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Abstract: KM3NeT, a neutrino telescope currently under construction in the Mediterranean Sea,
consists of a network of large-volume Cherenkov detectors. Its two different sites, ORCA and
ARCA, are optimised for few GeV and TeV-PeV neutrino energies, respectively. This allows for
studying a wide range of physics topics spanning from the determination of the neutrino mass
hierarchy to the detection of neutrinos from astrophysical sources.

Deep Learning techniques provide promising methods to analyse the signatures induced by
charged particles traversing the detector. This document will cover a Deep Learning based approach
using Graph Convolutional Networks to classify and reconstruct events in both the ORCA and ARCA
detector. Performance studies on simulations as well as applications to real data will be presented,
together with comparisons to classical approaches.
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1 Introduction

KM3NeT is a network of neutrino telescopes under construction in the Mediterranean Sea [1],
consisting of two detectors: ORCA, optimised for oscillation studies with atmospheric neutrinos in
the 1 to 100 GeV range, and ARCA, optimised for cosmic neutrino searches in the TeV to PeV energy
range. Charged particles produced in neutrino interactions with water emit Cherenkov light, which
is detected by 3" photomultiplier tubes (PMTs) hosted in high-pressure glass spheres (DOMs). 31
PMTs are stored in a single DOM, and 18 DOMs are fixed to a long vertical detection unit (DU) that
is anchored to the sea floor. Each of the three building blocks of KM3NeT will consist out of 115
DUs. The detected light on each PMT (hit) can be used for reconstructing the particles’ properties,
such as their energy or direction. A hit holds information about the time and the xyz-position of the
PMT that recorded the light, as well as its pointing direction. Together, the hits of an event are the
input to reconstruction and classification algorithms. Since the data recorded by KM3NeT closely
resembles point clouds, Graph Neural networks (GNNs) are a natural choice for the architecture.

In the input to the GNN, the hit information of each single hit becomes the node feature [2].
The architecture of the GNN used in this work resembles the ParticleNet model proposed by Qu et
al. [3]. It consists out of three Edge Convolutional blocks [4], followed by a global pooling layer
and two fully connected layers. A custom open-source implementation for this architecture was
developed using the tensorflow [5] back end1.

2 Atmospheric muon reconstruction

KM3NeT’s primary goal is to study neutrinos. However, the majority of detected events are
atmospheric muons produced in cosmic ray induced air showers, which usually pose as a background
for neutrino measurements. But they provide a wide range of applications as well, like measuring
the cosmic ray composition. GNNs can be used to reconstruct the zenith angle and the muon
multiplicity of an incident muon or muon bundle. For this, a set of 25 million atmospheric muon
events was simulated using the software package MUPAGE [6] for the initial four-line set-up of
the ORCA detector. Figure 1 shows the zenith angle reconstruction performance in comparison
to a classical maximum-likelihood based algorithm for single tracks as described in [1]. Since it

1See https://github.com/StefReck/MEdgeConv.
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(b) events with two or more muons

Figure 1: Absolute difference between reconstructed and true zenith angle plotted over the true
zenith angle for selected atmospheric muons in ORCA4. Shown are the median and the 68% band
for the classical reco (orange) and the deep learning reco (blue).

was trained on the expected distribution, the deep learning reconstruction is biased for true cosine
zenith below 0.5, leading to an increase in the error there. GNNs provide a comparable precision to
classical methods on atmospheric muon events and a substantial improvement for the rarer multi-
muon events, which make up about a fifth of the dataset and for which the classical methods were
not optimised.

The number of atmospheric muons in an event is an important observable for indirectly studying
cosmic rays. This deep learning approach is the first reconstruction of the muon multiplicity in
KM3NeT. Even though the detector is still in an early stage of construction, deep learning can
already provide a good estimator for the muon multiplicity (see Figure 2). The muon multiplicity
can be used for the identification of primary particles. Figure 3 shows the result of applying the
trained network on 250,000 atmospheric muon events simulated with Corsika [7] SIBYLL 2.3c
[8] using the GST-3 [9] spectrum. As can be seen, the current detector already provides a decent
separation power between iron and proton induced events.

3 Studies on neutrino selections

GNNs can be used to select neutrino events in ORCA4 real data. To this end, different networks
have been trained to perform classification and reconstruction tasks. The cuts are optimized on
MC data for the highest possible neutrino yield while keeping a low background contamination.
The application to real data shows a reasonable agreement between expectation and observation,
proving to be a valuable method to cross-check conventional methods.

The ParticleNet used this far is implemented in Tensorflow. An alternative architecture using
PyTorch Geometric [10] has also been tested. The benefit of this framework is that it has many
implementations of GNN layers included, which allow for easy prototyping of different architectures.
As a first benchmark for the framework, ParticleNet is implemented and it is trained for the
signal/background classifier on ORCA4. The accuracy of both implementations can be seen in
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Figure 2: Reconstructed versus true muon
multiplicity for events with a similar num-
ber of hits (500 to 600). Even without use
of the correlation between the multiplicity
and the number of hits, the reconstruction
is meaningful.
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Figure 3: Reconstructed (light) and true
(dark) muon multiplicity rates for events
generated in proton (blue) and iron (or-
ange) induced atmospheric showers.
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Figure 4: A comparison of the accu-
racy for background muon classification
between PyTorch and Tensorflow for the
same ParticleNet architecture [3].
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Figure 5: Normed distribution of the
neutrino_score for true muon (blue-
dashed) and true neutrino (red-continuous)
events for the full ARCA detector.

Figure 4. The difference between the implementations can be attributed to the use of more advanced
learning rate schedulers in Tensorflow. The shape of the accuracy curve is identical between the
two implementations. GNNs can also be used for selecting cosmic neutrinos in ARCA over the
muon background. This can be achieved by cutting over a GNN neutrino_score, representing
the probability of an event being induced by a neutrino. The selected neutrinos are then further
classified into tracks and showers by a subsequent GNN classification step. Figure 5 shows the
distribution of the neutrino_score assigned by the GNN to true neutrinos and true atmospheric
muons, for the full ARCA detector. The GNN performances are now being compared with other
ML methods with the goal of finding the most promising method for cosmic neutrino selection.

– 3 –



References

[1] S. Adrián-Martínez et al. (KM3NeT Collaboration), Letter of intent for KM3NeT 2.0, Journal of
Physics G: Nuclear and Particle Physics, 43 (8), 084001, 2016 [1601.07459v2].

[2] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu and M. Sun, Graph neural networks: A review of methods
and applications, 1812.08434.

[3] H. Qu and L. Gouskos, ParticleNet: Jet tagging via particle clouds, Phys. Rev. D 101, 056019 (2020)
[1902.08570v3].

[4] Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein and J.M. Solomon, Dynamic graph CNN for
learning on point clouds, 1801.07829.

[5] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous distributed systems,
1603.04467v2.

[6] G. Carminati, A. Margiotta and M. Spurio, Atmospheric muons from parametric formulas: a fast
generator for neutrino telescopes (MUPAGE), Comput.Phys.Commun.179:915-923,2008
[0802.0562v2].

[7] D. Heck, J. Knapp, J. Capdevielle, G. Schatz and T. Thouw, CORSIKA: A Monte Carlo code to
simulate extensive air showers, FZKA-6019 (1998) .

[8] F. Riehn, H.P. Dembinski, R. Engel, A. Fedynitch, T.K. Gaisser and T. Stanev, The hadronic
interaction model SIBYLL 2.3c and feynman scaling, PoS ICRC2017 (2017) 301 [1709.07227v1].

[9] T.K. Gaisser, T. Stanev and S. Tilav, Cosmic ray energy spectrum from measurements of air showers,
Frontiers of Physics (2013) [1303.3565v1].

[10] M. Fey and J.E. Lenssen, Fast graph representation learning with PyTorch Geometric, in ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

– 4 –

https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1088/0954-3899/43/8/084001
https://arxiv.org/abs/1601.07459v2
https://arxiv.org/abs/1812.08434
https://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/1902.08570v3
https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1603.04467v2
https://doi.org/10.1016/j.cpc.2008.07.014
https://arxiv.org/abs/0802.0562v2
https://arxiv.org/abs/1709.07227v1
https://doi.org/10.1007/s11467-013-0319-7
https://arxiv.org/abs/1303.3565v1

	1 Introduction
	2 Atmospheric muon reconstruction
	3 Studies on neutrino selections

