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ABSTRACT

Weak lensing by large-scale structure is a powerful probe of cosmology if the apparent alignments in the shapes of
distant galaxies can be accurately measured. Most studies have therefore focused on improving the fidelity of the shape
measurements themselves, but the preceding step of object detection has been largely ignored. In this paper we study
the impact of object detection for a Euclid-like survey and show that it leads to biases that exceed requirements for the
next generation of cosmic shear surveys. In realistic scenarios, blending of galaxies is an important source of detection
bias. We find that MetaDetection is able to account for blending, leading to average multiplicative biases that meet
requirements for Stage IV surveys, provided a sufficiently accurate model for the point spread function is available.
Further work is needed to estimate the performance for actual surveys. Combined with sufficiently realistic image
simulations, this provides a viable way forward towards accurate shear estimates for Stage IV surveys.

Key words. cosmology: observations – gravitational lensing

1. Introduction

In the past decades the theoretical framework that de-
scribes the formation of cosmic structures has been
tested by ever more precise observations (see e.g.
Planck Collaboration et al. 2016, for a comprehensive com-
parison of results). Although there is discussion about small
differences between cosmological parameter estimates (e.g.
Riess et al. 2019; Joudaki et al. 2020), the general agree-
ment is remarkable given the difficulties in obtaining these
results. Importantly, the main ingredients of this ‘concor-
dance model’ are not understood at all: dark matter and
dark energy make up the bulk of the mass-energy content
of the Universe, with a ‘mere frosting’ of baryonic matter.
Although a cosmological constant is an excellent fit to the
current data, its unnaturally small value is by no means
satisfactory. Consequently, many alternative explanations
have been suggested, including modifications of the theory
of general relativity (see e.g. Amendola et al. 2018, for an
overview). To distinguish between such a multitude of ideas,
dramatically better observational constraints are needed.

Of particular interest is the study of the distribution
of matter as a function of redshift, because it is sensitive
to the growth of structure, modified gravity and the ex-
pansion history. The practical complication that most of
the matter is made up of dark matter can be overcome
by measuring the correlations in the ellipticities of distant
galaxies that are the result of the differential deflection of
light rays by intervening structures, a phenomenon called
gravitational lensing. In the case that only single images

⋆ E-mail: hoekstra@strw.leidenuniv.nl

of distant galaxies are distorted by the gravitational lens-
ing effect, this is known as weak lensing. The amplitude of
the distortion provides us with a direct measurement of the
gravitational tidal field, which in turn can be used to ‘map’
the distribution of matter directly. This makes weak lensing
by large-scale structure, or cosmic shear, one of the most
powerful probes to study dark energy and the growth of
structure: the statistical properties of the matter distribu-
tion can be determined as a function of cosmic time. These
measurements can be compared to models of structure for-
mation, which depend on the cosmological parameters (see
e.g. Kilbinger 2015, for a recent review).

The typical change in the observed ellipticity of a distant
galaxy caused by gravitational lensing (known as shear) is
about a percent, i.e. much smaller than the intrinsic ellip-
ticities of galaxies. This source of statistical uncertainty can
be overcome by averaging over large numbers of galaxies,
although intrinsic alignments complicate this simple picture
(see e.g. Joachimi et al. 2015; Troxel & Ishak 2015, for re-
views). The cosmological lensing signal has now been mea-
sured using ground-based observations of relatively modest
areas of sky (see e.g. Troxel et al. 2018; Hildebrandt et al.
2020; Hamana et al. 2020, for some recent results from
stage III surveys) but future surveys will cover much larger
fractions of the extragalactic sky, increasing the source sam-
ples accordingly.

The change in ellipticity is also smaller than the typi-
cal biases introduced by instrumental effects. Consequently,
averaging the shape measurements of large ensembles of
galaxies is only meaningful if these sources of bias can be
corrected for to a level that renders them sub-dominant
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to the statistical uncertainties afforded by the survey (see
Mandelbaum 2018, for a detailed review on weak lensing
systematics). This will be particularly challenging for the
next generation of surveys (stage IV), such as the ones car-
ried out by Euclid1 (Laureijs et al. 2011) and the Nancy
Grace Roman Space Telescope2 (Spergel et al. 2015) from
space, and the Legacy Survey of Space and Time by the Ru-
bin Observatory3 (LSST Science Collaboration et al. 2009)
from the ground.

The Point Spread Function (PSF) is the domi-
nant source of bias in the measurements of galaxy
shapes, driving the desire for space-based observations
(Paulin-Henriksson et al. 2008; Massey et al. 2013). An-
other complication is the fact the shapes are measured from
noisy images, which can lead to biases in the ellipticity (e.g.
Melchior & Viola 2012; Refregier et al. 2012; Miller et al.
2013; Viola et al. 2014). Given a survey design, our current
understanding of these biases, and our ability to correct for
them, requirements can be placed on the instrument perfor-
mance, but also on the accuracy of the shape measurement
algorithm. For instance, Cropper et al. (2013) present a de-
tailed breakdown for Euclid, which forms the basis for some
of the numbers used in this paper.

Fortunately the impact of the various sources of bias can
be studied by applying the shape measurement algorithm
to simulated data, where the galaxy images are sheared by a
known amount. Comparison with the recovered values pro-
vides an estimate of the biases. For example, Erben et al.
(2001) and Hoekstra et al. (2002) used simulated images
to examine the performance of the KSB algorithm devel-
oped by Kaiser et al. (1995). Comparing a range of meth-
ods, the Shear TEsting Programme (STEP; Heymans et al.
2006; Massey et al. 2007) demonstrated the importance of
how a method is actually implemented. To examine the
origin of the variation in performance further, the GRav-
itational lEnsing Accuracy Testing (GREAT) challenges
(Bridle et al. 2010; Kitching et al. 2012; Mandelbaum et al.
2015) used idealised simulations to demonstrate the impor-
tance of noise on the performance.

However, as recently shown by Hoekstra et al. (2015)
the actual performance of the algorithms depends crucially
on the input of the simulations, such as the distribution of
galaxy ellipticities and the inclusion of faint galaxies. This
was studied in more detail in Hoekstra et al. (2017, H17
hereafter) for a Euclid-like survey. These studies showed
that the fidelity of the image simulations is crucial for an
accurate estimate of the overall shear bias, which depends
on the bias in the shape measurements and the selection
of galaxies. H17 did not consider both contributions sep-
arately, but recent studies (e.g. Fenech Conti et al. 2016;
Kannawadi et al. 2019) have shown that biases are already
introduced in the first step of the analysis: the detection of
objects. This source of bias has been largely ignored until
Fenech Conti et al. (2016) showed that it can be as impor-
tant as the shape measurement bias in ground-based sur-
veys. More recenty, Hernandez-Martin et al. (2020) showed
that detection bias is also relevant for lensing studies using
Hubble Space Telescope data.

Consequently, even if the shapes of the detected galaxies
are somehow measured perfectly, the shear will be biased.

1 http://euclid-ec.org
2 https://www.stsci.edu/roman
3 https://www.lsst.org

Such a detection bias is expected because the significance
with a galaxy is detected typically depends on its orienta-
tion with respect to the shear (Hirata & Seljak 2003) or the
PSF (Kaiser 2000; Bernstein & Jarvis 2002). In this paper
we study detection bias using image simulations, similar
to those used in H17. We explore how well the bias can be
quantified and which parameters are most relevant. We find
that blending of galaxies is the dominant source of detec-
tion bias. Such blends are absent from studies that measure
shear biases using isolated galaxies (or when placed on a
grid).

To reduce shape noise, studies typically use pairs of
simulated galaxies where a second galaxy is rotated by 90
degrees (or quartets, rotated by 45 degrees). However, if
one then requires that both galaxies are detected, as in
Pujol et al. (2019), the detection bias is also removed. Al-
though this is a viable approach to reduce the number of
simulated images to quantify the bias introduced by the
shape measurement algorithm, it is important to realise
that the resulting bias cannot be applied to the actual data,
but needs to be adjusted to account for detection bias.

A further complication arises from the fact that it may
not be possible to determine the shape for every detected
galaxy. Hence the shape measurement step introduces ad-
ditional selections, as does assigning weights to capture the
fidelity of the shape measurement. Finally, to improve con-
straints on cosmological parameters, the source samples are
split into multiple tomographic bins, using photometric red-
shifts. The reliance on reliable multi-band photometry in-
troduces further selections. Those selection biases will de-
pend on both the shape measurement algorithm and the
way samples are selected.

The setup we use in this paper is very similar to the
one used in H17, and in Sect. 2 we briefly describe the
simulation setup, highlighting some of the changes we im-
plemented. We study detection bias and its dependence
of the SExtractor setup and the PSF in Sect. 3. Sim-
ilar to H17 we explore the sensitivity to changes in the
simulation input in Sect. 4. In Sect. 5 we quantify the
performance of MetaCalibration (Huff & Mandelbaum
2017; Sheldon & Huff 2017) as a way to avoid image simu-
lations for the calibration of the shape measurement step.
We also examine the usefulness of its extension, the so-
called MetaDetection approach (Sheldon et al. 2019),
which aims to avoid selection biases altogether in Sect. 6.
We discuss the implications of our results for future surveys
in Sect. 7.

2. Simulation setup

The simulated images are created using the publicly avail-
able software package GalSim

4 (Rowe et al. 2015). This
suite of routines was originally developed for GREAT3
(Mandelbaum et al. 2014, 2015), but has become the de
facto standard for image simulations in the weak lensing
community. As was done in H17 the galaxies are described
by Sérsic profiles, with half-light radii, apparent magnitudes
and Sérsic indices n drawn from a catalogue of morpho-
logical parameters measured from resolved F606W images
from the GEMS survey (Rix et al. 2004). We only consider
galaxies fainter than magnitude m = 20 and use the mor-
phological parameters from the GEMS catalogue for galax-

4 https://github.com/GalSim-developers/GalSim
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ies down to m = 25.4, and normalise the counts to 36 galax-
ies arcmin−2 with 20 < m < 24.5.

As shown in H17 it is important to include galaxies down
to mlim ≈ 29, and we follow the same procedure, except
that we use a flatter count slope at fainter magnitudes:
we adopt a power law slope of αfaint = 0.24 (instead of
αfaint = 0.36 using by H17), which matches the observed
counts better. The intrinsic ellipticities are drawn from a
Rayleigh distribution with scale parameter ǫ0 = 0.25, so
that the mean source ellipticity is 〈|ǫs|〉 ≈ 0.31. We assume
that the intrinsic ellipticities ǫs do not correlate with the
morphological parameters, but note that Kannawadi et al.
(2019) have shown that this is not the case in reality. We
refer the interested reader to H17 for more details on the
input catalogue.

In our baseline simulations we place galaxies randomly,
but with random sub-pixel offsets. We create pairs of im-
ages, where the galaxies are placed at the same location,
but rotated by 90 degrees in the rotated case. We apply the
same shear to all the galaxies in such a pair by changing the
true (simulated) ellipticity using (Seitz & Schneider 1997):

ǫobs =
ǫs + γ

1 + γ∗ǫs
, (1)

where ǫs is the intrinsic complex ellipticity, γ is the com-
plex shear that is applied5, and the asterisk indicates the
complex conjugate. If both galaxies of a pair are averaged,
〈ǫs〉 = 0 and the observed ellipticity is an unbiased esti-
mate of the shear. Hence, a non-zero detection bias implies
that one of the two galaxies in a pair is not detected in a
shear-dependent fashion.

In our baseline setup, the galaxies are placed
at random positions, which ignores the impact
of clustering. This was studied in more detail in
Euclid Collaboration: Martinet et al. (2019) who found
that faint satellite galaxies that cluster around their host
galaxy do affect the bias estimates. Moreover applying a
shear to a particular configuration of galaxies also changes
their positions. We ignore this in our baseline simulations,
but we find that shearing the positions as well as the
galaxy images barely changes the results (see Sect. 3.1
and Table 2 for more details). Finally, we also created
images where the galaxies are placed on a grid, so that
they are about 9′′ apart, thus eliminating any blending.
This provides a useful reference to compare our baseline
results against.

To allow for a more direct comparison to the results
presented in H17, unless specified otherwise, we use the
same setup for the telescope parameters, i.e. we use a cir-
cular Airy PSF for a telescope with a diameter of 1.2m and
an obscuration of 0.3 at a reference wavelength of 800nm,
which is a reasonable approximation to the Euclid PSF in
the VIS-band (Cropper et al. 2018). The individual images
are 4000 pixels on a side, with a pixel size of 0.′′1 per pixel.
The noise level is the same as used in H17, corresponding to
a surface brightness of 27.7 magnitudes arcsecond−2. This
mimics the depth of 4 coadded exposures, and yields a typi-
cal number density of 47 galaxies arcmin−2 with a signal-to-
noise ratio larger than 10, as measured by SExtractor,

5 The actual observable is the reduced shear g ≡ γ/(1 − κ),
where κ is the convergence, and g should be used in Eq. (1).
However, we only consider the shear in this paper, i.e. we assume
g = γ throughout.

Table 1. Relevant SExtractor setup parameters

DETECT_MINAREA 6
DETECT_THRESH 1.5
FILTER_NAME gauss_3.0_7x7.conv

DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.005
CLEAN_PARAM 1.0
BACK_SIZE 600
BACK_FILTERSIZE 3

Notes. Column 1: keyword in SExtractor configuration file;
Column 2: value of the parameter.

and a number density of 33 galaxies arcmin−2 if we restrict
the magnitude range to 20 < m < 24.5.

2.1. Analysis setup

We use SExtractor (Bertin & Arnouts 1996) to de-
tect objects in the simulated images. Our baseline setup
uses the (relevant) parameter values listed in Table 1,
which are fairly standard. To detect an object, at least
DETECT_MINAREA adjacent pixels need to be above the
threshold, which is specified by DETECT_THRESH times the
noise level. We let SExtractor determine the background
level, although we could have specified a global value of
zero. We explored various background determination set-
tings, and found that they did not change our results. We
discuss the purpose of some of these parameters and their
impact on detection bias in more detail in Sect. 3.4 and
Appendix A.

For reference, we also repeat the shape measurements
using the KSB algorithm employed in H17, where we note
that the results differ because of a number of changes in
the pipeline that were implemented. As already discussed in
Sect. 2 we changed the power law slope of the counts of faint
galaxies, which shifts the bias as indicated by Fig. 9 in H17.
We also improved the modelling of the PSF parameters: the
pixel size of 0.′′1 is relatively large compared to the FWHM
of the PSF of a 1.2m diffraction limited telescope. In H17
the correction for the PSF was based on parameters that
were estimated directly from the poorly sampled images.
Although this does not impact their main conclusions, it
does change the actual biases. Here we use measurements
of the PSF shear and smear polarisabilities (Kaiser et al.
1995; Hoekstra et al. 1998) that were measured from 4×
oversampled images. Moreover, we increased the width of
the weight function by a factor 1/

√

ln(2) ≈ 1.2, which also
changes the shear bias6.

2.2. Detection and photometry performance

Figure 1 shows the fraction of simulated galaxies that were
detected by SExtractor as a function of the input mag-
nitude, minput. To obtain this result we matched the input
catalog to the SExtractor output and selected those ob-

6 We use the observed value of the half-light radius
FLUX_RADIUS as measured by SExtractor to define the width
of the weight function. For a Gaussian profile the corresponding
dispersion σ = FLUX_RADIUS/

√
2 ln 2.
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Fig. 1. Fraction of the simulated galaxies that are detected by
SExtractor as a function of the input magnitude, minput. The
black line corresponds to the reference case where galaxies are
placed randomly in the images. The blue line shows results for
‘isolated’ galaxies, with a nearest neighbour more than 5′′ away,
whereas the light blue line is for galaxies with a nearest neigh-
bour within 2′′. In the latter case the fraction of detected galax-
ies is considerably lower, whereas the results for the ‘isolated’
galaxies approaches that of the simulations where galaxies are
placed on a grid about 9′′ apart (red lines). The error bars indi-
cate the scatter in the results, and the lines connect the points.

jects that were detected within a radius of 3 pixels from the
input coordinate. The black line shows the results for our
baseline simulation, whereas the red line shows the frac-
tion of detected objects if the galaxies are placed on a grid
about 9′′ apart. In the latter case the sample of detected
galaxies is complete down to minput = 23.5, after which the
completeness starts decreasing. The sample of galaxies de-
tected in the baseline simulation is incomplete at all mag-
nitudes, although 98% of the galaxies are detected down
to minput = 23.5. The increased incompleteness is caused
by blending, because the results for galaxies that have a
nearest neighbour with minput < 26 that is at least 5′′

away (blue line) resemble that of the grid-based images.
If we instead select galaxies with a nearest neighbour with
minput < 26 within 2′′, the incompleteness increases (light
blue line).

This basic result shows that the detection of galaxies
is affected by the presence of neighbouring galaxies. Be-
fore we proceed to explore the impact on shape measure-
ments, we briefly examine the impact on the recovered mag-
nitudes. The black line in Fig. 2 shows the distribution
of ∆m, the difference between mAUTO, the magnitude re-
ported by SExtractor as MAG_AUTO, and the input mag-
nitude minput, for galaxies with 20 < mAUTO < 24.5 in
the baseline simulations. The results show a clear tail to-
wards negative ∆m, which is what we expect for blended
objects. This is confirmed if we consider the distributions
for ‘isolated’ galaxies (blue; nearest neighbour > 5′′ away)
and ‘blended’ galaxies (light blue; nearest neighbour < 2′′

Fig. 2. Distribution of ∆m, the difference between mAUTO, the
magnitude reported by SExtractor, and the input magnitude
minput for detected galaxies with 20 < mAUTO < 24.5 for our
baseline setup (solid black line; galaxies placed randomly). The
distribution of ‘isolated’ galaxies (solid blue line) matches that of
the grid-based results (red line), whereas the tail toward negative
∆m matches that of ‘blended’ galaxies. The light grey dashed
line shows that many of the objects flagged by SExtractor

are indeed blends, but that many remain undetected. Blends
even occur for objects that have no detected neighbour within
5′′ (dashed blue line).

away): the distribution of isolated galaxies roughly matches
that of the grid-based simulation (red line; normalisation
matched to the blue curve), whereas the distribution of the
blended galaxies, comprising 36% of the galaxies, matches
the tail for ∆m < −0.5.

The fraction of isolated galaxies is small, only 7.5%
of the galaxies match the criterion. In practice, however,
SExtractor will miss nearby neighbours if they are too
close. If we use the distance to the nearest detected galaxy
for the isolation criterion instead, we find that the frac-
tion of apparently isolated galaxies is almost 19%; the
dashed blue line in Fig. 2 shows the corresponding distri-
bution, indicating the increased fraction of blends. Finally,
SExtractor raises a flag for objects that if finds to be
blended. The light grey dashed line in Fig. 2 shows that it
can indeed eliminate some of the blended objects, but many
remain. Undetected blends are likely to bias the photomet-
ric redshifts, coupling these to biases in the shape measure-
ments, but exploring this further is beyond the scope of this
paper.

Finally we note that the distributions do not peak
around ∆m = 0, but that 〈∆m〉 = 0.14 for 20 < mAUTO <
24.5 in the grid-based simulations. The amount of missing
flux does depend somewhat on the brightness, increasing
from 〈∆m〉 = 0.056 for the brightest galaxies (mAUTO =
20) to 〈∆m〉 = 0.166 for the faintest ones (mAUTO = 24.5).
It also depends somewhat on the source ellipticity, which
partly explains the asymmetry towards positive values of
∆m. Although the dependence of ∆m on ellipticity is mod-
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est, it implies that a simple magnitude cut may lead to
changes in the ellipticity distributions of the detected galax-
ies, potentially complicating the link between shape mea-
surements and photometric redshift determinations further.

3. Detection bias

The measurement of the weak gravitational lensing signal
relies on accurate estimates of the shapes of distant galax-
ies, which are both faint and small. The images are cor-
rupted by noise and instrumental effects. It is essential to
remove, or at least account for, these sources of bias. For
this reason most effort has focused on undoing the biases in
the shape measurement step itself, but the preceding step,
the detection (and selection) of galaxies that are used in
the analysis, has received much less attention.

As shown already in Hirata & Seljak (2003) we do ex-
pect the detection of objects to introduce a bias. Gravi-
tational lensing conserves the surface brightness, and as a
result a galaxy with an intrinsic orientation perpendicu-
lar to the shear will appear rounder at the same surface
brightness level. Since SExtractor uses a surface bright-
ness threshold and a circular kernel for the detection, such a
galaxy is more likely to be detected, resulting in the average
shear to be biased low. The detection and selection biases
are typically much smaller than the shape measurement bi-
ases, but they can no longer be ignored for Stage IV surveys
(Albrecht et al. 2006), and require more detailed study (as
shown by Fenech Conti et al. 2017; Kannawadi et al. 2019,
they are already relevant for stage III surveys).

We will discuss both detection and selection biases. The
former refers to the very first step in the analysis, resulting
in a sample of objects for which a shape measurement can
be attempted. The subsequent shape measurement may not
always be successful, or different weights may be assigned
to the measurement, which leads to selection biases. Simi-
larly the desire to divide the galaxies into tomographic bins
introduces selection biases that need to be accounted for.
We emphasise that these biases occur even if the shape
measurement itself is unbiased.

To mimic a perfect shape measurement we follow
Fenech Conti et al. (2017) and compute the true measured
ellipticity based on the input complex ellipticity ǫs and ap-
plied complex shear γ as given by Eq. (1). For each galaxy
detected by SExtractor we find the nearest input galaxy.
For the analysis we consider only galaxies with observed
magnitudes mAUTO < 25, but the input catalogue includes
many more galaxies that are fainter. As most of those are
not detectable individually (see e.g. Fig. 1), we only con-
sider the nearest object with minput < 26 from the input
catalogue. We define a mismatch if the separation is more
than 3 pixels, which is the case for 0.2% of the objects with
mAUTO < 25. The fraction is larger for fainter objects (e.g.,
1.4% for detections with 25 < mAUTO < 26) suggesting
that some of these are just noise peaks. However, we note
that such misidentifications do not bias our shear estimate,
but rather introduce noise in our measurement because the
shape noise is not cancelled in this case7. Even though the
impact of these mismatches on the results is negligible, we
omit them from our analysis.

7 In our case, a noise peak is still associated with an input
galaxy, resulting in imperfect shape noise cancellation only. In
contrast, including noise peaks in an actual cosmic shear analy-

Fig. 3. Top panel: Detection bias for galaxies with 20 <
mAUTO < 24.5 as a function of rsep, the distance to the near-
est object detected by SExtractor (black points). The open
grey points show the detection bias as a function of the near-
est neighbour in the input catalogue brighter than minput = 26
(grey open points). For reference, the hatched region indicates
the detection bias for the grid-based simulations; Bottom panel:
The fraction of galaxies that have a neighbour within a distance
< rsep in the input catalogue (grey dashed line) or detection
catalogue (black line). For small separations many of the true
blends are not recognised as such.

More important are the cases where the object is
blended with a neighbouring one, which can also lead to
a shift in the location of the detection. In 0.4% of the de-
tections with mAUTO < 25 we identify a brighter object
in the input catalogue within a radius of 3 pixels. As the
galaxies are placed randomly, these are mere chance pro-
jections, which is consistent with the observed distribution
of separations. In these cases we assign the input proper-
ties of the brighter object, because a shape measurement
algorithm would be more sensitive to its surface brightness
distribution.

We then proceed to compute the shear biases by com-
paring the average ellipticity of the detected galaxies to the
input shear γtrue

i (where the index i ∈ {1, 2} corresponds
to the real or imaginary part of the shear, respectively).
The former is an estimate of the shear, as can be seen by
averaging Eq. (1): 〈ǫobsi 〉 = γobs

i . As is common, we assume
that the observed shear and true shear are related as:

γobs
i = (1 + µi)γ

true
i + ci, (2)

where µi is the multiplicative shear bias, and ci is the ad-
ditive shear bias. The values for µi are expected to be very
similar (Kitching et al. 2019). We determine both compo-
nents separately, and if they are consistent we refer to µ as
the average of the two components. Finally, we note that
because we create pairs of images where the galaxies are

sis does lower the signal. In practice, however, requiring robust
photometric redshifts using multi-band observations will remove
most, if not all, of these.
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Table 2. Average multiplicative and additive biases for galaxies with 20 < mAUTO < 24.5.

setup µ1 µ2 c1 [×105] c2 [×105]
baseline

SExtractor −0.010 61± 0.000 13 −0.010 53± 0.000 13 −0.73± 0.51 −0.73± 0.49
SExtractor – no background −0.010 43± 0.000 18 −0.009 74± 0.000 18 −0.68± 0.73 0.36± 0.71
SExtractor – FLAG=0 −0.012 14± 0.000 23 −0.011 78± 0.000 22 −0.71± 0.93 0.70± 0.92
KSB detection −0.019 17± 0.000 23 −0.018 72± 0.000 23 −0.09± 0.88 1.17± 0.88
KSB selection −0.018 66± 0.000 22 −0.018 19± 0.000 22 −0.08± 0.86 1.12± 0.86
KSB shapes −0.089 15± 0.000 31 −0.087 57± 0.000 32 −3.34± 1.20 0.74± 1.21

sheared image

SExtractor −0.010 62± 0.000 19 −0.010 43± 0.000 18 −0.84± 0.71 −0.18± 0.73
KSB detection −0.019 28± 0.000 22 −0.019 01± 0.000 23 −0.19± 0.88 −1.18± 0.87
KSB selection −0.018 77± 0.000 22 −0.018 47± 0.000 22 −0.16± 0.86 −1.18± 0.85
KSB shapes −0.088 79± 0.000 31 −0.087 66± 0.000 33 −2.14± 1.21 −1.34± 1.22

grid

SExtractor −0.006 94± 0.000 24 −0.006 97± 0.000 24 −1.53± 0.9 0.85± 0.91
KSB detection −0.013 25± 0.000 28 −0.012 57± 0.000 29 −0.81± 1.15 −2.83± 1.12
KSB selection −0.012 81± 0.000 27 −0.012 09± 0.000 29 −0.79± 1.11 −2.77± 1.08
KSB shapes −0.053 57± 0.000 30 −0.052 51± 0.000 32 −1.14± 1.25 −1.80± 1.25

Notes. In the ‘baseline’ case the galaxies are placed randomly and their images are sheared. For the ‘sheared image’ results the full
scene is sheared instead, thus altering the positions. Galaxies are placed on a regular grid, about 9′′ apart for the ‘grid’ results. The
rows labelled ‘SExtractor’ report the detection bias. The biases for objects with a KSB shape measurement are labelled ‘KSB
detection’, and as ‘KSB selection’ when the weighting scheme is included. The results using the actual KSB shape measurements
are reported as ‘KSB shapes’. All the KSB measurements also include the SExtractor detection bias. The reported uncertainties
may differ for similar setups, because fewer simulations were analysed.

rotated by 90◦ the presence of a bias means that one of the
two images is not detected, or assigned a magnitude such
that it is not included, and that the probability of detection
depends on the applied shear itself.

3.1. Detection bias estimates

Figure 1 shows that the presence of neighbouring galaxies
affects the ability of SExtractor to detect galaxies. We
now proceed to explore whether this results in a bias in
the shear. Unless specified otherwise we report biases for
galaxies with 20 < mAUTO < 24.5, which was adopted by
H17 as a good approximation for the range used by Euclid.
This allows for a direct comparison to their results for the
overall shear bias, although we note that our analysis differs
somewhat (see Sect. 2.1 for details). We present results for
different setups in Table 2.

For our baseline setup, where galaxies are placed ran-
domly, we measure µdet

1 = −0.010 61± 0.000 13 and µdet
2 =

−0.010 53± 0.000 13, where the uncertainties reflect the fi-
nite number of images that were analysed. We do not de-
tect a significant additive bias, but the detection bias is
significant for our Euclid-like setup, especially if we con-
trast this with the overall requirement that |µ| < 2 ×
10−3 (Cropper et al. 2013). Both multiplicative shear bi-
ases agree (〈µdet

1 − µdet
2 〉 = (−0.9 ± 1.8) × 10−4), which is

why we show the average of both components in most fig-
ures. In Table 2 we also present the detection bias when we
fix the background to its true value (i.e. zero; reported as
‘no background’). The changes in multiplicative shear bias

are small, but significant8: ∆µ1 = 0.000 37± 0.000 11 and
∆µ2 = 0.000 62± 0.000 11

In the baseline setup we do not shear the full scene, but
only shear the galaxy images. In reality the shearing also
alters the positions, which in turn might affect the results
as the separations between neighbouring objects change
slightly. If we shear the full image instead, the difference
with respect to the baseline case where we only shear the
galaxy images is ∆µ = (0.52± 1.59)× 10−4, i.e. we do not
observe a significant difference. Similarly the additive bi-
ases are consistent with the baseline results. To obtain this
estimate we used the fact that the galaxy images are the
same for both setups (though not their positions), but that
the background noise realisation is slightly different.

The black points in Fig. 3 show the detection bias for
galaxies with 20 < mAUTO < 24.5 as a function of rsep, the
distance to the nearest object detected by SExtractor.
For large separation, the bias approaches the average bias
we measured for the grid-based simulations (indicated by
the hatched region), but is typically larger. This is be-
cause not all blends are identified as such. For reference
we also show the bias as a function of the distance to
the nearest neighbour in the input catalogue brighter than
minput = 26 (grey open points). The amplitude of the bias
changes rapidly for galaxies with rsep < 1′′, and such galax-
ies are probably best omitted from the analysis. The bottom
panel in Fig. 3 shows that this applies to about 10% of the
galaxies. In reality this number will be higher because of
clustering (Euclid Collaboration: Martinet et al. 2019).

8 The measurements for different scenarios are based on the
same images, and are therefore correlated. We account for this
by computing the difference first and reporting its statistics. As
a result, the difference may be determined more precisely than
the bias itself.
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Fig. 4. Left panel: Multiplicative detection bias µdet as a function of the input apparent magnitude when galaxies are placed on
a grid (red points) or placed randomly (black points). The blue points show the results for isolated galaxies where the nearest
neighbour is more than 5′′ away, whereas the light blue points show the detection bias for galaxies with a neighbour within 2′′

(blended). Right panel: Multiplicative detection bias as a function of observed properties. The classification into isolated and
blended galaxies is based on the nearest detected galaxy in this case. The lines connect the points to show the behaviour for the
different samples more clearly. The bias for the bright blended galaxies is beyond the axis limits of the chart.

As indicated by Fig. 2 selecting objects with
SExtractor FLAG= 0 reduces the occurrence of blends,
and we expect the detection bias to be reduced (see Fig. 3).
Instead we find that the bias is increased by about 13%, im-
plying that the flagging of blended objects is actually done
in a shear dependent fashion.

These results indicate that blending is a significant
source of detection bias that depends significantly on the
local galaxy density. We note, however, that the bias does
not vanish for large separations, but rather converges to the
bias we obtained for our grid-based simulations, indicated
by the hatched horizontal region (and reported in Table 2),
if we select galaxies based on the distance to the nearest
neighbour in the input catalogue. In the more realistic case
(open grey points), where we separate galaxies based on
the distance to the nearest detected galaxy, the bias is even
larger because many blends remain undetected.

To investigate this further we show µdet as a function
of magnitude in Fig. 4. The left panel, where we show re-
sults as a function of the input magnitude, minput, is the
shear detection bias equivalent of Fig. 1. In this case the
shape noise cancellation results in small uncertainties, be-
cause galaxies are included in the correct magnitude bin
by design. The shear bias arises because the probability of
detecting faint galaxies is affected by the orientation of the
galaxy with respect to the applied shear: galaxies that are
aligned perpendicular to the shear are more likely to be de-
tected. The bias is negligible for bright galaxies, and thus
can be reduced by increasing the depth of the observations,
something we will explore further in Sect. 3.2.

Similar to Fig. 1 we find that the bias for isolated galax-
ies (rinsep > 5′′) matches that of the grid-based images,
whereas the bias is larger for blended galaxies (rinsep < 2′′).
Comparison of the biases reported in Table 2 suggests that

both blending and the shear-dependent detection probabil-
ity are important. The bias at bright magnitudes is caused
by blending, whereas for fainter galaxies the detection prob-
ability itself depends on the orientation with respect to the
applied shear.

In reality the situation is complicated by the fact that
the observed magnitudes are affected by blending, the ap-
plied shear, and measurement uncertainties, all of which
spread the biases over a wider range in magnitudes and lead
to larger uncertainties owing to imperfect shape noise can-
cellation. Consequently, the error bars in the right panel of
Fig. 4 are increased, and the detection bias affects a larger
range in magnitude. In particular, as shown by the asym-
metric distribution of magnitude errors in Fig. 2, blending
scatters objects towards a brighter magnitude bin. Such
blends are not always identified, and can thus introduce
significant biases even for apparently bright galaxies. For
instance, the bias for the bright blended galaxies is far be-
yond the axis limits of the chart. We also caution that the
results for the brightest magnitude bin suffer from extreme
Eddington bias, because our input catalogue does not in-
clude galaxies brighter than m = 20.

Figure 5 shows the multiplicative detection bias as a
function of the input half-light radius (reff) for the baseline
(black) and grid-based (red) simulations. For both cases we
observe a strong dependence with galaxy size, which is the
combined result from the underlying distribution of fluxes
and the correlation between size and brightness. After all
brighter galaxies are more likely to be detected, whilst for
a given flux a smaller galaxy is detected with a higher sig-
nificance. The latter drives the increase in detection bias
with increasing reff , but as the mean brightness increases
with increasing size, the probability of detection increases
once more. Comparison of the bias as a function of reff for
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Fig. 5. Multiplicative detection bias µdet as a function of the
input half-light radius, reff , for galaxies with 20 < mAUTO <
24.5. The black and red lines correspond to the baseline and grid-
based cases, respectively. The histograms show the distributions
of galaxy sizes (black: all galaxies; red: mAUTO < 21; blue: 24 <
mAUTO < 24.5) The observed behaviour is the result of the
change in size as a function of brightness.

isolated galaxies with the grid-based results show that they
agree well. Hence, the difference between the grid-based
and baseline simulations is caused by blending, which af-
fects galaxies of all sizes.

In contrast to what was done in Fig. 4, we do not show
the bias as a function of FLUX_RADIUS, the half-light radius
determined by SExtractor, because it correlates with el-
lipticity. Consequently, a split by FLUX_RADIUS is an im-
plicit selection in ellipticity, resulting in large biases. If one
wants to split the source sample by a particular observable,
it is important to verify that it does not correlate with input
ellipticity. This may not be fully feasible in practice, but at
least one should aim to minimise the dependence. Interest-
ingly, we find that MAG_AUTO only weakly correlates with
the input ellipticity. This suggests that splitting the sam-
ple into tomographic bins based on magnitude and colour
may not increase the selection bias much, although further
study would be required to quantify this.

3.2. Dependence on noise level

Figure 4 shows that the detection bias is negligible for
bright, isolated galaxies. Hence, we expect that the detec-
tion bias can be reduced by obtaining deeper data. The
results in Fig. 6 show that this is indeed the case: it shows
the multiplicative detection bias when the noise level in the
image is multiplied by fnoise (where fnoise = 1 corresponds
to the baseline case). The black (red) points show the re-
sults for the baseline (grid) simulations for galaxies with
20 < mAUTO < 24.5. These are well fit by a second order
polynomial (solid lines).

The average increase in detection bias of µbase−µgrid =
−0.0035 is caused by blending and increases only weakly

Fig. 6. Multiplicative detection bias µdet as a function of the
background noise level, which is multiplied by a factor fnoise with
respect to the baseline case. The black and red lines correspond
to the baseline and grid-based cases, respectively. The solid lines
show results for galaxies with 20 < mAUTO < 24.5, whereas the
(light-coloured) dashed lines indicate the bias if we select using
the input magnitudes, 20 < minput < 24.5. In the latter case the
bias vanishes for the grid-based case as the noise level is low,
but for the baseline case the bias plateaus to µdet = −0.0024 as
a result of blending.

with increasing noise level. Moreover, even for low noise
levels blending leads to a floor in the detection bias that is
about ∼ −0.004. Interestingly, the bias does not completely
vanish in the grid-based simulations at low noise levels. This
is the result of our galaxy selection which is based on the
magnitude estimates by SExtractor. If we instead select
the galaxies based on their true (but unobservable) mag-
nitudes the bias quickly vanishes (light red points and red
dashed line). This implies that the estimate of mAUTO de-
pends slightly on the shear. For the baseline case (light grey
points) the bias plateaus to µdet = −0.0024 as a result of
blending.

These results show that the detection bias is a combi-
nation of blending and the sample selection (in our case a
magnitude cut). Although we find that it may be possible
to reduce detection bias somewhat using deeper observa-
tions, blending quickly becomes a limiting factor, even in
space-based data.

3.3. KSB biases

In Table 2 we also present measurements for the shear biases
for the KSB algorithm (Kaiser et al. 1995; Hoekstra et al.
1998), because we made a number of changes in both the
simulations and the measurement setup since H17 (see
Sect. 2). With this modified setup we measure at total shear
bias of µKSB

1 = −0.089 15± 0.000 31 and µKSB
2 − 0.087 57±

0.000 32. The results also suggest that a small additive bias
is introduced, although more simulations would be needed
to confirm the result. The detection bias is about 9 times

Article number, page 8 of 24



Hoekstra et al.: Accounting for detection bias

smaller than the total shear bias, which explains the focus
of previous studies on shear bias.

We also report the biases introduced by the steps
in the shape measurement analysis following the initial
SExtractor detection. The ability of the KSB algorithm
to measure a shape also depends on the shear, resulting in
an increase in the detection bias. For the ‘KSB detection’
bias we use the true shapes, but only for those galaxies
where a shape was measured. The results in Table 2 show
that the bias doubles for all image setups. The bias is re-
duced somewhat if we weight the true ellipticities with the
KSB weights (‘KSB selection’).

Although the shape measurement bias itself is domi-
nant, the detection bias is not negligible. As the detection
bias is most readily quantified using image simulations, like
the one we use here, we need to quantify the sensitivity
of the detection bias to the simulation setup, similar to
what was done by H17 for the overall shear bias. We return
to this in Sect. 4, but first examine the sensitivity to the
SExtractor setup and PSF anisotropy.

3.4. Sensitivity to detection setup

Table 1 lists the main parameters that play a role in the ob-
ject detection. These can be grouped into three categories.
The first three pertain to the detection itself, the next three
affect the behaviour for blended objects, and the last two
are relevant for the background estimation. As already men-
tioned, the background parameters do not play an impor-
tant role for our study. Also the choices for DETECT_MINAREA
and DETECT_THRESH do not affect our findings for galaxies
with 20 < mAUTO < 24.5 (provided they are not modified
significantly), but the choice of the filter that is used to de-
tect objects is relevant. To detect objects in the presence of
noise, the images are convolved with a suitable kernel be-
fore searching for peaks. The optimal filter has a profile that
matches the object of interest. For this reason Kaiser et al.
(1995) developed a hierarchical peak finder, which employs
a series of filters, but is slower. SExtractor is run with a
single filter, specified by the keyword FILTER_NAME. Here we
run it using the various predefined round Gaussian filters,
defined by their dispersion σfilter.

The results are presented in Fig. 7 for galaxies with 20 <
mAUTO < 24.5, where we show the multiplicative detection
biases for the two shear components separately. They show
a similar behaviour with filter width σfilter, but we observe a
small offset, which is more significant for smaller filter sizes.
The histogram shows the distribution of corresponding sizes
based on the half-light radii of the galaxies, suggesting that
using a Gaussian filter with a width of 2− 3 pixels is best.
The bias increases quickly for larger values of σfilter.

Figures 1 and 4 show that the presence of neigh-
bouring objects affects the detection and introduces de-
tection bias. We explore how changes in the parameters
that affect the deblending of objects (DEBLEND_MINCONT ,
DEBLEND_NTHRESH, and CLEAN_PARAM) in Appendix A. We
find that the detection biases for the default parameters
are close to optimal, and that even substantial variations
have only a minimal impact. Hence, the observed detec-
tion biases are not the result of a poorly chosen setup of
SExtractor.

Fig. 7. Multiplicative detection bias µdet as a function of the
width of the filter used in the detection step for galaxies with
20 < mAUTO < 24.5. The blue (red) points correspond to µ1

(µ2). The histogram shows the distribution of corresponding
sizes based on the half-light radius of the galaxies, suggesting
that a width of 2 − 3 pixels is best. The bias increases quickly
for larger values of σfilter.

3.5. Sensitivity to PSF anisotropy

Thus far we focused only on the multiplicative detection
bias that arises because the probability of detecting a
galaxy depends on its orientation with respect to the shear
(Hirata & Seljak 2003). However, we expect the PSF to be
anisotropic due to optical aberrations that are practically
unavoidable, especially for a wide field imager. Such PSF
anisotropy also introduces a preferred direction. In this case
surface brightness is not conserved, and a galaxy with an
intrinsic orientation parallel to the PSF ellipticity direction
will have a higher peak brightness compared to a galaxy ori-
ented orthogonal to the PSF anisotropy. As a consequence,
we expect to preferentially detect galaxies that are aligned
with the PSF anisotropy, leading to a positive additive bias
(Kaiser 2000; Bernstein & Jarvis 2002).

To study this, we created simulated images where
the PSF was made elliptical in the ǫ1 direction and ran
SExtractor to quantify the additive and multiplicative
shear biases. Figure 8 shows the resulting additive bias ci.
We find that that c2 is consistent with zero (red and light
red points), but we find that the object detection introduces
a significant additive shear bias c1, both when galaxies are
placed on a grid (light blue points) or placed randomly (blue
points); the bias in the latter case is only 5.6% higher.

As expected, the bias has the same sign as the PSF
anisotropy, demonstrating that SExtractor preferen-
tially selects objects that are aligned with the PSF (this
was also observed in Kannawadi et al. 2019). Although the
amplitude is small, only 0.4% of the original PSF ellipticity,
this bias cannot be ignored if the PSF is anisotropic. For
instance, Cropper et al. (2013) argue that |c| < 5× 10−4 is
required, which is reached for ǫPSF = 0.137. PSF anisotropy
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Fig. 8. Additive bias c1 (blue) and c2 (red) as a function of the
PSF ellipticity ǫPSF

1 . The bright colours correspond to the base-
line case where galaxies are placed randomly, whereas the light
coloured points were obtained by placing galaxies on a grid. In
the former case the additive detection bias is about 5.6% higher,
but in both causes galaxies are preferentially detected when their
orientation is aligned with the PSF. We do not observe a sig-
nificant c2 (red points), nor a change in multiplicative bias (not
shown).

is therefore a non-negligible source of additive detection
bias, which will vary spatially because we expect the PSF
ellipticity to change across the field-of-view.

We also examined the change in multiplicative shear
bias as a function of ǫPSF and we found no significant trend.
This is worth noting, because we show in Appendix B that
sources of additive bias tend to introduce multiplicative bi-
ases of similar amplitude, but opposite sign in shape mea-
surements. This connection can be used to empirically esti-
mate the level of multiplicative bias for (residual) system-
atic effects that cause additive bias. In contrast, the lack of
a change in multiplicative detection bias in the case of an
anisotropic PSF shows that detection bias is fundamentally
different from the shape measurement process itself.

4. Realism of the simulations

The blending of galaxies is a significant source of shear bias,
and for a reliable estimate of the bias it is therefore crit-
ical to capture this in the simulated data. Studying the
performance of galaxies on a grid may help in the compar-
ison of methods, or the training of machine learning ap-
proaches (Gruen et al. 2010; Tewes et al. 2019; Pujol et al.
2020), but the actual estimate relies on realistic simulations.
In this Section we explore how the detection bias depends
on the properties of the simulated galaxies, such as their
size and ellipticity distributions.

The realism is, however, not limited to the properties of
the detected galaxies, because the performance of the shape
measurements is also influenced by the presence of galaxies
below the detection limit. This was first demonstrated by

Fig. 9. Change in multiplicative detection bias ∆µdet (with
respect to µ(mlim = 29)) for galaxies with 20 < mAUTO < 24.5
as a function of mlim, the magnitude of the faintest galaxies that
are included in the simulation (black points). The dotted line
shows the change in bias if we select galaxies based on their input
magnitude (20 < minput < 24.5). The change in multiplicative
bias for the KSB algorithm is indicated by the light grey points.
The hatched region indicates a tolerance of 10−4.

Hoekstra et al. (2015) for ground-based observations. Sim-
ilarly, H17 showed that for the Euclid-like data we consider
here, the multiplicative shear bias depends on mlim, the ap-
parent magnitude of the faintest galaxies that are included
in the image simulation. They found that galaxies as faint
as mlim = 29 can modify the multiplicative bias for the
KSB algorithm.

The impact of very faint galaxies was studied in
more detail in Euclid Collaboration: Martinet et al. (2019)
who found that the dependency with mlim also de-
pends on the shape measurement algorithm, and how
it deals with blending. In our KSB setup the nearby
objects are crudely masked, but no attempt is made
to estimate the correct the surface brightness profile,
thus biasing the estimates of the moments. Model fitting
methods will generally do better in this regard, in line
with the findings of Euclid Collaboration: Martinet et al.
(2019). The clustering of galaxies results in a higher level
of blending around brighter galaxies, and consequently,
Euclid Collaboration: Martinet et al. (2019) showed that
the clustering of the faint galaxies increases the overall bias
further. We do not consider this additional complication
here, but note its importance when one aims to calibrate a
shear measurement algorithm to be applied to actual data.

These studies only considered the final shear bias, but
in Fig. 9 we show how the SExtractor detection bias de-
pends on mlim. Our results show that the detection bias
is much less sensitive to the inclusion of faint galaxies, es-
pecially when compared to the KSB shear estimates (indi-
cated by the light grey points and dashed line). The dotted
line indicates the change in bias when we select galaxies
based on minput. This shows that the bias partly arises
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Fig. 10. Multiplicative bias as a function of nfac, the relative
increase in galaxy number density with respect to the baseline
simulation. The grid-based results correspond to nfac = 0. The
black points show how the detection bias increases with nfac.
The red (blue) points correspond to the MetaCalibration

(MetaDetection) results discussed in Sect. 5 (Sect. 6). The
light coloured points show the biases for relatively isolated galax-
ies (distance to nearest galaxy in the input catalogue larger than
2′′).

from faint galaxies, for which the detection bias is larger
(see Fig. 4), scattering into the sample of sources used in
the analysis (defined as 20 < mAUTO < 24.5). Nonetheless,
the convergence is only achieved for mlim = 27, still 2.5
magnitudes fainter than the magnitude limit of the sample
of sources that we consider here.

4.1. Sensitivity to galaxy number density

H17 (their Fig. 5) showed that the KSB shear bias increases
if the number density of the simulated galaxies is increased
by a factor nfac (also see Table 2). Consequently the bias
will be larger near clusters and groups of galaxies, thus cou-
pling the shear bias to the large-scale structure, which will
need to be accounted for as shown by Hartlap et al. (2011).
An increase in detection bias will play a role, because Fig. 3
shows that it depends on the distance to the nearest galaxy.
As the density increases, the mean separation decreases and
the bias increases accordingly.

We quantify the sensitivity of the detection bias to
the galaxy number density in Fig. 10. The black points
show µdet as a function of nfac, where nfac = 0 corre-
sponds to the grid-based simulations (no blending) and
nfac = 1 is our baseline case. For reference, a value of
nfac = 2 roughly corresponds to the galaxy density in the
innermost regions of a massive cluster of galaxies (see e.g.
Fig. 11 in Hoekstra et al. 2015). We find that the detection
bias increases linearly with increasing galaxy density, with
∂µdet/∂nfac = −0.003 69± 0.000 13. As blending is a likely
cause we repeat the measurements for a sample of relatively
isolated galaxies (i.e., no neighbour brighter than m = 26

in the input catalogue within 2′′ ) and show the results as
light grey points in Fig. 10. The slope is almost halved, but
not fully eliminated.

The spatial variation in nfac caused by the clustering
of galaxies will lead to spatial variations in the multiplica-
tive bias across the survey. Provided these variations are
small, the impact on the cosmological signal is expected to
be negligible, as shown in Kitching et al. (2019). However,
it is important that the galaxy number density in the sim-
ulations matches the average value in the survey, because
a mismatch results in an overall shift in the shear bias.
We discuss the area of high-quality data that is needed to
achieve this in Appendix C.

4.2. Sensitivity to morphology

The detection bias depends on the morphology of the
galaxies, because the size affects the signal-to-noise ratio
and the incidence of blending. Moreover, the bias depends
on the intrinsic ellipticity: the detection bias vanishes if
ǫs = 0, whereas we observe a significant detection bias
for our reference setup. Such dependencies on morphol-
ogy are of particular concern, because they vary with red-
shift (Kannawadi et al. 2015), and can link shear biases
to the lensing signal as the morphology depends on the
galaxy density: early type galaxies are generally larger and
rounder, and occupy higher density regions. Moreover, their
photometric redshifts are typically more precise thanks to
their more pronounced 4000Å break, coupling the shear
measurements to the binning of galaxies into tomographic
bins. These connections highlight the need for simulations
that capture the full process of photometric redshift and
shear estimation simultaneously. This is, however, left for
future study.

To explore the impact of uncertainties in the morphol-
ogy further we analysed images where the input sizes are
increased by a factor fsize and where the input ellipticities
are increased by a factor ǫfac, similar to what was done in
H17 (see their Fig. 4 and 10). The black points in Fig. 11
show the change in bias as a function of these parameters.
The left panel of Fig. 11 shows that the detection bias in-
creases linearly with increasing input galaxy sizes, with a
slope ∂µdet/∂fsize = −0.0211± 0.0006. We expect the bias
to be smaller if the galaxies are smaller, because the galax-
ies will be detected with a higher signal-to-noise ratio for
a given magnitude, whilst blending is reduced. Although
this dependence is rather steep, the distribution of galaxy
sizes is fairly well established, and mismatches between the
simulations and the data can be accounted for empirically
(see the discussion in H17).

The sensitivity to the input ellipticity distribution is
more worrisome, because it is generally more difficult to in-
fer from existing high-quality Hubble Space Telescope obser-
vations. We find ∂µdet/∂ǫfac = −0.025 02± 0.000 56, which
is about half the value that H17 measured for the full KSB
bias. This suggests that a significant part of the sensitivity
to the input ellipticity distribution is determined by the de-
tection bias. Deeper observations may help improve empir-
ical constraints on the ellipticity distribution (Viola et al.
2014), but the measurements still require an accurate algo-
rithm to measure shapes. Moreover, the results presented
in Sect. 3.2 suggest that blending limits the gain of such
deeper observations. This requires further study, because
Kannawadi et al. (2019) showed that the ellipticity distri-
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Fig. 11. Left panel: change in multiplicative shear detection bias ∆µ as a function of fsize, the relative change in input galaxy
size (black points). Right panel: change in multiplicative detection bias if the input ellipticities are multiplied by a factor ǫfac.
The dotted lines show the best fit linear model. The red points in both panels correspond to the post-MetaCalibration results
discussed in Sect. 5.

Fig. 12. Change in multiplicative shear bias ∆µ as a func-
tion Sérsic index. The histogram indicates the distribution of
Sérsic indices in the baseline simulations. The black points
show the change in detection bias. The red points show the
MetaCalibration results.

bution correlates with galaxy size and changes with red-
shift, whilst ellipticity gradients will complicate matters
further.

The left panel of Fig. 11 shows that the detection bias
is reduced if galaxies are smaller, as such galaxies are easier
to detect, whilst blending is reduced. We therefore expect
the radial surface brightness profile to influence the bias as

well. We explore two modifications, namely the sensitivity
to changes in the Sérsic index, nSersic, and rtrunc, the radius
where the profile is truncated.

The black points in Fig. 12 show the change in detection
bias when we keep the effective radii, fluxes and ellipticities
of the galaxies the same, but fix the Sérsic indices to a sin-
gle value. Larger values for nSersic result in profiles that are
more centrally peaked, reducing the detection bias. Indeed,
the bias slightly reduced with respect to the baseline case
for nSersic ≥ 1. The histogram shows the baseline distribu-
tion of nSersic, which peaks at values < 1.

Throughout this paper we assume that the surface
brightness profiles of galaxies are described by a Sérsic-
profile, which are truncated at rtrunc = 3.5 effective radii
for reasons of computational speed. This ignores much of
the variety in galaxy morphology, where the bulge and
disk components may have different ellipticities and ori-
entations. Moreover, spiral structure complicates matters
further. Better modelling of the morphologies of galaxies
using deep, high-quality data will help addressing this spe-
cific problem. A less explored question, however, is the sur-
face brightness profile at large radii. Tal & van Dokkum
(2011) stacked the images of a large sample of luminous
red galaxies and found that a Sérsic-profile describes the
data well out to more than 7 effective radii. In contrast,
detailed studies of edge-on spiral galaxies indicate that the
disks are truncated around 4 disk scale lengths on average
(Kregel et al. 2002).

We therefore created images where we truncate the pro-
file at different values for rtrunc (in units of the effective
radius reff). The black points in Fig. 13 show the change
in SExtractor detection bias, relative to the case of
rtrunc = 10. The change is small for rtrunc > 3.5, indicat-
ing that it is important to accurately capture the surface
brightness out to these radii.
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Fig. 13. Change in multiplicative shear bias ∆µ as a func-
tion of rtrunc, the radius where the galaxy profile is truncated
in the simulated images in units of the input half-light radius,
reff . The black points show the change in SExtractor detec-
tion bias. The red (blue) points show the MetaCalibration

(MetaDetection) results discussed in Sect. 5 (Sect. 6).

The results presented in this section highlight the im-
portance of capturing the morphological diversity of galax-
ies with sufficient accuracy. This seems quite feasible in the
case of detection bias alone, but we expect the actual shear
bias to be affected more. This is evidence from Fig. 9, where
the KSB bias is sensitive to very faint galaxies, whereas the
SExtractor detection bias converges at mlim = 27 al-
ready. Similarly, H17 found steeper dependencies for many
parameters. The key question is therefore whether image
simulations can be made sufficiently realistic to capture the
redshift-dependent morphologies of galaxies for Stage IV
surveys. As this appears to be challenging, we explore next
a different approach that uses the survey data to calibrate
the shear estimate instead.

5. MetaCalibration

A different approach is to use the observations themselves
to determine the response of an ensemble of galaxies to
a shear. Huff & Mandelbaum (2017) worked out how one
can estimate the shear bias by shearing the images, whilst
taking the PSF and noise into account. They refer to this
data-driven approach as MetaCalibration and in this
section we explore its potential to calibrate the multi-
plicative bias for our Euclid-like simulations. In principle
MetaCalibration can also be used to correct for PSF
anisotropy, but in the following we only consider the cali-
bration of multiplicative shear bias, which allows us to limit
the study to our round Airy PSF.

The only assumption of MetaCalibration is that
we can construct a sheared version, Ish(x|γ) of the true
image using the observed image I(x) via Eq. (5) of
Huff & Mandelbaum (2017)):

Ish(x|γ) = P (x) ∗ [ŝγ{P (x)−1 ∗ I(x)}]. (3)

where ŝγ is the shear operator (Bernstein & Jarvis 2002),
P (x) is the PSF, I(x) the observed image, and ‘∗’ indi-
cates convolution. Hence, the observed image is first de-
convolved (P (x)−1 ∗ I(x)), then sheared by ŝγ , and finally
re-convolved by the PSF. This procedure, in its simplest
form, only requires an accurate model of the PSF.

In practice, noise in the data complicates the deconvo-
lution step, and a slightly larger PSF is needed to suppress
the noise. The modified PSF, Pmeta(x), to use in the re-
convolution step in Eq. (3) is (Huff & Mandelbaum 2017)

Pmeta(x) = P (x/(1 + 2|γ|)). (4)

These steps implicitly assume that the images are well
sampled, so that the image manipulations are not compro-
mised. However, in the case of both Euclid and the Roman
Space Telescope, the pixels are large compared to the PSF
size. In our calculations we do assume that we can con-
struct a well-sampled model of the PSF, but the images of
the smallest galaxies might still be affected by undersam-
pling. In a companion paper Kannawadi et al. (in prep.)
explore ways to mitigate this, but we note that image sim-
ulations can also be used to correct for the biases that may
be introduced.

Another complication is that the shearing of the im-
ages leads to anisotropic correlated noise, which needs to
be accounted for. One possibility is to determine the re-
sulting bias using image simulations, but Sheldon & Huff
(2017, SH17 hereafter) show that this problem can also
be mitigated by adding anisotropic noise. The latter ap-
proach does lead to a slight increase in the overall noise
level, but as shape noise typically dominates, this is only
a minor concern. There are other complications that are
particularly relevant for space-based observations, such as
the wavelength-dependence of the PSF, which we discuss
in more detail in Sect. 7.

If we use Eq. (3) to apply a small shear γ = (γ1, γ2)
to a galaxy image, and measure its shape e = (e1, e2) we
can relate the resulting shape to the original value eγ=0,
because

e ≈ e|γ=0 +
∂e

∂γ

∣

∣

∣

∣

γ=0

γ ≡ e|γ=0 + R
γ
γ, (5)

where Rγ is the 2×2 shear response tensor. We can estimate
its elements by measuring the shapes of the galaxies in the
sheared images and computing

R
γ
ij =

e+i − e−i
∆γj

(6)

where the subscripts indicate the two shear components,
and the superscript the sign of the applied shear, i.e. ‘+’
means the image was sheared by +γj , etc; hence, ∆γj =
2γj.

This expression is true for any shape measurement, and
it allows us to estimate the shear, γ̂ for an ensemble of
galaxies (as 〈e〉|γ=0 ≈ 0)

γ̂ ≈ 〈Rγ〉−1〈e〉 = 〈Rγ〉−1〈Rγ
γ〉, (7)

where the shape measurements are obtained from the image
that is convolved with Pmeta(x). Hence, we average the es-
timates for the shapes and the shear responses, rather than
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using estimates per galaxy. The reason is that the estimates
for Rγ are very noisy for individual galaxies, and averaging
reduces biases in the shear estimate, which requires the in-
verse of Rγ . To reduce the noise even further we average the
estimates for R

γ for a particular selection of galaxies over
many images (typically 3300). We verified that Rγ does not
change as a function of shear in the simulated images. More-
over, we find that the off-diagonal elements vanish and we
therefore assume that R

γ is diagonal in the remainder of
this paper.

Equation (7) shows that the resulting shear estimate
for the ensemble of galaxies is actually weighted by R

γ , and
hence one would like to use a shape measurement algorithm
so that Rγ ≈ I. This is, however, not an immediate concern
for our study, because the PSF is isotropic and the same
shear is applied to all the simulated galaxies.

In principle it should not matter what shape measure-
ment we use, because any intrinsic bias in the estimator
will be accounted for by MetaCalibration. We therefore
simply use the polarisation χ,

χ1 =
Q11 −Q22

Q11 +Q22

, and χ2 =
2Q12

Q11 +Q22

, (8)

where the weighted quadrupole moments Qij are defined as

Qij =

∫

d2xxixjW (x) I(x), (9)

and W (x) is the weight function, for which we use a Gaus-
sian with a fixed value for the dispersion of σw, i.e. we do
not try to optimise the width of the weight function to each
object, nor do we try to correct for blending of objects.

The use of a fixed value for σw has the advantage that
the measurement does not depend on the observed size of
the object, which will differ for the different sheared ver-
sions of the images as it correlates with the shear, so that
R
γ fully captures the shear response in the absence of de-

tection bias. We adopt σw = 2 pixels (i.e. σw = 0.′′2) as our
baseline, which is a reasonable value to use for the galax-
ies in our simulations, as suggested by Fig. 7. Moreover, as
shown in our companion paper (Kannawadi et al., in prep.),
this weight function is wide enough to avoid aliasing bias.

We describe and test our MetaCalibration setup
using the grid-based simulations in Sect. 5.1. We study
the performance on our more realistic baseline simu-
lations in Sect. 5.2, which enable us to quantify the
impact of blending. We also explore the sensitivity
of the post-MetaCalibration bias to changes in the
galaxy number density and morphology. The prospects of
MetaDetection (Sheldon et al. 2019) are examined in
Sect. 6.

5.1. Grid-based simulations

SH17 presented a practical implementation of
MetaCalibration9, and we use the default setup
here. Although the image manipulations can be done on
postage stamps, we instead process the full simulated
images. This naturally allows us to quantify selection
biases as described in SH17 and Sheldon et al. (2019).
However, in this section we ignore the impact of selection
bias.
9 https://github.com/esheldon/ngmix

Fig. 14. Difference between the multiplicative bias after
MetaCalibration, µmetacal and detection bias, µdet, as a func-
tion of the input magnitude minput for the grid-based simula-
tions. The bright (light) colours show the results when we apply
a shear of ±0.02 (±0.01) in the metacalibration step. The solid
black (open grey) points show the average bias, and the blue
(red) points indicate ∆µ1 (∆µ2). Using a larger shear results in
smaller uncertainties and a better agreement between the two
shear components.

We use the MetaCalibration implementation in
GalSim to create the five images needed to compute the
shear response for the grid-based simulated images. To do
so, we have to choose the value of ∆γ to use. Applying a
larger shear has the benefit of increasing the precision with
which the shear response can be measured, but if the value
is too large, higher order terms may become relevant. This
was explored in SH17 who found that for ∆γ < 0.04 the
changes are negligible. We therefore consider two values for
∆γ, namely 0.02 and 0.04 and match the resulting shape
measurements to the SExtractor catalogue.

As reported in Table 2 we observe a significant mul-
tiplicative bias for both shear components, which agree
with each other. If MetaCalibration yields an unbiased
shear estimate, the measured multiplicative bias, µmeta,
however, should recover the SExtractor detection bias,
µdet. Indeed, we find that that the bias that can be at-
tributed to the shape measurements part is much smaller,
with µmeta

1 − µdet
1 = 0.001 65± 0.000 46 and µmeta

2 − µdet
2 =

−0.000 86± 0.000 43 for galaxies with 20 < mAUTO < 24.5,
comparable to the requirements derived in Cropper et al.
(2013).

To explore the performance of MetaCalibration fur-
ther, we show µmeta−µdet as a function of minput in Fig. 14.
The use of the input magnitude ensures efficient shape
noise cancellation. Comparison of the black (∆γ = 0.04)
and open grey (∆γ = 0.02) points shows that the overall
performance is similar, but that using a larger shear does
indeed result in smaller uncertainties. Importantly, when
we consider the two shear components separately, we find
that they differ for ∆γ = 0.02 (light coloured points) when
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minput > 23.5, whereas ∆γ = 0.04 (bright points) yields
consistent values for µ1 and µ2. Sampling may play a role
here (see e.g. Kannawadi et al., in prep.), but as the differ-
ences vanish when we apply the larger shear, we adopt this
as our baseline.

5.2. Baseline results

We now proceed to use the setup with ∆γ = 0.04 and σw =
2 pixels to examine the performance of MetaCalibration

on the simulations where galaxies are positioned randomly.
Moreover, we explore the possibility to account for the
selection bias using the procedure outlined in SH17. Al-
though our use of a fixed weight function avoids intro-
ducing a weight bias10, the selection bias introduced by
SExtractor remains.

SH17 show how the selection bias can be included in
MetaCalibration, by noting it introduces an ellipticity11

dependent weighting, S(e), of an underlying ellipticity dis-
tribution P (e). Hence the ensemble averaged mean elliptic-
ity can be expressed as

〈e〉S =

∫

deS(e)P (e) e, (10)

where we assume that
∫

deS(e)P (e) = 1. We can express
the ensemble averaged version of Eq. (5) as

〈R〉 =

∫

de
∂[S(e)P (e) e]

∂γ

∣

∣

∣

∣

γ=0

=

∫

de

[

S(e)
∂[P (e) e]

∂γ

∣

∣

∣

∣

γ=0

+ P (e) e
∂S(e)

∂γ

∣

∣

∣

∣

γ=0

]

≡ 〈Rγ〉+ 〈RS〉. (11)

If there is no selection bias, i.e. S(e) = 1, the second
term in Eq. (11) vanishes and we can identify the first term
with R

γ . The second term quantifies the response of the
shear estimate to the selection bias. As discussed in SH17,
R
S can be estimated by measuring the mean ellipticity from

the unsheared image, but selecting the measurements from
the sheared images. The MetaCalibration estimate of
the selection bias is then

µsel
i =

R
γ
ii + R

S
ii

R
γ
ii

. (12)

The left panel in Fig 15 shows the resulting multiplica-
tive bias after MetaCalibration when we account for the
selection bias as a function of the observed apparent mag-
nitude. The residuals for the grid-based results (red points)
are very small, except for the galaxies with mAUTO > 24.5.
The bottom panel shows the MetaCalibration estimates
for the selection bias, which agrees well with the actual bias
that we infer from comparison to the input catalogue.

We report the mean biases for the two shear components
in Table 3 for galaxies with 20 < mAUTO < 24.5. For the
grid-based simulations we find 〈µ〉 = 0.000 64±0.000 29, i.e.

10 The size estimated from the best-fit Gaussian is different for
the two image rotations after a shear has been applied. Using
the observed size would thus couple the weight function to the
shear itself, leading to a bias.
11 We use ellipticity here as a synonym for shape, but note that
the discussion is independent of the estimator employed.

well within requirements for Stage IV surveys. For the base-
line case (black points) the results are similar, but we do
observe a significant residual bias 〈µ〉 = 0.002 88±0.000 29,
driven by galaxies with mAUTO > 23. For reference we also
repeated the measurements using a wider weight function
with σw=3 pixels, and we obtain similar results (see Ta-
ble 3).

The right panel of Fig. 15 shows the post-
MetaCalibration bias as a function of the input galaxy
size. For the grid based simulations (red points) the bias
is flat as a function of size, thus effectively correcting for
the detection bias (shown in the bottom panel, as well as
Fig. 5. The biases are also small for the baseline case, with
both weight functions yielding consistent results. Only for
the smallest galaxies do we observe a significant bias, which
is not seen when galaxies are placed on a grid. This rules
out sampling as the cause, but rather points to blending.
Indeed, if we limit the comparison to isolated galaxies (no
neighbour within 2′′ in the input catalogue with m < 26),
the results are similar to the grid-based simulations.

This suggests that MetaCalibration cannot fully ac-
count for the shear bias that is introduced by blending. Also
the clear difference between the observed and inferred se-
lection bias for the baseline case suggests that this is not
correctly estimated (the agreement is much better for the
grid simulations, shown in red). To explore this further we
compute the post-MetaCalibration bias as a function
of separation to the nearest galaxy in the input catalogue
(m < 26) and show the results in the left panel of Fig. 16.

Both choices for σw yield very similar results, except for
very small values for rsep where the larger weight function
suffers more from blending, resulting in somewhat larger
net biases. In both cases the bias rises quickly for separa-
tions rsep < 2′′ and becomes highly negative for rsep < 1′′,
suggesting that it may be wise to exclude such galaxies
from the cosmic shear analysis, if possible. As the bottom
panel in Fig. 3 shows, this implies a 30% reduction in the
galaxy number density, so that one may want to allow for
larger residual biases, although the gain may still be limited
because undetected blends also tend to increase the shape
noise (Dawson et al. 2016).

The inset in the top panel shows that for rsep > 2′′ the
bias is small: we find a mean bias 〈µ〉 = 0.000 47± 0.000 19,
whereas the bias for the full sample is 〈µ〉 = 0.002 88 ±
0.000 29 (see Table 3 for more results). This confirms that
MetaCalibration can provide (nearly) unbiased shear es-
timates for isolated galaxies. Unfortunately, in practice we
do not know whether or not a galaxy is blended, and the
right panel of Fig. 16 shows the results for a more realistic
scenario.

The bias as a function of distance to the nearest detected
galaxy shows a similar dependence for small separations
as in the left panel, but the biases peak at larger values.
Both weight functions yield consistent biases, even though
the estimated selection biases differ (bottom panel). More
importantly, for rsep > 2′′ the bias no longer vanishes. Many
of the blends are not identified as such, resulting in a bias of
〈µ〉 = −0.006 49± 0.000 22 for apparently isolated galaxies.
This is maybe not too surprising, because the SExtractor

detection bias for apparently isolated galaxies (open grey
points in Fig. 3) did not converge to the value when galaxies
are placed on a grid.

As this is perhaps the cleanest sample of sources that
could be identified in a survey, our results imply that an
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Table 3. Average biases after MetaCalibration for galaxies with 20 < mAUTO < 24.5.

setup µ1 µ2 c1 [×105] c2 [×105]
baseline σw = 2 pixels

MetaCalibration (Rγ only) −0.009 35± 0.000 42 −0.008 80± 0.000 38 −0.73± 1.60 −1.24± 1.45
MetaCalibration (full) 0.002 74± 0.000 42 0.002 89± 0.000 38 −0.74± 1.62 −1.26± 1.47
MetaCalibration (full, rsep,in > 2′′) 0.000 00± 0.000 25 0.000 95± 0.000 26 −0.18± 0.96 0.93± 0.98
MetaCalibration (full, rsep,det > 2′′) −0.006 94± 0.000 31 −0.006 01± 0.000 30 −1.38± 1.18 0.74± 1.14
MetaDetection −0.000 81± 0.000 40 0.000 37± 0.000 41 −2.90± 1.54 0.43± 1.57

baseline σw = 3 pixels

MetaCalibration (Rγ only) −0.012 59± 0.000 42 −0.012 23± 0.000 37 −3.01± 1.60 0.14± 1.40
MetaCalibration (full) 0.001 66± 0.000 42 0.001 64± 0.000 37 −3.05± 1.62 0.14± 1.42
MetaCalibration (full, rinsep > 2′′) 0.000 21± 0.000 27 0.002 37± 0.000 25 −0.96± 1.05 1.19± 0.96
MetaCalibration (full, rdetsep > 2′′) −0.007 14± 0.000 29 −0.005 25± 0.000 27 −2.16± 1.11 1.02± 1.03

grid σw = 2 pixels

MetaCalibration (Rγ only) −0.008 52± 0.000 41 −0.006 99± 0.000 37 0.33± 1.57 1.31± 1.41
MetaCalibration (full) −0.001 07± 0.000 41 −0.000 36± 0.000 37 0.33± 1.58 1.31± 1.42

Notes. In the ‘baseline’ case the galaxies are placed randomly and their images are sheared. Galaxies are placed on a regular grid,
about 9′′ apart for the ‘grid’ results. See text for details on the various selections.

Fig. 15. Left panel: Multiplicative bias after full MetaCalibration as a function of mAUTO for the baseline simulations (black
for σw = 2 pixels; lightgrey for σw = 3 pixels) and the grid-based simulations (red points for σw = 2 pixels). Right panel:
Multiplicative bias after full MetaCalibration as a function of the input half-light radius (reff) for galaxies with mAUTO. The
bottom panels show the estimated selection bias from full MetaCalibration (points). The solid lines show the corresponding
direct measurements of the selection bias (c.f. Figs. 4 and 5).

algorithm that can provide unbiased shear estimates un-
der ideal circumstances will still be significantly biased in
reality. This also has implications for machine learning ap-
proaches (Gruen et al. 2010; Tewes et al. 2019; Pujol et al.
2020), which will have to be trained on simulations that
include realistic blending.

Our findings suggest that, while MetaCalibration

is able to account for selection bias for isolated galaxies,
blending limits the performance in more realistic scenar-
ios. The image simulations can, however, be used to ac-
count for these residual biases, provided the simulations
capture the complexities of real data. We therefore ex-

plore the sensitivity of the post-MetaCalibration bias
to changes in the simulation inputs, similar to what we did
for the SExtractor detection bias.

The red points in Fig. 10 show that the sensitivity
to the galaxy density, captured by nfac, has changed sign
compared to the SExtractor detection bias, but the
amplitude of the trend is similar with ∂µmeta/∂nfac =
0.003 75 ± 0.000 33, suggesting that it remains important
to use the correct galaxy density in the simulations. The
changes in multiplicative bias as a function of fsize and
ǫfac are shown as red points in Fig. 11. Indeed we find
that the sensitivities to these morphological parameters
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Fig. 16. Left panel: Multiplicative bias after full MetaCalibration for galaxies with 20 < mAUTO < 24.5 as a function of the
separation to the nearest galaxy with minput < 26 in the input catalogue (top) and selection bias (bottom) for a weight function
with σw = 2 pixels (black) and σw = 3 pixels (grey). Right panel: idem, but now as a function of distance to the nearest detected
galaxy. The insets in the panels zoom in on the results for separations larger than 2′′. The solid lines in the bottom panels show
the corresponding direct measurements of the selection bias.

are reduced significantly compared to the SExtractor

detection bias, with ∂µmeta/∂fsize = 0.0087 ± 0.0022 and
∂µmeta/∂ǫfac = 0.0005± 0.0027. Similarly we find no clear
change in bias if we replace the Sérsic index by a single
value (red points in Fig. 12). The sensitivity to the trunca-
tion of the surface brightness profile is enhanced, as indi-
cated by the red points in Fig. 13, but the bias converges
for rtrunc > 4.

6. MetaDetection

The results presented in Table 3 and Fig. 16 show that un-
detected blending is a significant source of bias, even for
space-based Stage IV surveys. High quality, deep observa-
tions can help improve the fidelity of the image simulations
that are used to quantify this residual bias, and our re-
sults indicate that the sensitivity to the simulation inputs
are relatively small, but it would be better if this could be
avoided in principle.

Sheldon et al. (2019) proposed an alternative implemen-
tation of the MetaCalibration approach where one ef-
fectively bypasses the steps to estimate R

γ and R
S. This

approach, called MetaDetection, uses the same sheared
images, but both the detection and the shape analysis are
performed on these images. By avoiding the use of the un-
sheared image as a reference, the detection biases should
vanish. The downside, however, is the lack of such a refer-
ence image, which complicates the labelling of galaxies that
is needed to associate them with a tomographic redshift bin.

We apply MetaDetection to our simulated images
and find that the resulting average bias for galaxies with
20 < mAUTO < 24.5 is very small: 〈µ〉 = 0.000 01±0.000 30
(we report the results for the individual shear components
in Table 3). We note that we have not quantified how
this result changes when we shear the scene when creat-

ing the images (see Sect. 3.1), but the results presented in
Sheldon et al. (2019) suggest that this difference should be
small for the much smaller Euclid PSF.

The left panel in Fig. 17 shows the bias as a function of
observed magnitude (mAUTO; red points) and input mag-
nitude (minput; black points). The average biases are small
and do not depend on magnitude, even for galaxies as faint
as m = 25. For reference, we indicate the corresponding
MetaCalibration results by the light coloured points.
This is encouraging, because one could imagine estimat-
ing photometric redshifts for the galaxies in each of the five
MetaDetection catalogues, which could subsequently be
used to assign them to tomographic bins. How to incor-
porate this into a full cosmic shear analysis is beyond the
scope of this paper, but it is clearly worthwhile to explore
further.

The potential of MetaDetection is confirmed further
by the right panel of Fig. 17, where we show the bias as a
function of distance to the nearest neighbour in the input
catalogue (black) and the nearest detected neighbour (red).
The improvement with respect to the MetaCalibration

case, indicated by the light red coloured points, is evident:
MetaDetection is able to account for the blending of
galaxies, resulting in residual biases that meet the stringent
requirements for Stage IV surveys (Cropper et al. 2013).
Moreover, the blue points in Figs. 10 and 13 show that
the bias after MetaDetection no longer depends on the
galaxy density nfac or the truncation radius rtrunc.

7. Discussion

Our results show that the detection of galaxies results
in a significant source of bias for weak lensing surveys
(also see Fenech Conti et al. 2017; Kannawadi et al. 2019;
Hernandez-Martin et al. 2020). Although both survey char-
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Fig. 17. Left panel: multiplicative bias after MetaDetection as a function of magnitude, with galaxies selected by the input
magnitude (black) or the observed magnitude (red). Right panel: multiplicative bias for galaxies with 20 < mAUTO < 24.5 as
a function or rsep, the distance to the nearest neighbour in the input catalogue (black points) and the distance to the nearest
detected galaxy (red points). The light coloured points indicate the corresponding results for MetaCalibration. In the case of
MetaDetection the biases show no trend with magnitude or distance to the nearest galaxy, and are consistent with zero.

acteristics and galaxy morphologies play a role, it is clear
that undetected blending is the main concern for Stage
IV surveys. In particular, we used MetaCalibration as
a proxy for a perfect shape measurement algorithm, and
showed that this problem persists also in this case. Nonethe-
less, the reduced sensitivity to the simulation setup in-
dicates that image simulations can provide accurate esti-
mates of residual biases. Such simulations may be needed
regardless, because MetaCalibration cannot account for
all sources of bias (Huff & Mandelbaum 2017).

As discussed in Huff & Mandelbaum (2017) the image
manipulation step assumes that the image is linearly related
to the true surface brightness distribution. A wide range of
instrumental effects limit the accuracy of this assumption.
Some of these can be partially corrected for during the im-
age processing, but the impact of their residuals should also
be assessed using sufficiently realistic image simulations. A
particular concern for Euclid and the Roman Space Tele-
scope is the fact that the pixel scale is relatively large com-
pared to the PSF. This is not a problem per se for the PSF
itself, as a well-sampled model might be inferred from the
data, but galaxies with small observed sizes might still be
affected. However, Kannawadi et al. (in prep.), with a larger
fraction of small galaxies in their input catalogue, show that
the bias due to undersampling is effectively mitigated when
using a weight function with σw ≥ 0.′′15. This is consistent
with the absence of any significant residual biases in this
work, and therefore, undersampling of small galaxies need
not be a major concern for Euclid.

In the case of Euclid, charge-transfer inefficiency and
the presence of cosmic rays also bias the shape measure-
ments. Also blending/contamination by stars affects the
shear bias (Hoekstra et al. 2017), whereas spatial variations
in the colours of galaxies lead to colour-gradient biases (e.g.
Semboloni et al. 2013; Er et al. 2018). These biases are also

present after MetaDetection, which does provide unbi-
ased shear estimates for our simulated Euclid-like simula-
tions.

Our results suggest that MetaCalibration and/or
MetaDetection, combined with sufficiently realistic im-
age simulations, provide a viable way forward towards ac-
curate shear estimates for Stage IV surveys. Many prac-
tical complications remain, and we briefly review some of
these here. We start by examining the computational needs:
Euclid aims to measure the shapes of over two billion galax-
ies, which places constraints on the time it takes to mea-
sure a galaxy shape. We apply the MetaCalibration-step
to the full images, and run the object detection algorithm
on the MetaCalibration images, using the output for
the unsheared image as our new detection catalogue. The
computational needs are driven by the image manipulation
steps, which take about 150 seconds for each 4000 × 4000
pixel image on a single core of an Intel Xeon Gold 5115 2.4
GHz CPU in a Dell R840 server (equipped with 80 cores).
This included some I/O because we saved the five images to
disk for SExtractor, which in principle can be avoided.
The five SExtractor calls take on average 16 seconds
and the shape measurements themselves take a total of 7
seconds for the baseline case. This amounts to a total pro-
cessing time of about 0.06 second per galaxy on a single
core. In this paper we use MetaCalibration to correct
for the convolution with an isotropic PSF, but it can be ex-
tended to correct for PSF anisotropy (SH17). This requires
4 more images to be created, which approximately doubles
the runtime of the MetaCalibration-step.

The memory needs of our current setup are substan-
tial when creating the MetaCalibration images, requir-
ing about 18 Gb per core. This prevented us from using
all available cores. In practice the analysis will have to be
performed on much smaller postage stamps, because the
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PSF will vary across the field-of-view. In fact, in the case
of Euclid, the PSF P to use is the SED-weighted one. Al-
though the PSF in this case varies from object to object, it
can be uniquely estimated from unresolved multi-band data
(Eriksen & Hoekstra 2018). As it is important that the ef-
fects of blending can be captured, the postage stamp should
be at least be 8′′ × 8′′. This estimate is based on the fact
that the MetaCalibration bias converges for rsep > 3′′

(see the right panel of Fig. 16). Eriksen & Hoekstra (2018)
show that the effective Euclid-PSF size varies by at most
about 2%, which suggests that using a single PSF for such a
postage stamp would still capture the bias caused by blend-
ing.

For our galaxy number density a postage stamp of
8′′×8′′ means that the total number of pixels that needs to
be manipulated increases by about 30%. Given the reduced
memory needs this would actually allow more cores to be
used by a typical server. Including the correction for PSF
anisotropy, we thus estimate that analysing 2× 109 galax-
ies would take about 70 days on our benchmark server with
80 cores. We note that this is a bare minimum, because
one may want to analyse the individual exposures instead.
Nonetheless, these estimates suggest that it may be possible
to apply MetaCalibration to Stage IV data sets. Alter-
natively, MetaCalibration or MetaDetection can be
applied to subsets of data to provide bias estimates for ma-
chine learning algorithms. Once trained these can estimate
shapes very quickly (e.g. Pujol et al. 2020).

Finally we note that MetaCalibration and
MetaDetection allow us to obtain unbiased shear
estimates, but intrinsic alignments of galaxies prevent a
straightforward interpretation of the lensing signal (see,
e.g Joachimi et al. 2015, for a review). Direct observational
constraints on the intrinsic alignment signal rely on
accurate ellipticity measurements (Georgiou et al. 2019b).
Moreover the strength of the alignment signal depends on
the shape measurement itself (e.g. Georgiou et al. 2019a).
Hence care has to be taken when using physically motivated
priors for the intrinsic alignment signal (Johnston et al.
2019; Fortuna et al. 2020) in a cosmological analysis when
the shear estimates are based on an intrinsically biased
shape estimator, like the one we adopted here.

8. Conclusions

Accurate measurements of the shapes of galaxies are a
key ingredient for weak gravitational lensing studies. As
a consequence improving the fidelity of the shape measure-
ment algorithms has received much attention. Application
of these algorithms to simulated data have played an im-
portant role in improving the performance. It has also be-
come clear that it is important that the simulated data
resemble the observations closely (see e.g. the discussion in
Kannawadi et al. 2019). H17 presented a detailed study for
a simulated Euclid-like data set, highlighting the challenges
in ensuring sufficient realism.

In this paper we use Euclid-like image simulations, simi-
lar to the ones studied in H17 to examine another important
source of bias, which is present even if the shapes estimates
are perfect. Detection bias arises because the probability
with which an object is detected (or selected) in an im-
age depends on the shear. This has been known for quite
a while (e.g. Hirata & Seljak 2003), but its contribution to
shear bias has been largely ignored until recently. We find

that the bias is generally smaller than instrumental bias,
but it does lead to multiplicative biases in the shear that
exceed requirements for the next generation of cosmic shear
surveys.

To quantify the size of the bias we used SExtractor

(Bertin & Arnouts 1996) to detect objects. We matched
the resulting catalogues to the input catalogue from which
we took the true ellipticities. This mimics the performance
of an ideal shape measurement algorithm. As reported in
Table 2 we find that the average shear is underestimated
by about 1%; five times larger than can be tolerated for
Stage IV surveys (Cropper et al. 2013). This result is ro-
bust against changes in the settings of the detection al-
gorithm. A smaller detection bias, which only affects the
faintest galaxies, is observed when we place galaxies on a
grid. This is caused because galaxies that are oriented per-
pendicular to the shear are detected preferentially. In the
case of an anisotropic PSF, we find a small positive additive
detection bias because galaxies that align with the PSF are
detected with a higher significance.

The larger bias in our baseline simulation, where galax-
ies are placed randomly, is caused by the blending of
sources, with biases exceeding 2% for separations less than
1′′. Deeper observations can reduce the detection bias, but
blending introduces a floor that still exceeds requirements.
Following H17 we also explored how the detection bias de-
pends on the simulation inputs. We find that the detec-
tion bias increases linearly with galaxy density, the result
of the higher occurrence of blending. The bias is also re-
duced when the galaxies are smaller or rounder. We observe
a slight dependence of the surface brightness profile (quan-
tified by the Sérsic-index n). It is, however, important that
the galaxy profiles are not artificially truncated before 4
effective radii.

Although the detection bias is far less sensitive to vari-
ations in the simulation parameters compared to the KSB
algorithm studied in H17, the realism of the simulations, in
particular ensuring that the variety in galaxy morphologies
is adequately captured, remains a concern. We therefore ex-
plored the performance of an alternative approach that uses
the data to determine the response of an ensemble of galax-
ies to a shear. This so-called MetaCalibration was re-
cently developed by Huff & Mandelbaum (2017) and SH17
and showed promise for isolated galaxies. The problem of
blending was investigated in more detail by Sheldon et al.
(2019) who showed that a variation of MetaCalibration,
dubbed MetaDetection, can be used to address this.

We found that MetaCalibration provides a (near)
perfect shear estimate in the absence of detection bias. Im-
portantly, the choice of shape measurement algorithm is ir-
relevant and we opt for weighted quadrupole moments with
a fixed width for the Gaussian weight function. For isolated
galaxies the performance of MetaCalibration is only lim-
ited by the accuracy of the PSF model (which we assume
to be perfect) and biases introduced by the pixelisation of
the images (which are also negligible in our case). For the
grid-based images we obtained a mean multiplicative bias
of 〈µ〉 = 0.000 64 ± 0.000 29, well within requirements for
Stage IV surveys. However, blending will limit the actual
performance and for our baseline case we measured a signif-
icant bias of 〈µ〉 = 0.002 88± 0.000 29. We showed that this
is caused by blended objects, many of which cannot be iden-
tified as such. In fact selecting galaxies that appear isolated
(no detected neighbour within 2′′) leads to a larger net bias
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of 〈µ〉 = −0.006 49±0.000 22. The post-MetaCalibration

bias is less sensitive to changes in the input galaxy sizes
or the ellipticity distribution, but does still depend on the
galaxy number density. Nonetheless, these findings suggest
that image simulations can be used to account for the
residual biases in MetaCalibration. Such simulations are
needed anyway to determine the biases caused by instru-
mental effects. Moreover, simulations will be essential to
understand the correlation between shear bias and biases
in photometric redshifts that blending should introduce.

MetaDetection uses the same sheared images as
MetaCalibration, but both the detection and shape
analysis are performed on these images. The resulting mul-
tiplicative bias for galaxies with 20 < mAUTO < 24.5 is
very small: 〈µ〉 = 0.000 01 ± 0.000 30. Moreover, the bias
does not depend on magnitude or distance to the nearest
neighbour, indicating the blending does not bias the mean
shear. The lack of a reference catalogue, which otherwise
would re-introduce the selection bias, may lead to practical
complications. However, it may be possible to assign pho-
tometric redshifts to the different MetaDetection cata-
logues and define tomographic redshifts for each catalogue.
Alternatively, the MetaDetection estimates for various
selections of source can act as reference values for machine
learning approaches. More work is needed to examine the
practical implementation of both MetaCalibration and
MetaDetection, but our results suggest that these, com-
bined with sufficiently realistic image simulations, provide
a viable way forward towards accurate shear estimates for
Stage IV surveys.
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Appendix A: Sensitivity to detection setup

Several parameters influence the deblending of objects by
SExtractor, and we examine their impact on the detec-
tion bias here. Compared to the choice of filter function
in the detection step (see Fig. 7), the changes in bias are
smaller, but as Fig. A.1 shows, they can still change by as
much as 10−3 in the most extreme cases. The changes are
negligible, however, when the parameters remain close to
their default values.

As described in detail in Bertin & Arnouts (1996)
SExtractor uses multi-thresholding to separate objects
that were extracted as a single object during the detec-
tion step. The pixels that make up an extracted object are
thresholded by DEBLEND_NTHRESH levels that are spaced ex-
ponentially between the extraction threshold and the peak
value; a low value reduces the effectiveness of the deblending
step. A tree model of the surface brightness is created (see
Fig. 2 in Bertin & Arnouts 1996) and the model works its
way down to the trunk, deciding at each junction whether
or not to split the object into separate ones. This decision
is governed by the value of DEBLEND_MINCONT, which is the
minimum fraction of the flux that needs to be contained in
the deblended source; hence a high value of this parameter
means that only sources of similar brightness are deblended.

The left and middle panels in Fig. A.1 show the change
in µdet when we use different values for DEBLEND_MINCONT

and DEBLEND_NTHRESH, respectively. We see that the bias
increases by about 10−3 if the deblending is minimised.
The biases barely change if we vary the parameters about
the baseline settings (indicated by the vertical grey dashed
lines).

Noise in the images may result in the outer regions of
sources to be broken up into smaller pieces. Such inad-
verted ‘deblending’ is undone by cleaning the catalogue.
For each object, SExtractor estimates the contribution
from neighbouring galaxies to the mean surface brightness
assuming a Gaussian extrapolation of their profile, and sub-
tracts this from the object in question. If it is still above
the detection threshold, the object is accepted. The width of
Gaussian used to extrapolate the flux from nearby galaxies
can be changed from its default estimate by CLEAN_PARAM.
The right panel in Fig. A.1 shows that that little clean-
ing (values less than 1) rapidly increases the detection bias,
whereas more aggressive cleaning has little impact.

Appendix B: Relation between additive and

multiplicative bias

If one is concerned about a particular instrumental effect
that might introduce additive bias, one can simply average
the shear estimates in the appropriate coordinate system
(e.g. the one defined by the detector), because the cosmo-
logical signal should vanish if enough data are included.
For instance, Hoekstra et al. (2011) used this approach to
remove the additive bias caused by charge transfer ineffi-
ciency (CTI) in Hubble Space Telescope observations, and
Hildebrandt et al. (2020) use this to account for an additive
bias that arises from the shape measurement algorithm (as
shown in Kannawadi et al. 2019). However, this empirical
approach ignores the fact that such systematics may cause
multiplicative bias as well, as we show here.

To do so we express the observed shape of an object in
terms of the unweighted quadrupole moments Qij of its sur-

face brightness distribution (e.g. Massey et al. 2013). These
can be combined into the polarisation, which has two com-
ponents χi defined as:

χ1 =
Q11 −Q22

Q11 +Q22

, and χ2 =
2Q12

Q11 +Q22

, (B.1)

If we now consider a (residual) effect that changes the
observed quadrupole Q′

11 = Q11 + δQ11, while leaving the
other moments unchanged12, the observed polarisation is:

〈χobs
1 〉 ≈ 〈χtrue

1 〉

(

1−
δQ11

Q11 +Q22

)

+
δQ11

Q11 +Q22

, (B.2)

and

〈χobs
2 〉 ≈ 〈χtrue

2 〉

(

1−
δQ11

Q11 +Q22

)

. (B.3)

The last term in Eq. (B.2) corresponds to the additive
bias c1, whereas both polarisation components are biased
low by a factor (1 + µ). In this simple case we find that
µ1 = µ2 = µ = −c1. Hence, instrumental effects that intro-
duce additive shear bias by modifying the recorded images
generally also cause a multiplicative bias that is similar in
amplitude, affects both shear components, but has the op-
posite sign.

To verify this result, we created images where we mimic
the effect of charge trailing, which in reality might be
caused by dielectric absorption in the read-out electron-
ics (Toyozumi & Ashley 2005). Rather than computing the
actual change in bias voltage, we simply assume that the
amount of charge that is added to the next pixel in the ith
column is given by a power law, so that

f(i, j) = f(i, j) + ftrail f(i− 1, j)0.4,

where the value for the power law slope is inspired by what
is observed in OmegaCAM data (Hoekstra et al., in prep.),
and ftrail is the amplitude. To create the images we add a
realistic background level, compute the trailed image, add
this to the original image and finally subtract the back-
ground again. We analyse the resulting images as before.

Figure B.1 shows the resulting additive and multiplica-
tive bias as a function of ftrail, where we note that the
applied values are unrealistically large to ensure a signal
that could be measured using MetaCalibration. The
light coloured points show the detection biases that we ob-
serve, which are negligible, with the exception of µdet

2 . The
trend of µdet

2 with ftrail is largest if we consider only iso-
lated galaxies. The trailing changes both the centroid and
the flux of the galaxy, both of which will change the multi-
plicative bias somewhat, but it is not obvious why this does
not affect µdet

1 . Nonetheless the detection biases are small,
even for this extreme level of charge trailing.

More relevant for the discussion here are the
bright coloured points, which show the biases after
MetaCalibration. As predicted, the changes in µ1 (blue)
and µ2 (red) are consistent, and the sign of ∆c1 is opposite
from ∆µ. The change is about half of what is predicted by
Eq. (B.2),but we note that it is no longer applicable when
weighted moments are used to measure the shapes, and cor-
rections of O(1) are expected. In fact, tests with an elliptical

12 For the purpose of this derivation we are free to choose a
convenient coordinate system.
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Fig. A.1. Change in multiplicative shear bias ∆µ as a function of the SExtractor parameters that affect the deblending of
objects. The vertical grey dashed line indicates the baseline value (also see Table 1). These default values result in detection biases
that are close to optimal.

Fig. B.1. Comparison of the change in multiplicative bias and
additive bias when some of the charge is trailed during the read-
out process. The amount of trailing is determined by the value
of ftrail. The light coloured points show the (small) detection bi-
ases, whereas the bright coloured points show the −∆c1 (black),
∆µ1 (blue) and ∆µ2 (red). The amplitude of the additive bias is
about half of the multiplicative bias, but has the opposite sign,
as predicted.

Airy PSF, for which the unweighted quadrupole moments
do not converge, show that the additive PSF biases are

smaller by as much as a factor 4. This lower sensitivity to
PSF anisotropy implies that allocating a residual bias of
|cPSF| < 1.5× 10−4 corresponds to a tolerable error in the
PSF ellipticity of |∆ǫPSF| < 5.8×10−4 instead of < 2×10−4

adopted by Cropper et al. (2013), but we caution that the
sensitivity depends on the PSF profile. For instance when
we used PSF models that included various aberrations, we
typically found larger residual biases. In all cases, however,
the sensitivity was lower compared to the estimate based
on unweighted moments.

An empirical correction for additive bias should there-
fore be considered with these limitations in mind. Although
our results for this particular case show that the multiplica-
tive bias is still within a factor 2 of our naive prediction,
it cannot replace a proper physical modelling and calibra-
tion of instrumental effects. One important reason to under-
stand the cause of any residual additive bias is that it may
not be cleanly separable from other biases; this would com-
plicate estimating the impact on the multiplicative bias.
Nonetheless, provided that the biases are small to begin
with, we expect that the multiplicative biases will be similar
in amplitude to the additive bias. This is still helpful, be-
cause Kitching et al. (2019) showed that the impact of such
small scale-dependent multiplicative biases is reduced fur-
ther when we consider the power spectrum estimates used
in cosmological analyses.

Appendix C: Uncertainty in input galaxy number

density

As shown in Fig. 10 the multiplicative bias depends on
the number density of galaxies in the simulated images.
Moreover, the results indicate that MetaCalibration is
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Fig. C.1. Multiplicative bias that arises from uncertainties in
the average galaxy number density, as a function from the area
used to determine the average density, assuming the sensitiv-
ity of µ with nfac after MetaCalibration (dashed red line in
Fig. 10).

unable to fully remove such a dependency, but in fact in-
troduces a weak positive dependence as ∂µmeta/∂nfac =
(0.0039± 0.0005). Here we examine what area needs to be
observed so that the uncertainty in the observed value of
nfac leads to a bias in the multiplicative bias of |δµ| < 10−4.

To estimate the expected variation in galaxy density
as a function of angular scale we use the second data re-
lease of the Marenostrum Institut de Ciències de l’Espai
(MICE) grand challenge galaxy and halo light-cone simula-
tion.13 The mock galaxy catalogue is obtained from a large
N-body simulation, from which a light-cone is constructed
(see Fosalba et al. 2015, for details). The simulation is pop-
ulated with galaxies using a hybrid halo occupation dis-
tribution and abundance matching technique described in
Crocce et al. (2015) and Carretero et al. (2015).

The second data release includes a mock galaxy cata-
logue that is complete for current stage III surveys (mi <
24), but restricted to z < 1.4, resulting in an average num-
ber density of about 26 galaxies arcmin−2 brighter than
mVIS = 24.5 in the Euclid-VIS band. Although the cata-
logue thus lacks high redshift galaxies, it is sufficient for
our purposes because the spatial variations are larger at
lower redshifts where a fixed angular scale probes a smaller
volume. We retrieved 9 patches, each 10 × 10 degrees, to
determine the dispersion in galaxy counts when we subdi-
vide these data into smaller areas. The relative variation is
a direct estimate for the dispersion in nfac, which in turn
can be converted into an estimate of the uncertainty in the
multiplicative bias.

If we wish that the contribution to the uncertainty in
the multiplicative bias due to the uncertainty in the mean
galaxy density is < 10−4, the observed sensitivity of the bias

13 MICECATv2 is publicly available at
https://cosmohub.pic.es/home

after MetaCalibration implies that we need to know nfac

with a relative precision of about 2.6%. If we consider the
variation in galaxy counts in a patch of 1 deg2 the MICE
simulations yield a dispersion of 0.064, which agrees re-
markably well with observed estimates of the variation in
galaxy counts by Herbonnet et al. (2019) on similar angu-
lar scales and depths. In contrast, the approximately 0.25
deg2 covered by GEMS (Rix et al. 2004) would introduce
on average a multiplicative bias of about 3 × 10−4, tak-
ing up a significant part of the overall budget specified in
Cropper et al. (2013).

Figure C.1 shows how the multiplicative bias µ depends
on the observed area of sky used to estimate the mean den-
sity of galaxies in the image simulations. The error bars
correspond to the dispersion in the measured counts in the
patches. The results are well described by a power law with
a slope of −0.27; the fit indicates that to achieve a bias
< 10−4 we need to measure the galaxy counts in an area of
about 30 deg2. This estimate may be somewhat optimistic
because we did not consider the impact of small clustering
in our image simulations. Of course the actual survey data
can be used to validate the realism of the simulation, but in
practice deeper observations of smaller areas are more use-
ful as input to the image simulations. Hence, once can in-
terpret these results as the minimum area for which deeper
observations help to improve the fidelity of the image sim-
ulations.
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