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ABSTRACT
Upcoming galaxy surveys will allow us to probe the growth of the cosmic large-scale structure with improved sensitivity
compared to current missions, and will also map larger areas of the sky. This means that in addition to the increased
precision in observations, future surveys will also access the ultra-large-scale regime, where commonly neglected effects
such as lensing, redshift-space distortions and relativistic corrections become important for calculating correlation
functions of galaxy positions. At the same time, several approximations usually made in these calculations, such as
the Limber approximation, break down at those scales. The need to abandon these approximations and simplifying
assumptions at large scales creates severe issues for parameter estimation methods. On the one hand, exact calculations
of theoretical angular power spectra become computationally expensive, and the need to perform them thousands of
times to reconstruct posterior probability distributions for cosmological parameters makes the approach unfeasible.
On the other hand, neglecting relativistic effects and relying on approximations may significantly bias the estimates
of cosmological parameters. In this work, we quantify this bias and investigate how an incomplete modelling of
various effects on ultra-large scales could lead to false detections of new physics beyond the standard ΛCDM model.
Furthermore, we propose a simple debiasing method that allows us to recover true cosmologies without running the
full parameter estimation pipeline with exact theoretical calculations. This method can therefore provide a fast way
of obtaining accurate values of cosmological parameters and estimates of exact posterior probability distributions
from ultra-large-scale observations.

Key words: cosmological parameters – large-scale structure of Universe – surveys – methods: statistical

1 INTRODUCTION

In recent years, the development of cosmic microwave back-
ground observations, led by surveys such as theWilkinson Mi-
crowave Anisotropy Probe (WMAP) (Hinshaw et al. 2013),
Planck (Planck Collaboration 2020a,b), the South Pole Tele-
scope (SPT) (Carlstrom et al. 2011) and the Atacama Cos-
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mology Telescope (ACT) (Aiola et al. 2020), has brought
cosmology into the precision era. The new frontier for cos-
mological observations is to now reach a similar precision
in surveys of the cosmic large-scale structure. Observations
of the large-scale structure can provide information on the
matter distribution in the Universe and on the growth of pri-
mordial perturbations with time. This is achieved, for exam-
ple, by observing the lensing effect of intervening matter on
background galaxies (cosmic shear) or by measuring the cor-
relation function of the positions of galaxies (galaxy cluster-
ing). The former has been the main focus of the Kilo-Degree
Survey (KiDS) collaboration which has provided constraints
on cosmological parameters both for the standard ΛCDM
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2 Martinelli et al.

model and for some extensions (Köhlinger et al. 2017). The
latter has been explored to exquisite precision by several
observational collaborations such as the two-degree Field
Galaxy Redshift Survey (Cole et al. 2005), the six-degree
Field Galaxy Survey (Beutler et al. 2011), WiggleZ (Blake
et al. 2011; Parkinson et al. 2012) and the Sloan Digital Sky
Survey (SDSS) (Eisenstein et al. 2005; Percival et al. 2010;
Anderson et al. 2012; Alam et al. 2017). Experiments like the
Dark Energy Survey (DES) have recently provided state-of-
the-art measurements of cosmological parameters using both
shear and clustering from photometric measurements (DES
Collaboration 2021).
In the near future, observations of the large-scale structure

will be further improved by new missions, either space-borne
such as Euclid (Laureijs et al. 2011; Amendola et al. 2013,
2018; Euclid Collaboration 2020), the Roman Space Tele-
scope (Spergel et al. 2015) and the Spectro-Photometer for
the History of the Universe, Epoch of Reionization, and Ices
Explorer (SPHEREx) (Doré et al. 2014, 2018), or ground-
based such as the Dark Energy Spectroscopic Instrument
(DESI) (DESI Collaboration 2016a,b), the Rubin Observa-
tory Legacy Survey of Space and Time (LSST) (LSST Sci-
ence Collaboration 2009; LSST Dark Energy Science Collab-
oration 2018; Ivezić et al. 2019) and the SKA Observatory
(SKAO) (Abdalla et al. 2015; Santos et al. 2015; Brown et al.
2015; Bull et al. 2015; Camera et al. 2015a; Raccanelli et al.
2015; SKA Cosmology Science Working Group 2020). These
future surveys will indeed improve the sensitivity of the mea-
surements, and, in addition, will make it possible to perform
observations on large volumes of the sky. With such obser-
vations, it will be possible to access, for the first time, ultra-
large scales when measuring the correlation function of galaxy
positions and shear. While this ability to access such large
scales will allow us to better constrain cosmological mod-
els and test fundamental theories such as general relativity
(Baker & Bull 2015; CANTATA Collaboration 2021), it will
also pose new challenges to our ability to theoretically model
the observables involved.
In particular, the galaxy correlation function at very large

scales receives contributions from lensing, redshift-space dis-
tortions (RSD) and relativistic effects (Yoo 2010; Bonvin &
Durrer 2011; Challinor & Lewis 2011; Bertacca et al. 2014),
which are mostly negligible for the scales probed by current
surveys (see, e.g., Yoo & Seljak 2015; Fonseca et al. 2015;
Alonso et al. 2015). The modelling problem presented by
such contributions is not as severe as the one of modelling
nonlinear effects at small scales, where one needs to rely on
model-dependent numerical simulations (see, e.g., Martinelli
et al. 2021; Safi & Farhang 2021; Bose et al. 2021; Chartier
et al. 2021; Chartier & Wandelt 2021). However, in order
to simplify the modelling of large-scale effects, several ap-
proximations are commonly made in computing theoretical
predictions for galaxy number counts, such as the Limber
(LoVerde & Afshordi 2008) and the flat-sky (Matthewson &
Durrer 2021) approximations.
Calculations that include large-scale effects and do not rely

on approximations are feasible, and codes commonly used to
compute theoretical predictions, such as CAMB (Lewis et al.
2000; Howlett et al. 2012) and CLASS (Blas et al. 2011), allow
us to obtain “exact” galaxy clustering power spectra. How-
ever, the computational time required for such exact calcu-
lations is significantly longer, causing parameter estimation

pipelines to become unfeasible, as they require calculating
tens of thousands of spectra to reconstruct posterior proba-
bility distributions for cosmological parameters.
Several attempts have been made to overcome this prob-

lem. For instance, fast Fourier transform (FFT) or logarith-
mic FFT (FFTLog) methods can be exploited to accelerate
the computation of the theoretical predictions (Assassi et al.
2017; Campagne et al. 2017; Grasshorn Gebhardt & Jeong
2018). Alternatively, approximations can be made to reduce
the dimensionality of the integration, namely either assuming
that the observed patch of sky is flat, and thus performing a
two-dimensional Fourier transform on the sky (Datta et al.
2007; White & Padmanabhan 2017; Jalilvand et al. 2020;
Matthewson & Durrer 2021), or exploiting the behaviour of
spherical Bessel functions at large angular multipoles (Lim-
ber 1953, 1954; Kaiser 1992).
In this work, we investigate how applying these commonly

used approximations and neglecting lensing, RSD and rela-
tivistic contributions at large scales can bias the estimation
of cosmological parameters, and possibly lead to false detec-
tions of non-standard cosmological models. Such an analysis
has been of interest for some time (see e.g. Camera et al.
2015b,d; Thiele et al. 2020; Villa et al. 2018), but we investi-
gate it here considering all the large-scale effects and approx-
imations at the same time, while relying on a full Markov
chain Monte Carlo (MCMC) pipeline for parameter estima-
tion, rather than using Fisher matrices. Note that other stud-
ies (e.g. Cardona et al. 2016; Tanidis & Camera 2019; Tanidis
et al. 2020) did approach the problem from the MCMC point
of view, but they all, in one way or another, had to simplify
the problem in a way that either made them differ from a
benchmark analysis, or assumed some of the aforementioned
approximations.
Additionally, we propose a simple debiasing method to

recover the true values of cosmological parameters without
the need for exact calculations of the power spectra. Such a
method will allow us to analyse future data sets in a man-
ner that avoids computational problems, but ensures that we
accurately obtain the correct best-fit values of cosmological
parameters and estimates of their posterior distributions.
The paper is structured as follows. We review in section 2

the theoretical modelling of galaxy number count correla-
tions, presenting both the exact computation and the ap-
proximated one. In section 3, the experimental setup used
throughout the paper is presented, while in section 4 we
describe the cosmological models considered in this paper
and their impacts on galaxy number counts. In section 5,
we present our analysis pipeline and introduce a debiasing
method able to significantly reduce the bias on cosmologi-
cal parameters introduced by incorrect modelling of the ob-
servables. We present our results in section 6 and draw our
conclusions in section 7.

2 GALAXY NUMBER COUNTS AND
HARMONIC-SPACE CORRELATION
FUNCTIONS

Observed fluctuations in galaxy number counts are primarily
caused by underlying inhomogeneities in the matter density
field on cosmological scales and, for galaxies, are a biased
tracer of the cosmic large-scale structure. However, there is a

MNRAS 000, 1–14 (2021)
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score of secondary effects that also contribute to the observed
signal (Yoo 2010; Challinor & Lewis 2011; Bonvin & Dur-
rer 2011). The most important of them are the well-known
redshift-space distortions, which represent the dominant term
on sub-Hubble scales, and weak lensing magnification, im-
portant for deep surveys and wide redshift bins. Addition-
ally, there is a more complicated set of relativistic terms that
arise from radial and transverse perturbations along the pho-
ton path from the source to the observer.
Thus, we can write the observed galaxy number count fluc-

tuation field in configuration space and up to first order in
cosmological perturbation theory as

∆g = blin δcs +
1

H∂
2
‖V + bmag κ+ ∆loc + ∆int . (1)

To understand better what the expression above means, we
shall now break it up in all its terms:

(i) The first term in Equation 1 sees the linear galaxy bias,
blin, multiplying matter density fluctuations in the comoving-
synchronous gauge, δcs = δl + 3HV , with δl the density con-
trast of the matter field in the longitudinal gauge, H the
conformal Hubble factor, and V the peculiar velocity poten-
tial.
(ii) The second term is linear RSD, with ∂‖ the spatial

derivative along the line-of-sight direction r̂.
(iii) The third term is the lensing magnification contribu-

tion, sourced by the integrated matter density along the line
of sight, i.e. the weak lensing convergence κ, modulated by the
so-called magnification bias, bmag,1 which respectively take
the forms

κ(r) =
1

2

∫ r

0

dr̃ (r − r̃) r̃
r
∇2
⊥Υ(r̂, r̃) , (2)

bmag(z) = 2

[
1− ∂ ln n̄g(z;L > L?)

∂ lnL

∣∣∣∣
L?

]
, (3)

with r(z) the radial comoving distance to redshift z, such that
dr = dz/H(z) and H(z) = (1 + z)H(z), ∇2

⊥ the Laplacian
on the transverse screen space, Υ the Weyl potential, and n̄g

the mean redshift-space comoving number density of galaxies,
which is a function of redshift and luminosity L (equivalently
flux, or magnitude). L? represents the threshold luminosity
value that a galaxy should have in order to be detected by
the adopted instrument.
(iv) The penultimate term in Equation 1 gathers all the

local contributions at the source, such as Sachs-Wolfe and
Doppler terms, and reads

∆loc = (3− bevo)HV +A∂‖V + (bmag + 1−A)Φ +
Φ′

H , (4)

with

bevo(z) = − ∂ ln n̄g(z)

∂ ln(1 + z)
(5)

1 Note that several different symbols are used in the literature to
denote the magnification bias and—as we shall see later on—the
evolution bias, e.g. α, Q, and s for the former, and be and fevo

for the latter. Here, however, we adopt a more uniform notation,
with blin, bmag, and bevo respectively denoting the linear galaxy
bias, the magnification bias, and the evolution bias. For the first
two, the rationale behind our notation is that they respectively
are what modulates the matter density fluctuations and lensing
convergence.

usually referred to as the evolution bias,1

A ≡ bevo − bmag − 2− H
′

H2
+
bmag

Hr , (6)

Φ being one of the two Bardeen’s potentials (the other being
Ψ), and a prime denoting derivation with respect to confor-
mal time.
(v) The last term, on the other hand, collects all non-local

contributions, such as time delay and integrated Sachs-Wolfe
type terms, and reads

∆int = 2
bmag

r

∫ r

0

dr̃ Φ−
∫ r

0

dr̃ Φ′ . (7)

2.1 The exact expression

The exact harmonic-space angular power spectrum of the ob-
served galaxy number count fluctuations between two (in-
finitesimally thin) redshift slices at z and z′, CEx

` (z, z′), is
then obtained by expanding Equation 1 in spherical harmon-
ics, and taking the ensemble average〈
∆g,`m(z)∆∗g,`′m′(z′)

〉
≡ δK

``′δ
K
mm′CEx

` (z, z′), (8)

with δK the Kronecker delta symbol. This leads to the ex-
pression

CEx
` (z, z′) = 4π

∫
d ln k Wg

` (k; z)Wg
` (k; z′)Pζ(k) , (9)

with Wg
` the kernel of galaxy clustering, encompassing con-

tributions from all terms present in Equation 1, and Pζ(k) ∝
As k

ns−1 the power spectrum of primordial curvature per-
turbations, As and ns respectively being its amplitude and
spectral index.
For a full expression for Wg

` , we can write

Wg
` =Wg,den

` +Wg,vel
` +Wg,len

` +Wg,rel
` , (10)

with Wg,vel
` = Wg,RSD

` + Wg,Dop
` , where (see, e.g., Di Dio

et al. 2013)

Wg,den
` (k; z) = blin(k, z)δ(k, z)j` [kr(z)] , (11)

Wg,RSD
` (k; z) =

k

H(z)
V (k, z)j′′` [kr(z)] , (12)

Wg,Dop
` (k; z) =

{
[bevo(z)− 3]

H(z)

k
j` [kr(z)]

−A(z)j′` [kr(z)]

}
V (k, z) , (13)

Wg,len
` (k; z) = `(`+ 1)bmag(z)

∫ r(z)

0

dr̃
r(z)− r̃
r(z)r̃

Υ(k, r̃)j` (kr̃) ,

(14)

Wg,rel
` (k; z) =

{
[1−A(z)] Ψ(k, r) + 2 [bmag(z)− 1] Φ(k, r)

+H−1(z)Φ′(k, z)
}
j` [kr]

− 2
bmag(z)

r(z)

∫ r(z)

0

dr̃ Υ(k, r̃)j` (kr̃) . (15)

In harmonic-space analyses, it is customary to subdivide
the observed source population into redshift bins. This is
done, for instance, to reduce the dimensionality of the data

MNRAS 000, 1–14 (2021)
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vector—and consequently the covariance matrix—with the
aim of reducing in turn the computational complexity of the
problem. Otherwise, redshift information for the observed
galaxies might be too poor to allow us to pin them down
in the radial direction, as is the case with photometric red-
shift estimation. In this case, galaxies are usually binned
into O(1)−O(10) bins spanning the observed redshift range.
Whatever the reason, in practice this corresponds to having

CEx
ij` = 4π

∫
d ln k Wg

i`(k)Wg
j`(k)Pζ(k) , (16)

where

Wg
i`(k) =

∫
dz

c

H(z)
Wg
` (k; z)ni(z) , (17)

with ni(z) the galaxy redshift distribution in the ith redshift
bin, normalised to unit area.

2.2 Widely used approximations

The computation of harmonic-space power spectra has to be
performed following the triple integral of Equation 16 and
the equations giving the kernel Wg

i`. However, such an in-
tegration is numerically cumbersome, especially because of
the presence of spherical Bessel functions—highly oscillatory
functions whose amplitude and period vary significantly with
the argument of the function. As a consequence, numerical
integration has to be performed with highly adaptive meth-
ods, at the cost of computation speed. Over the years, various
algorithms have been proposed with the aim of speeding up
the computation of harmonic-space power spectra. Mostly,
they rely on FFT/FFTLog methods (see, e.g., Assassi et al.
2017; Campagne et al. 2017; Grasshorn Gebhardt & Jeong
2018).
On the other hand, the full computation is not always nec-

essary, and approximations can be made to speed up the com-
putation, e.g. by applying the Limber or the flat-sky approx-
imation (often erroneously thought to be the same). Here, we
shall focus on the former, which is by far the most widely em-
ployed. It relies on the following property of spherical Bessel
functions,

j`(x) −→
`�1

√
π

2`+ 1
δD

(
`+

1

2
− x
)
, (18)

where δD is a Dirac delta.2 By performing the substitution
of Equation 18 into Equation 16, we can effectively get rid of
two integrations, thus boosting significantly the speed of the
computation.
Moreover, the relative importance of the different terms in

Equation 10 depends on various, survey-dependent factors.
For instance, RSD are mostly washed out for broad redshift
bins, whereas, on the contrary, lensing magnification favours
them. Similarly, the Doppler contribution decays quickly as
the redshift of the shell grows, whilst integrated terms like
lensing gain in weight. Lastly, the importance of the various
effects also varies with the scales of interest, as can be seen
by the H/k factors in Equation 11 to Equation 15. Moreover,
note that at first order in cosmological perturbation theory,

2 Note that the +1/2 term comes from the relation between a
spherical Bessel function of order `, j`, and the ordinary Bessel
function of order L = `+ 1/2, JL.

Einstein equations fix V ∼ δ/k and Φ ∼ Ψ ∼ δ/k2. All
combined, this makes Wg,rel

` important only on very large
scales.
For the reasons explained above, galaxy clustering in har-

monic space is customarily restricted to Newtonian density
fluctuations alone, leading to the well-known expression

CAp
ij` =

∫
dz

[H(z) blin(z)]2 ni(z)nj(z)

r2(z)
Plin

[
`+ 1/2

r(z)
, z

]
,

(19)

where Plin(k, z) is the linear matter power spectrum, and
we have assumed that linear galaxy bias is only redshift-
dependent.
The actual accuracy of such an approximation, however,

cannot be estimated a priori, since it strongly depends on
the integrand of Equation 19. In particular, Equation 19 is
known to agree well with the exact expression of Equation 16
if the kernel of the integral is broad in redshift, and it works
better at low redshift than at high redshift.

3 EXPERIMENTAL SETUP

In the coming decade, several planned surveys of the cosmic
large-scale structure will provide us with observations of the
galaxy distribution with unprecedented sensitivity at very
large scales. It is therefore crucial to assess how the com-
mon approximations described in section 2 will impact the
accuracy of the results we will be able to obtain. Therefore,
in this paper we adopt the specifications of a very deep and
wide galaxy clustering survey with high redshift accuracy.
We emphasise that we are not interested in forecasts for a
specific experiment, but rather in assessing whether and how
much various approximations affect the final science output.
For this reason, we shall focus on an idealised survey, loosely
inspired by the envisaged future construction phase of the
SKAO. Specifically, we consider an HI-galaxy redshift sur-
vey, assuming that the instrument will be able to provide
us with spectroscopic measurements of the galaxies’ redshifts
through the detection of the HI emission line in the galaxy
spectra. Therefore, for the purposes of the harmonic-space to-
mographic studies we focus on in this paper, we shall consider
the error on such redshift measurements to be negligible.
Here, we follow the prescription and fitting functions of

Yahya et al. (2015) to characterise the source galaxy dis-
tribution as a function of both redshift and flux limit. The
latter will be particularly important in determining the mag-
nification bias of the sample. Calculations in Yahya et al.
(2015) were based on the S3-SAX simulations by Obreschkow
& Rawlings (2009) and assumed that any galaxy with an in-
tegrated line flux above a given signal-to-noise ratio threshold
would be detected. The fitting formulae adopted here are

dNgal

dz
= 10c1zc2 exp(−c3z) deg−2 , (20)

blin(z) = c4 exp(c5 z) , (21)

where Ngal is the total number of galaxies in the entire red-
shift range of the survey, and parameters ci can be found in
Yahya et al. (2015) for a wide range of flux thresholds, from
0 to 200µJy. We show in Table 1 values of ci used in the
present work, corresponding to those used in Sprenger et al.
(2019).

MNRAS 000, 1–14 (2021)
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Survey specifications

Ngal fsky zmin zmax c1 c2 c3 c4 c5

9.4× 108 0.7 0.001 1.1 6.32 1.74 5.42 0.55 0.78

Fiducial cosmology

ωb ωc h As × 109 ns

∑
mν [eV] w fNL

0.02245 0.12056 0.67 2.126 0.96 0.06 −1 0

Table 1. Survey specifications and fiducial cosmology used in the
present work to obtain the mock data set and experimental noise.

Given the galaxy distribution of Equation 20, we focus on
the redshift range 0.001 < z < 1.1 with Ngal given in Ta-
ble 1, and divide it into Nbin = 15 redshift bins assuming
that each one contains the same number of galaxies (see the
upper panel of Figure 1). In the lower panel of Figure 1,
we show the redshift evolution of the linear galaxy bias, the
magnification bias and the evolution bias given, respectively,
by Equation 21, Equation 3 and Equation 5, for the survey
under consideration.
Using these survey specifications, we create a mock data set

for galaxy clustering observations by calculating the exact an-
gular power spectra CEx

` described in section 2. We assume a
ΛCDM cosmology with fiducial values of parameters given in
Table 1, where ωb and ωc are the baryon and cold dark mat-
ter energy densities, respectively, h is the reduced present-day
Hubble expansion rate, As and ns are, respectively, the am-
plitude and spectral index of the primordial curvature power
spectrum, and

∑
mν is the sum of the neutrino masses.

4 CASE STUDIES

We study four representative cosmological models in order
to demonstrate how the approximations of subsection 2.2
can bias the estimation of cosmological parameters using a
next-generation survey able to access ultra-large scales, as
described in section 3, and how the method we present in
this paper debiases the constraints while keeping the compu-
tational cost of the parameter estimation procedure signifi-
cantly lower than that of an exact analysis. These four models
are the standard ΛCDM model and three of its minimal ex-
tensions, where either the dark energy equation of state w or
the sum of the neutrino masses

∑
mν or the local primordial

non-Gaussianity (PNG) parameter fNL is allowed to vary as
an additional free parameter. We denote these extensions by
wCDM, ΛCDM+mν and ΛCDM+fNL, respectively.

4.1 Standard model and its simple extensions

We specify the standard ΛCDMmodel by the five free param-
eters ωb, ωc, h, As and ns.3 Following Planck Collaboration
(2020b), we fix the value of

∑
mν to 0.06 eV for ΛCDM. The

parameters {ωb, ωc, h, As, ns} affect the angular power spec-
tra of the observed galaxy number count fluctuations differ-
ently and on different angular scales. Here we are interested
in ultra-large scales, which are expected to be particularly

3 Note that ΛCDM also requires the reionization optical depth τ
as a free parameter. However, we do not vary τ in our analysis
as we do not expect the large-scale observables to constrain this
quantity.

0.0 0.2 0.4 0.6 0.8 1.0

z

0
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40000
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d
N
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l/

d
z

[d
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−

2
]

0.0 0.2 0.4 0.6 0.8 1.0

z

−4

−2

0

2

4

b(
z)

blin

bmag

bevo

Figure 1. Upper panel: Galaxy distribution as described by Equa-
tion 20 (in black) with the limits of the equipopulated redshift bins
considered in the present paper (in colour). Lower panel: Trends
in redshift for the linear galaxy bias of Equation 21 (blue curve),
the magnification bias of Equation 3 (orange curve) and the evo-
lution bias of Equation 5 (green curve). The intersection between
the horizontal dashed and vertical dotted black lines shows where
the linear galaxy bias crosses unity.

sensitive to the parameters that quantify cosmic initial con-
ditions, i.e. As and ns.
In order to illustrate the large-scale effects of the parame-

ters, we show, as an example, in the upper left panel of Fig-
ure 2 the impact of varying the scalar spectral index ns on the
power spectrum at angular scales larger than ` = 400 com-
puted at redshift bins 5, 10 and 15 (corresponding to redshift
ranges 0.28 < z < 0.32, 0.49 < z < 0.54 and 0.86 < z < 1.04,
respectively) as given in the upper panel of Figure 1. For
each redshift bin, the corresponding galaxy number count
power spectra for three values of ns = 0.92, ns = 0.96 and
ns = 1 are shown relative to the spectrum for ns = 0.96,
which we use as our fiducial value in the rest of this paper.
Note that these spectra are all exact, i.e. they are computed
without making any approximations. As the figure shows, in
all the redshift bins, the lower the value of ns, the more en-
hanced the power spectra at ultra-large scales, namely scales
with ` . O(100), while we see the opposite effect at smaller
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Figure 2. Effects of cosmological parameters on the angular power spectrum of observed galaxy number count fluctuations, C`, on large
scales. The four panels depict the effects of: the primordial scalar spectral index ns in ΛCDM (upper left panel); the dark energy equation
of state w in wCDM (upper right panel); the sum of the neutrino masses

∑
mν in ΛCDM+mν , with values in eV (lower left panel); and

the local primordial non-Gaussianity fNL in ΛCDM+fNL (lower right panel). All the power spectra are exact, i.e. no approximations are
made in their computations, and they are shown in comparison with the fiducial ΛCDM spectra with ns = 0.96, w = −1,

∑
mν = 0.06 eV

and fNL = 0. Each panel contains three sets of spectra computed for the three redshift bins 5, 10 and 15, corresponding to low, medium
and high redshifts (from top to bottom in each panel). The redshift range of each bin is indicated in the respective plot in the upper left
panel.

scales. This is because the smaller the value of ns, the steeper
(or more “red-tilted”) the primordial power spectrum, result-
ing in larger amplitudes of fluctuations at extremely large
scales. This steeper spectrum will then lead to suppression of
amplitudes at scales smaller than some “pivot” scale. Note,
however, that the enhancement/suppression is not physical,
as it depends on the scale used as a pivot—namely, fixing
either As or σ8 (amplitude of the linear power spectrum on
the scale of 8h−1Mpc) as a fundamental parameter.

The figure for ns already shows the importance of correctly
computing the angular power spectra for accurately estimat-
ing the cosmological parameters using ultra-large-scale infor-
mation. As the figure shows, even changing ns to the extreme
values of 0.92 and 1, both of which having aleady been ruled
out by the current constraint ns ≈ 0.965±0.0042 (Planck Col-
laboration 2020b), changes the power spectra by O(10%). On
the other hand, as we will see in section 6, the approxima-
tions of subsection 2.2 may easily result in > O(10%) errors

in the computation of the spectra on large scales, which will
then lead to inaccurate, or biased, estimates of parameters
like ns.

An inaccurate estimation of a cosmological parameter can
also result in a false detection of new physics when there is
none, or in no detection when there is. In order to demon-
strate this problem, we present in the upper right and lower
left panels of Figure 2 the effects of the two important
non-standard cosmological parameters, w and

∑
mν , on the

power spectrum at large scales for wCDM and ΛCDM+mν ,
the two simple extensions of ΛCDM that we introduced ear-
lier. The panels again depict the spectra for the three red-
shift bins 5, 10 and 15, with the additional parameters w
and

∑
mν of the two extensions set to {−1.2,−1,−0.8} and

{0.003, 0.06, 0.3}, respectively. Note that throughout this pa-
per, we always use w = −1 and

∑
mν = 0.06 as the fiducial

values for these parameters.

We notice that changing the value of w has a few large-scale
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effects. First of all, setting w to a value smaller or larger than
−1 does not affect the spectra similarly in different redshift
bins. Focusing first on the w = −1.2 case, which corresponds
to a phantom dark energy, we see that the spectra are all
suppressed at ultra-large scales compared to the standard
w = −1 case, and by increasing the bin’s redshift, not only
does the range of the suppressed power extend to smaller
scales, but also the higher the redshift, the more suppressed
the spectra (on all scales). The effect is the opposite for the
w = −0.8 case, and increasing the bin’s redshift results in
more enhanced spectra compared to the baseline w = −1.
The w 6= −1 enhancement/suppression of power and its red-
shift dependence can be explained for smaller scales by the
fact that the linear growth rate of the large-scale structure,
f , is significantly affected by w, especially at low redshifts,
where dark energy becomes more important (see, e.g., Amen-
dola & Tsujikawa 2010). At any given redshift z, a larger w
makes the dark energy component more important compared
to the matter component, and since the growth rate f(z) in-
creases by increasing the dark matter component, it decreases
by increasing w. This is exactly what we see in Figure 2 for the
three values of w = −1.2, w = −1 and w = −0.8. We also see
that, as expected, the differences between the three spectra
at smaller scales are significantly reduced when we increase
the bin’s redshift. The dependence of the power spectrum on
the value of w is, however, much more involved for very large
scales, as the spectrum on those scales is determined by a
combination of different w-dependent effects, such as the in-
tegrated Sachs Wolfe effect. Finally, in all the three bins of
the upper right panel of Figure 2, the oscillatory features in
the ratios C`/Cfid

` show that the baryon acoustic oscillations
shift towards smaller scales with increasing redshift for both
w = −1.2 and w = −0.8.
When considering the sum of the neutrino masses, we see

that increasing
∑
mν results in the suppression of power on

all scales and in all redshift bins, although this suppression is
significantly stronger at smaller scales (or higher multipoles).
There are several reasons for the small-scale reduction of the
power spectra in the presence of massive neutrinos (see, e.g.,
Lesgourgues & Pastor 2012), the most important of which
is the absence of neutrino perturbations in the total power
spectrum and a slower growth rate of matter perturbations
at late times. On extremely large scales, however, neutrino
free-streaming can be ignored (see, e.g., Lesgourgues & Pas-
tor 2012) and neutrino perturbations are therefore indistin-
guishable from matter perturbations. The power spectra then
depend only on the total matter+neutrino density fraction
today and on the primordial power spectrum. The small sup-
pression of the angular power spectra at ultra-large scales, as
seen in Figure 2, is therefore because of the contribution of
massive neutrinos to the total density parameter Ωm.

4.2 Primordial non-Gaussianity and
scale-dependent bias

An important extension of the standard ΛCDM model for
our studies of ultra-large scales is ΛCDM+fNL, where the
parameter fNL is added to the model in order to capture
the effects of a non-zero local primordial non-Gaussianity.
Dalal et al. (2008); Matarrese & Verde (2008); Slosar et al.
(2008) showed that a local PNG modifies the Gaussian bias

by contributing a scale-dependent piece of the form

∆b(z, k) = 3[blin(z)− 1]
δc Ωm H

2
0

k2 T (k)D(z)
fNL , (22)

where Ωm is the present-day matter density parameter, H0

is the value of the Hubble expansion rate today, T (k) is the
matter transfer function (with T → 1 as k → 0), D(z) is the
linear growth factor normalised to (1 + z)−1 in the matter-
dominated Universe, and δc ∼ 1.68 is the (linear) critical mat-
ter density threshold for spherical collapse. The appearance
of the k2 factor in the denominator of Equation 22 immedi-
ately tells us that ultra-large scales are the natural choice for
placing constraints on fNL using this scale-dependent bias, as
the signal becomes stronger when k → 0.
The lower right panel of Figure 2 shows the effects of non-

zero values of fNL on the power spectrum at large scales—
note that similar to the previous cases, the spectra are exact,
i.e. no approximations are made in their computations. We
first notice that, as expected, a non-zero fNL only affects the
ultra-large scales substantially, by enhancing or suppressing
the power spectra, and that this happens in all the redshift
bins shown in the figure. This again emphasises the impor-
tance of accurately and precisely measuring the power spectra
at ultra-large scales, as even the unrealistically large values of
fNL = ±20 (see Planck Collaboration (2020c) for the current
observational constraints on fNL) shown in the figure affect
the spectra by only < 5%.
The figure also shows that a negative (positive) fNL en-

hances (suppresses) the spectra for the two low-redshift bins
5 and 10, while the effect is the opposite for the high-redshift
bin 15. Here we explain the reason for this surprising but
important feature. For that, let us investigate the redshift
dependence of Equation 22 for the full bias. The quantity blin
is redshift-dependent and given by Equation 21 for the survey
we consider in this paper. As can be seen in the lower panel
of Figure 1, the quantity blin − 1 is negative for z . 0.75 and
positive for z & 0.75, which means that a negative (positive)
fNL enhances the bias at low (high) redshifts and suppresses
it at high (low) redshifts. Now looking at the upper panel of
Figure 1, we see that the two upper bins of the lower right
panel of Figure 2 (bins 5 and 10) contain redshifts that are
lower than 0.75, while the lower bin (bin 15) includes redshifts
higher than 0.75.
It is, however, important to note that this is the case only

if one assumes a blin − 1 factor in Equation 22, whose valid-
ity has been questioned in the literature (see, e.g., Barreira
(2020) and references therein). For this reason, we modify
Equation 22 as

∆b(z, k) = 3fNL[blin(z)− p]δc
ΩmH

2
0

k2T (k)D(z)
, (23)

where p is now a free parameter to be determined by cosmo-
logical simulations. It is argued by Barreira (2020) that p = 1
for gravity-only dynamics and when universality of the halo
mass function is assumed, while other values of p provide bet-
ter descriptions of observed galaxies. Depending on the spe-
cific analysis and modelling, different values of p have been
obtained, e.g., Slosar et al. (2008) and Pillepich et al. (2010)
showed that p = 1.6 provides a better description of host halo
mergers, while Barreira et al. (2020) showed that p = 0.55
better describes IllustrisTNG-simulated stellar-mass-selected
galaxies.
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5 METHODOLOGY

In this paper, we are interested in estimating the impact of
large-scale effects and approximations on the estimation of
cosmological parameters. In order to do so, we fit the mock
data set obtained by the exact CEx

` spectra as described in
section 3 using the CAp

` spectra which make use of the several
common approximations discussed in subsection 2.2.
We implement in the public code Cobaya (Torrado & Lewis

2020) a new likelihood module which enables us to obtain
from CAMB (Lewis et al. 2000; Howlett et al. 2012) the approx-
imated spectra CAp

` and compare them with the mock data
set. Such an analysis matches the approach commonly used
for parameter estimation with galaxy number count data,
where CAp

` is computed at each step in the MCMC rather
than CEx

` , as the computation of the latter is extremely time
consuming and therefore unfeasible to repeat O(104) times.
For each point Θ in the sampled parameter space, we com-

pute the χ2 using the approach presented in Audren et al.
(2013), i.e.,

χ2(Θ) =
∑
`

(2`+ 1)fsky

(
dmix
` (Θ)

dth
` (Θ)

+ ln
dth
` (Θ)

dobs
`

−Nbin

)
,

(24)

where Nbin is the number of bins, and

dth
` (Θ) = det

[
C̃Ap
ij` (Θ)

]
, (25)

dobs
` = det

[
C̃Ex
ij`(Θ

fid)
]
. (26)

The tilde indicates that the used spectra contain an obser-
vational noise Nij` = δK

ij/ni, with ni the number of galax-
ies in the ith bin and δK

ij the Kronecker delta, i.e., C̃ij` =
Cij` + Nij`. The quantity dmix

` (Θ) in Equation 24 is con-
structed from dth

` (Θ) by replacing, one after each other, the
theoretical spectra with the corresponding observational ones
(for details, see Audren et al. 2013).
For currently available observations, which are not able to

survey extremely large volumes of the Universe and therefore
do not explore the ultra-large-scale regime, the approximated
spectra generally mimic the true power spectrum. Thus, the
approximations made do not significantly affect the results.
However, we expect future surveys, such as the HI-galaxy
redshift survey for which we generated the mock data set in
section 3, to provide data at scales where lensing, RSD, rela-
tivistic effects, and the Limber approximation significantly
impact the power spectra. Consequently, using the differ-
ent approximations presented in subsection 2.2 in fitting the
models to the data will likely lead to shifts in the inferred
cosmological parameters with respect to the fiducial values
used to generate the data set. In this paper, we quantify the
significance of these shifts, in units of σ, as

S(θ) =
|θ − θfid|

σθ
, (27)

where θ is a generic parameter estimated in our analysis, σθ
is the Gaussian error we obtain on θ, and θfid is the fiducial
value of θ used to generate the mock data set.
We apply this pipeline to the models described in section 4,

with the baseline ΛCDM model described by the set of five
free parameters Θ = {ωb, ωc, h, As, ns}. When analysing an
extended model, we add one extra free parameter to this set:

the dark energy equation of state w, the sum of the neu-
trino masses

∑
mν , or the local primordial non-Gaussianity

parameter fNL. We adopt flat priors on all these parameters.
Note that here we consider an optimistic setting in which

the linear galaxy bias blin(z) is perfectly known. Adding nui-
sance parameters accounting for the uncertainty on this func-
tion and marginalising over them would enlarge the errors
on cosmological parameters and reduce the statistical signifi-
cance of the shifts we find, but would not qualitatively change
the effects we are interested in. Moreover, as we are inter-
ested in the largest scales, in our analysis we only consider
the data up to the multipole ` = 400. Adding smaller scales
to the analysis could reduce the significance of the shifts, but
would not change our results qualitatively.
Throughout this work we rely on CAMB to compute the exact

and approximated power spectra. We use a modified version
of the code, following Camera et al. (2015c), when we consider
the primordial non-Gaussianity parameter, fNL.

5.1 Debiasing constraints on cosmological
parameters

Noting that using approximated spectra, CAp
` , in the MCMC

analysis results in significant shifts on cosmological parame-
ters, we propose a method for debiasing the parameter esti-
mates while still allowing for the use of the quickly computed
CAp
` . This method is based on adding a correction to the C`’s

used in the likelihood evaluation as

CAp
` (Θ)→ CAp

` (Θ) +
[
CEx
` (Θ0)− CAp

` (Θ0)
]
, (28)

where Θ0 refers to a specific set of the cosmological parame-
ters. We define the debiasing term α(Θ0) as

α(Θ0) ≡ CEx
` (Θ0)− CAp

` (Θ0) . (29)

We use Θ0 = Θfid for most of the results shown below, but
discuss in subsection 5.2 how we can use a maximum like-
lihood estimate of Θ0 when working with actual data for
which Θfid does not exist. In Figure 3 we show the depen-
dence of this debiasing method on the choice of Θ0; we com-
pute the debiasing term at Θfid and at 500 other points of
the parameter space, randomly sampled from a Gaussian dis-
tribution centred at Θfid with a variance on each parameter
corresponding to 10% of its fiducial value. These debiasing
terms are then applied to CAp

` (Θfid). Assuming that the re-
sulting spectra also follow a Gaussian distribution around
the CAp

` + α(Θfid) spectra, we show the corresponding 1σ
and 2σ uncertainty regions. The figure shows that although
the results we present below are based on computing α(Θ0)
using Θfid, which would not be known in the case of actual
data, our results would also hold for other choices of Θ0 if
they were reasonably close to Θfid. This method of debiasing
cosmological parameter estimates works precisely because the
debiasing term α(Θ0) is not strongly dependent on the choice
of Θ0 and can therefore account for the differences between
the exact and approximated spectra over the full range of
parameter space that the MCMC explores. Since α(Θ0) only
needs to be computed at a single set of parameter values,
rather than each step in the MCMC, it allows one to obtain
unbiased results without being computationally expensive,
unlike using CEx

` which makes the analysis unfeasible.
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Figure 3. Effect of debiasing when different Θ0 points in the
parameter space are used to compute the debiasing term α(Θ0).
Here α(Θ0) is computed at the fiducial set of parameters, Θfid,
and at 500 other points in the parameter space, randomly sam-
pled from a Gaussian distribution centred at Θfid with a variance
of 10% for each parameter. The black solid curve shows the fiducial
CEx
` (Θfid) spectrum, while the grey band shows the errors corre-

sponding to the experimental setup considered in the paper. For
each of the 500 computed α(Θ0), the debiasing term is applied to
the CAp

` (Θfid) spectrum. Assuming that the resulting spectra also
follow a Gaussian distribution around the CAp

` (Θfid) + α(Θfid)

spectra, the orange and red areas show the 1σ and 2σ uncertainty
regions, respectively. Here the auto-correlation in the eighth bin is
shown as a typical example.

We therefore use, at each sampled point Θ, the χ2 expres-
sion of Equation 24, but with the substitution

C̃Ap
ij` (Θ)→ C̃Ap

ij` (Θ) + α(Θ0) . (30)

5.2 Debiasing with maximum likelihood

While in this paper we work with mock data sets, and there-
fore Θfid is known, this will not be the case when analysing
real data. In order to use our approach in a realistic setting,
we need to find a point in the parameter space that approxi-
mates the fiducial cosmology, which corresponds to the peak
of the multivariate posterior probability distribution for the
parameters. This can be achieved by analysing the mock data
set built with CEx

` using the correct theoretical predictions,
but without attempting to reconstruct the full shape of the
posterior distribution. One can use maximisation methods to
find the peak of the distribution, and since these methods
only aim to find the maximum likelihood (or best-fit) point
in the parameter space, they require a significantly smaller
number of iterations with respect to MCMC methods.
Here, we use the maximisation pipeline of Cobaya, which

relies on the BOBYQA algorithm (Cartis et al. 2018a,b), to fit
the CEx

` spectra to our mock data set, and we find the maxi-
mum likelihood parameter set presented in Table 2. The max-
imum likelihood point (Θpeak) found with this method is very
close to the actual fiducial point used to generate the data

θ Fiducial value ML (or peak) value

ωb 0.022445 0.022485
ωc 0.1206 0.1209

h 0.67 0.67

As × 10−9 2.12605 2.11
ns 0.96 0.96

Table 2. Maximum likelihood (ML) parameter set obtained
by minimising the χ2 when CEx

` is used. The values are ob-
tained through the BOBYQA minimisation algorithm implemented
in Cobaya.

set and would therefore be suitable for computing the debias-
ing term α (see subsection 5.1). Although we use the fiducial
parameter set Θfid to compute the debiasing term in the rest
of this paper, we have verified that there would be no signifi-
cant changes in our results if Θpeak were chosen instead (see
subsection 6.1).

6 RESULTS AND DISCUSSION

In this section, we present the results of our analysis, high-
lighting how neglecting effects that are relevant at very large
scales can result in significant biases in the estimation of cos-
mological parameters, potentially leading to false detections
of non-standard physics. We split our results in two subsec-
tions, the first focusing on ΛCDM and its simple extensions
ΛCDM+mν and wCDM, and the second discussing the re-
sults obtained when a scale-dependent bias generated by pri-
mordial non-Gaussianity is included in the analysis.

6.1 ΛCDM and its simple extensions

In Table 3, we present the results obtained by analysing our
mock data set, generated with CEx

` spectra for a ΛCDM fidu-
cial cosmology, using CAp

` spectra for the three assumed cos-
mologies ΛCDM, ΛCDM+mν and wCDM. In the first case,
we find that the obtained constraints on cosmological param-
eters are significantly shifted with respect to their fiducial
values, despite using for the analysis the same cosmological
model as the one assumed in generating the mock data set.
With the exception of As, which affects the amplitude of the
spectra, the other parameters are all shifted by more than
2σ, with ns being the most affected parameter (S = 4.9σ),
as a result of using approximations to achieve a reasonable
computation time for the MCMC analysis. When we allow for
simple extensions of ΛCDM, we see that such an effect leads
to significant false detections of departures from the standard
model. With the sum of the neutrino masses

∑
mν added as

an extra free parameter, we indeed find a significant detection
of a non-vanishing value, where

∑
mν = 0 eV is excluded

with more than 6σ significance and the estimated value is
shifted from the fiducial minimal value

∑
mν = 0.06 eV by

S = 6.2σ; this implies that an analysis of data sensitive to
large-scale effects would provide a false detection of the neu-
trino masses if one used the approximations considered here.
The same effect can be seen if one allows for dark energy
with an equation of state parameter that deviates from the
cosmological constant value (w = −1). In this case, the free
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Assumed cosmology

ΛCDM ΛCDM+mν wCDM

Fiducial value θ S(θ) [σ] θ S(θ) [σ] θ S(θ) [σ]

ωb 0.022445 0.0163+0.0016
−0.0018 3.6 0.0160+0.0015

−0.0018 3.8 0.0156+0.0013
−0.0016 4.7

ωc 0.1206 0.1098± 0.0046 2.3 0.1143+0.0044
−0.0052 1.3 0.1014± 0.0039 4.9

h 0.67 0.616± 0.018 3.0 0.615+0.017
−0.019 3.0 0.600± 0.015 4.7

As × 109 2.12605 2.176+0.068
−0.081 0.7 2.290± 0.082 2.0 2.398+0.079

−0.088 3.2

ns 0.96 0.9948± 0.0071 4.9 0.9872± 0.0074 3.7 1.0494± 0.0096 9.3∑
mν eV 0.06 − − 0.327± 0.043 6.2 − −
w −1 − − − − −0.886± 0.013 8.7

χ2
min 4972 4925 4912

Table 3. Marginalised constraints on the sampled parameters θ and values of the shift estimator S(θ) obtained by analysing the mock data
set with the approximated CAp

` spectra for the standard ΛCDM model and its simple extensions, ΛCDM+mν and wCDM, considered in
the present work.
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Figure 4. 68% and 95% confidence level contours obtained by fitting the approximated CAp
` spectra to the data set built using the exact

CEx
` spectra (colour-filled contours). The violet contours show the result when a ΛCDM model is assumed, while the green and orange

contours correspond instead to ΛCDM+mν and wCDM cosmologies, respectively. The empty contours show the results of the analysis
when the debiasing term described in subsection 5.1 is included. The black dashed lines show the fiducial values of the cosmological
parameters.

parameter w is shifted from the fiducial value by S = 8.7σ, re-
sulting in a significant detection of a non-standard behaviour,
which is driven only by the use of the approximated CAp

` in
the parameter estimation pipeline. Also in these extended
cases, the estimated values of the standard cosmological pa-
rameters are shifted with respect to the fiducial ones. This
highlights how these simple extensions alone are not able to
mimic the CEx

` spectra, as shifts in the values of the standard
parameters are also necessary for fitting the CEx

` to the data
when CAp

` are being used. The new degeneracies introduced
by extensions of the ΛCDM model explain the changes in
values of S with respect to the standard model.

The decrease in the values of the minimum χ2 for the ex-
tended models with respect to ΛCDM shows that a false de-
tection of the extensions also leads to a better fit to the data.
However, given that our likelihood calculation of Equation 24
would lead to χ2 = 0 for the fiducial values, the χ2

min shown
in Table 3 highlight how even with these significant shifts the
CAp
` spectra are not able to reproduce the cosmology used to

generate the data.

In Figure 4, we show the 68% and 95% confidence level
contours on a few representative parameters for the cases
described above. The colour-filled contours show the results of
the analysis performed with CAp

` , highlighting the deviation
of the estimated values of the parameters from the fiducial

values (shown with black dashed lines). The empty contours
instead show the results obtained when the debiasing term
described in subsection 5.1 is added to the spectra, which are
then compared to the mock data set. These results show how
the method we propose is able to debias the results and how
it allows us to recover the correct values for the parameters,
for both the standard ΛCDM cosmology and its extensions,
thus avoiding false detections of non-standard cosmologies
and improving the goodness of fit with a χ2 now of O(1).

In order to see in more detail the biasing effect of the
approximations included in the CAp

` , we show in Figure 5
the impact of the biases on the angular power spectra for
a representative redshift bin auto-correlation, highlighting
how the approximated CAp

` spectrum (green) significantly
departs from the expected CEx

` spectrum (black) when the
fiducial values of the cosmological parameters are used to ob-
tain both. We also include, with a red dashed curve, the CAp

`

spectrum obtained using the biased values of the cosmologi-
cal parameters reported in Table 3, showing how in this case
the CAp

` at the shifted best-fit cosmology are better able to
reproduce the fiducial CEx

` , thus producing a better fit to the
data.

While in Figure 4 we only show a subset of the free param-
eters of our models, the debiasing procedure is effective for all
cosmological parameters. In Figure 6, we show the constraints
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Figure 5. Angular power spectra for the eighth redshift bin auto-
correlation in a ΛCDM cosmology using the exact CEx

` (black solid
curve) and the approximated CAp

` (green solid curve) obtained as-
suming the fiducial values for the cosmological parameters. The red
dashed curve shows the CAp

` obtained for the biased parameter es-
timation of Table 3. The grey area shows the errors corresponding
to the experimental setup used throughout the paper.

obtained on all the free parameters of our ΛCDM analysis,
obtained by both comparing the CAp

` to the mock data set
(red, filled contours) and applying the debiasing method of
subsection 5.1, using the debiasing term computed at both
the fiducial values, α(Θfid) (yellow, filled contours), and the
peak values found in subsection 5.2, α(Θpeak) (purple, empty
contours). We notice how in the first case all the parameters
are shifted with respect to their expected values, with the
most significant shifts on ns, ωb and h, while when we apply
the debiasing approach the fiducial values are recovered for
all the parameters, with no significant differences between the
two cases of α(Θfid) and α(Θpeak). Even though the results
shown in Figure 6 correspond to the ΛCDM model, they are
qualitatively similar for all the considered cosmologies.
The posterior probability distributions of the parameters

recovered after debiasing the MCMC results do not neces-
sarily coincide with those that would be obtained by a full
analysis. We can, however, consider these as reasonable esti-
mates, as Figure 3 shows that the debiasing term does not
depend strongly on the Θ0 point at which it is computed,
as long as α(Θ0) is sufficiently close to Θfid. Thus, rather
than computing α(Θ0) at each point in the parameter space,
we can approximate α(Θ0) with α(Θpeak) (or α(Θfid) in the
case of the results shown here). This applies only in the vicin-
ity of the peak of the distribution, and the estimation of the
tails suffers from an error that propagates into the confidence
intervals shown in Figure 4 and Figure 6. We leave a quan-
tification of this error for future work.

6.2 Primordial non-Gaussianity

In this subsection, we focus on the results when fNL is in-
cluded as a free parameter, thus allowing for a non-vanishing
local primordial non-Gaussianity; this affects the galaxy clus-
tering spectra through the scale-dependent bias as described
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Figure 6. 68% and 95% confidence level contours, as well as one-
dimensional marginalised posterior probability distribution func-
tions, obtained by fitting the ΛCDM model to the mock data
set. The red, filled contours correspond to the analysis where the
theoretically predicted approximated spectra CAp

` are used to fit
the model to the mock data set. The yellow, filled contours show
the results obtained when the debiasing term α(Θfid) is included,
and the purple, empty contours correspond to the debiasing term
α(Θpeak) computed at the estimated maximum likelihood point
Θpeak.

in subsection 4.2. As a first case, we use the same experi-
mental setup we used in subsection 6.1, and use the standard
expression of Equation 22 for our theoretical predictions for
the scale-dependent bias. In this case, which we refer to as
“baseline”, when we analyse the mock data set using the ap-
proximated CAp

` we find results that are similar to the ΛCDM
case of subsection 6.1, with approximately the same shifts for
the standard parameters and no bias for fNL (see Table 4).
This may seem to be a surprising result, as the impact of
fNL on the theoretical predictions is significant at very large
scales (see Figure 2), where the approximations included in
CAp
` fail. One would therefore expect that a biased value for

this parameter would help with fitting the CEx
` spectra of the

mock data set, and that a false non-vanishing fNL would be
detected. However, given Equation 22 that we rely upon, the
scale-dependent bias depends not only on fNL, but also on
the blin−1 factor. As shown in Figure 1 and discussed in sub-
section 4.2, our choice of the linear galaxy bias implies that
blin − 1 changes sign at z ≈ 0.75; the impact of fNL on the
CAp
` spectra is therefore the opposite for the redshift bins be-

yond this redshift threshold with respect to the lower-redshift
ones. Such an effect leads to a cancellation of the impact of
the primordial non-Gaussianity on the goodness of fit, and
therefore the standard case of fNL = 0 is still preferred.
In order to ensure that this indeed is the reason for the lack

of shift in the recovered fNL value, we run our parameter esti-
mation pipeline by removing the redshift bins above z ≈ 0.75.
We refer to this case as “z cut”. The results are shown in Ta-
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Settings for fNL analysis

baseline z cut p = 0.5

Fiducial value θ S(θ) [σ] θ S(θ) [σ] θ S(θ) [σ]

ωb 0.022445 0.0164+0.0016
−0.0019 3.4 0.0219+0.0024

−0.0035 0.2 0.0169+0.0017
−0.0021 2.9

ωc 0.1206 0.1101+0.0044
−0.0050 2.2 0.1300+0.0064

−0.0089 1.2 0.1143+0.0048
−0.0056 1.2

h 0.67 0.617± 0.018 2.9 0.679+0.023
−0.031 0.3 0.620± 0.020 2.6

As × 109 2.12605 2.170± 0.077 0.6 1.839± 0.084 3.4 2.069± 0.077 0.7

ns 0.96 0.9945± 0.0070 4.9 0.9955+0.0093
−0.0081 4.0 1.0047± 0.0075 6.0

fNL 0 −0.8± 3.9 0.2 −85+13
−12 6.9 66.5± 7.2 9.2

Table 4. Marginalised constraints on the sampled parameters θ and values of the shift estimator S(θ) obtained by analysing the mock
data set with the approximated CAp

` spectra for the three cases of ΛCDM+fNL considered in the present work.

ble 4, where it can be seen how removing the higher-redshift
bins eliminates the cancellation effect described above; now
we find significant biases on fNL and As, with S(fNL) = 6.9σ
and S(As) = 3.4σ, respectively, for the shifts with respect to
the fiducial values. The shifts on the other free parameters
are reduced with respect to the baseline case. The combined
effect of fNL and As allows the CAp

` to fit the mock data
set, as the global effect is boosting the power spectra at large
scales.
On the other hand, as we discussed in subsection 4.2,

the modulating factor blin(z) − 1 in Equation 22 is not the
only possibility for describing the scale-dependent bias. We
have repeated our analysis, following the more general Equa-
tion 23, by setting p = 0.5, which ensures that the blin(z)− p
factor does not change sign in our redshift range, given our
choice of the linear galaxy bias. In the last two columns of Ta-
ble 4 we report the results we find in this case, where we see
again a significant false detection of a non-vanishing fNL, with
S(fNL) = 9.2σ, while the other parameters are less shifted
from their fiducial values compared to the baseline case, with
the exception of ns. In Figure 7, we also notice how the shift
on fNL has an opposite sign in this p = 0.5 case with re-
spect to the z cut case, where the analysis prefer a negative
value of fNL. This is due to the fact that the blin − p factor
is now always positive, and one needs an fNL > 0 in order to
achieve the boost in the CAp

` needed to fit the model to the
mock data set.
Finally, we apply the debiasing procedure of subsection 5.1

to the three cases described and show the results in Figure 7.
As the figure shows, applying the debiasing correction allows
us to recover a vanishing fNL. The debiased contours are
different from each other here, which was not the case in
subsection 6.1; this is due to the different strategies applied
to account for the effects of fNL in our analysis.

7 CONCLUSIONS

The constant improvement in galaxy surveys will soon un-
lock the largest scales in the sky for cosmological studies.
While the expected angular correlations at smaller scales are
well understood and efficiently modelled (up to the nonlinear
regime), calculations of power spectra commonly make use of
approximations aimed at reducing the computational efforts
needed to obtain theoretical predictions of the spectra. This
is a necessary requirement for such calculations if one wants

−100 −50 0 50

fNL
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0.98

1.00

1.02

n
s
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z cut

p = 0.5

Figure 7. 68% and 95% confidence level contours obtained by fit-
ting the approximated CAp

` spectra, with a free fNL parameter, to
the data set built using the exact CEx

` spectra (colour-filled con-
tours). The red and yellow contours show the results obtained with
the scale-dependent bias of Equation 22, with our baseline settings
and with removing the last two redshift bins, respectively. The vi-
olet contour shows instead the case where the scale-dependent bias
is computed following Equation 23 with p = 0.5. The empty con-
tours show the results of the analysis when the debiasing term de-
scribed in subsection 5.1 is included. The black dashed lines show
the values of the fiducial cosmological parameters.

to exploit MCMC methods for performing parameter esti-
mation analyses. Such approximations, however, break down
at very large scales, where effects including lensing, galaxy
velocities and relativistic corrections become relevant.
In this paper, we have investigated the impact of approxi-

mations that neglect such large-scale effects on a parameter
estimation analysis. We have produced a mock data set for a
next-generation survey that will be able to explore the angu-
lar correlation of galaxies at very large scales through the full
treatment described in subsection 2.1. We have then analysed
this data set by applying the commonly used approximations
described in subsection 2.2, where the large-scale corrections
due to lensing, velocities and relativistic effects have been ne-
glected, and the Limber approximation has been employed.
We have found that this analysis produces significantly biased
results, with parameter estimates being shifted up to ∼ 5σ
when assuming a minimal 5-parameter ΛCDM cosmology,
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and with false detections of non-standard cosmologies when
simple extensions of the standard model are considered.
We have also explored the impact of the approximations

on a more complex extension of the ΛCDM model, where
we have allowed for a non-vanishing local primordial non-
Gaussianity by including fNL as a free parameter in our anal-
ysis. This contributes a scale-dependent term to the galaxy
bias which is relevant at large scales. We expected estimates
of this parameter to be significantly biased, as a non-zero
fNL would help the approximated spectra to mimic those
used in creating the data set. However, we have found that
in our baseline setting, such an effect cannot be seen due to
a cancellation between the low- and high-redshift bins. Given
our choice of the linear galaxy bias (see section 3), the com-
monly used scale-dependent term changes sign at z ≈ 0.75
and, therefore, the effect of a non-vanishing fNL on the over-
all goodness of fit cancels out between low- and high-redshift
bins. We have confirmed this explanation by cutting out all
bins at z > 0.75, and we have found, with this setting, a sig-
nificant false detection of a non-vanishing and negative fNL.
We have also performed our analysis for a case where the
scale-dependent piece of the bias depends differently on the
linear bias term (Equation 23). We have found in this case
a 9.2σ shift in the estimated value of fNL, opposite in sign
with respect to the previous case, highlighting how different
modellings of the scale-dependent term can affect the final
results.
In this work, not only have we assessed the impact of the

approximations on the estimation of cosmological parame-
ters, but we have also proposed a simple method to obtain
debiased results that can approximate those that one would
obtain by taking into account all the effects. We have de-
scribed this method in subsection 5.1 and pointed out how
the computation of the debiasing term α(Θ0) does not de-
pend strongly on the choice of the parameter set Θ0 where
the computation is performed, as long as it is close to the true
cosmology. Indeed our advantage in using this method relies
on the fact that, in our forecasts, the fiducial cosmology has
been known. However, we have pointed out that in a realistic
setting, with an unknown fiducial cosmology, one could rely
on minimisation algorithms to identify the best-fit point in
the parameter space. Such a minimisation would be signifi-
cantly less computationally expensive than a full parameter
estimation pipeline and could therefore be performed using
the exact spectra. We have tested the feasibility of such an
approach, and we found in subsection 5.2 that the debiased
cosmological parameter constraints found using an estimate
for the peak of the multivariate distribution are almost ex-
actly the same as those found using the fiducial point. Thus,
this method can be applied to real data, where the fiducial
point is unknown.
We have applied the debiasing method to all the cases we

have investigated, and we have found that it indeed allows
us to recover the expected values for the free parameters of
our analyses. This method could therefore be used in real
data analysis when unexpected detections of non-standard
behaviour are seen. Additionally, while not providing a fully
correct parameter estimation, our method allows one to ob-
tain accurate values for cosmological parameters and esti-
mates of their corresponding posterior probability distribu-
tions. While the recovered distributions are reasonable esti-
mates of the ones obtained through a full analysis, we leave

a quantitative assessment of the errors on their shapes for
future work.

ACKNOWLEDGEMENTS

M.M. has received the support of a fellowship from “la
Caixa” Foundation (ID 100010434), with fellowship code
LCF/BQ/PI19/11690015, and the support of the Spanish
Agencia Estatal de Investigacion through the grant “IFT Cen-
tro de Excelencia Severo Ochoa SEV-2016-0599”. R.D. ac-
knowledges support from the Fulbright U.S. Student Pro-
gram and the NSF Graduate Research Fellowship Program
under Grant No. DGE-2039656. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation. Y.A. is supported
by LabEx ENS-ICFP: ANR-10-LABX-0010/ANR-10-IDEX-
0001-02 PSL*. S.C. acknowledges support from the ‘Depart-
ments of Excellence 2018-2022’ Grant (L. 232/2016) awarded
by the Italian Ministry of University and Research (mur).
S.C. also acknowledges support by mur Rita Levi Montalcini
project ‘prometheus – Probing and Relating Observables
with Multi-wavelength Experiments To Help Enlightening
the Universe’s Structure’, for the early stages of this project,
and from the ‘Ministero degli Affari Esteri della Cooperazione
Internazionale – Direzione Generale per la Promozione del
Sistema Paese Progetto di Grande Rilevanza ZA18GR02.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable
request to the corresponding author.

REFERENCES

Abdalla F. B., et al., 2015, in Advancing Astrophysics
with the Square Kilometre Array (AASKA14). p. 17
(arXiv:1501.04035)

Aiola S., et al., 2020, JCAP, 12, 047
Alam S., et al., 2017, Mon. Not. Roy. Astron. Soc., 470, 2617
Alonso D., Bull P., Ferreira P. G., Maartens R., Santos M. G.,

2015, ApJ, 814, 145
Amendola L., Tsujikawa S., 2010, Dark Energy: Theory and Ob-

servations
Amendola L., et al., 2013, Living Reviews in Relativity, 16, 6
Amendola L., et al., 2018, Living Reviews in Relativity, 21, 2
Anderson L., et al., 2012, MNRAS, 427, 3435
Assassi V., Simonović M., Zaldarriaga M., 2017, J. Cosmology As-

tropart. Phys., 2017, 054
Audren B., Lesgourgues J., Bird S., Haehnelt M. G., Viel M., 2013,

JCAP, 2013, 026
Baker T., Bull P., 2015, ApJ, 811, 116
Barreira A., 2020, JCAP, 12, 031
Barreira A., Cabass G., Schmidt F., Pillepich A., Nelson D., 2020,

JCAP, 12, 013
Bertacca D., Maartens R., Clarkson C., 2014, J. Cosmology As-

tropart. Phys., 2014, 037
Beutler F., et al., 2011, MNRAS, 416, 3017
Blake C., et al., 2011, MNRAS, 418, 1707
Blas D., Lesgourgues J., Tram T., 2011, J. Cosmology Astropart.

Phys., 2011, 034
Bonvin C., Durrer R., 2011, Phys. Rev. D, 84, 063505

MNRAS 000, 1–14 (2021)

http://arxiv.org/abs/1501.04035
http://dx.doi.org/10.1088/1475-7516/2020/12/047
http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.1088/0004-637X/814/2/145
https://ui.adsabs.harvard.edu/abs/2015ApJ...814..145A
http://dx.doi.org/10.12942/lrr-2013-6
https://ui.adsabs.harvard.edu/abs/2013LRR....16....6A
http://dx.doi.org/10.1007/s41114-017-0010-3
https://ui.adsabs.harvard.edu/abs/2018LRR....21....2A
http://dx.doi.org/10.1111/j.1365-2966.2012.22066.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.3435A
http://dx.doi.org/10.1088/1475-7516/2017/11/054
http://dx.doi.org/10.1088/1475-7516/2017/11/054
https://ui.adsabs.harvard.edu/abs/2017JCAP...11..054A
http://dx.doi.org/10.1088/1475-7516/2013/01/026
https://ui.adsabs.harvard.edu/abs/2013JCAP...01..026A
http://dx.doi.org/10.1088/0004-637X/811/2/116
https://ui.adsabs.harvard.edu/abs/2015ApJ...811..116B
http://dx.doi.org/10.1088/1475-7516/2020/12/031
http://dx.doi.org/10.1088/1475-7516/2020/12/013
http://dx.doi.org/10.1088/1475-7516/2014/09/037
http://dx.doi.org/10.1088/1475-7516/2014/09/037
https://ui.adsabs.harvard.edu/abs/2014JCAP...09..037B
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.416.3017B
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.1707B
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://dx.doi.org/10.1088/1475-7516/2011/07/034
https://ui.adsabs.harvard.edu/abs/2011JCAP...07..034B
http://dx.doi.org/10.1103/PhysRevD.84.063505


14 Martinelli et al.

Bose B., et al., 2021, arXiv e-prints, p. arXiv:2105.12114
Brown M., et al., 2015, in Advancing Astrophysics with the Square

Kilometre Array (AASKA14). p. 23 (arXiv:1501.03828)
Bull P., Camera S., Raccanelli A., Blake C., Ferreira P.,

Santos M., Schwarz D. J., 2015, in Advancing Astro-
physics with the Square Kilometre Array (AASKA14). p. 24
(arXiv:1501.04088)

CANTATA Collaboration 2021, arXiv e-prints, p.
arXiv:2105.12582

Camera S., et al., 2015a, in Advancing Astrophysics
with the Square Kilometre Array (AASKA14). p. 25
(arXiv:1501.03851)

Camera S., Carbone C., Fedeli C., Moscardini L., 2015b, Phys.
Rev. D, 91, 043533

Camera S., Santos M. G., Maartens R., 2015c, Mon. Not. Roy.
Astron. Soc., 448, 1035

Camera S., Maartens R., Santos M. G., 2015d, Mon. Not. Roy.
Astron. Soc., 451, L80

Campagne J. E., Neveu J., Plaszczynski S., 2017, A&A, 602, A72
Cardona W., Durrer R., Kunz M., Montanari F., 2016, Phys.

Rev. D, 94, 043007
Carlstrom J. E., et al., 2011, Publ. Astron. Soc. Pac., 123, 568
Cartis C., Fiala J., Marteau B., Roberts L., 2018a, arXiv e-prints,

p. arXiv:1804.00154
Cartis C., Roberts L., Sheridan-Methven O., 2018b, arXiv e-prints,

p. arXiv:1812.11343
Challinor A., Lewis A., 2011, Phys. Rev. D, 84, 043516
Chartier N., Wandelt B. D., 2021, arXiv e-prints, p.

arXiv:2106.11718
Chartier N., Wandelt B., Akrami Y., Villaescusa-Navarro F., 2021,

MNRAS, 503, 1897
Cole S., et al., 2005, Mon. Not. Roy. Astron. Soc., 362, 505
DES Collaboration 2021, arXiv e-prints, p. arXiv:2105.13549
DESI Collaboration 2016a, arXiv e-prints, p. arXiv:1611.00036
DESI Collaboration 2016b, arXiv e-prints, p. arXiv:1611.00037
Dalal N., Dore O., Huterer D., Shirokov A., 2008, Phys. Rev., D77,

123514
Datta K. K., Choudhury T. R., Bharadwaj S., 2007, Mon. Not.

Roy. Astron. Soc., 378, 119
Di Dio E., Montanari F., Lesgourgues J., Durrer R., 2013, JCAP,

11, 044
Doré O., et al., 2014, arXiv e-prints, p. arXiv:1412.4872
Doré O., et al., 2018, arXiv e-prints, p. arXiv:1805.05489
Eisenstein D. J., et al., 2005, Astrophys. J., 633, 560
Euclid Collaboration 2020, A&A, 642, A191
Fonseca J., Camera S., Santos M., Maartens R., 2015, Astrophys.

J. Lett., 812, L22
Grasshorn Gebhardt H. S., Jeong D., 2018, Phys. Rev. D, 97,

023504
Hinshaw G., et al., 2013, ApJS, 208, 19
Howlett C., Lewis A., Hall A., Challinor A., 2012, J. Cosmology

Astropart. Phys., 1204, 027
Ivezić v., et al., 2019, Astrophys. J., 873, 111
Jalilvand M., Ghosh B., Majerotto E., Bose B., Durrer R., Kunz

M., 2020, Phys. Rev. D, 101, 043530
Kaiser N., 1992, ApJ, 388, 272
Köhlinger F., et al., 2017, Mon. Not. Roy. Astron. Soc., 471, 4412
LSST Dark Energy Science Collaboration 2018, arXiv e-prints, p.

arXiv:1809.01669
LSST Science Collaboration 2009, arXiv e-prints, p.

arXiv:0912.0201
Laureijs R., et al., 2011, arXiv e-prints, p. arXiv:1110.3193
Lesgourgues J., Pastor S., 2012, Adv. High Energy Phys., 2012,

608515
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Limber D. N., 1953, ApJ, 117, 134
Limber D. N., 1954, ApJ, 119, 655
LoVerde M., Afshordi N., 2008, Phys. Rev. D, 78, 123506

Martinelli M., et al., 2021, Astron. Astrophys., 649, A100
Matarrese S., Verde L., 2008, Astrophys. J. Lett., 677, L77
Matthewson W. L., Durrer R., 2021, JCAP, 02, 027
Obreschkow D., Rawlings S., 2009, Astrophys. J., 703, 1890
Parkinson D., et al., 2012, Phys. Rev. D, 86, 103518
Percival W. J., et al., 2010, MNRAS, 401, 2148
Pillepich A., Porciani C., Hahn O., 2010, Mon. Not. Roy. Astron.

Soc., 402, 191
Planck Collaboration 2020a, A&A, 641, A1
Planck Collaboration 2020b, A&A, 641, A6
Planck Collaboration 2020c, A&A, 641, A9
Raccanelli A., et al., 2015, in Advancing Astrophysics

with the Square Kilometre Array (AASKA14). p. 31
(arXiv:1501.03821)

SKA Cosmology Science Working Group 2020, Publ. Astron. Soc.
Australia, 37, e007

Safi S., Farhang M., 2021, Astrophys. J., 914, 65
Santos M., et al., 2015, in Advancing Astrophysics with the Square

Kilometre Array (AASKA14). p. 19 (arXiv:1501.03989)
Slosar A., Hirata C., Seljak U., Ho S., Padmanabhan N., 2008,

JCAP, 08, 031
Spergel D., et al., 2015, arXiv e-prints, p. arXiv:1503.03757
Sprenger T., Archidiacono M., Brinckmann T., Clesse S., Lesgour-

gues J., 2019, JCAP, 02, 047
Tanidis K., Camera S., 2019, Mon. Not. Roy. Astron. Soc., 489,

3385
Tanidis K., Camera S., Parkinson D., 2020, Mon. Not. Roy. Astron.

Soc., 491, 4869
Thiele L., Duncan C. A. J., Alonso D., 2020, Mon. Not. Roy. As-

tron. Soc., 491, 1746
Torrado J., Lewis A., 2020, arXiv e-prints, p. arXiv:2005.05290
Villa E., Di Dio E., Lepori F., 2018, JCAP, 04, 033
White M., Padmanabhan N., 2017, Mon. Not. Roy. Astron. Soc.,

471, 1167
Yahya S., Bull P., Santos M. G., Silva M., Maartens R., Okouma

P., Bassett B., 2015, MNRAS, 450, 2251
Yoo J., 2010, Phys. Rev. D, 82, 083508
Yoo J., Seljak U., 2015, MNRAS, 447, 1789

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–14 (2021)

https://ui.adsabs.harvard.edu/abs/2021arXiv210512114B
http://arxiv.org/abs/1501.03828
http://arxiv.org/abs/1501.04088
https://ui.adsabs.harvard.edu/abs/2021arXiv210512582S
https://ui.adsabs.harvard.edu/abs/2021arXiv210512582S
http://arxiv.org/abs/1501.03851
http://dx.doi.org/10.1103/PhysRevD.91.043533
http://dx.doi.org/10.1103/PhysRevD.91.043533
http://dx.doi.org/10.1093/mnras/stv040
http://dx.doi.org/10.1093/mnras/stv040
http://dx.doi.org/10.1093/mnrasl/slv069
http://dx.doi.org/10.1093/mnrasl/slv069
http://dx.doi.org/10.1051/0004-6361/201730399
https://ui.adsabs.harvard.edu/abs/2017A&A...602A..72C
http://dx.doi.org/10.1103/PhysRevD.94.043007
http://dx.doi.org/10.1103/PhysRevD.94.043007
https://ui.adsabs.harvard.edu/abs/2016PhRvD..94d3007C
http://dx.doi.org/10.1086/659879
https://ui.adsabs.harvard.edu/abs/2018arXiv180400154C
https://ui.adsabs.harvard.edu/abs/2018arXiv181211343C
http://dx.doi.org/10.1103/PhysRevD.84.043516
https://ui.adsabs.harvard.edu/abs/2021arXiv210611718C
https://ui.adsabs.harvard.edu/abs/2021arXiv210611718C
http://dx.doi.org/10.1093/mnras/stab430
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503.1897C
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
https://ui.adsabs.harvard.edu/abs/2021arXiv210513549D
https://ui.adsabs.harvard.edu/abs/2016arXiv161100036D
https://ui.adsabs.harvard.edu/abs/2016arXiv161100037D
http://dx.doi.org/10.1103/PhysRevD.77.123514
http://dx.doi.org/10.1111/j.1365-2966.2007.11747.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11747.x
http://dx.doi.org/10.1088/1475-7516/2013/11/044
https://ui.adsabs.harvard.edu/abs/2014arXiv1412.4872D
https://ui.adsabs.harvard.edu/abs/2018arXiv180505489D
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1051/0004-6361/202038071
https://ui.adsabs.harvard.edu/abs/2020A&A...642A.191E
http://dx.doi.org/10.1088/2041-8205/812/2/L22
http://dx.doi.org/10.1088/2041-8205/812/2/L22
http://dx.doi.org/10.1103/PhysRevD.97.023504
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3504G
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3504G
http://dx.doi.org/10.1088/0067-0049/208/2/19
https://ui.adsabs.harvard.edu/abs/2013ApJS..208...19H
http://dx.doi.org/10.1088/1475-7516/2012/04/027
http://dx.doi.org/10.1088/1475-7516/2012/04/027
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1103/PhysRevD.101.043530
http://dx.doi.org/10.1086/171151
https://ui.adsabs.harvard.edu/abs/1992ApJ...388..272K
http://dx.doi.org/10.1093/mnras/stx1820
https://ui.adsabs.harvard.edu/abs/2018arXiv180901669T
https://ui.adsabs.harvard.edu/abs/2018arXiv180901669T
https://ui.adsabs.harvard.edu/abs/2009arXiv0912.0201L
https://ui.adsabs.harvard.edu/abs/2009arXiv0912.0201L
https://ui.adsabs.harvard.edu/abs/2011arXiv1110.3193L
http://dx.doi.org/10.1155/2012/608515
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/145672
https://ui.adsabs.harvard.edu/abs/1953ApJ...117..134L
http://dx.doi.org/10.1086/145870
https://ui.adsabs.harvard.edu/abs/1954ApJ...119..655L
http://dx.doi.org/10.1103/PhysRevD.78.123506
http://dx.doi.org/10.1051/0004-6361/202039835
http://dx.doi.org/10.1086/587840
http://dx.doi.org/10.1088/1475-7516/2021/02/027
http://dx.doi.org/10.1088/0004-637X/703/2/1890
http://dx.doi.org/10.1103/PhysRevD.86.103518
https://ui.adsabs.harvard.edu/abs/2012PhRvD..86j3518P
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.2148P
http://dx.doi.org/10.1111/j.1365-2966.2009.15914.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15914.x
http://dx.doi.org/10.1051/0004-6361/201833880
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...1P
http://dx.doi.org/10.1051/0004-6361/201833910
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...6P
http://dx.doi.org/10.1051/0004-6361/201935891
https://ui.adsabs.harvard.edu/abs/2020A&A...641A...9P
http://arxiv.org/abs/1501.03821
http://dx.doi.org/10.1017/pasa.2019.51
http://dx.doi.org/10.1017/pasa.2019.51
https://ui.adsabs.harvard.edu/abs/2020PASA...37....7S
http://dx.doi.org/10.3847/1538-4357/abfa18
http://arxiv.org/abs/1501.03989
http://dx.doi.org/10.1088/1475-7516/2008/08/031
https://ui.adsabs.harvard.edu/abs/2015arXiv150303757S
http://dx.doi.org/10.1088/1475-7516/2019/02/047
http://dx.doi.org/10.1093/mnras/stz2366
http://dx.doi.org/10.1093/mnras/stz3394
http://dx.doi.org/10.1093/mnras/stz3394
http://dx.doi.org/10.1093/mnras/stz3103
http://dx.doi.org/10.1093/mnras/stz3103
https://ui.adsabs.harvard.edu/abs/2020arXiv200505290T
http://dx.doi.org/10.1088/1475-7516/2018/04/033
http://dx.doi.org/10.1093/mnras/stx1682
http://dx.doi.org/10.1093/mnras/stv695
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.2251Y
http://dx.doi.org/10.1103/PhysRevD.82.083508
http://dx.doi.org/10.1093/mnras/stu2491
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447.1789Y

	1 Introduction
	2 Galaxy number counts and harmonic-space correlation functions
	2.1 The exact expression
	2.2 Widely used approximations

	3 Experimental setup
	4 Case studies
	4.1 Standard model and its simple extensions
	4.2 Primordial non-Gaussianity and scale-dependent bias

	5 Methodology
	5.1 Debiasing constraints on cosmological parameters
	5.2 Debiasing with maximum likelihood

	6 Results and discussion
	6.1 CDM and its simple extensions
	6.2 Primordial non-Gaussianity

	7 Conclusions

