . The term detJ is the Jacobian determi-

nant corresponding to the following variable change,

(log M(true)
∗ , β)→ (θ1, θ2), (32)

evaluated at M(true)
∗,Ein and βEin. The Jacobian determinant is also a

function of MDM,5 and γDM.
Equation 31 is a two-dimensional integral. While this is

much more tractable than that of Equation 30, it still needs to
be evaluated numerically. The precision requirement on the cal-
culation of these integrals is very high: since the likelihood of the
hyper-parameters given the data, Equation 28 is the product of a
thousand such terms, a small systematic error in the calculation
of Equation 31 can introduce large biases in the posterior proba-
bility. For instance, a 0.1% error on each P(di|η) term translates
into a factor 2.7 error on the product of 1000 such terms.

We calculated the integrals of Equation 31 via spline
integration. We first defined a 2-dimensional grid in the
(γDM, log MDM,5) parameter space. We then evaluated the in-
tegrand function at each point of the grid. This required cal-
culating the values of M(true)

∗,Ein , βEin and detJ for each value of
(γDM, log MDM,5), which was done only once per lens at the be-
ginning of the analysis. Then, for each value of γDM on the grid,
we approximated the integrand function with a 3rd order polyno-
mial spline in log MDM,5 and used it to integrate over log MDM,5.
Finally, we repeated this procedure over the γDM variable.

We sampled the posterior probability distribution of the
hyper-parameters given the data using emcee (Foreman-Mackey
et al. 2013), the Python implementation of the affine-invariant
sampling method introduced by Goodman & Weare (2010). We
assumed flat priors over finite intervals for all hyper-parameters,
as described in the first column of Table 1. We verified that our
inference method is accurate by applying it to a mock sample
of lenses generated from the same model family assumed in this
section. We also verified that the inference is converged with re-
spect to the resolution of the (γDM, log MDM,5) grid used for the
computation of the integrals of Equation 31.

5. Results

In Figure 7 we show, in red contours, the posterior probability
distribution of the hyper-parameters of the model described in
Section 4 given the simulated data described in Section 3. The
median, 16%- and 84%-ile of the marginal posterior of each
hyper-parameter is reported in the second column of Table 1.

Both in Figure 7 and in Table 1 we report the true values of
the hyper-parameters. The true values of the hyper-parameters
describing the distribution in the dark matter mass and slope
were defined by fitting our base model directly to the individual
values of MDM,5 and γDM of the lenses. The inner slope γDM was
defined by fitting a gNFW profile with rs = 100 kpc and the true
value of MDM,5 to the projected dark matter mass in the range
1 − 30 kpc. This procedure is different from the one adopted in
subsection 3.3, therefore the resulting values of γDM are slightly
different from those shown in Figure 5.

The inference is very precise: the uncertainties on the
hyper-parameters are very small compared to current constraints
on the dark matter density profile and stellar IMF of strong
lenses. However, it is not accurate: the true values of all hyper-
parameters lie outside of the 95% credible region of the posterior
probability distribution.

5.1. Extending the model

When fitting the base model introduced in Section 4 to our
mock sample of lenses we obtain an inference with high preci-
sion but poor accuracy. In other words, we are in a systematics-
dominated regime. We can try to gain accuracy by adding flex-
ibility to the model. The base model does not allow for correla-
tions between the dark matter parameters and any other property
of the lenses. Such correlations are present in the mock sample,
as shown in Figure 5, and more generally it is reasonable to be-
lieve that the distribution of stars in a galaxy is linked to that of
the dark matter.

We then generalise the base model by modifying the mean
parameter of the MDM,5 and γDM distributions as follows:

µDM = µDM,0 + βDM(log M(sps)
∗ − 11.4) +

ξDM(log Re − µR(M(sps)
∗ )) (33)

µγ = µγ,0 + βγ(log M(sps)
∗ − 11.4) +

ξγ(log Re − µR(M(sps)
∗ )), (34)

where µR(M(sps)
∗ ) is the average value of log Re of lenses with

stellar population synthesis stellar mass M(sps)
∗ . We introduced

four new parameters: βDM and βγ describe the correlation be-
tween MDM,5 and γDM and the stellar mass, while ξDM and ξγ
describe correlations with the ratio between the size of a galaxy
and the average size of galaxies of the same stellar mass. All
other aspects of the model are kept as in the base model. We
refer to this as the “extended” model.

We first measured the true values of the new set of hyper-
parameters related to the inner dark matter slope by fitting the
extended model directly to the distribution of γDM. These are
reported in Table 2 and shown in Figure 7 as black dashed lines.

As the stellar mass increases, the projected dark matter
mass within 5 kpc also increases, albeit in a sublinear way:
βDM = 0.60. Conversely, the inner dark matter slope decreases:
βγ = −0.41. At fixed stellar mass, galaxies with a larger half-
light radius have both a smaller dark matter mass and a shallower
dark matter slope: ξDM = −0.21 and ξγ = −0.34. The values of
µγ and σγ are also modified with respect to those obtained when
fitting the base model. In particular, the intrinsic scatter is much
smaller: this is because part of the scatter observed in the con-
text of the base model can be accounted for by correlations with
M(sps)
∗ and Re.

In Figure 8 we show the posterior probability distribution
of the hyper-parameters of the extended model given the mock
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Fig. 7. Posterior probability distribution of the hyper-parameters of the model described in Section 4, dubbed “Base model”, given the mock data
of a sample of 1,000 lenses generated with the procedure described in Section 3. Red lines: fit to the whole dataset (image positions and radial
magnification ratios). Filled contours: fit to image position only. Contour levels correspond to 68% and 95% enclosed probability regions. Dashed
lines indicate the true values of the hyper-parameters, defined by fitting each model directly to the distribution of log M200, γDM and logαsps of the
mock sample.

Table 1. Inference on the hyper-parameters of the base model given mock data from a sample of 1000 strong lenses. Column (2): true values of the
hyper-parameters. For the hyper-parameters relative to the inner dark matter slope, these are defined by fitting the model directly to the distribution
of MDM,5 and γDM. Column (3): priors on the hyper-parameters. Columns (4)-(5): median, 16%- and 84%-ile of the marginal posterior probability
distribution of each hyper-parameter given the full dataset (image positions and radial magnification ratios) and image position data only.

Parameter Truth Prior Full data Image pos. only Description
µDM 10.99 U(10.00, 12.00) 10.945+0.009

−0.009 10.780+0.013
−0.013 Mean log MDM,5

σDM 0.19 U(0.02, 0.50) 0.207+0.007
−0.007 0.221+0.009

−0.008 Intrinsic scatter in log MDM,5
µγ 1.51 U(0.80, 1.80) 1.35+0.02

−0.02 0.816+0.026
−0.012 Mean γDM

σγ 0.14 U(0.02, 0.50) 0.033+0.016
−0.009 0.036+0.027

−0.012 Intrinsic scatter in γDM
logαsps 0.10 U(0.00, 0.25) 0.130+0.005

−0.006 0.209+0.006
−0.006 Log of the stellar population synthesis mismatch

parameter

data, in red contours. The inferred marginal posterior probability
distribution of each parameter is summarised in Table 2. The
extended model allows for a much more accurate inference of all
hyper-parameters, compared to the base model. All true values
are recovered, with the exception of the parameter describing the
stellar mass dependence of the dark matter slope, βγ.

5.2. Dependence on the data used

The results presented so far are based on fits to image positions
and radial magnification ratios of the lenses. That procedure is
meant to simulate a situation in which high resolution imaging
data is available for every lens, from which the radial magnifi-
cation ratios can be obtained. When only ground-based imaging
data is available, however, it is not possible to measure radial
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Fig. 8. Posterior probability distribution of the hyper-parameters of the extended model introduced in subsection 5.1 given the mock data of a
sample of 1,000 lenses. Red lines: fit to the whole dataset (image positions and radial magnification ratios). Filled contours: fit to image position
only. Contour levels correspond to 68% and 95% enclosed probability regions. Dashed lines indicate the true values of the hyper-parameters,
defined by fitting the each model directly to the distribution of log M200, γDM and logαsps of the mock sample.

magnifications, because the strongly lensed arcs are typically not
resolved. In this subsection we investigate how the constraining
power of a sample of 1000 lenses changes in such a case.

We repeated the analysis without using any radial magnifi-
cation information, that is removing the term relative to rµr from
the likelihood in Equation 31, both for the base and the extended
models. The posterior probability distributions of the two infer-
ences are shown as purple filled contours in Figure 7 and Fig-
ure 8 and summarised in Table 1 and Table 2.

With the base model, a fit to image position information
alone produces a highly biased result. Apparently, removing ra-
dial magnification information does not seem to produce a de-
crease in precision: the uncertainty on the hyper-parameters is
comparable to that attained in the fit to the whole dataset. How-
ever, a closer look to the posterior probability distribution reveals
that the inference on the average dark matter slope parameter, µγ,
is driven by the prior: the values preferred by the data are very
close to the lower bound. Presumably, a less restrictive prior on
µγ would have resulted in a higher overall uncertainty, and pos-
sibly an even more biased inference.

By comparing the results of the fit of the base and ex-
tended models to the full dataset, we learned that models that

are not sufficiently flexible lead to biased inferences. This last
test shows, additionally, that the amount of the bias is larger the
less constraining the data is, at least when working with lens
samples with similar properties to the mock that we generated.

Fitting the extended model to image positions only (purple
contours in Figure 8) appears to produce a more accurate answer,
compared to the base model case: for example, the inferred value
of αsps is less than 3σ away from the truth. However, there is
now a strong degeneracy between the three key parameters of
the model: the average dark matter mass, the average dark matter
slope and the stellar population synthesis mismatch parameter.
We then conclude that, in order to disentangle the stellar and
dark matter contribution to the total mass of a sample of 1000
strong lenses with strong lensing data on its own, magnification
information is necessary.

6. Discussion

With the experiments presented so far, we quantified what pre-
cision and accuracy can be achieved on the measurement of the
distribution of dark matter density profile and of the stellar mass-
to-light ratio of galaxies by statistically combining a sample of
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Table 2. Inference on the hyper-parameters of the extended model given mock data from a sample of 1000 strong lenses. Column (2): true values
of the hyper-parameters. For the hyper-parameters relative to the inner dark matter slope, these are defined by fitting the model directly to the
distribution of MDM,5 and γDM. Column (3): priors on the hyper-parameters. Columns (4)-(5): median, 16%- and 84%-ile of the marginal posterior
probability distribution of each hyper-parameter given the full dataset (image positions and radial magnification ratios) and image position data
only.

Parameter Truth Prior Full data Image pos. only Description
µDM,0 11.05 U(10.00, 12.00) 11.050+0.010

−0.011 10.97+0.03
−0.03 Mean log MDM,5 at log M(sps)

∗ = 11.4 and average size
βDM 0.60 U(0.00, 3.00) 0.56+0.02

−0.02 0.55+0.03
−0.03 Dependence of log MDM,5 on M(sps)

∗

ξDM −0.21 U(−1.00, 1.00) −0.12+0.04
−0.04 −0.05+0.06

−0.06 Dependence of log MDM,5 on galaxy size
σDM 0.06 U(0.02, 0.50) 0.065+0.007

−0.008 0.068+0.010
−0.011 Intrinsic scatter in log MDM,5

µγ,0 1.47 U(0.80, 1.80) 1.45+0.02
−0.03 1.21+0.10

−0.12 Mean γDM at log M(sps)
∗ = 11.4 and average size

βγ −0.41 U(−1.00, 1.00) −0.24+0.04
−0.04 −0.41+0.11

−0.11 Dependence of γDM on log M(sps)
∗

ξγ −0.34 U(−1.00, 1.00) −0.25+0.10
−0.09 −0.24+0.23

−0.19 Dependence of γDM on galaxy size
σγ 0.06 U(0.02, 0.50) 0.051+0.022

−0.019 0.07+0.06
−0.03 Intrinsic scatter in γDM

logαsps 0.10 U(0.00, 0.25) 0.101+0.008
−0.008 0.148+0.018

−0.019 Log of the stellar population synthesis mismatch
parameter

1000 strong lenses. An important assumption on which our anal-
ysis is based is that the source position distribution, the term B
in Equation 22, is known exactly when doing the inference. We
discuss the impact of this assumption in subsection 6.1. Sub-
sequently, in subsection 6.2 we describe a general strategy to
decide whether a model is sufficiently flexible to fit the data or
not. Finally, in subsection 6.3 we discuss what steps need to be
taken in order to successfully apply our analysis method to a real
sample of lenses.

6.1. The importance of the source position prior

As we discussed previously, assuming that the source position
distribution is known is equivalent to knowing the strong lensing
detection efficiency exactly. This is not a realistic assumption:
the process of lens finding consists of several steps, including
typically a human visual inspection one, which introduce selec-
tion effects that are difficult to model from first principles. In this
subsection we investigate how critical this assumption is for the
accuracy of the inference.

We fitted a modified version of the extended model to the
data, in which we adopted an apparently uninformative prior on
the source position: we set the model parameter βmax to infinity
in Equation 26. This is equivalent to assuming that the sources
are drawn from a uniform distribution in the source plane, with
no boundary. The inference on the hyper-parameters describing
the average dark matter profile and the stellar population synthe-
sis mismatch parameters are shown in Figure 9 as blue contours,
along with the inference obtained when the prior on the source
position is known exactly. There is a −0.02 dex shift in the in-
ference of logαsps, which is larger than the uncertainty on that
hyper-parameter. The shift on the inference of the average dark
matter slope is even bigger, in relation to the corresponding un-
certainty.

We then conclude that, at the precision level afforded by a
sample of 1000 lenses, the choice of the source position prior
does affect the inference. This is an important issue that needs to
be addressed when analysing a real sample of lenses, either by
working with a sample for which the lens detection probability
is well characterised or by developing a method that allows one
to infer it directly from the data.

Alternatively, we can avoid modelling the source position
distribution by compressing the image position information into
a model-independent quantity, such as the Einstein radius. For

Fiducial inference

Unbounded source position
prior

Inference with θ
(SIE)
Ein and rµr

0.05 0.10 0.15
logαsps

1.4
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µ
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10.9 11.0 11.1
µDM
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0.10

0.15
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g
α
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s
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Fig. 9. Posterior probability distribution of the hyper-parameters µh,0,
µγ,0 and logαsps obtained under the assumption that source positions are
drawn from a uniform distribution in the source plane with no boundary
(blue contours), compared to the fiducial inference described in subsec-
tion 5.1 (red contours).

example, the half-separation between the two images is a good
proxy for the Einstein radius. It is exactly equal to the Einstein
radius of a singular isothermal sphere lens:

θ(SIS)
Ein =

θ1 − θ2

2
. (35)

Assuming that θ(SIS)
Ein approximates well the true Einstein radius

of a lens, we can use it as an observable constraint in place of
(θobs

1 , θobs
2 ). By doing so, the source position no longer enters the

problem explicitly: a derivation similar to that of subsection 4.3
and Appendix A produces the following expression for the like-
lihood of observing the data relative to one lens,

P(di|η) =

∫
dγDM

∫
d log MDM,5

∣∣∣∣∣∣d log M(true)
∗

dθEin

∣∣∣∣∣∣
M(true)
∗ =M(true)

∗,Ein

P(r(obs)
µr
|γDM,MDM,5,Re,M

(true)
∗,Ein )

P
(
M(obs)
∗ |M(true)

∗,Ein , αsps

)
P
(
M(true)
∗,Ein ,Re,MDM,5, γDM|η

)
. (36)
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In the integral above, M(true)
∗,Ein is now the stellar mass needed to

produce a total projected mass within the Einstein radius equal
to θ(SIS)

Ein , as a function of MDM,5 and γDM.
By using θ(SIS)

Ein in place of (θobs
1 , θobs

2 ) we are discarding part
of the available information: we no longer fit the distribution in
image configuration asymmetry ξasymm, which is sensitive to the
density profile of the lenses. For this reason, we expect the re-
sulting inference to be less precise. We performed such a fit to
θ(SIS)

Ein and rµr , the posterior probability distribution of which is
shown in green in Figure 9. As expected, the inference is less
precise compared to the fiducial analysis. However, it is more ac-
curate than the case in which an unbounded prior on the source
position is assumed. Compressing the available information into
model-independent observables is then a possible way of trad-
ing precision for accuracy, in case it is not possible to obtain an
accurate description of the source position distribution.

6.2. Model selection with posterior prediction

An apparent weakness in our approach is the decision process
that led to the extension of the model of subsection 5.1: we im-
plemented the extended model after noticing that the base model
was unable to recover the truth and stopped improving it once
we realised that the new model afforded an accurate inference.
This is something that can only be done if we already know the
properties of the lens population in detail. Nevertheless, it is pos-
sible to gauge the degree of accuracy of a model by examining
its goodness of fit.

When working with Bayesian hierarchical models, goodness
of fit is determined with posterior predictive tests: mock observa-
tions are generated from the model and these are then compared
to selected aspects of the observed data. In our case, the data
consists of a distribution of image positions, image magnifica-
tion ratios, stellar masses and half-light radii. As an example, we
show in this subsection a posterior predictive test that focuses on
image positions.

We start by compressing the data into a handful of sum-
mary statistics, which we use as quantities to test our model
against. We first reduce the image position distribution to a
1-dimensional one by considering the half-separation between
images defined in Equation 35. Then, we consider the mean
and standard deviation of the θ(SIS)

Ein distribution, < θ(SIS)
Ein > and

σ(θ(SIS)
Ein ). The goal of our posterior predictive test is to determine

how likely it is for our model to produce samples with values
of these test quantities that are more extreme than the observed
ones.

We obtained the posterior predicted test quantities as fol-
lows: we randomly drew 100 samples from the MCMC of the
inference, we generated a sample of 1000 lenses for each draw,
measured the value of θ(SIS)

Ein of each lens and finally computed
< θ(SIS)

Ein > and σ(θ(SIS)
Ein ) of the sample corresponding to each

posterior draw. The resulting posterior predicted distribution of
< θ(SIS)

Ein > and σ(θ(SIS)
Ein ) is shown in Figure 10.

The posterior predicted average θ(SIS)
Ein obtained from the base

model (red histogram) tends to be smaller than the observed
value, but realisations in which θ(SIS)

Ein is larger are not uncommon.
At the same time, however, all posterior predicted lens samples
have a standard deviation in θ(SIS)

Ein that is smaller than the ob-
served one. This means that, if the base model was a faithful
description of the truth, it would be extremely unlikely to find a
sample of 1000 lenses with a value of σ(θ(SIS)

Ein ) as large as the ob-

1.1 1.2

< θ
(SIE)
Ein > (arcsec)

0.4 0.6

σ(θ
(SIE)
Ein ) (arcsec)

Base model

Extended model

Fig. 10. Posterior predicted distribution in the mean value of θ(SIS)
Ein (left

panel) and in the standard deviation of θ(SIS)
Ein (right panel) on samples of

1000 lenses for the base model (red histogram) and extended model in-
ference (green histogram). The dashed lines indicate the values of θ(SIS)

Ein

and σ(θ(SIS)
Ein ) measured in the observed lens sample to which both mod-

els were fitted.

served one. We then conclude from this test that the base model
is unable to reproduce the observed distribution in Einstein ra-
dius of the lens sample in detail.

This test on its own tells us that the base model does not pro-
vide a good fit, but does not give explicit indications on how to
improve it. Additional posterior predictive tests can provide fur-
ther insight: for example, the posterior predicted lens samples
are also unable to match the observed correlations of θ(SIS)

Ein with
M(sps)
∗ and Re, which suggests that correlations between the dark

matter distribution and the structural parameters of the galaxy
might be needed to provide a good description of the sample.
The extended model introduced in subsection 5.1 allows for such
correlations and provides a much better match between its poste-
rior predicted Einstein radius distribution and the observed one,
as shown by the green histograms in Figure 10.

In summary, posterior predictive tests provide a way of as-
sessing the goodness of fit of a Bayesian hierarchical model and
can be used to improve an existing model or discriminate be-
tween alternative ones. We stress out, however, that these tests
are by no means a way of building a model purely on the ba-
sis of the available data: physical insight should always be the
guiding principle of any astrophysical model.

6.3. Application to real samples of lenses

The inference method presented in this work consists in fitting
a model describing the population of lenses directly to the full
ensemble of imaging data of a large sample of lenses, with a
Bayesian hierarchical approach. This method has never been ap-
plied to a real sample of lenses. Even the most complex strong
lens population analyses carried out so far split the fitting proce-
dure in two separate phases: first, individual lenses are modelled,
compressing their information content into a single number, the
Einstein radius, then the Einstein radii are combined in a popu-
lation analysis (see for example Sonnenfeld et al. 2019a).

In our experiment we simplified the problem by assuming
that all lenses are axisymmetric and all sources are point-like,
allowing ourselves to skip the complex modelling of strongly
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lensed images, which is typically a time-consuming step. In
practice the lens modelling step needs to be automated, as the
traditional approach requires a lot of human interaction, an ap-
proach that does not scale well to samples of thousands of lenses.
Recently there has been progress on this front: Nightingale et al.
(2018) developed an automated lens modelling algorithm and
showed it to be accurate in a variety of cases. Machine-learning
can also be used to perform fast automated lens parameter infer-
ences (see for example Hezaveh et al. 2017; Chianese et al. 2020;
Schuldt et al. 2020): in particular, Wagner-Carena et al. (2020)
showed how it is possible to carry out hierarchical inferences on
lens populations with Bayesian neural networks (Charnock et al.
2020). It is not clear, however, if these methods are able to sam-
ple the posterior probability distribution of the lens parameters
in a way that is sufficiently accurate for our purposes: dedicated
tests are needed.

On a related issue, our set of assumptions enabled us to
greatly simplify an otherwise very computationally-intensive
step in our analysis: the marginalisation over the parameters de-
scribing individual lenses, Equation 30. In principle, to compute
the likelihood of each set of values of the hyper-parameters, one
must average over all possible values taken by many individual
lens parameters. In a sample of real lenses, these are at the very
least the four parameters already employed in our model, plus
potentially additional ones describing the azimuthal structure of
each lens. Moreover, there is the added burden that the data vec-
tor is an image instead of a handful of numbers.

Clearly, it is necessary to find a way to approximate the com-
putation of the integrals of the kind of Equation 30 in practice.
The method that we used, spline integration on a grid, does
not scale well to a higher number of dimensions. One of the
most commonly used approaches to compute fast integrals is
Monte Carlo integration paired with importance sampling, but
that method can lead to biases in cases in which the samples
used for the integration do not cover the integrand function well
over its entire support. We therefore leave this as a major open
computational issue.

One could argue that the marginalisation over the individual
lens parameters is not a necessary step in a Bayesian hierarchi-
cal analysis: the posterior probability distribution of the full en-
semble of parameters, both those describing the population and
the individual lens ones, can be explored with a Gibbs sampling
approach. While that is true in principle, Gibbs sampling fails
to converge in a regime where the individual object parameters
are underconstrained by the data, which is the case when fitting
complex mass models to strong lensing data, rendering such an
approach impractical.

7. Conclusions

We presented a Bayesian hierarchical inference method for sta-
tistically combining strong lensing constraints from a large sam-
ple of lenses with the goal of measuring key aspects of the in-
ner structure of lens galaxies: the stellar mass-to-light ratio, the
dark matter mass and the dark matter density profile. We tested
the method on a simulated sample of 1000 lenses, generated un-
der the simplifying assumption that all lenses are axisymmetric
and all lensed sources are point-like. We fitted two models to
the mock observations, with increasing degrees of complexity.
In both cases, the functional form of the fitted model was dif-
ferent from the properties of the simulation, both in terms of the
density profile of individual lenses and in terms of the popula-
tion distribution of the dark matter halo parameters. We found
the following:

– When image position and magnification information is used
to constrain the model, a sample of 1000 lenses can constrain
the stellar population synthesis mismatch parameter, the dark
matter normalisation and inner slope with very high preci-
sion and accuracy, compared to current observations. This
means being able to calibrate stellar mass measurements
with high accuracy and obtaining a firm detection of the ef-
fect of baryonic contraction on the dark matter halos, settling
the dark matter core vs. cusp debate at the halo masses char-
acteristic of galaxy-scale strong lenses.

– In order to obtain an accurate inference, the model describ-
ing the population of lenses must allow for correlations be-
tween the parameters of the dark matter component and all
dynamically relevant properties of the lens galaxies, such as
the stellar mass and half-light radius.

– When fitting image positions only, it is still possible to ob-
tain an accurate inference, but by paying a large cost in terms
of precision: even with 1000 lenses we cannot break the de-
generacy between the dark matter profile and the stellar mass
to-light ratio. Complementary information from another dy-
namical probe, such as weak lensing, is needed in that case.

– A necessary condition for obtaining an accurate inference is
being able to provide a faithful description of the source po-
sition probability distribution or, equivalently, to know the
detection probability of a lens as a function of its image con-
figuration. Alternatively, fitting the Einstein radius instead of
the image positions provides a way of maintaining accuracy
by paying a cost in precision.

– Posterior predictive tests allow one to evaluate the goodness
of fit of a Bayesian hierarchical inference and are therefore a
useful tool for building accurate models.

The tests carried out in this paper provide a first forecast of the
potential constraints that large samples of strong lenses can pro-
vide. In order to implement the method in practice, several chal-
lenges still need to be addressed. These include measuring the
redshifts of large numbers of lenses and relative sources, mak-
ing the individual lens modelling step as automated as possible,
and ensuring that the likelihood evaluation and the marginali-
sation over the many parameters describing individual lenses, a
requirement of our method, can be carried out in an accurate and
computationally sustainable way.

This work was the first of a series. In a second paper we
will quantify the constraining power of a combination of image
position and time delay information, while in the third paper we
will use the number density of a complete sample of lenses as an
additional constraint.
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Appendix A: Marginalisation over the stellar mass and source position

In order to evaluate the posterior probability distribution of the model hyper-parameters given the data, we need to compute integrals
of the kind of that in Equation 30. Let us consider the first term of the integrand function. This is the product of four terms, one for
each observable:

P
(
di|M

(true)
∗ , αsps,Re,MDM,5, γDM, β

)
=P(θobs

1 |M
(true)
∗ ,Re,MDM,5, γDM, β)P(θobs

2 |M
(true)
∗ ,Re,MDM,5, γDM, β)×

P(r(obs)
µr
|M(true)
∗ ,Re,MDM,5, γDM, β)P(M(obs)

∗ |M(true)
∗ , αsps). (A.1)

Because the two image positions are measured exactly, each of the first two terms is a Dirac delta function,

P(θobs
1 |M

(true)
∗ ,Re,MDM,5, γDM, β) = δ(θ1(M(true)

∗ ,Re,MDM,5, γDM, β) − θobs
1 ), (A.2)

and a similar expression holds for the term relative to image 2. Here θ1 indicates the position of image 1 as predicted by the model
parameters and is a function of the latter. In order to integrate out these Dirac delta functions, we first apply the following variable
change:

(log M(true)
∗ , β)→ (θ1, θ2). (A.3)

If detJ is the Jacobian determinant of this variable change, Equation 30 then becomes

P(di|η) =

∫
dγDM

∫
d log MDM,5

"
dθ1dθ2|detJ|δ(θ1 − θ

obs
1 )δ(θ2 − θ

obs
2 )×

P(r(obs)
µr
|M(true)
∗ (θ1, θ2),Re,MDM,5, γDM, β(θ1, θ2))P(M(obs)

∗ |M(true)
∗ (θ1, θ2), αsps)

P
(
M(true)
∗ (θ1, θ2),Re,MDM,5, γDM, β(θ1, θ2)|η

)
. (A.4)

We can now integrate over θ1 and θ2 to obtain

P(di|η) =

∫
dγDM

∫
d log MDM,5 |detJ|(M(true)

∗ ,β)=(M(true)
∗,Ein ,βEin)

P(r(obs)
µr
|γDM,MDM,5,Re,M

(true)
∗,Ein , βEin)

P
(
M(obs)
∗ |M(true)

∗,Ein , αsps

)
P
(
M(true)
∗,Ein ,Re,MDM,5, γDM, βEin|η

)
, (A.5)

where we defined M(true)
∗,Ein and βEin as the values of the true stellar mass and source position needed to produce images at θobs

1 and
θobs

2 . We point out that for certain combinations of values of the lens model parameters the source is not strongly lensed, hence θ2 is
not defined. In those regions of the parameter space the likelihood is simply zero.
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