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ABSTRACT

We present a new method for the mitigation of observational systematic effects in angular galaxy clustering via corrective
random galaxy catalogues. Real and synthetic galaxy data, from the Kilo Degree Survey’s (KiDS) 4th Data Release
(KiDS-1000) and the Full-sky Lognormal Astro-fields Simulation Kit (flask) package respectively, are used to train
self-organising maps (SOMs) to learn the multivariate relationships between observed galaxy number density and up to
six systematic-tracer variables, including seeing, Galactic dust extinction, and Galactic stellar density. We then create
‘organised’ randoms, i.e. random galaxy catalogues with spatially variable number densities, mimicking the learnt
systematic density modes in the data. Using realistically biased mock data, we show that these organised randoms
consistently subtract spurious density modes from the two-point angular correlation function w(ϑ), correcting biases of
up to 12σ in the mean clustering amplitude to as low as 0.1σ, over a high signal-to-noise angular range of 7−100 arcmin.
Their performance is also validated for angular clustering cross-correlations in a bright, flux-limited subset of KiDS-1000,
comparing against an analogous sample constructed from highly-complete spectroscopic redshift data. Each organised
random catalogue object is a ‘clone’ carrying the properties of a real galaxy, and is distributed throughout the survey
footprint according to the parent galaxy’s position in systematics-space. Thus, sub-sample randoms are readily derived
from a single master random catalogue via the same selection as applied to the real galaxies. Our method is expected
to improve in performance with increased survey area, galaxy number density, and systematic contamination, making
organised randoms extremely promising for current and future clustering analyses of faint samples.

Key words. cosmology: observations, large-scale structure of Universe; methods: data analysis

1. Introduction

Recent decades have seen the advent of precision cosmol-
ogy, as inferred from the large-scale structures of the Uni-
verse (Ho et al. 2012; Font-Ribera et al. 2014; Anderson
et al. 2014; Hildebrandt et al. 2017; Alam et al. 2017; Troxel
et al. 2018; Hamana et al. 2019; eBOSS Collaboration et al.
2020; Tröster et al. 2020; Asgari et al. 2020b). We can shed
light on the mysterious dark matter scaffold by examining
the distribution of the galaxies supported by it, and extend
these measurements across broad redshift epochs in order to
study dark energy through the evolution of structures and
the universal expansion history. Tensions are beginning to
emerge between near-universe measures of the expansion
rate and the amount/clustering of matter (Freedman 2017;
Riess et al. 2019; Hildebrandt et al. 2019; Joudaki et al.
2020; Heymans et al. 2020), and those obtained through

? h.s.johnston@uu.nl

state-of-the-art cosmic microwave background (CMB) anal-
yses (Aghanim et al. 2020). Resolving these tensions will re-
quire strict control of sources of systematic error, in the new
era of statistical precision soon to be explored (Dark Energy
Spectroscopic Instrument; DESI Collaboration et al. 2016,
Rubin Observatory; LSST Science Collaboration et al. 2009,
Euclid ; Laureijs et al. 2011).

Currently, the most competitive large-scale structure
(LSS) constraints upon the matter energy density Ωm vs.
normalisation of the matter power spectrum σ8 plane come
from combined analyses of galaxy clustering and weak grav-
itational lensing (van Uitert et al. 2018; Joudaki et al. 2017;
Abbott et al. 2018; Asgari et al. 2020a; Heymans et al.
2020), making use of wide-area galaxy survey data (e.g.
Dark Energy Survey; Sánchez 2006, Kilo Degree Survey;
de Jong et al. 2013, Hyper Suprime-Cam; Miyazaki et al.
2012). However these surveys are susceptible to complex
source selection functions, which can destroy and/or mimic
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real, informative signals, such as cosmological density fluc-
tuations. These selection functions are generally imprinted
on galaxy survey data in a way that correlates with ob-
servational and physical properties of the survey on-sky.
Examples of such properties, which have the propensity to
introduce spurious selection effects on galaxy data, include
spatial variation in: atmospheric seeing, the telescope point-
spread function (PSF), stellar density, Galactic dust extinc-
tion, and more. Crucially, it is possible, or even likely, that
some spurious selection functions may be introduced due
to a complex confluence of many observational properties;
some of which we may be unaware.

This work focuses on sources of systematic error affect-
ing the detection of galaxies, and propagating into statistics
involving galaxy positional data, e.g. correlation functions.
Much work has been devoted to mitigating such errors:
techniques for systematics mode deprojection – assigning
large variance to spurious modes, so that they are ignored
by power spectrum estimators – were developed by Leist-
edt et al. (2013); Leistedt & Peiris (2014) for photometric
quasar clustering, and similar methods were recently ap-
plied to Hyper Suprime-Cam (HSC) data by Nicola et al.
(2020). Ross et al. (2011); Ho et al. (2012) suppressed
systematics in SDSS BOSS-like (Sloan Digital Sky Sur-
vey; York et al. 2000, Baryon Oscillation Spectroscopic
Survey; Eisenstein et al. 2001) photometric luminous red
galaxy (LRG) data by deriving per-galaxy inverse weights
from number density-systematics (‘1-point’ or ‘pixel’) cor-
relations, or by computing signal corrections (assuming
systematic-tracers relate linearly to galaxy number den-
sities) from galaxy-systematic (2-point) cross-correlations.
Vakili et al. (2020) also estimated weights from 1-point
functions to measure the clustering of photometric LRGs
in the Kilo Degree Survey (KiDS), decomposing systematic-
tracers in an orthogonal basis and exploring second-order
polynomials to characterise cross-talk between parameters.
Elvin-Poole et al. (2018) iteratively derived weights for
Dark Energy Survey (DES) LRGs from linear systematic-
density fits, and Wagoner et al. (2020) recently improved
upon that analysis by performing simultaneous likelihood
fitting of linear coefficients to all systematics maps and the
observed density contrast, and then calibrating for over-
correction of clustering correlations with mock catalogues.
Rezaie et al. (2020) derived weights for emission line galax-
ies (ELGs) selected (following eBOSS; Raichoor et al. 2017)
from the Dark Energy Camera Legacy Survey (DECaLS;
Dey et al. 2019) using deep neural networks. Morrison &
Hildebrandt (2015) tackled clustering biases in the Canada-
France-Hawaii Telescope Lensing Survey (CFHTLenS; Er-
ben et al. 2013), using galaxy density-systematic 1-point
functions to create weight-maps from which to draw ran-
dom points. Suchyta et al. (2016) went even further, simu-
lating galaxies and injecting them into real imaging data, so
as to gauge the detector-response to observational system-
atics. As the breadth of work (only partially summarised
here) suggests, mitigating the impact of systematic galaxy
density modes is crucial to maximising the potential of fu-
ture large-scale structure surveys.

Upcoming surveys are likely to build upon the many
weak lensing analyses that currently aim to constrain cos-
mology with the ‘3x2pt’ analysis method, simultaneously
fitting the 2-point functions describing the galaxy shear-
shear (cosmic shear), position-shear (galaxy-galaxy lens-
ing), and position-position (galaxy clustering) correlations.

Analysed simultaneously, these statistics help to constrain
nuisance parameters (e.g. photo-z calibration uncertain-
ties, or intrinsic alignments), thereby tightening cosmologi-
cal constraints. However this additional constraining power
also brings sensitivity to systematic biases; any bias in (for
example) the galaxy clustering correlation, such as those
which may be introduced by systematic variation of the
galaxy density field, will propagate into the inferred (joint)
cosmology in a pathological fashion.

We seek to mitigate such biases through the construc-
tion of tailored random galaxy catalogues (hereafter ‘or-
ganised randoms’), which mirror systematically induced
galaxy-density variations (similarly to Morrison & Hilde-
brandt 2015; Suchyta et al. 2016). Random galaxy cat-
alogues (commonly referred to simply as ‘randoms’) are
widely used when estimating galaxy clustering and galaxy-
galaxy lensing (GGL), whereby correlations between galax-
ies and random points allow for reductions in methodologi-
cal bias, improved covariance properties between the statis-
tics, removal of systematics caused by edge/masking-effects,
and aid in the reduction of additional systematic correla-
tions (Landy & Szalay 1993; Singh et al. 2017). For this
task, studies typically employ high-density (relative to the
survey galaxy number density), spatially uniform random
points. However, while these will aid in the removal of sys-
tematic correlations with the observed galaxy distribution,
they cannot account for spatial correlations stemming from
systematically unobserved galaxies, or those systematically
lost due to sample selection effects.

Our work aims to tackle this problem: we utilise a form
of machine-learning assisted dimensionality reduction, the
self-organising map (or ‘SOM’, Kohonen 1990), to infer,
from the observed galaxy distribution, the high-dimensional
mapping between survey systematics and galaxy number
densities on-sky. We then create many ‘clones’ of the real
galaxies (i.e. copies retaining all photometric/other proper-
ties, see Farrow et al. 2015) and distribute them as ‘random’
points throughout the survey footprint, in accordance with
their systematically-derived number density on-sky. This
allows any selection effects in galaxy data to be trivially
mirrored in the organised randoms, thereby preserving the
systematic patterns and the systematically-induced density
variations for an arbitrarily defined galaxy sample.

The paper is organised as follows: In Sec. 2, we intro-
duce our galaxy data, from Kilo Degree Survey (KiDS, Kui-
jken et al. 2019) observations, and from Full-sky Lognor-
mal Astro-fields Simulation Kit (flask; Xavier et al. 2016)
simulations. Sec. 3 describes self-organising maps, and how
they are utilised in this work. In Sec. 4 we assess the ca-
pability of the self-organising map to identify artificially
created systematic trends in galaxy density. Sec. 5 then
turns to KiDS data-driven systematic density fluctuations,
and demonstrates the utility of organised randoms in recov-
ering unbiased clustering signals from realistically biased
flask mocks. Final data applications are presented in Sec.
6, and we make concluding remarks in Sec. 7. Throughout
this work, we quote AB magnitudes and assume a fiducial
WMAP9+BAO+SN cosmology (Hinshaw et al. 2013): flat
ΛCDM, with Ωm = 0.2905, Ωb = 0.0473, σ8 = 0.826, h =
0.6898, ns = 0.969.
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2. Data

We validate our random catalogues using both real and
synthetic galaxy data, and invoking both realistic distri-
butions of systematic parameters on-sky (drawn from the
KiDS 4th Data Release, DR4, Kuijken et al. 2019) and arti-
ficially constructed systematics distributions. For our sim-
ulations, we utilise lognormal galaxy fields simulated with
flask (Xavier et al. 2016).

2.1. KiDS

Both KiDS (de Jong et al. 2013) and its partner survey, the
VISTA Kilo-Degree Infrared Galaxy (VIKING; Edge et al.
2013) survey, are now observationally complete, covering
a combined area of 1350 deg2 on-sky in a total of 9 pho-
tometric bandpasses (ugriZYJHKs). Over 1000 deg2 of this
combined dataset is publically available as part of KiDS
DR41 (Kuijken et al. 2019), providing gravitational shear
estimates (unused in this work), 9-band photometric red-
shift estimates (Hildebrandt et al. 2019; Wright et al. 2020;
Hildebrandt et al. 2020), and observational information for
over 100 million galaxies. This galaxy sample, typically re-
ferred to as KiDS-10002, samples a wide range of observ-
ing conditions over a large area, and is consequently im-
printed with an unknown combination of systematic galaxy
depletion and enhancement patterns. Of all the various data
products provided within the KiDS DR4, we identify a se-
lection of ‘systematic-tracer’ variables (detailed in Table
1, and mapped-out in Figs. 1 & 2) which trace physical
phenomena that, we believe, have the greatest potential to
imprint subtle galaxy selection functions on the dataset.
These parameters, individually and in combination, form
the dataset used to train our SOMs. Of course, whether
the chosen variables all trace real observational phenomena
that cause the systematic loss of galaxies is not known a
priori ; we therefore explore the influence of unimportant,
‘distracting’ variables as we test our methodology (Sec. 4).

Angular clustering correlations are typically measured
in bins of galaxy redshift, so as to constrain the galaxy bias
of redshift samples, thus combining powerfully with lensing
probes such as GGL (e.g. Yoon et al. 2019), and to assess
the growth of large-scale structure over cosmic time. Ac-
curate redshifts (typically from spectroscopy) are required
for the optimal binning of galaxies and modelling of cor-
relations, however these are expensive to obtain for large
samples of galaxies over a wide area. Consequently, such
wide-field surveys rely upon photometric redshifts (photo-
z), estimated from broadband photometry (such as the nine
filters used in KiDS-1000) which sample the galaxies’ SEDs.
In this work, we focus on a subsample of KiDS-1000 with
high-quality photo-z estimates: the ∼ 1.16M bright galaxy
subsample (with r . 20), whose photo-z are computed us-
ing ANNz2 neural networks (Sadeh et al. 2016), trained on
spectroscopically observed galaxies from the Galaxy And
Mass Assembly (GAMA) survey (Driver et al. 2009). This
approach to photo-z estimation for bright KiDS galaxies
was originally presented by Bilicki et al. (2018) using only
optical (ugri) photometry from KiDS DR3. In our work we
use the updated DR4 bright-sample described in Bilicki et
al., (in prep.), which leverages the expanded 9-band pho-

1 http://kids.strw.leidenuniv.nl/DR4/
2 Though the retained area after masking is ∼ 900 deg2.

tometric dataset to achieve photo-z’s of typical accuracy:
σzphot. ∼ 0.02(1 + z), in terms of the normalised median abso-
lute deviation (nMAD).

The photometric redshift distribution n(zphot.) for this
GAMA-like photometric sample is shown in the top panel
of Fig. 3. Following van Uitert et al. (2018), we define
2 redshift bins for our GAMA-like sample, with edges at
zphot. = {0.02, 0.2, 0.5}, within (and between) which we shall
measure angular clustering correlations. For the purpose of
additional testing, we define 2 more bins within the range of
zphot. = {0.02, 0.5}, but with inner boundaries well-separated
in photo-z, at zphot. = {0.22, 0.28}. This separation minimises
overlap between the bins’ true redshift distributions, which
are induced by photo-z scatter; we display the approximate
95% scatter 2σzphot. ∼ 0.04(1 + z) as a red line, with values on
the right-hand axis. We use these GAMA-like KiDS data,
‘KiDS-Bright’ henceforth, for intermediate tests and to as-
sess the ultimate performance of our organised randoms
(Sec. 5 & 6).

In our companion letter, Wright et al., (in prep.), we also
explore an application of our organised randoms to mea-
surements of galaxy clustering in the KiDS-1000 shear sam-
ple; this ‘gold’ sample (see Wright et al. 2020; Giblin et al.
2020; Hildebrandt et al. 2020, for details) is ∼ 5 magnitudes
deeper than KiDS-Bright, and a factor ∼ 20 more dense on-
sky. Such increased statistical power should allow for a more
faithful sampling of the multivariate systematics-density re-
lation hidden in the data, which should also be easier to dis-
entangle from cosmic structure as the faint data are more
heavily biased; we expect the performance of organised ran-
doms to improve on application to faint datasets, posing in-
triguing possibilities for the future of deep galaxy clustering
analyses.

2.2. FLASK

flask (Xavier et al. 2016) is a public code designed to
simulate lognormal (or Gaussian) random fields on the ce-
lestial sphere, with configurable tomography and preserva-
tion of all relevant correlations between galaxy density and
weak lensing convergence fields, to the sub-percent level.
We estimate the error on w(ϑ ≥ 3 arcmin) to be & 2.5% for
KiDS-Bright-like statistics from sample variance and Pois-
son noise considerations alone, hence < 1% accuracy from
flask is sufficient for our purposes.

For the cosmology specified at the end of Sec. 1 and
the n(zphot.) displayed in the top panel of Fig. 3, we com-
pute a ‘truth’ angular power spectrum C` with which we
use flask to generate many mock galaxy catalogues from
lognormal random fields; these form the basis of initial test-
ing for our organised randoms, as is described in Secs. 4 &
5. The bottom panel of Fig. 3 demonstrates that measure-
ments of w(ϑ) in our mocks reliably recover the analytical
input clustering and sample variance (plus shot-noise) over
30 realisations (see Eqs. 5.1 & 5.2), modulo noise. These
statistics are for flask realisations with average galaxy
densities 0.36 arcmin−2 (i.e. the same as KiDS-Bright) sim-
ulated within the true KiDS-Bright masked survey foot-
print, and with a galaxy bias equal to unity. We shall use
these KiDS-Bright-like flask catalogues, as well as simpler
10 deg × 100 deg windows (straddling the celestial equator,
to loosely mimic the KiDS survey geometry) initialised with
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Table 1. KiDS: systematic-tracer variables for training of self-organising maps, with units and descriptions.

Systematic-tracer variable Unit Description

MU_THRESHOLD (MU) mag / arcsec2 r-band detection threshold above background; the minimum surface
brightness of objects detected after background-subtraction. Fainter
objects will be lost from an area of observation where the detection
threshold is brighter.

psf_fwhm arcsec full-width at half-maximum of the r-band point-spread function,
averaged over nside = 512 (47 arcmin2) HEALPix1 (Gorski et al. 2005)
pixels and then interpolated to galaxy locations. The blurring of
small, faint sources could cause objects to drop below detection
thresholds.

psf_ell dimensionless ellipticity (1 − q, where q is the 2D major/minor axis ratio) of the
r-band point-spread function, also averaged over nside = 512 pixels
and interpolated to galaxy locations. A PSF ellipticity indicates
non-isotropic blurring of object isophotes, creating challenges for
shape estimation and inducing a directional dependence for
detections.

MAG_LIM_x mag x-band limiting magnitude (5σ above background in a 2′′ aperture)
at the object’s location, for each of the 9 bands observed by
KiDS-VIKING. KiDS object detection is performed in the r-band.

EXTINCTION_r mag Galactic dust extinction in the r-band, derived using the Schlafly &
Finkbeiner (2011) coefficients for the Schlegel et al. (1998) dust
maps. Dust preferentially scatters short-wavelength light from
extragalactic objects; the loss of flux could prevent detections, and
the modification of galaxy spectral energy distributions (SEDs) poses
other problems, e.g. for photo-z estimation.

gaia_nstar count / arcmin2 number density of Gaia DR2 (Arenou et al. 2018) 14 < G < 17 stars
in nside = 512 pixels, interpolated onto galaxy locations. High stellar
densities can hamper detections as the light from stars obscures
background objects, and can also result in spurious galaxy-detections
through the misidentification of PSF-blurred, or blended, stars as
galaxies.

1 http://healpix.sourceforge.net (Gorski et al. 2005)

Notes. Systematic-tracer variables chosen from the KiDS DR4 data products, or from other public data e.g. Gaia nstar – these
are variables thought to trace phenomena which may impact upon the observed number density of galaxies. See Kuijken et al.
(2019) for details on threshold, PSF and magnitude-limit parameters. Maps of each of these quantities are displayed in Figs. 1 &
2. Where specified, pixelated systematic-tracer values are interpolated from pixel-centres onto galaxy locations via a 2-dimensional
(RA/DEC) nearest-neighbour interpolation.

1 galaxy arcmin−2, to test our self-organising maps and ran-
dom galaxy catalogues.

3. Self-organising Maps

Self-organising maps (SOMs; Kohonen 1990) are a
class of unsupervised neural network methods, designed
to project high-dimensional data onto (typically) 2-
dimensional ‘maps’ which preserve the topological features
of the input space – thus proximity on the map tends
to denote proximity within the high-dimensional space.
SOMs are fast, simple, and useful for problems benefit-
ing from dimensionality-reduction, unsupervised classifica-
tion, and ease of data visualisation. Their use within cos-
mology has included: object selection and classification for
large datasets (Geach 2012); template photo-z’s (Speagle &
Eisenstein 2015, 2017); characterisation of galaxy properties
from observables (Davidzon et al. 2019); and calibration of
the colour-redshift relation (Masters et al. 2017, 2019), en-

abling direct photo-z calibration (Buchs et al. 2019; Wright
et al. 2020; Hildebrandt et al. 2020).

This work makes use of SOMs for dimensionality reduc-
tion and unsupervised classification, to identify on-sky ar-
eas of observation (or simulation) with correlated observing
conditions, as indicated by various ‘systematic’ survey vari-
ables. These variables, such as those describing atmospheric
effects, Galactic foreground properties, etc., ought to cor-
relate with phenomena causing systematic alterations to
the observed galaxy number density in a wide-field survey.
These variables define a systematics-vector3 V per galaxy,
which jointly describe an Rn (where n = length(V)) dimen-
sional space to be mapped by the SOM. While this space
can hypothetically consist of all derived data within the
galaxy catalogue, in practice it is beneficial to select vari-
ables from the data products available which are likely to
trace the true galaxy density variations, so as to allow the

3 These are simply rows in a galaxy catalogue, where each el-
ement is a number describing the amplitude of some potential
source of systematic error at the location of the galaxy.
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Fig. 1. Maps of systematic-tracer variables (from Table 1) from r-band (the detection band) imaging in the KiDS-North (top-panels)
and KiDS-South (bottom-panels) areas. Grey colours denote the 50th percentile of the systematics distribution in each case, and
blue/red then denote ‘good’/‘bad’ observing conditions, relative to the 50th percentile. As we show in Fig. 4, the majority of spatial
variations in galaxy number density correlate with these parameters at . 5%.

maximum density-variation information to be encoded in
the SOM. We therefore explore different choices of tracers,
detailing these in Table 1.

The SOM algorithm starts by instantiating a grid with
user-specified dimensions, e.g. 100×100 for two-dimensional
SOM containing 104 cells. Each cell is then assigned a
randomised weights-vector W, of the same length as the
galaxies’ systematics-vectors; i.e. the number of systematic-
tracer variables n. To train the SOM, galaxy systematics-
vectors V are then chosen at random and presented to
the SOM lattice. At each step of training, the SOM cell
with weights W most closely matching the training galaxy’s
systematics-vector V is termed the best-matching unit
(BMU). The match is typically quantified via the Euclidean
distance d between the SOM cell weights-vector W and the
galaxy systematics-vector V as

d =

√√ n∑
i=1

(Vi −Wi)2 , (3.1)

where the minimum d over the grid belongs to the BMU.
Next we identify SOM cells within some radius σ(t) (the
“neighbourhood”) of the BMU, and modify their weights-

vectors W to be closer to V, with more significant modi-
fications for cells nearer the BMU. The resulting weights-
vectors are given by

W(t + 1) = W(t) + L(t) Θ(t, σ) [V(t) −W(t)] (3.2)

where t denotes a time-step (i.e. the presentation of a new
training galaxy to the SOM), the “learning rate” L sets the
strength of modifications, and Θ implements the distance-
to-BMU dependence thereof. The final feature is that all
of (i) the radius σ within which cell weights-vectors are to
be modified, (ii) the learning rate L, and (iii) the BMU-
distance dependence Θ, are exponentially decaying with
each time-step, hence their dependence upon t. In this way,
the SOM converges to a final representation as the training
data are exhausted. Once all galaxies have been presented
to the SOM, each cell on the SOM grid carries a weights-
vector describing some unique position in the n-dimensional
systematics parameter space, and the full collection of 104

cells spans the entire space sampled by the galaxies.
In our implementation, the resulting 2D map then repre-

sents the landscape of possible systematics-vectors realised
by the data in question. By computing the distances be-
tween points in the space, we can then divide the landscape

Article number, page 5 of 24
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Fig. 2. The same as Fig. 1, but for the remaining systematic-tracer variables from Table 1.

Table 2. Analysis choices for various self-organising map/randoms-creation configurations: setup identifier, number of hierarchical
clusters, resolution on-sky & systematic-tracers for training.

setup ID NHC res (smth) [arcmin] systematics

T1mock 100 5 (0) A1,A2,A3,B1,B2,B3,C1,C2

100A 100 2.8 (0.1) MU,psf_ell,psf_fwhm

800A 800 2.8 (0.1) MU,psf_ell,psf_fwhm

800Ares2 800 2 (0) MU,psf_ell,psf_fwhm

100B 100 2.8 (0.1) MU,psf_ell,psf_fwhm,MAG_LIM_r

800B 800 2.8 (0.1) MU,psf_ell,psf_fwhm,MAG_LIM_r

100C 100 2.8 (0.1) MU,psf_ell,psf_fwhm,MAG_LIM_r,gaia_nstar,EXTINCTION_r

800C 800 2.8 (0.1) MU,psf_ell,psf_fwhm,MAG_LIM_r,gaia_nstar,EXTINCTION_r

Notes. Various configurations for our SOM & organised randoms-creation pipeline. Throughout the text, we shall refer to these by
their ‘setup ID’ – this shorthand typically just indicates the number of hierarchical clusters defined on the SOM, e.g. 800 or 100,
and the number of systematic-tracer variables used in training: A is just PSF and threshold parameters, B then includes the r-band
magnitude limit, and C further includes Galactic dust extinction and stellar density (all described in Table 1). The exception T1mock
refers to the SOM trained against artificial systematic-tracers A1-3,B1-3,C1-2, which are described in Sec. 4. NHC is the number of
hierarchical clusters to be defined on a given SOM, ‘res (smth)’ are the resolution and Gaussian smoothing-width, in arcminutes,
of the sky-grid used to group galaxies and populate random fields, and ‘systematics’ refers to the set of systematic-tracer variables
presented to each SOM in training (see Table 1). All SOMs employed in our analysis have dimensions 100 × 100.

into NHC maximally-separated ‘hierarchical clusters’ (see
Wright et al. 2020, for a description of this process). Briefly,
hierarchical clusters are defined by assigning each SOM cell
to its own ‘cluster’, and then iteratively combining the two
least-separated clusters (in our case by Euclidean distance

between the cell weight-vectors W) into one, until only a
single cluster remains. At each iteration, the cluster cen-
tres are recomputed using the Lance-Williams dissimilarity
formula (see Defays 1977; Iezzi 2014), invoking complete-
linkage clustering to generate the most similar clusters. This
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Fig. 3. Top: The photometric redshift distribution of the ‘KiDS-
Bright’ GAMA-like KiDS DR4 bright sample (Bilicki et al., in
prep.), with the zphot. = {0.02, 0.2, 0.5} redshift bins (dashed lines)
employed in our clustering analysis (Sec. 6), and the additional
bins zphot.,1a = {0.02, 0.22} and zphot.,2a = {0.28, 0.5} (dotted lines)
defined to have minimal photo-z overlap, as reckoned by the
95% scatter (red line); 2σzphot. ∼ 0.05, at that redshift. We use
this n(zphot.) distribution to generate angular power spectra and
flask mock galaxy catalogues. Bottom: The full redshift-range
angular clustering (red) averaged over 30 independent flask log-
normal random field realisations of the input power spectrum –
itself displayed in blue (see Eq. 5.2) with the theoretical 1σ error
for a KiDS-Bright-like survey – with 0.36 galaxies per square ar-
cminute over 900 deg2. The galaxy bias is set to unity. Error-bars
are the root-diagonal of the covariance across the 30 realisations
– we note that for the 30 data-points shown, the covariance over
just 30 realisations of the field is quite noisy. We are clearly able
to recover the analytical input cosmology with these 30 realisa-
tions from flask.

iterative process constructs a cell-merger dendrogram which
can then trivially be sliced at the desired number of clus-
ters NHC. Each cluster of cells then contains a unique subset
of the total galaxy sample, which are described by similar
systematics-vectors V. In this way, the combination of the
SOM and hierarchical clustering is able to construct NHC
distinct groups of sources with similar systematics proper-
ties, but which occupy non-contiguous areas of the sky. The
average total area on-sky that is spanned by each of the NHC
groups is therefore determined by the area of the dataset
in question (i.e. ∼ 900 deg2 for KiDS-Bright) and NHC.

From the on-sky distribution and galaxy-count corre-
sponding to each hierarchical cluster, one is able to com-
pute an estimate of the galaxy number density associated

with each section of the high-dimensional systematics-space
(i.e. the space of systematic-tracer variables from Table 1
and Figs. 1 & 2). Our randoms creation algorithm uses this
information to populate the survey volume with variably-
dense but locally unclustered random points. Moreover,
each random point is constructed as a copy of one of the
training galaxies from the hierarchical cluster to which it
belongs, carrying all of the parent galaxy’s physical and
photometric properties: a ‘clone’. Clones are therefore scat-
tered only within the (again, non-contiguous) areas of sky
represented by the parent hierarchical cluster. As a re-
sult, galaxy sample selection effects, and associated selec-
tion of specific systematic clustering patterns, are easily
reproduced in the randoms catalogue by a simple selection
of clones satisfying the chosen galaxy selection function.
Acting as the reference points in a galaxy clustering mea-
surement, the randoms ought to then compensate density
variations correlating with any combination of the tracked
systematic variables, for any selection of galaxies used to
train the SOM.

The number of clusters NHC is an important tuning pa-
rameter for this analysis: besides determining the area-per-
cluster, NHC must also trade off against the amount of dis-
cretisation of the systematics-space to be mapped. If we
invoke too few clusters in our high-dimensional space, each
will span a wide range of observational (i.e. systematic)
and cosmological regimes, and could thus lose discerning
power as a result (indeed, NHC = 1 will return completely
uniform randoms, by definition). Conversely, invoking too
many clusters in the same space will result in too much
freedom, and begin to over-fit the number density vs. sys-
tematics relation. This over-fitting can itself be pathologi-
cal, as we shall see, if the individual clusters begin to trace
the cosmic (i.e. not systematic) structure.

Our various choices for SOMs are detailed in Table 2,
and Fig. 4 displays SOMs of the configuration 100A af-
ter training on KiDS-Bright. The bottom-left, top-left and
top-right panels are coloured by the MU,psf_fwhm,psf_ell
(Table 1) values for those cells, and the bottom-right
panel connects these to the galaxy density contrast, (ngal −

〈ngal〉)/〈ngal〉, in 100 hierarchical clusters (denoted by dis-
crete patches of colour with black borders). Inspecting
any region of the density contrast map, one can easily
identify correlations between density contrast and vari-
ous systematic parameters. For example, one can note
the upper-left quadrant of the density contrast SOM as
being populated by clusters of generally below-average
(i.e. blue) density contrast. This is clearly correlated with
above-average values of the r-band imaging surface bright-
ness limit MU_THRESHOLD. The opposite effect (i.e. above-
average density contrast) is seen for below-average values
of MU_THRESHOLD, except for clusters where the value of
the PSF FWHM is above average; in this case, the density
contrast is once-again below average. Such conclusions are
easily drawn from the SOM, and are a significant advantage
of our method presented here.

4. Validating SOMs with artificial systematics

First, we will elucidate the capabilities and limitations
of SOMs in recognising galaxy density-systematic correla-
tions, through the use of artificial systematic fields with
complex correlations to the depletion of the galaxy number
density. Figure 5 shows on-sky distributions of 1 arcmin−2
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Fig. 4. Self-organising maps, with dimension 100 × 100, coloured (top-left, top-right, bottom-left) by the systematics values taken
on by each cell during the training procedure described in Sec. 3. In the density contrast panel (bottom-right), colours and black
borders mark the 100 hierarchical clusters (see Sec. 3) defined according to groupings of cells with similar systematics-vectors for
KiDS parameters psf_fwhm,psf_ell,MU_THRESHOLD (Table 1). Systematic-tracer variables are linearly mapped onto the interval
[0, 1] before being passed to the SOM, hence the colourbar ranges. The density contrast panel (bottom-right) maps clusters of SOM
pixels from their vectors of systematic-tracer values back onto a relative number density on-sky, and reveals almost all systematic
density fluctuations to be at . 10%, as reckoned by this SOM configuration (100A; Table 2).

flask galaxies, colour-coded by our set of eight artificial
systematics variables, which were designed to mimic real-
istic spatial patterns in KiDS-like wide-field observations.
‘A’-type variables vary smoothly over large angles, in a man-
ner similar to Galactic foregrounds. ‘B’-type variables have
a 2-dimensional Gaussian form, which varies independently
and discretely in 1 × 1 deg2 ‘tiles’, thereby mimicking tele-
scope and camera effects such as PSF variations over the fo-
cal plane. Finally ‘C’-type variables vary discretely between
tiles but are constant within them, thereby mimicking per-
exposure effects such as limiting depth variations that arise
from the use of a step-and-stare observing strategy (mean-
ing that each tile is only observed once, per-band, over the
course of the entire survey, thereby increasing sensitivity
to the variable sky brightness on any given night). Each ef-
fect varies in the range [0, 1] for simplicity. By construction,
these analytic systematics have no serious outliers.

To create spurious density modes as multivariate func-
tions of our artificial systematics, we invent an independent
depletion function for each parameter, shown in Fig. 6 as
red dashed lines. These each describe the probability that
an object will be discarded from the catalogue as a func-

tion of the object’s position in systematics-space, thereby
‘depleting’ the galaxy number density at that point in sys-
tematics space. Note that some systematic variables cause
no depletion (A3,B3,C2), and act instead as dummy pa-
rameters for the SOM to navigate. In Appendix Fig. A.1
we show the spatially-variable probability of depletion re-
sulting from the depletion functions of Fig. 6 as applied to
the systematics-maps of Fig. 5.

We apply each depletion function individually4 to a set
of 30 flask mocks. We then train a SOM using each de-
pleted mock galaxy sample with the T1mock configuration
from Table 2, and create a hierarchy of cell-clusters on each
trained SOM. The number densities of the clusters should
then reflect the input depletion functions, per individual
systematic from Fig. 6. This test is thus a simple verifi-
cation of the SOM’s ability to characterise galaxy-density

4 The case of multiple, potentially correlated, systematic biases
working in confluence is more realistic, however a SOM could
then only infer the combined, multivariate depletion function,
making an assessment of success more complicated. We shall
explore the consequences of multiple biases when we turn to
data-driven systematic density fluctuations in the next section.
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Fig. 5. A flask-generated uniform random field, binned hexagonally (cell scale ∼ 10 arcmin) in RA/DEC and coloured according
to our various artificial systematic-tracer variables. A-types vary smoothly over large angles, B-types vary over 1 deg2 tiles with a
2D-Gaussian form, and C-types are single-valued for each tile. Iso-contours (white lines) are lain over A-type variables for clarity,
and to illustrate the subtle difference between A2 and A3.

variations as a function of some systematic effect, with a
particular pattern on-sky. Further, we can use this test to
explore possible systematic patterns that may cause the
SOM to fail in its corrective pursuit.

4.1. Characterisation of artificial systematic fluctuations

We find that the SOMs are able to recover individual deple-
tion functions with good accuracy. Figure 7 displays num-
ber densities vs. systematic-values for hierarchical clusters
defined on the T1mock SOM (Table 2), along with our input
depletion functions in red. Errorbars are the root-diagonal
of the covariance over 30 realisations, and we display the
result for both lognormal (green) and uniform (orange) ran-
dom fields (GRF and URF respectively). The extra noise
seen in ngal for the GRF case is due to the simulated cosmic
structure, and can be seen to correlate with systematics
that localise finite regions on-sky (i.e. A and C types). In
contrast, B-type parameters show little difference between
uniform and lognormal random fields, as individual system-
atics clusters cover a much less localised on-sky area; thus
having much less sensitivity to (local) variations in cosmic
number density. We also verify that the SOM does not ‘cre-
ate’ depletion functions where none exist; Appendix Fig.
A.2 shows that the SOM recovers the mean galaxy density
in all cases, when training the SOM on the same parameters
but without any depletion of galaxy number densities.

We note and address the presence of some irregularities
in the distributions of Fig. 7, bearing in mind that the test
here is merely to recover the form of depletions, and that
these will be superseded by 2-point statistics in the next sec-
tion. In extrema, A-type parameters appear to have outlier
clusters with very high/low number density. These are arte-
facts from binning galaxies on the 5 arcmin Cartesian grid
– at the footprint-edges, some grid-cells are only partially
filled, resulting in seemingly under/overdense clusters. The
B1 clusters are also affected by footprint-edges, where B1 is
predominantly low (Fig. 5), and the amplitude of recovered
fluctuations is suppressed with respect to the expectation

for decreasing values of B1. The distribution of B1 (Fig. 6;
blue histogram) drops sharply below values of ∼ 0.5, whilst
the probability of depletion rises (Fig. 6; red dashed line),
resulting in a thin, sparsely-populated, grid-like distribu-
tion of objects across the footprint that begins to noisily
sample the mean density, and causes further suppression of
inferred fluctuations when the periodicities of the B1 fluc-
tuation and the on-sky grid are misaligned. We verify that
such effects can be mitigated by modifying the on-sky grid
used to discretise the galaxy sample, however we caution
that a reduction in the grid size can cause artificial mask-
ing of ‘empty’ patches of sky, given sparse galaxy data. In
practice, these effects can be mitigated by ensuring mutual
masking of the randoms and galaxy catalogues, and by tun-
ing the on-sky grid size and grid-smoothing parameters to
account for the range of number densities in the dataset un-
der investigation. We further note that these artefacts are
also seen in Appendix Fig. A.2, demonstrating that they are
not related to the applied systematic density fluctuations.

Given our experience with this test, we settle on a fidu-
cial setup with an on-sky resolution of 2.8 arcmin, and invoke
a Gaussian smoothing kernel with a standard deviation of
0.1 arcmin. This allows empty grid-cells on the sky to be in-
fluenced by their populated neighbours, thus ensuring that
the randoms respect the survey mask even for sparsely dis-
tributed galaxy data (such as the KiDS-Bright sample).

5. Validating Organised Randoms with data-driven
systematics

The ultimate goal for our organised randoms is to provide
a simple and unsupervised method with which to debias
galaxy clustering signals upon measurement. In the pre-
vious section, we demonstrated that self-organising maps
are capable of identifying systematic density fluctuations in
data; we shall now use the SOMs to infer realistic system-
atic fluctuations from KiDS-Bright data, and apply these
to simulated flask catalogues. Training organised randoms
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Fig. 6. Histograms – each normalised to a maximum of unity –
of the artificial model systematics (see Fig. 5) we impose upon
our flask lognormal random field galaxies, both before (blue)
and after (orange) applying our probabilistic depletion functions,
shown as red dashed lines. Dummy-variables (A3,B3,C2) have no
depletion applied – these are intended to ‘distract’ the SOMs.

against these biased data, we can then assess their ability
to recover unbiased 2-point statistics.

We first note that many typical approaches to
systematics-handling for galaxy clustering feature the cor-
rection of pixel density-systematics 1-point correlations
(e.g. Suchyta et al. 2016; Elvin-Poole et al. 2018; Rezaie
et al. 2020; Kitanidis et al. 2020; Vakili et al. 2020). We
find this approach to be unsuitable for validation of our
own methods, where the successful correction of pixel cor-
relations is neither necessary for the recovery of unbiased
2-point functions, nor robust to the possibility of over-
correction; in fact, a perfect performance with regard to
1-point correlations could mask a total failure of our meth-
ods at the 2-point level, featuring a dramatic suppression
of real clustering signals – for further details, see Appendix
B.

5.1. Galaxy clustering

For all measurements of galaxy clustering 2-point correla-
tions, we consider the angular correlation function w(ϑ), and
make use of the public software TreeCorr5 (Jarvis et al.

5 https://github.com/rmjarvis/TreeCorr

2004). The standard Landy-Szalay (Landy & Szalay 1993)
estimator for angular galaxy clustering is given as

ŵi j(ϑ) =
Θ(ϑ)

{
DiD j − DiR j − RiD j + RiR j

}
Θ(ϑ)

{
RiR j

} , (5.1)

where i, j denote the galaxy samples being correlated –
photo-z bins, in this work – while DD, DR and RR denote
normalised6 pair-counts between galaxies D and randoms
R, and the bin-filter operator Θ(ϑ) rejects pairs with sepa-
rations falling outside of the angular bin centred at ϑ. We
will consider both auto- (i = j) and cross-correlations (i , j)
when evaluating our organised randoms.

Assuming a flat universe and a linear galaxy bias, and
under the Limber and flat-sky approximations, one obtains
a theoretical expectation for w(ϑ), between galaxy samples
i and j, as follows (Limber 1953; Loverde & Afshordi 2008)

wi j(ϑ) = 2π bi
gb j

g ×∫ ∞

0

d`
`

J0(`ϑ)
∫ χh

0
dχ

p i(χ)p j(χ)
χ2 Pδ

(
` + 1/2
χ

, χ

)
,

(5.2)

where bg denotes the linear galaxy bias, ` the angular fre-
quency, J0 the zeroth-order Bessel function of the first kind,
χ the comoving distance to a given redshift, p(χ) the nor-
malised comoving distance distribution of the sample, and
Pδ the matter power spectrum with non-linear corrections
(for which we employ the halofit model of Smith et al.
2003; Takahashi et al. 2012). The right-most integral is
equal to the (Limber-approximate) angular power spectrum
C`.

5.2. Realistic biasing of flask fields

An application of SOMs to real data lacks a clear notion
of ‘truth’ – we do not know exactly how our tracer vari-
ables relate to the deprecation of observed galaxy densi-
ties. Thus we cannot know whether or not the systematic-
density relations inferred by the SOMs are contaminated
by cosmological density variations; for example, it could
be that a real, local North-to-South galaxy density gra-
dient happens to correlate with some systematic-tracer –
the SOMs could falsely identify such a variable to be trac-
ing the source of the density gradient. Any randoms or-
ganised accordingly would then act to erase real, cosmo-
logical clustering signals. Moreover, we do not know the
true underlying clustering signal – if our corrections were
already sufficient to recover the unbiased clustering, but
1-point pixel density-systematics correlations (e.g. Elvin-
Poole et al. 2018; Rezaie et al. 2020, see Appendix B) still
revealed correlations with systematics, how would we know
to stop?

Here we assess the performance of organised randoms in
recovering unbiased clustering signals, and also address the
question of ‘over-fitting’ to spatial, possibly cosmological,

6 Normalisation is by the product of total-counts NiN j for sam-
ples i and j, i.e. the count of all possible pairs. For auto-
correlations, N is subtracted from the product, as a galaxy can-
not be paired with itself.
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Fig. 7. A recovery by the SOM of the artificial biases applied to 30 flask realisations (see Figs. 5 & 6) of random fields. Panels show
the galaxy number density (arcmin−2) of 100 hierarchical clusters, defined on the SOM, against the median systematic value in each
said cluster. Green points give the results for SOMs trained against depleted lognormal random fields (GRF), and orange points
give the same for uniform random fields (URF), each generated using flask. The functions describing systematic galaxy depletion
relative to our artificial systematic parameters (from Fig. 6) are converted into expected number densities and shown here as red
dashed lines (‘input DF’; depletion function). The solid horizontal lines indicate the global average number densities expected per
systematic after depletion. We see that the SOM correctly recovers the expected number densities in all cases, demonstrating that
none of the systematics models tested are unable to be recovered by the SOM. Points where both our URF and GRF data sit
systematically away from the expected values are artefacts due to footprint edge-effects in our flask simulations, and do not affect
the conclusions of this test (see Sec. 4.1).

Fig. 8. The systematic density contrast δOR (Eq. 5.3) inferred, for the KiDS-North (top-panel) and KiDS-South (bottom-panel) areas
of the KiDS-1000 bright sample (KiDS-Bright), by the 800C SOM setup. We use these maps to construct our organised randoms,
populating the footprint to mirror the systematic density modes.

trends in galaxy density. For the reasons detailed above, this
is difficult to do for real galaxy data such as KiDS-Bright,
where any biases are already present. We sidestep these
concerns with synthetic galaxy distributions from flask.
The test method is as follows: we feed real galaxies and
systematics data to a SOM, and infer the spatial pattern of
depletion – whether the pattern is contaminated by LSS or
not is, at this stage, unimportant. We perform a nearest-
neighbour interpolation in RA/DEC to port the real spatial
distributions of systematics from KiDS-Bright onto flask
galaxies simulated within the same mask. We then apply the

SOM-inferred, systematic density patterns to the mocks,
probabilistically, as

Pdepl.(x) = 1 −
ngal

n′gal

[
1 + m δOR(x)

]
, (5.3)

where Pdepl.(x) is the probability that a galaxy at posi-
tion x will be ‘lost’; a uniform random draw in the range
[0, 1] must exceed Pdepl.(x) for the galaxy to be retained.
ngal and n′gal are the target and initial flask number den-

sity – we can only remove galaxies from the mocks, so we
initialise the flask realisations with n′gal = 0.72 galaxies
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arcmin−2 and then generate systematic under/overdensities
with respect to the mean (target) KiDS-Bright density of
ngal = 0.36 arcmin−2. δOR(x) is the density contrast at posi-
tion x sourced by systematics7 according to the SOM, and
m is a scalar variable which we can use to manually mod-
ify the amplitude of the applied depletion, whilst retaining
its functional relationship to the KiDS-Bright systematics
distribution. Taking m > 1 would intensify the depletion,
relative to that present in KiDS-Bright, whilst m < 1 would
yield a comparatively soft depletion. We display an exam-
ple map of δOR, inferred from KiDS-Bright galaxies, in Fig.
8.

Repeating this procedure for many realisations of the
underlying cosmology, we have created the ‘truth’ case of
a single, global pattern of galaxy-depletion. Running the
SOMs again, now against the depleted flask mocks, we
can assess how consistently they are able to recover this
truth for many different realisations of the constant cos-
mological background. If the SOMs are able to retrieve the
fixed systematic depletion pattern from many independent
realisations of the cosmic structure, then we can assert that
the inferred δOR(x) is uncontaminated by cosmology.

Having thus created many realisations of KiDS-Bright-
like data for which we can turn systematic biases on or off,
we can now run our SOMs and assess the corrective perfor-
mance of our organised randoms with various measurements
of w(ϑ). A caveat is that our depletion of the flask galaxies
is derived from runs of the SOM against KiDS-Bright, thus
the bias can be said not to be entirely realistic (although far
more so than the artificial systematics of the previous sec-
tion, for which the accuracy of capture was excellent) but
dependent upon the configuration of the initial SOM. As
such, we consider many different configurations along with
modifications (via the m parameter from Eq. 5.3) to the
intensity of depletion that we apply to the flask mocks.

Over the course of testing, we recognised that
systematic-tracer set B (Table 1) transpires to be a rel-
atively uninformative yardstick between sets A and C; as
such, we limit our discussion from here to parameter sets
A,C, which are instructive for our work with the relatively
unbiased KiDS-1000 bright sample.

5.3. Correction of data-driven systematic fluctuations

We devise a battery of w(ϑ) tests to assess the performance
of our organised randoms at the 2-point level. The key vari-
ables that we change are (i) the parameters used to train
a SOM against KiDS-Bright, and (ii) the number of hier-
archical clusters NHC defined on that KiDS-Bright SOM.
These determine the spatial depletion to be ported onto
flask realisations, as described in Sec. 5. We also change
(iii) the parameters used to train a second SOM against bi-
ased flask realisations, and (iv) the number of hierarchical
clusters NHC defined on that flask SOM – these allow us
to break any circularity by comparing independent SOMs.
Finally, we also experiment with (v) intensifying the deple-
tion via the m parameter (Eq. 5.3).

We find that the performance and flexibility of our or-
ganised randoms are excellent. The randoms are able to

7 This inferred density contrast from systematics forms the ba-
sis for our organised randoms generation algorithm, though for
this test we create organised randoms only after training sepa-
rate SOMs against the depleted flask mocks.

consistently mitigate biases in flask fields, even when hav-
ing limited sensitivity to smaller scales (via reduced NHC
w.r.t the SOM used to infer systematic modes), or when
trained on incomplete systematics information. Fig. 9 dis-
plays some examples of organised randoms’ performance,
which we continue to explore in Appendix C. Panel-titles
in these figures give the SOM setups trained (i – ‘bias’)
against KiDS-Bright to infer the clustering bias, and (ii –
‘recovery’) against the biased flask mocks to recover the
true clustering with organised randoms. Multiplicative fac-
tors in the panel-titles indicate where m , 1. Black points
and dashed curves give the unbiased clustering signal ±1σ
errors from 30 flask realisations (equivalent to red points
in Fig. 3). Triangles and hatched curves are the measured
(biased) clustering after depletion of the flask fields, and
solid-filled curves show the corrected clustering, measured
with organised randoms. In all meaningful (see Appendix
B, where we present a deliberate failure mode: 800Ares2)
bias/recovery cases considered, our organised randoms yield
clustering correlations that are more consistent with the
truth than the biased signals (i.e. those measured with uni-
form randoms).

In Fig. 9, one sees that the recovery:100C organised ran-
doms yield an effective correction of clustering biases from
the bias:800C SOM (blue panel), with the recovered sig-
nal much closer to the unbiased measurement (mean abso-
lute deviation over 7 − 100 arcmin: 1.48σ→ 0.31σ, where σ
is the uncertainty in the unbiased signal) – this indicates
that a relatively insensitive SOM setup (100C) is able to
characterise the more complex biases inferred from a SOM
with greater sensitivity to small-scale systematic structure
(800C). We see an even better correction (1.43σ → 0.09σ)
when passing incomplete systematics information to the
SOM, as demonstrated by bias:800C vs. recovery:100A (or-
ange panel). This demonstrates that our SOM methods are
able to correctly infer systematic density fluctuation pat-
terns even when the patterns are sourced by systematic-
tracers unknown to the SOM; thus inter-parameter correla-
tions serve to make organised randoms robust against ‘miss-
ing’ training variables, and the additional freedom afforded
to NHC clusters in a systematics-space of reduced dimen-
sionality can actually improve the accuracy of the correc-
tion. Homogenising the scale-sensitivity (via NHC) between
bias/recovery SOMs, but keeping the incomplete systemat-
ics set for recovery (100C vs. 100A; green panel), we still see
an excellent recovery of the unbiased clustering signature
(0.94σ→ 0.28σ); as we might expect for a less complex bias.
For identical bias/recovery setups 100C (red panel), we be-
gin to see a slight over-correction by the organised randoms;
this comes about as clusters on the SOM begin to over-fit
to the cosmic structure around the density-systematics re-
lation.

Whilst the recovery is still preferable to the biased
statistic here (0.96σ → 0.54σ), we acknowledge that over-
corrections could be problematic for cosmological inference
(see Wagoner et al. 2020). However, the KiDS-Bright sam-
ple is a bright subset of the KiDS-1000 photometric sample,
specifically chosen to be ∼ 5 magnitudes shallower than the
survey flux-limit, and thus less sensitive to systematic de-
tection failures; these data are relatively unbiased already.
For more pathological biases, resulting in a higher ampli-
tude of systematic density contrast, such over-fitting to cos-
mic structure is less likely to occur. Thus we expect our ran-
doms to perform even better for samples with stronger sys-

Article number, page 12 of 24



H. Johnston, A. H. Wright et al.: Organised Randoms

Fig. 9. Angular clustering correlation functions w(ϑ) measured in flask fields, after they have been depleted (as described in
Sec. 5.2; Eq. 5.3) according to the output of various SOMs trained against the KiDS-1000 bright sample (KiDS-Bright). For
each configuration, panel-titles give the ‘bias:SOM’ trained against KiDS-Bright, and the ‘recovery:SOM’ trained against biased
flask data to create organised randoms. Top: ratios of measured clustering signals to the true, unbiased clustering. Bottom: the
unbiased angular clustering signature (black points and dashed curves; measured with uniform randoms on unbiased flask fields),
compared with biased (triangles and hatching; measured with uniform randoms) and recovered (coloured points and shading;
measured with organised randoms) clustering signals measured in the depleted fields. Errors are the root-diagonal of the covariance
over 30 flask realisations, and all are given to ±1σ. From left-to-right, the flask fields are biased according to δOR from the
800C,800C,100C,100C,100C SOMs, trained against KiDS-Bright. The m-parameter (Eq. 5.3) is set to unity in all but the purple
panel (where m = 4), and each correlation measured in the depleted fields using organised randoms displays greater consistency
with the unbiased signal, as compared with the signal measured using uniform randoms.

tematics imprints, e.g. the KiDS-1000 shear sample, dom-
inated by faint galaxies. We test this assertion using the
same setup, but setting m = 4 in Eq. 5.3. In this case
[100C(×4) vs. 100C; purple panel], a massively inflated bias
of 12.17σ is once again reliably corrected to 0.34σ.

This result is particularly important, as measuring ac-
curate clustering statistics for faint, systematics-dominated
samples has historically been extremely challenging; hence
why we often choose bright subsamples for clustering anal-
yses (also for typically more reliable estimation of galax-
ies’ photo-z; see Porredon et al. 2020). Our companion let-
ter, Wright et al., (in prep.), thus presents an application
of our organised randoms pipeline to the KiDS-1000 shear
sample, finding excellent and robust performance in cor-
recting for systematic clustering bias. Moreover, the shear
sample is a factor of ∼ 20 denser on-sky than the bright sam-
ple, enabling us to increase the resolution of the cartesian
RA/DEC grid whilst still respecting the survey mask (see
Sec. 4.1); in this way, we become more sensitive to small-
scale systematic density fluctuations at fixed NHC, which
Wright et al., (in prep.) show is important for those faint
data.

6. Clustering in the KiDS-1000 bright sample

Having validated the performance of our SOMs/organised
randoms in recognising systematic trends in galaxy density,
and removing their traces from synthetic galaxy 2-point cor-
relations, we apply our methods to measurements of galaxy
clustering in the KiDS-Bright sample, and compare tomo-
graphic cross-correlations with analogous signals measured

in the highly-complete GAMA (Driver et al. 2009; Liske
et al. 2015) sample.

We make use of randoms organised by the SOM con-
figuration 100A (detailed in Table 2), which we show (in
Figs. 9 & C.1) to robustly improve the fidelity of sig-
nal recovery in all bias:SOM scenarios from our flask
tests (which vary in scale-sensitivity via NHC, and in
the systematic-tracer parameters) – thus we expect a
reasonable correction even if the additional systematic-
tracers (MAG_LIM_r,EXTINCTION_r,gaia_nstar) are in re-
ality uncorrelated with the KiDS-Bright systematic den-
sity contrast. Moreover, the bias:800C / recovery:100A
test case (Fig. 9; orange panel) demonstrates that the
bias inferred from all parameters (set C: threshold, PSF
FWHM/ellipticity, limiting magnitude, Galactic density
of stars and extinction), with high small-scale sensitivity
(NHC = 800), is corrected with great precision by 100A or-
ganised randoms, having a residual bias of < 0.1σ. Table
C.1 summarises the performance of differently configured
organised randoms, and reveals 100A to be the net-best per-
former across all bias:SOMs.

We note that these particular SOM setups and
parameter-sets may not be the ideal for other surveys with
different areas, geometries, systematics imprints etc., and
that any organised randoms should be thoroughly tested
with simulations, as we have done (in Sec. 5).

Figure 10 hints at the advantages of creating ‘cloned’
galaxy randoms, wherein each random point is a clone of
a real object used in training of the SOM, and clones are
spatially restricted to on-sky areas occupying similar posi-
tions in the systematics-space. The figure illustrates how
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Fig. 10. Galaxy number density contrast δ in 2D bins of photometric redshift vs. RA for uniform randoms (left), the KiDS-1000
bright sample (KiDS-Bright; middle), and relevant clones from 800Ares2 organised randoms (right). Rows display blue (top) and
red (bottom) galaxies, according to a cut at observer-frame u − i = 2.66. We only show galaxies in the range 172 < RA < 205,
2 < DEC < 3 in order to reveal systematic density variations in the data and randoms. Unlike for uniform randoms, the organised
randoms can be seen to reproduce the systematic trends in the KiDS-Bright data, namely under-densities over different pointings
(e.g. RA = 175.5, 197.5), visible as vertical bands of fainter pixels, and the differential evolution of samples’ densities with redshift,
as evidenced by the boxes (highlighting a specific volume with differential density as a function of sample colour) and horizontal
lines (dashed lines give the zphot. corresponding to the 3rd and 97th percentile number counts for uniform randoms, and dotted lines
give these for KiDS-Bright data). We elect to display 800Ares2 randoms here for a clearer illustration of the cloning mechanism,
which is more subtle in our other, favoured randoms (see Sec. 5.3).

we reproduce systematic density variations in a strip of
KiDS-Bright (172 < RA < 205, 2 < DEC < 3 degrees) for
a coarse red/blue (bottom/top) sample selection8, merely
by restricting our organised randoms to the relevant clones.
The figure shows the density contrast of 1 degree columns
in RA, and we expand the radial dimension (zphot.) to draw
attention to non-physical density modes – i.e. underdensi-
ties which are localised to single pointings, seen as fainter
vertical strips of colour in the right-most column (e.g. at
RA ∈ [ 175.5, 197.5 ]) – and to the redshift evolution of
galaxy number density, which varies for red/blue galaxies;
these trends are mirrored in the 800Ares29 organised ran-
doms (right-column), in contrast with the uniform randoms
(left-column). The cloning utility will be fully realised in fu-
ture work; systematics which differentially affect arbitrary
galaxy selections can be automatically compensated, allow-
ing for easy splitting of analyses into, e.g. red and blue
galaxies, or into bins of galaxy luminosity. For now, we fo-
cus only on redshift tomography.

In addition to the tomographic bins ‘1’ and ‘2’, with
edges at zphot. = {0.02, 0.2, 0.5}, we cross-correlate two ad-
ditional, non-overlapping bins, ‘1a’ and ‘2a’, with edges at
zphot. = {0.02, 0.22} and zphot. = {0.28, 0.5}, respectively; the
gap between the inner-edges of the 2 bins is more than
the typical 95% photo-z scatter at this redshift (Fig. 3, red
line in top-panel), thus we test for a null cross-correlation

8 We define the red/blue boundary at observer-frame u−i = 2.66,
which sits in the trough of the bimodal colour distribution of
KiDS-Bright.
9 Chosen for illustrative purposes, as the inferred δOR is wider
for this setup – see Appendix B.1 – and the increased resolution
results in more clearly visible systematic density modes in the
organised randoms (discussed in Appendices B & C).

between them. Barring the auto-correlations of the full (‘to-
tal’) sample, we refer to correlations between bins ‘i’ and
‘ j’ as ‘i- j’, i.e. ‘1-1’ is the auto-correlation of tomographic
bin ‘1’; ‘1-2’ is the cross-correlation between bins ‘1’ and
‘2’, etc.

We generate organised randoms with 20× the number
density of KiDS-Bright, so as to combat Poisson-noise in
the relevant pair-counts (see Eq. 5.1). Our measurements of
angular clustering auto-correlations, within the 2 primary
redshift bins and across the full KiDS-Bright sample, are
displayed in Fig. 11. Fig. 12 displays the redshift-bin cross-
correlations, in comparison with equivalently binned signals
measured in the GAMA sample – we use our ANNz2 photo-
z estimates to define these GAMA bins, and employ the
spatially uniform, windowed, cloned-galaxy randoms pre-
sented by Farrow et al. (2015). As we discuss in Appendix
D, auto-correlations in GAMA are not suitable for vali-
dating KiDS-Bright correlations here, hence they are not
displayed in Fig. 11.

For all w(ϑ) correlations in Figs. 11 & 12, we estimate er-
rors with the delete-one jackknife technique. We divide the
KiDS-Bright/GAMA footprints into Npatch roughly equal-
area patches, and compute w(ϑ) upon the successive re-
moval of individual patches. For these Npatch signals wα, the
covariance is then

Ĉjack. =
Npatch − 1

Npatch

Npatch∑
α=1

(wα − w̄)(wα − w̄)T , (6.1)

where T denotes the conjugate transpose of a vector and
w̄ is the average of the Npatch measurements wα. For KiDS-
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Fig. 11. Angular auto-correlation functions w(ϑ) measured in the
‘total’ (i.e. un-selected) KiDS-1000 bright sample (bottom), and
within redshift bins ‘1’ (‘1-1’; top) and ‘2’ (‘2-2’; middle), with
edges ∈ [ 0.02, 0.2, 0.5 ], as shown in Fig. 3. Measurements using
uniform randoms are shown in red, and those made with 100A
organised randoms are shown in blue. Errors are estimated via a
2D delete-one jackknife with 31 pseudo-independent patches of
the footprint. Points are horizontally offset to aid with clarity.
The total sample correlation is more clearly visible in Appendix
Fig. D.1.

Bright, Npatch = 31, and Npatch = 20 for GAMA10. We note
that for our chosen binning – 30 log-spaced bins in the
range 3 ≤ ϑ ≤ 300 arcmin – so few jackknife samples will
yield singular covariance matrices (see Hartlap et al. 2007).
We are only interested in measurement errors (the square-
root of the matrix diagonal) here, and since we are not
performing any fitting we proceed as such.

In Fig. 11, we see that the 100A organised randoms make
more sizeable corrections (blue points) to the measured ‘to-
tal’ and ‘2-2’ correlations (red points), than to the ‘1-1’
correlation. This is perhaps to be expected, since at higher
redshifts the objects with faint apparent magnitudes, and
predominantly small angular extents, will be more prone
to dipping below the detection threshold (or out of sample
selection criteria) as a result of observational effects; the
smaller correction to ‘1-1’ could then be the opposite man-

10 Since the total equatorial GAMA area ∼ 180 deg2, each of the
20 patches is ∼ 9 deg2

≡ [180 arcmin]2 in size, hence errors on
w(ϑ & 180 arcmin) are likely to be under-estimated.
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Fig. 12. Angular cross-correlation functions w(ϑ) measured be-
tween KiDS-1000 bright sample (KiDS-Bright) redshift bins ‘1’
and ‘2’ (top), with edges ∈ [ 0.02, 0.2, 0.5 ], and ‘1a’ and ‘2a’ (bot-
tom), with edges ∈ [ 0.02, 0.22 ] and [ 0.28, 0.5 ], as shown in Fig.
3. Measurements using uniform randoms are shown in red, and
those made with 100A organised randoms are shown in blue. Er-
rors are estimated via a 2D delete-one jackknife with 31 pseudo-
independent patches of the footprint. Grey points and shading
give the equivalently-binned (by ANNz2 photo-z) correlations
measured for the GAMA sample, with errors estimated again
via jackknife but from 20 sub-regions of the GAMA window –
errors on scales ϑ & 180 arcmin are thus likely to be underesti-
mated for GAMA correlations.

ifestation of this effect, wherein apparently brighter/larger
galaxies are more robustly detected. The large-scale cor-
rections to cross-correlations (Fig. 12) are also small – this
is the desired behaviour, particularly in the case of dis-
joint bins ‘1a-2a’, as the cross-correlation is expected to be
zero. In fact, the rising 1a-2a signals at small values of ϑ
(red points) are largely corrected by the organised randoms.
Given the vast gap (δz = 0.06) between the disjoint bins,
these small-ϑ signals are highly unlikely to correspond to
real structures; the organised randoms are compensating
for small-scale systematic density modes, shared across the
redshift range.

We note the (still relatively small) amplitude of the w(ϑ)
correction at ϑ & 10 arcmin in the ‘total’ sample correlation
(in Fig. 11), and its similarity to the signal recoveries dis-
played in Fig. 9. This is encouraging as we can intuit that
our extraction and replication of depletion patterns, from
KiDS-Bright and in flask realisations (Sec. 5.2), is realis-
tic enough to result in consistent inferences of the required
correction to w(ϑ). Thus we can expect that the corrected
‘total’ signal is closer to the true clustering, as is the case
for the correlations from Fig. 9. In the intermediate range
7 < ϑ < 100 arcmin, the mean corrections to w(ϑ) for each
correlation are: {1-1: −5.6%, 1-2: −30.0%, 2-2: −10.9%, to-
tal: −9.4%}.

In order that analyses be conducted free of any confir-
mation bias, it has become common in large-scale structure
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analyses to practice blinding (e.g. Kuijken et al. 2015),
wherein several modified versions of key statistics are pro-
duced11 from the data alongside the true version. The truth
is revealed to the team by an independent entity only after
the entire analysis is complete, such that no critical deci-
sions can be taken in favour of some expected result. At
the time of writing, we were blind to the truth of our KiDS
data, and thus chose not to compare with theoretical mod-
els for galaxy clustering; our companion work (Wright et al.,
in prep.) considers the best-fit cosmological model from the
latest KiDS 3x2-point analysis (Heymans et al. 2020) for
comparison with corrected clustering statistics measured in
the KiDS-1000 shear sample.

A direct comparison of GAMA clustering auto-
correlations with our own also transpires to be unsuitable
here, for reasons we discuss in Appendix D. As such, we con-
sider only the redshift bin cross-correlations from GAMA
(in Fig. 12) for validation; with the alignment of sample
properties less important here, these correlations instead
probe (i) the photo-z scatter and (ii) any systematic correla-
tions shared across the KiDS-Bright redshift bins, where the
former should be negligible in the 1a-2a correlation owing to
the large gap (Fig. 3) between the bins. We see that the ris-
ing signals at small-ϑ (Fig. 12; red points) are not present in
GAMA (grey), and that our organised randoms’ corrections
(blue) result in greater consistency between GAMA and
KiDS-Bright. This is also true of the slightly negative (but
not significant) 1a-2a blue data-points in the ϑ ∼ 10 arcmin
range, where the negative GAMA points indicate possible
LSS fluctuations to be at play. The GAMA data are highly
complete (> 98%; Liske et al. 2015) and can be considered
as the unbiased ‘truth’ here; they are what we expect for
photo-z of this quality, in the absence of systematic galaxy
density patterns. We thus argue that our corrections to the
redshift bin cross-correlations are successfully removing sys-
tematic correlations from KiDS-Bright data.

7. Summary

We have developed and tested methodology for the con-
struction of ‘organised randoms’, which mirror systematic
trends in galaxy density, using self-organising maps. We
made extensive use of lognormal random field simulations
from flask to test the abilities of SOMs to recognise both
artificial and real systematic loss of galaxies, and demon-
strated that organised randoms constructed using this infor-
mation are able to reliably correct the measurable angular
clustering of the synthetic data.

With the present data volume, constructing effective or-
ganised randoms relies upon a balance between the area of
sky probed by each hierarchical cluster (essentially an n-
dimensional bin) defined on the SOM, the variables and
dimensionality of the systematics-space given to the SOM,
and the width of the distribution of systematic density con-
trast – as we have demonstrated, this balance is readily as-
sessed with simulations. If systematic modes are very much
smaller than cosmological modes, organised randoms be-
come more prone to over-correction of clustering biases –
though our SOM methods are able to test for the neces-
sity of any correction, as they estimate the distribution

11 Note that the best methods for blinding are active areas of
research; see e.g. Muir et al. (2020); Sellentin (2020); Brieden
et al. (2020).

of systematic density contrast δOR. Conversely, for strong
pathological density modes, our randoms are highly effec-
tive. Moreover, regardless of our analysis choices when test-
ing with flask simulations, our recovered clustering re-
sults are always consistent with the underlying truth, hav-
ing an average bias correction across all meaningful runs of
2.31σ → 0.34σ. Our recovery of the truth is particularly
striking in the amplified bias (m = 4) case, where we shift
from catastrophic bias with uniform randoms (12.2σ) to full
consistency with the truth (0.34σ).

We found that the importance of certain systematics-
tracing variables, at the level of the 2-point correlation func-
tion, is not necessarily determined by the strength of the
1-point (pixel) correlation of the tracer with galaxy den-
sity (see Appendix B). Whilst this finding may only ring
true for the KiDS-1000 bright sample (KiDS-Bright), we
note that simply correcting these 1-point correlations may
yet be problematic for the general goal of recovering un-
biased galaxy clustering 2-point functions – the amount of
1-point correction required to achieve this goal is not nec-
essarily clear, and further complicated by correlations be-
tween systematic-tracer parameters. We recommend the use
of principle component analysis (PCA) to alleviate the lat-
ter concern, however 2-point functions should also be con-
sidered for validation in analyses of this type.

We worked with flask simulations, modelling the foot-
print and number density of the KiDS-1000 bright sam-
ple, to create realistically-biased synthetic galaxy fields
within which to test the performance of our organised
randoms. We inferred the field of systematic galaxy den-
sity contrast directly from KiDS-1000 bright sample data,
under various assumptions modifying sensitivity to angu-
lar scales and to different systematic-tracers, and modi-
fying the amplitude of systematic fluctuations; applying
these data-driven systematic clustering imprints to many
independent realisations from flask, we then generated
organised randoms by training against the biased flask
fields, again varying the scales/tracers utilised. Under sev-
eral scenarios of biasing due to the spatially variable PSF,
detection threshold, survey depth, and Galactic stellar
density and extinction, we found that training upon the
psf_fwhm,psf_ell,MU_THRESHOLD parameters, and defin-
ing 100 hierarchical clusters on the trained SOM (setup
100A), was sufficient to yield organised randoms that con-
sistently remove the various, realistic systematic density
modes from the flask galaxy fields. These 100A organised
randoms recovered clustering signals deviating on average
from the unbiased signal at ∼ 0.3σ, over the relevant flask-
testing setups with average bias ∼ 1.1σ. For the most pes-
simistic clustering bias scenarios, where un-corrected sig-
nals deviate from the truth at up to ∼ 12σ, the perfor-
mance of organised randoms remains robust, with the bias
of recovery at ∼ 0.3σ.

We presented the first measurement of photometric
galaxy clustering from the Kilo Degree Survey, for bright,
GAMA-like galaxies from the 1000 deg2 4th Data Re-
lease. Defining 2 tomographic bins, with edges zphot. =
[0.02, 0.2, 0.5], we measured the angular auto- and cross-
correlation functions over 3 < ϑ < 300 arcmin with uniform
and organised randoms. We saw that our organised ran-
doms make variable corrections to tomographic auto- and
cross-correlations, editing amplitudes at intermediate an-
gular scales (7 . ϑ . 100 arcmin) by up to ∼ 10% (∼ 1σ) in
the auto-correlations, and ∼ 30% in the cross-correlations.
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We implemented our randoms such that each random
point is a ‘clone’ of a real galaxy, scattered within regions
of the survey footprint that are similar to the location of
the parent galaxy in terms of the position it occupies in
systematics-space. Thus by mimicking galaxy sample selec-
tions in the randoms, we compensate for distinct, sample-
specific systematic correlations; e.g. those induced by selec-
tions in galaxy photo-z. For tomographic cross-correlations,
our randoms were found to correct significant systematic
density modes at small-ϑ, which are shared between dis-
parate redshift populations, whilst making nearly negligible
corrections throughout the remaining angular range; indi-
cating similar small-scale, but distinct larger-scale system-
atic clustering imprints for the different redshift popula-
tions. This utility is easily generalised to any galaxy sample
selections in e.g. luminosity, colour etc.

An extension of this work to increased areas and galaxy
number densities is extremely promising; larger areas will
result in better handling of large-ϑ systematic density
modes, due to more redundant sampling, and a smoother
distribution of density contrast, which will minimise con-
tamination of the randoms by cosmic structure. Higher
galaxy densities offer better sampling of small-ϑ modes,
a smoother description of the systematics-space, and the
chance to raise the resolution of the randoms without fear of
greater contamination by structure. Thus the performance
of organised randoms should improve on all scales with
next-generation datasets; our companion letter (Wright et
al., in prep.) moves to verify our assertions here, applying
our testing pipeline to measurements of clustering in the
faint KiDS-1000 shear sample, thus exploring a deep sur-
vey, high number density scenario.

Upon acceptance of this article, we will make our code
and methods public, such that independent teams can ex-
periment with the handling of systematic density varia-
tions using organised random clones. Future surveys that
will make powerful use of galaxy clustering (e.g. the Ru-
bin Observatory, Euclid) can then include the construction
of organised randoms as a pipeline module, adding to the
panoply of complementary means for the accurate measure-
ment of galaxy positional statistics.
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Appendix A: Artificial systematics

Here we extend our discussion of characterisation of ar-
tificial systematic density fluctuations with self-organising
maps (Sec. 4). We created artificial systematic-tracer vari-
ables (Fig. 5) with arbitrary depletion functions (Fig. 6)
to apply to flask mock data (the excess probability of
depletion for each artificial variable is given in Fig. A.1),
finding the T1mock SOM (Table 2) to be capable of char-
acterising the depletion functions directly from the mock
catalogue (Fig. 7). As a sanity-check, we also run the same
SOM against the 30 flask catalogues before applying any
depletion – the SOM should not find any density-systematic
correlations where none exist. The results are shown in
Fig. A.2, where the depletion functions from Fig. 6 are in-
cluded for reference, and we see the desired behaviour; the
SOM recognises no significant, systematic trends in galaxy
density (barring some of the irregularities related to grid-
resolution, discussed in Sec. 4.1).

Appendix B: Pixel density-systematic 1-point
correlations

Here we consider correlations between the densities of
galaxies in pixels on-sky and the values of systematic-tracer
variables in those pixels. Many incarnations of these statis-
tics appear in the literature, often as metrics to demonstrate
successful decorrelation of galaxy densities and systematics
by other methods (e.g. Suchyta et al. 2016; Rezaie et al.
2020; Kitanidis et al. 2020) and occasionally in order to
derive the corrections themselves (Elvin-Poole et al. 2018;
Vakili et al. 2020). For these tests, we construct galaxy den-
sity and systematics maps using healpy with nside = 256,
corresponding to on-sky pixels of roughly 14 × 14 arcmin
in size. We compute the mean systematics in each pixel,
applying requisite scaling to pixels that are only partially
sampled by the survey window.

This approach is somewhat analogous to that of Elvin-
Poole et al. (2018), who used 1-point functions directly to
derive per-galaxy weights in order to mitigate clustering
systematics. In our case, however, the 1-point correlations
serve only as a diagnostic; our SOM approach improves
on pixel-correlation methods by dropping some commonly-
made approximations: in particular we map the galaxy de-
pletion function through a higher-dimensional systematics-
space, correcting galaxies directly in this space, rather than
iteratively suppressing only the worst correlations until
crossing some threshold. Additionally, whilst usually ap-
proximated as linear in the density contrast, the depletion
of galaxies as a function of systematics in our method can
be arbitrarily non-linear, allowing greater freedom to cor-
rect for more complex systematic modes.

We make some changes to the typical formulation of
the galaxy density vs. systematic pixel correlations. First,
we normalise per-pixel number-counts (or ‘pixel-counts’)
of galaxies, Ngal, not by the global average galaxy pixel-

counts,
〈
Ngal

〉
, but instead by pixel-counts for a uniform

random field, Nrand (given the same on-sky pixelisation).
This minimises any influence of inhomogeneity (e.g. cosmic
structure) across the galaxy data, and correctly accounts
for survey mask effects. The two estimators are generally
equivalent in the limit of large area, modulo normalisation
between the average random and galaxy number densities.

Second, for the ‘corrected’ case we normalise the galaxy
pixel-counts by the organised randoms’ pixel-counts; any
systematic correlations in the data should thus be cancelled
by the mirrored trends in the organised randoms.

We note here, though, that the erasure of such trends
can be a misleading measure of performance. Inter-tracer
correlations can induce trends in the Ngal /Nrand distribu-
tion, as a function of systematics, that make individual sys-
tematics appear more/less significant than they truly are.
Furthermore, the strength of correlation per systematic that
is needed to introduce a significant clustering bias is also an
open question, but is likely dependent upon the sample be-
ing analysed, the systematic parameter’s distribution and
dynamic range, and the ultimate angular scales of interest.
Finally, these distributions can behave particularly patho-
logically when correcting systematic density variations us-
ing variable randoms, as we are doing. As a simple demon-
stration, should the organised randoms produce a catalogue
that exactly reproduced the input galaxy catalogue (i.e. the
randoms encoded all galaxy density fluctuations, system-
atic and cosmological), then these correlations would ap-
pear perfectly flat. This would constitute the most abject
failure of our corrective method, and yet this diagnostic
would be labelled a success.

These concerns lead us to derive and consider orthog-
onal principle component maps (i.e. principle component
analysis, or PCA; see Jolliffe 2002, for a comprehensive text
on PCA) alongside our systematics maps (see also Wagoner
et al. 2020, who apply such a decomposition to their system-
atics maps). Principle components are defined as new, or-
thogonal basis vectors for n-dimensional data, constructed
from linear combinations of the original dimensions. The
new basis then describes – in order, from component 1 to
component n – the directions of greatest variance in the
data. As the basis vectors are orthogonal, principle compo-
nents have no covariance and are thus more instructive for
assessing the significance of density-systematic correlations,
although they are more difficult to interpret physically.

Lastly, we assess the expected spread of pixel density-
PCA component (or density-systematic) correlations for in-
dividual, unbiased realisations of the large-scale structure
within our survey parameters – these are given in Fig.
B.1, where solid lines give the 1σ and 2σ widths of the
Ngal /Nrand vs. systematic-tracer distributions from 100 in-
dividual flask realisations. As Fig. B.1 shows, the intrinsic
spread of galaxy number density vs. systematic-tracers over
100 independent realisations of KiDS-Bright-like synthetic
data is often around a few percent, and rises for more long-
varying tracers – e.g. Galactic extinction and stellar density.
Thus, for our data, galaxy density-component/systematic
correlations within a few percent of unity cannot be dis-
tinguished from those arising stochastically. These are the
‘limits’ of useful bias-correction dictated by sample vari-
ance, and we shall mark them as purple shading in the
following pixel-correlation figures.

Appendix B.1: Correction of 1-point correlations

Having created maps of each of the systematic-tracers listed
in Table 1, we mask pixels in the 1st and 99th percentile
tails of each distribution and make additional cuts by hand,
excluding the few sparse pixels with extreme outlier val-
ues for systematic-tracers – these would otherwise contam-
inate correlations with poorly sampled, unrepresentative
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Fig. A.1. The same as Fig. 5, but only for parameters with non-zero depletion functions. The colouring now denotes the excess
probability of depletion, as a function of each artificial systematic; a galaxy with an excess probability of 1 is 100% more (or twice
as) likely to be depleted when compared with an excess probability of zero.
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Fig. A.2. The same as Fig. 7, but for a SOM trained on an unbiased flask field. The depletion functions are again shown as red
dashed lines, though no depletions were applied. Irregularities, e.g. in the A3 panel, are discussed in Sec. 4.1. Data-points derived
from lognormal random fields (green) are on average higher in ngal than those from uniform fields (orange) because of the clustering
of galaxies; the Cartesian grid, used to estimate the area of the sample, has more empty cells for the GRF, hence the area is
under-estimated and ngal is over-reported.

galaxy counts. We then ‘whiten’ the parameter distribu-
tions (transforming each to zero-mean and unit-variance)
before retrieving 14 orthogonal principle component maps.
The matrix of linear coefficients connecting PCA compo-
nents to systematics tracers is shown in Fig. B.2.

Figs. B.3 & B.4 illustrate why these 1-point correlation
metrics are unsuitable for assessing the performance of our
corrective randoms. In Fig. B.3, we select the subset of 4
component-density pixel correlations in bias:800C flask re-
alisations that are best-corrected to unity after normalisa-
tion by the 100A organised randoms’ density in those pixels
(one sees from Fig. B.2 that these components are closely

related to the PSF/threshold training variables from pa-
rameter set A). The implication is that residual correlations
will cause 2-point clustering correlations to be biased, as
the 100A SOM is insufficiently tracing systematic density
fluctuations at the pixel-level. However, we also see on the
right-hand side in Fig. B.3 that these organised randoms
are, in fact, capable of recovering unbiased clustering 2-
point functions.

Conversely, when we raise the grid-resolution of our or-
ganised randoms (setup 800Ares2 from Table 2), we see
that the systematic-density 1-point correlations in Fig. B.4
are almost perfectly corrected (we show systematic-tracers
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Fig. B.1. The intrinsic scatter of Ngal /Nrand vs. various systematics tracer variables (Table 1), as measured over 100 flask realisations
with the KiDS-Bright survey parameters/footprint. Without any biases applied to the flask realisations, the blue (1σ) curves give
half the difference between the 16th and 84th percentiles of the distribution of 100 individual Ngal /Nrand vs. systematics correlations.
2σ (orange) curves give half the difference between the 2.5th and 97.5th percentiles. Galaxy/random counts and mean-systematics
are taken in nside = 256 pixels, about 14 arcmin in size.

Fig. B.2. Linear coefficients, as indicated by the colourbar, de-
scribing the transformation of systematic-tracer variable maps
into principle component maps, for nside = 256.

in this figure as they are easier to interpret, and since the
component corrections are similarly near-perfect), whilst
the 2-point functions reveal a pathological over-correction
of the clustering signature. This is because the 800Ares2
randoms are too-closely reproducing the real, cosmic struc-

ture in the data (demonstrated by the unbiased data-
organised randoms cross-correlation, which is at ∼ 50% of
the unbiased signal), and thus acting to destroy real cluster-
ing signals. As such, we restrict our validation of organised
randoms to 2-point correlation statistics, which offer in-
sight into potential over-corrections as organised randoms
become contaminated by cosmic structure.

Appendix C: Data-driven systematics

Fig. C.1 presents additional configurations of the
bias:[800A,100A] / recovery:[100A,100C] 2-point correla-
tions. As stated in the main text, each meaningful case
yields a recovered clustering signal that is more consistent
with the unbiased clustering. For bias:800A cases, where
the bias is slightly weaker than for bias:800C (Fig. 9) due
to the omission of MAG_LIM_r,EXTINCTION_r,gaia_nstar
parameters from training, the performance of organised
randoms is similarly strong, and a slight preference for
recovery:100A over 100C is negligible with respect to the
noise-level (∼ 0.1σ). When clustering biases are particu-
larly weak, as for the bias:100A case, our methods become
more prone to over-correction. Still, the mean absolute de-
viation from the unbiased case (in units of the standard
deviation of the unbiased clustering; summarised for all
configurations in Table C.1) is improved in the recovery
with respect to the biased case here, primarily due to the
success of corrections at smaller values of ϑ. We note that
the bias:100A case constitutes our most optimistic bias sce-
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Fig. B.3. Left: pixel (1-point) correlations between the galaxy number density Ngal/Nrand in biased (according to the 800C SOM)
flask mocks and the mean PCA components in those same pixels (see Appendix B). Correlations normalised by uniform randoms’
counts-in-pixels are given in blue, and those normalised (corrected) by the pixel-counts of 100A organised randoms are given in
orange. Correlations and errors are the mean, and the root-diagonal of the covariance, over 30 flask realisations, respectively.
Purple shading indicates the expected, intrinsic 1σ spread in these correlations, as calculated over 100 unbiased flask realisations
(Fig. B.1). Shown here are the 4 (out of 14) correlations for which the organised randoms correction most improves consistency
with unity. Right: the corresponding biased/recovered 2-point angular clustering correlations w(ϑ), shown in ratio to (top), and
overlaid on (bottom), the unbiased clustering signature, as in Fig. 9. We also show the cross-correlation between organised randoms
and the unbiased data, and its ratio to the unbiased clustering signal, in orange. Correlations and errors are again the mean, and
the root-diagonal of the covariance, over 30 flask realisations, respectively.

nario, having low sensitivity to small-ϑ (via small NHC)
and the minimal set of systematic-tracer training variables
(psf_fwhm,psf_ell,MU_THRESHOLD) – for more pessimistic
scenarios, the organised randoms’ performance is consis-
tently improved. As also stated in the text, this bodes ex-
tremely well for the potential salvage of unbiased clustering
signals from heavily systematics-contaminated data, such
as the faint KiDS-1000 shear sample (see Wright et al., in
prep.).

Appendix D: GAMA comparisons

As discussed in Sec. 2.1, our KiDS-Bright selection is de-
liberately GAMA-like for the training of photo-z estima-
tion (Bilicki et al., in prep.). Thus we might expect a sim-
ilar clustering signature from KiDS-Bright, but for a re-
duction in amplitude due to photometric redshift scatter;
scattering dis/connected galaxies in/out of each bin will di-
lute the measurable clustering signals. To replicate this ef-
fect in the spectroscopic GAMA sample, we cross-matched
GAMA with KiDS-Bright and defined redshift bins using
the KiDS ANNz2 photo-z. The resulting ‘total’ correla-
tions, shown as grey points and shading in the top-panel of

Fig. D.1, exceeded even the un-corrected KiDS-Bright cor-
relations in amplitude. We determined that KiDS-Bright
is not sufficiently GAMA-like to expect agreement here by
re-measuring correlations for all KiDS-Bright galaxies in
the GAMA window (Fig. D.1; middle-panel), and finding
a reduced clustering amplitude which is more consistent
with the corrected (by organised randoms) correlation. We
measured correlations once more for KiDS-Bright in the
GAMA window, now with a flux-limit r < 19.8 applied
to KiDS magnitudes12 (Fig. D.1; bottom-panel), and again
see the clustering amplitude rise to exceed all KiDS-Bright
signals. We conclude that a comparison with the GAMA
auto-clustering signals is not entirely valid for KiDS-Bright,
noting also that, with only ∼ 1/5 of the KiDS-Bright area,
the impacts of increased sample variance in GAMA present
further complications.

12 KiDS magnitudes are not equivalent to the Petrosian magni-
tudes against which GAMA targets were selected, so this flux-
limit is only approximately GAMA-like – see Bilicki et al. (2018).
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Fig. B.4. The same as Fig. B.3, now for bias:800Ares2 / recovery:800Ares2 – i.e. the high-resolution setup – and considering
systematic-tracers rather than PCA components. One sees that near-perfect 1-point correlation corrections (left) are accompanied
by the cross-correlation, between unbiased flask data and organised randoms (right; orange), rising to ∼ 50% of the unbiased
clustering signature, compared with the negligible cross-correlation in Fig. B.3.

Fig. C.1. The same as Fig. 9, now for some additional bias:SOM / recovery:SOM configurations, as indicated by panel-titles (with
reference to Table 2).
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Table C.1. The relative performance of corrections to angular
clustering correlations w(ϑ) on the intermediate scales 7 < ϑ <
100 arcmin, for differently configured clustering biases and organ-
ised randoms.

bias:SOM recovery:SOM biased recovered

100A 100A 0.69σ 0.61σ
100A 100C 0.79σ 0.35σ
100C 100A 0.94σ 0.28σ
100C 100C 0.96σ 0.54σ

100C(x4) 100C 12.17σ 0.34σ
800A 100A 1.13σ 0.27σ
800A 100C 1.19σ 0.31σ

800Ares2 800Ares2 7.62σ 9.58σ
800C 100A 1.43σ 0.09σ
800C 100C 1.48σ 0.31σ

Notes. With reference to Table 2, the ‘bias:SOM’ column gives
the SOM trained against KiDS-Bright to infer δOR (Eq. 5.3)
and inform the density-field bias applied to 30 flask reali-
sations of KiDS-Bright-like data; the ‘recovery:SOM’ column
gives the SOM trained against those biased flask mocks to
produce organised randoms (see Sec. 5.2 for details). On av-
erage over the 30 flask realisations, the ‘biased’ and ‘recov-
ered’ columns then give the absolute deviation from the unbi-
ased signal |wbiased/recovered − wunbiased |, in units of the uncertainty
in the unbiased signals σ, averaged over the intermediate scales
7 − 100 arcmin. Non-uniformity of ‘biased’ column values, with
self-similar ‘bias:SOM’ setups, arises stochastically due to our
probabilistic application of biases to flask realisations, and all
variations are at < 0.1σ. The 800Ares2 configuration illustrates a
failure mode of our organised randoms methods, where the reso-
lution and scale-sensitivity of the setup are too high, resulting in
over-fitting to cosmic structure and a consequent over-correction
of the clustering signal.
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Fig. D.1. A comparison of different clustering measurements in
the GAMA area, and how they compare with the KiDS-Bright
correlations measured with (blue) and without (red) 100A or-
ganised randoms. Red/blue data-points are the same in all rows,
whilst grey points and shading are the angular clustering mea-
sured with uniform randoms for (top) the KiDS-Bright-GAMA
cross-matched catalogue, (middle) KiDS-Bright galaxies within
the GAMA window, and (bottom) KiDS-Bright galaxies within
the GAMA window, and with r < 19.8. Errors are estimated
via delete-one jackknifes, from 31 sub-regions of KiDS-Bright,
or 20 sub-regions of the GAMA window – errors on scales
ϑ & 180 arcmin (the approximate scale of each sub-region) are
thus likely to be underestimated for the GAMA-area correla-
tions.
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