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A B S T R A C T

We use a specialized boundary-value problem solver for mixed-type functional differential equations to
numerically examine the landscape of traveling wave solutions to the diatomic Fermi–Pasta–Ulam–Tsingou
(FPUT) problem. By using a continuation approach, we are able to uncover the relationship between the
branches of micropterons and nanopterons that have been rigorously constructed recently in various limiting
regimes. We show that the associated surfaces are connected together in a nontrivial fashion and illustrate the
key role that solitary waves play in the branch points. Finally, we numerically show that the diatomic solitary
waves are stable under the full dynamics of the FPUT system.
. Introduction

In this paper we study the Fermi–Pasta–Ulam–Tsingou (FPUT)
quation1,2

𝑗 𝑥̈𝑗 = 𝐹 (𝑥𝑗+1 − 𝑥𝑗 ) − 𝐹 (𝑥𝑗 − 𝑥𝑗−1), 𝑗 ∈ Z (1.1)

n the diatomic regime

𝑗 =

{

1, 𝑗 is odd,
𝑚, 𝑗 is even,

(1.2)

sing the quadratic spring force 𝐹 (𝑟) = 𝑟 + 𝑟2. In particular, we
umerically investigate several branches of diatomic traveling waves
hat have recently been shown to exist for this system. Using a con-
inuation approach, we track these branches outside of the parameter
egimes where they have been rigorously constructed. This allows us
o shed light on the intricate structure of the broader landscape of such
olutions.

.1. Propagation in discrete media

By now, the FPUT system (1.1) is well-established as a classic
rototype of the propagation of disturbances through spatially discrete

∗ Corresponding author.
E-mail addresses: tfaver1@kennesaw.edu (T.E. Faver), hhupkes@math.leidenuniv.nl (H.J. Hupkes).

1 Such equations are also referred to as advance-delay differential equations.

systems, such as granular media, artificial metamaterials, DNA strands,
and electrical transmission lines.3,4 In essence, it models an infinite,
one-dimensional chain of particles that can only move horizontally and
are connected to their nearest left and right neighbors by nonlinear
springs. In the relative displacement coordinates

𝑟𝑗 = 𝑥𝑗+1 − 𝑥𝑗 , (1.3)

these springs transmit a force 𝐹 (𝑟𝑗 ) between the particles at sites 𝑗
and 𝑗 + 1. Applying Newton’s law, this leads naturally to the evolution
(1.1) for the position variables 𝑥𝑗 ; see Fig. 1. We do note that various
other studies incorporate higher-order terms into the force 𝐹 (𝑟),5–7 but
these can typically be handled using refined perturbative techniques8

provided that the displacements from equilibria remain sufficiently
small.

Traveling waves have played a fundamental role in the analysis of
(1.1) and other spatially discrete systems.4,9–12 In the current diatomic
setting, such solutions take the form

𝑟𝑗 (𝑡) =

{

𝑟𝑜(𝑗 + 𝜎𝑡), 𝑗 is odd,
𝑟𝑒(𝑗 + 𝜎𝑡), 𝑗 is even,

(1.4)

which means that the speed 𝜎 and the pair of wave profiles (𝑟𝑜, 𝑟𝑒) must
satisfy the two-component mixed-type functional differential equation1
https://doi.org/10.1016/j.padiff.2021.100128
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Fig. 1. The diatomic FPUT lattice, featuring alternating masses 𝑚 and 1 connected by identical springs.
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𝜎2𝑟′′𝑜 (𝜉) =
1
𝑚𝐹

(

𝑟𝑒(𝜉 + 1)
)

−
(

1 + 1
𝑚

)

𝐹
(

𝑟𝑜(𝜉)
)

+ 𝐹
(

𝑟𝑒(𝜉 − 1)
)

𝜎2𝑟′′𝑒 (𝜉) = 𝐹
(

𝑟𝑜(𝜉 + 1)
)

−
(

1 + 1
𝑚

)

𝐹
(

𝑟𝑒(𝜉)
)

+ 1
𝑚𝐹

(

𝑟𝑜(𝜉 − 1)
)

.
(1.5)

The argument shifts in this system prevent the use of powerful ODE-
techniques such as phase-plane analysis. This causes many techni-
cal complications in the analysis of spatially discrete systems; see,
e.g., Ref. 13 for an overview of the machinery that has been developed
for MFDEs.

1.2. Formal limits

The complexity of (1.5) can be reduced considerably by taking
various (formal) limits. We briefly sketch three procedures of this type
that play an important role in this paper.

1.2.1. Equal mass limit
Taking 𝑚 = 1, the diatomic lattice becomes monatomic and one can

set 𝑟𝑜 = 𝑟𝑒 = 𝜙 to arrive at the scalar MFDE
2𝜙′′(𝜉) = 𝐹

(

𝜙(𝜉 + 1)
)

− 2𝐹
(

𝜙(𝜉)
)

+ 𝐹
(

𝜙(𝜉 − 1)
)

. (1.6)

This is a classical problem that was analyzed in detail by Friesecke in
combination with Wattis14 and Pego,5,15–17 who established that there
exists a smooth branch of nontrivial solitary waves (𝜎, 𝜙𝜎 ) that are even,
exponentially localized, and stable. In particular, for small 𝜖 > 0 one
can write

𝜎𝜖 = 1 + 𝜖2

24
, (1.7)

and show that the associated profiles 𝜙𝜎𝜖 satisfy the limiting behavior5

‖

‖

‖

‖

8
𝜖2

𝜙𝜎𝜖 (2𝜖
−1⋅) − sech2(⋅)

‖

‖

‖

‖𝐻1
= (𝜖2). (1.8)

More recently, Herrmann and Matthies6,18,19 considered the ‘‘high-
energy’’ limit 𝑐 ≫ 1, using a different Lennard-Jones-type potential for
he springs that is analytic at 𝑟 = 0 but singular at 𝑟 = 1.

.2.2. Small mass limit
Multiplying (1.5) by 𝑚 and formally setting 𝑚 = 0, the injectivity of

𝐹 on [0,∞) yields the identification

𝑟𝑜(𝜉) = 𝑟𝑒(𝜉 + 1). (1.9)

Physically, this means that the mass-less particles are fixed halfway
between the heavier ones, corresponding with the intuition developed
in Refs. 20, 21. Upon setting

𝜑(𝜉) = 1
2
𝑟𝑜(2𝜉) +

1
2
𝑟𝑒(2𝜉 + 1) (1.10)

and adding the first line of (1.5) to a shifted version of the second line,
the identification (1.9) readily reveals the MFDE

𝜎2𝜑′′(𝜉) = 2
[

𝐹
(

𝜑(𝜉 + 1)
)

− 2𝐹
(

𝜑(𝜉)
)

+ 𝐹
(

𝜑(𝜉 − 1)
)]

. (1.11)

If 𝜎 ≳
√

2, then a solution to (1.11) is 𝜑 ∶= 𝜙𝜎∕
√

2, where 𝜙𝜎∕
√

2 solves
(1.6). That is, solitary waves can be expected for 𝜎 ≳

√

2. The extra
scaling corresponds to the notion that the effective limiting monatomic
lattice has double the spring length of the original diatomic lattice. This
is exactly how Hoffman and Wright20 generate their limiting solitary
waves.
 v

2

1.2.3. Long wave limit
Here we fix 𝑚 ≠ 1 and make the classical long wave scaling22

𝑟𝑜(𝜉) = 𝜖2𝜃𝑜(𝜖𝜉; 𝜖) and 𝑟𝑒(𝜉) = 𝜖2𝜃𝑒(𝜖𝜉; 𝜖). (1.12)

pon making the further perturbation ansatz

𝑜(𝑋; 𝜖) =
3
∑

𝑘=0
𝜖𝑘𝑢𝑘(𝑋) and 𝜃𝑒(𝑋; 𝜖) =

3
∑

𝑘=0
𝜖𝑘𝑣𝑘(𝑋), (1.13)

ne can subsequently solve the traveling wave Eqs. (1.5) formally to
(𝜖4) by taking

1 = 𝑣1 = 𝛷𝑚, 𝜎 = 𝜎(𝑠)𝑚 + (𝜖2) (1.14)

nd defining the other 𝑢𝑘 and 𝑣𝑘 in more complicated terms of the
rofile 𝛷𝑚. Here the speed of sound is

(𝑠)
𝑚 ∶=

√

2
1 + 𝑚

(1.15)

nd the solitary wave profile 𝛷𝑚 satisfies the KdV traveling wave
quation

𝑚𝛷
′′ −𝛷 + 𝑏𝑚𝛷

2 = 0, (1.16)

where 𝑎𝑚 and 𝑏𝑚 are (complicated) 𝑚-dependent coefficients,
see Ref. 23, Eq. (3.2). That is,

𝛷𝑚(𝑋) ∶= 3
2𝑏𝑚

sech2
(

𝑋
2
√

𝑎𝑚

)

. (1.17)

We note that 𝜎(𝑠)𝑚 reduces to the critical values found above for 𝑚 = 1
and 𝑚 = 0.

In a certain sense, this procedure can be seen as a specialization
of the techniques developed in Ref. 24 and Ref. 25. Here the authors
consider monatomic respectively polyatomic2 FPUT systems and derive
a set of KdV PDEs to approximate the evolution of suitably scaled initial
conditions over algebraically long time-scales.

As we discussed at the start of Section 1.1, we are using the smooth
spring force 𝐹 (𝑟) = 𝑟+ 𝑟2 throughout this paper. Allowing a nonsmooth
force in the diatomic lattice introduces exciting complications and be-
haviors beyond the scope of our analysis. Nonetheless, one can sensibly
pose a long wave limit for forces beyond our 𝐹 ; for example, Dumas and
Pelinovsky26 prove that the log-KdV equation serves as the continuum
limit for the monatomic FPUT lattice with Hertzian spring interaction.

1.3. Rigorous results

The main focus of the recent papers20,23,27 has been to rigorously es-
tablish the presence of solutions to the two-component traveling wave
problem (1.5) in the neighborhood of the (formal) limiting solutions
discussed above. The parameter regimes that have now been treated
are depicted in Fig. 2, which we reproduce from Ref. 27, Fig. 2. Each of
these regimes has its distinctive features and requires specialized tools
and techniques, which we briefly discuss below and in Section 2.

2 In this case both the masses and the spring forces in (1.1) are allowed to
ary periodically.
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Fig. 2. Bands of rigorously constructed traveling wave solutions for the long wave
(yellow), small mass (red), and equal mass (blue) diatomic problems. In general, it is
a technical artifact of the various existence proofs in Refs. 20, 23, 27 that the bands
collapse as the fixed parameter approaches its own critical value. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

1.3.1. Ripples
The common theme in the approaches of Refs. 20, 23, 27 is that

one has to give up on the exponential localization of the wave profiles.
Stated more informally, the traveling wave Eqs. (1.5) are not generi-
cally expected to admit solitary wave solutions. One can interpret this
as a manifestation of the purely imaginary spatial eigenvalues associ-
ated to the linearization of (1.5) around the zero background state. In
contrast to the monatomic setting, this contribution to the essential
spectrum cannot be fully removed by applying exponential weight
functions. Indeed, the resulting linearization typically has codimension
one; see Section 2.3.1.

To fill the resulting gap, one needs to follow Beale’s key insight28

nd incorporate the background sinusoidal periodic solutions associ-
ted to the eigenvalues mentioned above. At the nonlinear level, this
esults in an asymptotic ‘‘ripple’’ in the traveling wave profiles at spatial
nfinity, which destroys their exponential localization.

Quantifying the size of this ripple in terms of the relevant small pa-
ameter is an interesting aspect, both from a theoretical and a practical
erspective. Indeed, the simulations by Giardetti, Shapiro, Windle, and
right29 suggest that the size of the ripple is directly related to the

nergy loss that the ‘‘core’’ of the wave experiences as it propagates
hrough the lattice. We discuss this issue in detail in Section 5. For
ow, we simply remark that the (meta-)stability of the diatomic waves
onstructed in Refs. 20, 23, 27 is a delicate open question.

.3.2. Nanopterons
The results3 of Faver and Wright in Ref. 23 show that for fixed

∈ (0, 1) there exist long wave solutions to (1.5) for 𝜎 ∈ (𝜎(𝑠)𝑚 , 𝜎(𝑠)𝑚 + 𝛿𝑚)
here 𝜎(𝑠)𝑚 is the speed of sound from (1.15). Moreover, 𝛿𝑚 → 0 as
→ 1−. It is unclear what the behavior of 𝛿𝑚 is for 𝑚 → 0, since

he relevant parameter in Ref. 23 is in fact 1∕𝑚 which diverges. The
mplitude of the ripple turns out to be small beyond all orders in 𝜎−𝜎(𝑠)𝑚 ,
wing to the fact the underlying perturbation from the limiting (scaled)
rofile 𝛷𝑚 is singular. Following Boyd’s30 terminology, we refer to the
esulting waves as nanopterons; see Fig. 3b for a contrast with the
olitary wave.

3 It is also possible to find long wave nanopterons in the spring dimer
attice.8 This is an FPUT lattice in which the masses are identical but the

spring forces alternate.
3

Similar results due to Hoffman and Wright hold for the small mass
regime,20 but here one fixes 𝜎 ≳

√

2 (cf. our discussion of (1.11)) and
the small parameter is 𝑚 > 0. The difference is that now an underlying
olvability condition forces a countable set of mass ratios to be excluded
rom the analysis. It is unclear whether or not (solitary) waves exist at
hese ratios, which aggregate at zero.

.3.3. Micropterons
We considered the equal mass regime in Ref. 27 and established a

et of technical conditions under which an (arbitrary) solution (𝜙, 𝜎) to
the monatomic problem (1.6) can be extended into the setting 𝑚 ≈ 1.
A major difference with the previous settings is that the underlying
perturbation problem is regular, which allowed us to provide an explicit
integral expression to characterize the (𝑚 − 1) behavior of the ripple
amplitude; see Section 2.3.3.

We were able to verify these technical conditions for the waves (1.8)
by performing a careful expansion in 𝜖 and examining the leading order
terms. However, we strongly suspect that the (𝑚−1) coefficient for the
ipple amplitude is small beyond all orders in 𝜖, which suggests that our

expansions cannot rule out that this coefficient vanishes. Nevertheless,
we followed the terminology of Boyd30 and speculatively referred to
ur constructed solutions as micropterons; see Fig. 3c for a contrast
ith the nanopteron.

.3.4. Solitary waves
Although the ripple amplitude is a crucial variable to close the fixed-

oint arguments in Refs. 20, 23, 27, it could still potentially vanish
t certain (𝜎, 𝑚) pairs. The resulting solitary waves can be seen as
lossless mechanism to transport finite-energy states over arbitrary

istances. As a consequence, solutions of this type play an important
ole in many applications and have been extensively studied in many
ifferent settings.4,31–33 It has been conjectured that solitary waves do
xist in the diatomic lattice for a countable, discrete set of mass ratios
hat accumulate at 0; see Refs. 23, 34, 35. We discuss these conjectures
n greater detail in Section 1.5.

.4. Main results

Besides the justification of our ‘‘micropteron’’ terminology
rom Ref. 27, the main goal of this paper is to numerically examine the
ull region between the three limiting curves in Fig. 2. In particular, we
hed light on the relation between the three types of diatomic waves
iscussed above by extending them beyond the parameter regimes that
ere rigorously analyzed in Refs. 20, 23, 27. Hopefully this will set the

tage for further analytical work in this intriguing but challenging area;
ee, e.g., Ref. 23, §7 for a short discussion of the technical obstructions.

Our main technical contribution is that we map out the two-
arameter surfaces of micropterons and nanopterons that emerge from
he (formal) limiting monatomic profiles at 𝑚 = 1, respectively 𝑚 = 0
the horizontal solid curves in Fig. 2). This is achieved by numerically
olving the MFDE (1.5) for a large number of (𝜎, 𝑚) pairs, using a
ontinuation approach to provide suitable initial conditions. In ad-
ition, we numerically evaluate the leading-order coefficient for the
icropteron ripple-amplitude and show that it does not vanish.

The main conclusion is that the micropteron and nanopteron sur-
aces are in fact connected, albeit in a highly nontrivial fashion fea-
uring holes, folds and twists. For example, if one fixes 𝜎 and looks
t the associated one-dimensional cross-section, the nanopteron and
icropteron curves are typically disconnected. Exceptions occur at

solated values of 𝜎 and appear to be closely related to the occurrence
f double roots as one tracks the ripple amplitude over the curve.

Indeed, as a byproduct of our analysis we uncover several branches
f solitary waves. These occur in very narrow bands of 𝑚-values that
ompress as 𝑚 → 0+, which hence provides a numerical confirmation
f the conjectures from Refs. 34–36 that we discuss below. In order to
xplore the stability of these solitary waves, we use (an approximation
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Fig. 3. Schematic representation of the three types of traveling waves featured in this paper.
of) one of them as an initial condition for the dynamics of the full FPUT
system (1.1). By comparing the resulting behavior with the computa-
tions from Ref. 29, we are able to provide strong numerical evidence
to suggest that these waves provide stable and robust mechanisms for
energy transport.

1.5. Related models

In order to place our results in perspective, we briefly discuss several
prior numerical and theoretical studies that are closely related to our
setting. These focus on several lattice models that are qualitatively
similar to the FPUT system (1.1).

1.5.1. The diatomic Toda lattice
In this setting the spring force in (1.1) is chosen to be the Toda force

𝐹 (𝑟) = 1 − 𝑒−𝑟.37 The extra higher-order terms added to our quadratic
expression ensure that the problem is fully integrable. Vainchtein,
Starosvetsky, Wright, and Perline34 study this lattice in the small mass
limit. They use a multiscale asymptotic analysis to deduce that small-
amplitude traveling waves in the lattice can have oscillations at infinity
unless a certain function 𝜄(𝑚) of the mass ratio 𝑚 vanishes. They then
compute the roots of 𝜄(𝑚) numerically and conjecture that 𝜄(𝑚) vanishes
for a countable number of mass ratios accumulating at 0. This resembles
the FPUT small mass limit in Ref. 20, which could not construct
nanopterons at a similar set of mass ratios. Lustri and Porter35 also
work with the diatomic Toda lattice in the small mass limit and use
exponential asymptotics to capture the leading order asymptotics of
exponentially small terms in solutions. They too calculate a countable
number of mass ratios for which these terms vanish and only solitary
waves should exist. Lustri36 uses the same techniques for the diatomic
FPUT lattice with our quadratic spring force and makes the same
conjecture.

1.5.2. Mass-in-mass lattices
The mass-in-mass (MiM) lattice is a monatomic lattice of ‘‘beads’’

that are ‘‘hollow’’ and contain an additional resonator particle.4,38

The spring force connecting the beads is typically Hertzian, which
is not smooth, unlike the FPUT and Toda forces. Various numerical
studies predict the formation of nanopterons in Hertzian lattices.39–43

Conversely, for a countable number of bead-resonator mass ratios
accumulating at 0, Kevrekedis, Stefanov, and Xu40 prove the existence
of solitary wave solutions for the Hertzian MiM lattice. Subsequently,
Faver, Goodman, and Wright44 have found solitary waves at those same
mass ratios when the MiM lattice has the quadratic FPUT spring force.
For mass ratios small but away from this countable set, Faver45 has
shown the existence of nanopterons, similar to the small mass FPUT
limit of Ref. 20.

1.5.3. 1 ∶ 𝑁 dimers
The ‘‘1 ∶ 𝑁 dimer’’ is a polyatomic lattice in which one ‘‘heavy’’

mass alternates with 𝑁 ‘‘light’’ masses. Jayaprakash, Vakakis, and
Starosvetsky numerically observe a decreasing sequence of mass ratios
that support solitary waves in the 1 ∶ 146 and 1 ∶ 247 dimers with
Hertzian spring forces. With Gendelman, they find in the 1 ∶ 1 dimer
a different sequence of mass ratios tending to 0 for which waves

48
asymptote to oscillatory pulses.

4

1.6. Numerical method

The main technical problem that we face in this paper is that
standard path-continuation software packages such as AUTO49 and
PDE2Path50 cannot be applied to (1.5) on account of the shifts in
the arguments. Early numerical work involving MFDEs can be found
in Ref. 51, which was continued by Elmer and Van Vleck in the exten-
sive series of papers.52–56 Results specific to FPUT-type problems can
be found in Ref. 44, §4, where the authors use Fourier decompositions
to attack the shifted terms.

Our computations here involve the use of a collocation solver based
on52,57 that is able to solve MFDEs on finite intervals. In particular, it
can handle general 𝑛-component problems of the form

𝜙′(𝜉) = 𝑓
(

𝜙(𝜉), 𝜙
(

𝜉 + 𝜎1(𝜉, 𝜙(𝜉))
)

,… , 𝜙
(

𝜉 + 𝜎𝑁 (𝜉, 𝜙(𝜉))
)

)

, (1.18)

for given functions 𝑓 ∶ R𝑛(𝑁+1) → R𝑛, 𝜏 ∶ R → R𝑛 and shifts
𝜎𝑖 ∶ R1+𝑛 → R. This is achieved by representing 𝜙(𝜉) on each grid-
interval in terms of a standard Runge–Kutta monomial basis, requiring
(1.18) to be satisfied at each of the interior Gaussian collocation points.

Various types of boundary conditions can be used to close the
system (1.18), which we exploit heavily here in order to ensure that our
computed waves have the required ‘‘solitary + ripple’’ structure. Notice
that the shifts 𝜎𝑖 may depend on the spatial variable 𝜉 as well as on the
function value 𝜙(𝜉) itself. This allows us to compute periodic solutions
to MFDEs even when the period is unknown, which is essential for our
purposes here.

1.7. Outline

In Section 2 we introduce our computational coordinate system
that respects certain important symmetries. In addition, we summarize
the mathematical background behind Beale’s decomposition procedure
for our diatomic waves. We numerically analyze two scalar MFDEs in
Section 3 that are related to the monatomic limit, which allows us to
compute the leading-order ripple amplitude of our micropterons. The
solutions to the full diatomic wave MFDE (1.5) are computed in Sec-
tion 4, while Section 5 describes our direct simulations of the original
FPUT problem (1.1). We close in Section 6 with a brief discussion of
possible future research directions.

2. Background

Our goal here is to briefly outline the mathematical background
required to appreciate the choices made during our numerical work
in later sections. In order to streamline our presentation, we start by
introducing the exponentially localized and periodic Sobolev spaces

𝐻𝑟
𝑞 ∶=

{

𝑓 ∈ 𝐻𝑟
| cosh𝑞(⋅)𝑓 ∈ 𝐻𝑟} ,

𝐻𝑟
per ∶= {𝑓 ∈ 𝐻𝑟([0, 2𝜋]) | 𝑓 (0) = 𝑓 (2𝜋)} , (2.1)

using the natural norm

‖𝑓‖𝐻𝑟
𝑞
∶= ‖

‖

cosh𝑞(⋅)𝑓‖
‖𝐻𝑟 (2.2)

for the weighted spaces. In addition, we define the odd subspaces

𝑂𝑟 ∶= 𝐻𝑟 ∩ {odd functions}, 𝑂𝑟 ∶= 𝐻𝑟 ∩ {odd functions}. (2.3)
𝑞 𝑞 per per
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together with their even counterparts

𝐸𝑟
𝑞 ∶= 𝐻𝑟

𝑞 ∩{even functions}, 𝐸𝑟
per ∶= 𝐻𝑟

per ∩{even functions}. (2.4)

At times, we restrict the latter even further and consider the ‘‘mean-
zero’’ spaces

𝐸𝑟
𝑞,0 ∶=

{

𝑓 ∈ 𝐸𝑟
𝑞
|

|

|

|

∫

∞

−∞
𝑓 (𝜉) 𝑑𝜉 = 0

}

,

𝐸𝑟
per,0 ∶=

{

𝑓 ∈ 𝐸𝑟
per

|

|

|

|

∫

2𝜋

0
𝑓 (𝜉) 𝑑𝜉 = 0

}

. (2.5)

2.1. Coordinate system

In order to exploit several useful symmetries, it is convenient to
introduce new variables for the traveling wave problem. In particular,
we introduce a new mass parameter 𝜇 = 1∕𝑚−1 to encode the deviation
from the equal-mass limit and consider the linear combinations

𝑠1 =
𝑟𝑜 + 𝑟𝑒

2
and 𝑠2 =

𝑟𝑜 − 𝑟𝑒
2

. (2.6)

Writing 𝑠 = (𝑠1, 𝑠2), the diatomic traveling wave MFDE (1.5) can be
ecast into the form

− 𝜎2𝑠′′ = 1(𝜇)
(

𝑠1 + 𝑠21 + 𝑠22
𝑠2 + 2𝑠1𝑠2

)

, (2.7)

Here we have introduced the linear operator

𝜈 (𝜇) ∶=
1
2

[

(2 + 𝜇)(2 − 𝐴𝜈 ) 𝜇𝛿𝜈
−𝜇𝛿𝜈 (2 + 𝜇)(2 + 𝐴𝜈)

]

, (2.8)

in which 𝐴𝜈 and 𝛿𝜈 are the shift operators

𝐴𝜈𝑓 ](𝜉) ∶= 𝑓 (𝜉+𝜈)+𝑓 (𝜉−𝜈) and [𝛿𝜈𝑓 ](𝜉) ∶= 𝑓 (𝜉+𝜈)−𝑓 (𝜉−𝜈).

(2.9)

It is easy to check that the system (2.7) preserves an ‘‘even × odd’’
symmetry. More precisely, if 𝑠1 is even and 𝑠2 is odd, then the first
components of both sides of (2.7) are even (and also mean-zero), while
the second components are both odd. A second important symmetry
can be readily observed in our original traveling wave problem (1.5).
Indeed, this system is invariant under the transformation

(𝑟𝑜, 𝑟𝑒, 𝑚, 𝜎) ↦ (𝑟𝑒, 𝑟𝑜, 1∕𝑚, 𝜎
√

𝑚). (2.10)

We exploit this to perform our numerics on the symmetrized system
(2.7) in the bounded regime 𝜇 ∈ (−1, 0], which corresponds to 𝑚 ∈
1,∞). Using (2.10) we subsequently transfer these computations back
o the regime 𝑚 ∈ (0, 1], which we feel is much better suited for
iscussing and visualizing our results.

.2. Periodic waves

Here we summarize the procedure used in Refs. 20, 23, 27 to
onstruct the periodic traveling wave solutions that constitute the back-
round ripples of our diatomic waves. We make a few minor changes
o the parametrization used in these papers that will facilitate various
arts of our subsequent numerics.

.2.1. The linearized periodic problem
We start by looking for solutions to the linearization of (2.7), which

s

− 𝜎2𝑠′′ = 1(𝜇)𝑠. (2.11)

We seek solutions of the form 𝑠(𝜉) = 𝑒𝑖𝜔𝜉𝑠𝑘, where 𝑠𝑘 ∈ C2. We find
that the vector 𝑠𝑘 must satisfy the characteristic relation

(𝜔; 𝜎, 𝜇)𝑠 = 0,
𝑘

5

where

𝛥(𝜔; 𝜎, 𝜇) ∶=

[

−𝜎2𝜔2 + (2 + 𝜇)
(

1 − cos(𝜔)
)

𝑖𝜇 sin(𝜔)
−𝑖𝜇 sin(𝜔) −𝜎2𝜔2 + (2 + 𝜇)

(

1 + cos(𝜔)
)

]

.

(2.12)

pon introducing the expressions
±
𝜇 (𝜔) ∶= 2 + 𝜇 ±

√

𝜇2 + 4(1 + 𝜇) cos2(𝜔), (2.13)

ogether with

±(𝜔; 𝜎, 𝜇) ∶= −𝜎2𝜔2 + 𝜆±𝜇 (𝜔), (2.14)

we have the convenient factorization

det
(

𝛥(𝜔; 𝜎, 𝜇)
)

= −(𝜔; 𝜎, 𝜇)+(𝜔; 𝜎, 𝜇). (2.15)

For 𝜇 ≥ −1 we have the useful inequality427, Eq.(C.1.5)

(𝜆±𝜇 )
′(𝜔)| ≤ 2𝐶2

𝜇|𝜔|, 𝐶𝜇 ∶=

√

2(1 + 𝜇)
2 + 𝜇

. (2.16)

For 𝜎 and 𝜇 satisfying 𝜎 > 𝐶𝜇 , this allows us to conclude that −
has no zeros other than 𝜔 = 0, with the corresponding eigenvector
𝛥(0; 𝜎, 𝜇)(1, 0)𝖳 = 0. In addition, the observations

+(0; 𝜎, 𝜇) > 0, +(∞; 𝜎, 𝜇) = −∞, ′
+
(

(0,∞); 𝜎, 𝜇
)

< 0 (2.17)

imply that there is a unique 𝜔𝜎,𝜇 > 0 with +(𝜔𝜎,𝜇 ; 𝜎, 𝜇) = 0. The
corresponding eigenvector

𝛥(𝜔𝜎,𝜇 ; 𝜎, 𝜇)
(

𝜈𝜎,𝜇1 , 𝜈𝜎,𝜇2
)𝖳 = 0 (2.18)

can be chosen to be continuous in (𝜎, 𝜇), while satisfying the normal-
ization
|

|

|

𝜈𝜎,𝜇1
|

|

|

2 + |

|

|

𝜈𝜎,𝜇2
|

|

|

2 = 1 and
(

𝜈𝜎,01 , 𝜈𝜎,02
)

= (0, 1). (2.19)

The corresponding solution to the linearization (2.11) is then given by

𝑠𝜎,𝜇lin (𝜉) ∶=
(

𝜈𝜎,𝜇1 cos(𝜔𝜎,𝜇𝜉), 𝜈
𝜎,𝜇
2 sin(𝜔𝜎,𝜇𝜉)

)

. (2.20)

.2.2. The full nonlinear periodic problem
One can subsequently construct solutions for the full nonlinear

eriodic problem (2.7) via a Crandall–Rabinowitz–Zeidler ‘‘bifurcation
rom a simple eigenvalue’’ argument.58,59 This provides triplets

𝑝𝜎,𝜇1 [𝑎], 𝑝𝜎,𝜇2 [𝑎], 𝜔𝜎,𝜇[𝑎]
)

∈ 𝐸2
per,0 × 𝑂2

per × R (2.21)

hat are parametrized by the (small) signed amplitude

= sign
(

𝑝𝜎,𝜇1 [𝑎](0)𝜈𝜎,𝜇1 + (𝑝𝜎,𝜇2 [𝑎])′(0)𝜈𝜎,𝜇2 ∕𝜔𝜎,𝜇
)

√

‖𝑝𝜎,𝜇1 [𝑎]‖2𝐿∞ + ‖𝑝𝜎,𝜇2 [𝑎]‖2𝐿∞

(2.22)

and that yield solutions to (2.7) of the form

𝑠(𝜉) = 𝑝𝜎,𝜇[𝑎](𝜔𝜎,𝜇[𝑎]𝜉) ∶=
(

𝑝𝜎,𝜇1 [𝑎], 𝑝𝜎,𝜇2 [𝑎]
)

(𝜔𝜎,𝜇[𝑎]𝜉). (2.23)

e note that the zero eigenvalue is ruled out by taking 𝑝𝜎,𝜇1 [𝑎] to
be a mean-zero function. See Refs. 20, 23, 27 for the details of this
construction in the various parameter regimes.

These solutions branch off from the linearized solution in the sense
that

𝑝𝜎,𝜇[𝑎] = 𝑎𝑠𝜎,𝜇lin + (𝑎2) and 𝜔𝜎,𝜇[𝑎] = 𝜔𝜎,𝜇 + (𝑎). (2.24)

ndeed, we view the sign(⋅) factor in (2.22) as defining an orientation
n 𝑎 relative to 𝑠𝜎,𝜇lin . Notice in addition that |𝑎| = ‖

‖

𝑝𝜎,𝜇[𝑎]‖
‖𝐿∞ , which

implies that |𝑎| is genuinely the ‘‘amplitude’’ of the periodic profile 𝑠,
which is well-suited for our purposes here.

4 Note that 𝐶 corresponds with the critical speed 𝜎(𝑠) defined in (1.15).
𝜇 𝑚
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We emphasize that our explicit choice (2.22) differs slightly from
the definitions in Refs. 20, 23, 27, where the 𝐿∞-norm of the periodic
profiles is only (𝑎) up to some 𝜎-dependent constants. The equivalence
of these different approaches to 𝑎 follows from the fact that we have
Lipschitz-smoothness in 𝑎, see Lemma C.1 in Ref. 20 or part (ii) of
Lemma C.3 in Ref. 27. We discuss our numerical simulations of these
periodic solutions in Section 4.1.

2.3. Micropterons

Here we fix |𝜎| ≳ 1 and consider masses 𝑚 ≈ 1, which allows us to
use 𝜇 as a small parameter. We set out to find solutions to (2.7) in the
vicinity of the pair

(𝑠1, 𝑠2) = (𝜙𝜎 , 0), (2.25)

where 𝜙𝜎 solves the monatomic traveling wave problem (1.6).

2.3.1. The linearization at (𝜙𝜎 , 0)
The linearization of our symmetrized traveling wave problem (2.7)

around the pair (2.25) at 𝜇 = 0 is the diagonal operator diag(𝜎 ,𝜎 ),
whose components are given by

𝜎𝑣1 ∶= 𝜎2𝑣′′1 + (2 − 𝐴1)
[

𝑣1 + 2𝜙𝜎𝑣1
]

and

𝜎𝑣2 ∶= 𝜎2𝑣′′2 + (2 + 𝐴1)
[

𝑣2 + 2𝜙𝜎𝑣2
]

. (2.26)

The shift operator 𝐴1 was defined in (2.9). The first component 𝜎
is the linearization of the monatomic traveling wave problem (1.6) at
𝜙𝜎 . For 𝜎 ≳ 1 it is known20,27 that this operator is invertible from 𝐸𝑟+2

𝑞
to 𝐸𝑟

𝑞,0 for suitably small 𝑞 and all 𝑟 ≥ 0.
The second component 𝜎 was analyzed in detail in Ref. 27, where

it is shown that 𝜎 is injective from 𝑂𝑟+2
𝑞 into 𝑂𝑟

𝑞 with

Range(𝜎 ) =
{

𝑔 ∈ 𝑂𝑟
𝑞
|

|

|

|

⟨𝑔, 𝛾𝜎⟩𝐿2 = 0
}

. (2.27)

Here the odd bounded function 𝛾𝜎 is a nontrivial solution to the adjoint
problem

− 𝜎2𝛾 ′′𝜎 = (1 + 2𝜙𝜎 )(2 + 𝐴1)𝛾𝜎 . (2.28)

Recalling the critical frequency 𝜔𝜎,0 from Section 2.2.1, it has the
limiting behavior

lim
𝜉→∞

|𝛾𝜎 (𝜉) − sin
(

𝜔𝜎,0(𝜉 + 𝜗𝜎 )
)

| = 0 (2.29)

for some asymptotic phase-shift 𝜗𝜎 . More specifically, we have the
decomposition

𝛾𝜎 (𝜉) = 𝜐𝜎 (𝜉) + sin
(

𝜔𝜎,0(𝜉 + 𝜗𝜎 )
)

(2.30)

in which 𝜐𝜎 is exponentially localized. We call such a function 𝛾𝜎 a
Jost solution for the adjoint problem (2.28), in the spirit of classical
Jost solutions for the Schrödinger operator. We outline our numerical
procedure for the computation of these Jost solutions in Section 3.2.

The asymptotic frequency 𝜔𝜎,0 and the asymptotic phase shift 𝜗𝜎
interact in a special way. Recalling the branch (1.7)–(1.8) of solitary
waves constructed by Friesecke and Pego, a careful bifurcation analysis
that combines MFDE theory with residue
calculus27, Eq. (6.3.14), (6.4.11), App. E.3.2 delivers the expansion

𝜔𝜎𝜖 ,0𝜗𝜎𝜖 = −
𝜖𝜔2

1,0

8′
+(𝜔1,0; 1, 0) ∫

∞

−∞
sech2(𝜉∕2) 𝑑𝜉 + (𝜖2). (2.31)

This implies that sin(𝜔𝜎𝜖 ,0𝜗𝜎𝜖 ) ≠ 0 for small 𝜖 > 0, which is essential in
the discussion below.

2.3.2. Beale’s ansatz
Following Beale,28 we now search for solutions to the traveling

wave problem (2.7) that have the form

(𝑠 , 𝑠 )(𝜉) = (𝜙 , 0)(𝜉) + (𝑤 ,𝑤 )(𝜉) +
(

𝑝𝜎,𝜇[𝑎], 𝑝𝜎,𝜇[𝑎]
)

(𝜉), (2.32)
1 2 𝜎 1 2 1 2

6

where we take

(𝑤1, 𝑤2, 𝑎) ∈ 𝐸2
𝑞 × 𝑂2

𝑞 × R (2.33)

with 𝑞 > 0 suitably small. One can use the invertibility of 𝜎 from
2.26) to construct a fixed point equation for the unknown ‘‘error’’
1, but obtaining equations for 𝑤2 and the ‘‘amplitude’’ 𝑎 is more

hallenging.
The system’s second component can be informally written as

𝜎𝑤2 + 𝜇𝜒𝜎 + 𝑎𝜂𝜎 = 
(

𝑎2 + 𝜇2 + ‖

‖

𝑤1
‖

‖

2
𝐻2

𝑞
+ ‖

‖

𝑤2
‖

‖

2
𝐻2

𝑞

)

. (2.34)

ince the periodic profiles (𝑝𝜎,𝜇1 [𝑎], 𝑝𝜎,𝜇2 [𝑎]) already solve (2.7), the
function 𝜂𝜎 can be recognized as the cross-term

𝜂𝜎 = (2 + 𝐴1)
[

𝜙𝜎 sin(𝜔𝜎,0⋅)
]

. (2.35)

n addition, since (𝜙𝜎 , 0) satisfies (2.7) at 𝜇 = 0, the function 𝜒𝜎 arises
by applying the difference 1(𝜇) −1(0) to this pair, yielding

𝜒𝜎 = −1
2
𝛿1
[

𝜙𝜎 + 𝜙2
𝜎
]

. (2.36)

.3.3. The ripple amplitude revealed
The range characterization (2.27) now readily yields

= −𝐾𝜎𝜇 + (𝜇2), with 𝐾𝜎 ∶=
⟨𝛾𝜎 , 𝜒𝜎⟩𝐿2

⟨𝛾𝜎 , 𝜂𝜎⟩𝐿2
, (2.37)

hich is well-defined for 𝜎 = 𝜎𝜖 and small 𝜖 > 0 on account of the
emarkable explicit (corrected) identity27, Eq. 5.3.7

⟨𝛾𝜎 , 𝜂𝜎⟩𝐿2 = −′
+(𝜔𝜎,0; 𝜎, 0) sin(𝜔𝜎,0𝜗𝜎 ) (2.38)

nd the remark following the expansion (2.31).
If 𝐾𝜎 ≠ 0, then the leading-order coefficient for 𝑎 in (2.38) is

onzero, implying that our ripple’s amplitude is only algebraically
mall in 𝜇. That is, we will have produced a genuine micropteron. It is
ar from clear, however, whether or not 𝐾𝜎 can ever vanish for a certain
hoice of 𝜎. Taking 𝜎 = 𝜎𝜖 and 𝜙𝜎𝜖 to be a near-sonic Friesecke–Pego
olitary wave, we might attempt an expansion of 𝐾𝜎𝜖 in powers of 𝜖,
ince there are a host of tight 𝜖-estimates on 𝜙𝜎𝜖 .

5,27,60 However, we
onjecture that such an expansion will actually reveal that 𝐾𝜎𝜖 is small
eyond all algebraic orders of 𝜖. Consequently, one of the numerical
oals of this paper is to numerically investigate 𝐾𝜎 ; see Section 3.

.4. Nanopterons

In the long wave23 and small mass20 limits, the traveling waves
re nanopterons, and so the amplitude 𝑎 of the ripples is small beyond
ll orders of the relevant small parameter. There is no question, then,
f attempting to isolate its leading order behavior as we do for the
icropteron. In particular, we do not attempt to compute the analogous

ost solutions that appear in those problems as solutions to certain
uxiliary MFDEs.

We do discuss, however, how the formal 𝑚 = 0 solitary waves 𝜑𝜎
rom Section 1.2.2 behave in the 𝑠1 and 𝑠2 coordinates. Let 𝜑𝜎 be an

even solitary wave solution of the MFDE (1.11). Since this MFDE is
shift-invariant, the profile 𝜑̃𝜎(𝜉) ∶= 𝜑𝜎 (𝜉 + 1∕4) is also a solution. The
dentities (1.9) and (1.10) tell us that putting

𝑟𝑜(𝜉) = 𝜑̃𝜎 (𝜉∕2) and 𝑟𝑒(𝜉) = 𝜑̃𝜎
(

(𝜉 − 1)∕2
)

ormally solves the original FPUT traveling wave problem (1.5) at 𝑚 =
. Then using the change of variables (2.6), we find that these solutions
ead

𝑠1(𝜉) =
𝜑𝜎

(

(𝜉 + 1∕2)∕2
)

+ 𝜑𝜎
(

(𝜉 − 1∕2)∕2
)

2
and

𝑠2(𝜉) =
𝜑𝜎

(

(𝜉 + 1∕2)∕2
)

− 𝜑𝜎
(

(𝜉 − 1∕2)∕2
)

2
.

In particular – in contrast to the equal mass limit – the 𝑠2 component
does not vanish in the limit 𝑚 ↓ 0; see for example graph III in Fig. 9.
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3. Monatomic simulations

Our goal here is to numerically find solutions to the monatomic
traveling wave MFDE (1.6), together with the problem (2.28) that
describes the associated Jost solutions. Compared to the discussion in
Section 2 above, the main change here is that we do not use the wave
speed5 𝜎 > 1 to parametrize the waves, but rather introduce a new
parameter

𝜅 ∼
√

8𝜙(0) (3.1)

that is a measure for the center amplitude of the wave. This parameter
is always supplied a priori to our numerical method.

The factor of 8 arises from the estimates for the Frisecke–Pego
monatomic solutions in (1.8). Indeed, in view of Ref. 5, Eq. (4.1) this
can be seen as an equivalent parametrization for the family (1.7)–(1.8)
with the convenient property

𝜖 = 𝜅 + (𝜅2). (3.2)

The numerical motivation for this choice is that it is much easier to use
fixed boundary conditions for the wave profile. This helps to stabilize
the code and also – crucially – prevents convergence to the omnipresent
zero solution.

3.1. Wave speed and profile

For fixed 𝜅 > 0, we aim to find a solution

𝜙(𝜉) ∼ 𝜅2𝛷(𝜅𝜉), (3.3)

to (1.6) by numerically computing the pair (𝜎,𝛷). This scaling is
inspired by the limiting behavior (1.8) and allows us to use the same
numerical interval for a wide range of values of 𝜅. This enables us to
use a continuation approach where we gradually modify 𝜅, without the
danger that our solutions become too wide.

In order to find our numerical wave, we introduce a computational
coordinate

𝜏 = 𝜅𝜉 ∈ [0, 𝐿] (3.4)

for some fixed 𝐿 > 0 and set out to solve the problem

− 𝜅2𝜎2𝛷′′(𝜏) =
[

(2 − 𝐴𝜅 )
(

𝛷 + 𝜅2𝛷2)
]

(𝜏), (3.5)

augmented by the boundary conditions

𝛷(0) = 1
8
, 𝛷′(0) = 0, 𝛷(𝐿) = 0. (3.6)

The first condition is related to (3.1), while the second allows us to
(virtually) extend 𝛷 to an even function. In particular, we take 𝛷(𝜏) =
(−𝜏) whenever the shifts in (3.5) require an evaluation of 𝛷 at a
egative argument.

.2. Jost solutions

In order to solve (2.28), we write

𝜎 (𝜉) ∼ sin
(

𝜔𝛶 (𝜉 + 𝜃𝛶 )
)

+ 𝛽𝛶𝛶 (𝜅𝜉) (3.7)

and set out to numerically compute (𝜔𝛶 , 𝜃𝛶 , 𝛽𝛶 , 𝛶 ). The first of these is
the solution to the scalar nonlinear problem

𝜎2𝜔2
𝛶 = 2 + 2 cos(𝜔𝛶 ). (3.8)

The remainder function 𝛶 is characterized by the MFDE

−𝜅2𝜎2𝛶 ′′(𝜏) =
(

1 + 2𝜅2𝛷(𝜏)
)(

2𝛶 (𝜏) + [𝐴𝜅𝛶 ](𝜏)
)

+2𝜅2𝜎2𝜔2
𝛶 𝛽

−1
𝛶 𝛷(𝜏) sin

(

𝜔𝛶 (𝜏∕𝜅 + 𝜃𝛶 )
)

,
(3.9)

5 From now on we use 𝜎 for the wave speed in order to emphasize that it
s a numerically computed variable and not a fixed system parameter.
7

augmented by the boundary conditions

𝛶 (0) = −𝛽−1𝛶 sin(𝜔𝛶 𝜃𝛶 ), 𝛶 ′(0) = 1, 𝛶 (𝐿) = 𝛶 ′(𝐿) = 0. (3.10)

he first of these ensures that 𝛾𝜎 can be (virtually) extended to an odd
function by writing

−𝛶 (−𝜏) = 𝛶 (𝜏)+𝛽−1𝛶 sin
(

𝜔𝛶 (𝜏∕𝜅+𝜃𝛶 )
)

+𝛽−1𝛶 sin
(

𝜔𝛶 (−𝜏∕𝜅+𝜃𝛶 )
)

. (3.11)

he second boundary condition is a convenient normalization, but it
oes require us to introduce the extra parameter 𝛽𝛶 in the ansatz (3.7).

.3. The 𝐾𝜎 coefficient

In order to evaluate the explicit coefficient in (2.37), we introduce
he function
(𝜂)(𝜏) = 𝛷(𝜏 + 𝜅) sin(𝜔𝛶 𝜏∕𝜅 + 1) + 2𝛷(𝜏) sin(𝜔𝛶 𝜏∕𝜅)

+𝛷(𝜏 − 𝜅) sin(𝜔𝛶 𝜏∕𝜅 − 1), (3.12)

ogether with

(𝜒)(𝜏) = −1
2

[

𝛷(𝜏 + 𝜅) + 𝜅2𝛷(𝜏 + 𝜅)2 −𝛷(𝜏 − 𝜅) − 𝜅2𝛷(𝜏 − 𝜅)2
]

. (3.13)

his allows us to define the integrals

(𝜂) = 2𝜅 ∫

𝐿

0

[

sin
(

𝜔𝛶 (𝜏∕𝜅 + 𝜃𝛶 )
)

+ 𝛽𝛶𝛶 (𝜏)
]

𝛹 (𝜂)(𝜏) 𝑑𝜏

(𝜒) = 2𝜅 ∫

𝐿

0

[

sin
(

𝜔𝛶 (𝜏∕𝜅 + 𝜃𝛶 )
)

+ 𝛽𝛶𝛶 (𝜏)
]

𝛹 (𝜒)(𝜏) 𝑑𝜏
(3.14)

which should be seen as our numerical proxies for the inner products
⟨𝛾𝜎 , 𝜂𝜎⟩𝐿2 respectively ⟨𝛾𝜎 , 𝜒𝜎⟩𝐿2 that appear in (2.37). In particular, we
btain the numerical prediction

𝜎 ∼ −(𝜒)∕(𝜂). (3.15)

We note that the identity (2.38) implies that we expect to have

(𝜂) ≈ −′
+(𝜔𝛶 ; 𝜎, 0) sin(𝜔𝛶 𝜃𝛶 ), (3.16)

which we used as an independent monitor for the accuracy of our
numerical schemes.

3.4. Implementation

Note that the two scalar differential equations for 𝛷 and 𝛶 are both
of order two, while there are three free parameters (𝜎, 𝛽𝛶 , 𝜃𝛶 ) that need
to be determined. The collocation solver discussed in Ref. 57 hence
requires seven boundary conditions, which indeed matches the number
supplied in (3.6) and (3.10). We solved the combined system on the
interval [0, 𝐿] = [0, 32] for a range of values for 𝜅 ≥ 1∕8. The results for
𝜎 and the product 𝜔𝛶 𝜃𝛶 can be found in Fig. 4a.

The integrals (3.14) were computed by applying the mid-point rule
ith 106 gridpoints. The resulting values can be found in Fig. 4b. Due to

the high-frequency oscillations in the integrand for (𝜒) that appear as
𝜅 ↓ 0, the values for this integral become unreliable when 𝜅 is too small.
or this reason, we restricted the plot to the range 𝜅 ≥ 0.3. This cut-
ff was determined by changing the number of gridpoints used for the
ntegral evaluation and checking whether the computed values remain
table.

.5. Discussion

Evaluating (1.7), and (2.31) using the reparametrization (3.2) and
he observation 𝜔1,0 ∼ 1.478170266, we arrive at the predictions

𝛶 𝜗𝛶 ∼ 0.2208053960𝜅 + (𝜅2), 𝜎 ∼ 1 + 1
24

𝜅2 + 𝑂(𝜅3). (3.17)

These predictions for the phase-shift and wave speed agree remarkably
well with our numerics; see Fig. 4a. We also emphasize that we are
able to find waves for relatively large values of 𝜅, which (arguably)
fall outside of the small-amplitude regime analyzed in Refs. 5, 14.
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Fig. 4. The left graph visualizes the computed values for the asymptotic phase-shift of the Jost solution and the monatomic wave speed (solid black), together with their
leading-order predictions (3.17) (dashed red). The right graph contains our computed values for −𝐾𝜎 (solid black), together with the fit (3.18) (dashed blue). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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As discussed in Section 2.3.3, we have no a priori predictions for
the amplitude coefficient (3.15). To examine this in further detail, we
fitted the graph with a function that is exponentially small in 𝜅 and
found the approximation

(𝜒)∕(𝜂) ≈ 1.93756 exp
[

−4.06704∕𝜅
]

, (3.18)

which agrees quite well with our data points. In particular, we view
this as support for our conjecture that 𝐾𝜎𝜖 is small beyond all orders
in 𝜖. In any case, we now have solid evidence to show that 𝐾𝜎 < 0
for a wide range of 𝜎 > 1, which in our view justifies the micropteron
terminology that we used in Ref. 27.

4. Diatomic simulations

We are now ready to search for solutions of the form (2.32) to the
full diatomic wave problem (2.7). We reuse the scaling parameter 𝜅,
which now should be interpreted as

𝜅 ∼
√

8
(

𝜙𝜎 (0) +𝑤1(0)
)

. (4.1)

In particular, this parameter is a measure for the center amplitude of
the solitary part of the wave, which includes both the known solitary
core in Beale’s ansatz (2.32) as well as the unknown localized terms,
but excludes the background periodic ripple. Since the size of this ripple
is zero at 𝑚 = 1 and 𝑚 = 0, this coincides with the parameter 𝜅 that we
used in the monatomic setting of Section 3.

4.1. Periodic solutions

We first aim to construct candidates for the background ripple by
searching for periodic solutions to (2.7) of the form

(𝑠1, 𝑠2)(𝜉) ∼ 𝛽𝑃 (𝑃1, 𝑃2)(𝜔𝑃 𝜉). (4.2)

In particular, in terms of the computational coordinate

𝜏 = 𝜔𝑃 𝜉 ∈ [0, 𝐿], (4.3)

we need to solve the problem

−𝜔2
𝑃 𝜎

2𝑃 ′′ = 𝜔𝑃
(𝜇)

(

𝑃1 + 𝛽𝑃 (𝑃 2
1 + 𝑃 2

2 )
𝑃2 + 2𝛽𝑃𝑃1𝑃2

)

, (4.4)

augmented by the (boundary) conditions

∫

𝐿

0
𝑃1(𝜏) 𝑑𝜏 = 0, 𝑃 ′

1(0) = 0, 𝑃2(0) = 𝑃2(𝐿) = 0 (4.5)

and the normalization

𝑃 (0)2 + 𝑃 ′(0)2 = 1. (4.6)
1 2

8

The conditions (4.5) reflect the choice (2.21), with the understanding
that 𝑃 is 2𝐿-periodic. Indeed, we resolve function evaluations outside
the interval [0, 𝐿] by using the identities

𝑃 (𝜏 + 2𝐿) = 𝑃 (𝜏), 𝑃1(−𝜏) = 𝑃1(𝜏), 𝑃2(−𝜏) = −𝑃2(𝜏). (4.7)

In particular, this means that the triplets (2.21) are represented by
(

𝑝1(𝜉), 𝑝2(𝜉), 𝜔
)

∼
(

𝛽𝑃𝑃1(𝐿𝜉∕𝜋), 𝛽𝑃𝑃2(𝐿𝜉∕𝜋), 𝜋𝜔𝑃 ∕𝐿
)

. (4.8)

By picking an appropriate initial condition, we can ensure that
𝑃 ′
2(0) > 0 holds whenever 𝜇 ≈ 0 and 𝛽𝑃 is sufficiently small. Our contin-

uation approach subsequently ensures that we maintain the inequality

𝜈𝜎,𝜇1 𝑃1(0) + 𝜈𝜎,𝜇2 𝐿𝑃 ′
2(0)∕(𝜋𝜔𝜎,𝜇) > 0 (4.9)

hroughout all our simulations. In particular, the sign term in the
efinition (2.22) for the scaled amplitude 𝑎 agrees with the sign of
𝑃 in view of the correspondence (4.8). In particular, the numerical
quivalent of 𝑎 is given by the new parameter

∼ 𝛼𝑃 ∶= 𝛽𝑃
√

‖𝑃1‖
2
𝐿∞ + ‖𝑃2‖

2
𝐿∞ (4.10)

4.2. Diatomic waves

Turning to the full ansatz (2.32), we now look for solutions to (2.7)
of the form

(𝑠1, 𝑠2)(𝜉) ∼ 𝜅2𝑉 (𝜅𝜉) + 𝛽𝑃𝑃 (𝜅𝜉). (4.11)

Here we have introduced the reparametrization

𝑃 (𝜏) = 𝑃 (𝜔𝑃 𝜏∕𝜅) (4.12)

in order to recast the system in terms of the usual coordinate

𝜏 = 𝜅𝜉 ∈ [0, 𝐿]. (4.13)

Note that the solitary component 𝑉 = (𝑉1, 𝑉2) represents the entire
solitary ‘‘core’’ of Beale’s ansatz (2.32). This consists of the ‘‘known’’
localized term (𝜙𝜎 , 0) and the ‘‘unknown error’’ term (𝑤1, 𝑤2), in line

ith our interpretation of the parameter 𝜅 in (4.1). In particular, we
o not incorporate the monatomic waves from Section 3 because this
ould only add to the complexity of the numerical procedure.

The full solitary component 𝑉 should now satisfy the system

𝜅2𝜎2𝑉 ′′ = 𝜅 (𝜇)
(

𝑉1 + 𝜅(𝑉 2
1 + 𝑉 2

2 ) + 2𝛽𝑃 (𝑉1𝑃1 + 𝑉2𝑃2)
𝑉2 + 2𝜅𝑉1𝑉2 + 2𝛽𝑃 (𝑉1𝑃2 + 𝑉2𝑃1)

)

, (4.14)

ugmented by the boundary conditions

(0) = 1 , 𝑉 ′(0) = 0, 𝑉 (0) = 0, 𝑉 (𝐿) = 0,
1 8 1 2 1
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Fig. 5. Overview of several iso-𝜅 curves where diatomic waves exist. The small integers denote the 𝜅 values, while the dashed separatrices correspond to the special values (4.16).
The color codes are described in Section 4.3. Notice that the green branches of solitary waves and the blue fold curve terminate for technical reasons, but in principle extend
further into the gray ‘‘small-ripple’’ regime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Two zoomed views of interesting regions in Fig. 5. For presentation purposes, we only plot a subset of the iso-𝜅 curves. The small numbers next to the curves in the right
panel correspond to 𝜅, while (n) and (m) stand for the nanopteron respectively micropteron branch. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
𝑉2(𝐿) = 𝑉 ′
2 (𝐿) = 0. (4.15)

The first three of these allow us to extend 𝑉1 and 𝑉2 as even respec-
tively odd functions, allowing evaluations with 𝜏 < 0 to be resolved.
Evaluations with 𝜏 > 𝐿 are set to zero, while evaluations of 𝑃 outside
f [0, 𝐿] are performed using (4.7).

.3. Implementation

For each individual run of the collocation solver, we fix the param-
ter 𝜅 > 0 together with one of the variables from the set {𝜎, 𝜇, 𝛽𝑃 }.

The remaining two variables then need to be computed, along with 𝜔𝑃
and the functions (𝑉1, 𝑉2, 𝑃1, 𝑃2). Since the latter all satisfy second-order

FDEs, our solver requires 4 × 2 + 3 = 11 boundary conditions, which
corresponds with the eleven boundary conditions formulated above.
This freedom to choose the second fixed parameter is essential for our
continuation approach, since it allows us to move past fold points by
switching our choice.

In Fig. 5 we consider several values of 𝜅 ∈ N∕8 and trace out the
corresponding curve(s) in the (𝜎, 𝑚) landscape where we were able to
find diatomic solitary waves for the chosen value of 𝜅. In addition, we
use broken lines to plot these curves for the special values

𝜅 ∈ {2.0515, 2.237567}, (4.16)
9

where the behavior of these curves experiences a structural change.
These values were determined by an unsophisticated bisection ap-
proach. In Fig. 6 we provide a zoomed-in view of two interesting areas
near the folds, which we discuss in further detail below.

We use the ripple-amplitude 𝛼𝑃 to color the curves. In principle, we
use blue and red for positive respectively negatives values. However,
we pay special attention to the regime where the ripple amplitude is at
least a factor of 10−5 smaller than the center amplitude of the solitary
component, i.e., where

|𝛼𝑃 | < 10−5𝜅2𝑉1(0) = 10−5 𝜅
2

8
. (4.17)

In particular, whenever (4.17) holds for an interval of 𝜇 of length at
least 0.01, we color the entire segment of the curve where it holds
gray. In this so-called ‘‘small-ripple’’ regime it is hard to distinguish
numerically between positive and negative values of 𝛼𝑃 , as can be seen
from the top-left graphs in Figs. 7–9.

This problem is further illustrated by the green curves in Figs. 5 and
6, which we computed by fixing 𝛼𝑃 = 𝛽𝑃 = 0 and performing a 𝜅 scan.
In particular, the diatomic waves along these curves are in fact solitary
waves. We were only able to continue these branches slightly into
the ‘‘small-ripple’’ regime, after which the scheme failed to converge.
We emphasize that this does not necessarily mean that these branches
terminate.
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Fig. 7. The left graphs contain vertical cross-sections of Fig. 5 with 𝜎 = 1.55. The dashed line represents the leading-order ripple-amplitude prediction (2.37) computed with (3.15),
hile the insets zoom in on the region where the micropteron and nanopteron branches approach each other. The six graphs on the right contain the solution profiles associated

o the special points I through VI marked on the left graphs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
Fig. 8. Cross-sections and solution profiles at 𝜎 = 1.625; see Fig. 7 for more information. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 9. Cross-sections and solution profiles at 𝜎 = 1.65; see Fig. 7 for more information. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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The bottom-left graphs in Figs. 7–9 can be seen as vertical cross-
sections of Fig. 5. Indeed, they were obtained by fixing the wave
speed 𝜎 and performing (several) 𝜅-scans, using continuation to find
ppropriate initial solutions. Besides 𝜅, these figures also visualize 𝛼𝑃
s a function of 𝑚.
10
As can be seen, in these cross-sections we were unable to access re-
ions with 𝜅 ≤ 1. We suspect that this is a consequence of the increasing
umber of mesh intervals that are required to resolve the oscillations
n the solitary component 𝑉 , which leads to memory issues. Indeed,
t present our software uses legacy 32-bit code that limits the amount
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of accessible memory to roughly 4 Gb. Due to the (relatively) large
number of components in the system and the non-standard structure of
the underlying matrices caused by the shifted arguments in the MFDE
(1.5), this limit is reached much sooner than one would encounter when
solving ODEs.

For similar reasons, we have not been able to extend the (blue)
fold curve that presently terminates at (𝜎, 𝑚) = (1.46518, 0.038711) in
Fig. 5 to smaller values of 𝜎. More precisely, we could not continue the
𝜅 = 1.5 ‘‘nanopteron’’ branch (emanating from 𝑚 = 0) past this point.
On the other hand, for smaller values of 𝜅 we were unable to resolve
he ‘‘turn’’ where the ‘‘micropteron’’ (emanating from 𝑚 = 1) and

‘‘nanopteron’’ branches move away from each other. Indeed, Fig. 6a
clearly shows that these ‘‘turn regions’’ become increasingly thin as
𝜅 decreases. Increasingly delicate techniques are therefore required to
prevent the continuation procedure from simply jumping between the
two branches.

4.4. Discussion

The overview in Fig. 5 and the iso-𝜎 cross-sections in Figs. 7–
clearly show that one cannot simply speak about separate ‘‘mi-

ropteron’’ and ‘‘nanopteron’’ surfaces. For example, the iso-𝜅 curves
onverge precisely to the critical speed-of-sound 𝜎(𝑠)𝑚 defined in (1.15)
or the long-wave nanopterons as 𝜅 ↓ 0. In addition, the curves ema-
ating from 𝑚 = 1 and 𝑚 = 0 are connected together in a complicated
ashion.

However, if one fixes either of the parameters 𝜅 or 𝜎, the resulting
one-dimensional cross-sections do generically consist of two separate
curves. We have identified several exceptions in Figs. 5 and 6 and
conjecture that there is a countable set of such special values that
accumulates at 𝜅 = 0 respectively 𝜎 =

√

2.
In order to support this conjecture, let us consider the region where
≤ 1.61 and 𝑚 ≤ 0.08, where a large set of iso-𝜅 curves converge

ogether to form a narrow ‘‘fold-region’’ that becomes increasingly
hin as 𝜎 decreases. Depending on the sign of 𝛼𝑃 , the ‘‘micropteron’’
nd ‘‘nanopteron’’ curves seem to bend sharply to the left or right
s this fold is approached. Our observations for 𝜅 = 2.0515 suggest

that a switch in direction occurs precisely when the ‘‘micropteron’’
and ‘‘nanopteron’’ curves connect to each other and the associated 𝛼𝑃
unction admits a double root when passing through the ‘‘connection’’
oint at 𝑚 ∼ 0.0784. We found faint numerical hints of a second such
irection switch when the fold crosses through 𝑚 ∼ 0.05, but did not
ave the numerical resolution to fully resolve this bifurcation.

In particular, we suspect that the (green) branches of solitary waves
lay an important role as they contain the ‘‘crossing-points’’ between
he nanopteron and micropteron subsurfaces. Although we had trouble
racking them deep into the ‘‘small-ripple’’ regime, we did find several
f these branches. They indeed appear to accumulate in the small-
ass regime, lending credence to the conjectures discussed above. It

nteresting to note that these branches are not horizontal, i.e., the value
f 𝑚 changes gradually as 𝜎 is varied. This is especially true for the
∼ 0.15 branch, which has a relatively substantial slope.
We believe that the fold-region discussed above continues into the

orner (𝜎, 𝑚) = (
√

2, 0), admitting a countable number of connection
witches as it crosses through the branches of solitary waves. In our
pinion it would be extremely interesting to perform a theoretical
nalysis near this corner. One could proceed by examining how the
ong-wave techniques developed in Ref. 23 and the small-mass argu-
ent discussed in Ref. 20 break down as their auxiliary parameters

pproach the limits 1∕𝑚 → ∞ respectively 𝜎 →
√

2. Combining these
approaches with the techniques developed by Lombardi61 to uncover
exponentially small phenomena could hopefully lead to some useful
insights here.

A second (related) question that deserves further attention concerns
the behavior of the ‘‘micropteron’’ and ‘‘nanopteron’’ branches after
their ‘‘near-collision’’ events; see the left graphs in Figs. 7–9. It appears
11
that the red branches where 𝛼𝑃 < 0 suffer a collapse in the amplitude of
the solitary component of the wave, i.e., 𝜅 ↓ 0, potentially converging
to a branch of purely periodic ripples. It is unclear what happens to the
blue branches, where both the ripple amplitude and the core amplitude
experience significant growth.

5. Stability of solitary waves

In order to gain some insight into the stability of the solitary
waves that we found in Section 4, we performed a series of direct
time-integrations of the full FPUT system. For our purposes here, it
is advantageous to introduce a new momentum variable 𝑝𝑗 = 𝑥̇𝑗 and
eformulate (1.1) as

̇𝑟𝑗 = 𝑝𝑗+1 − 𝑝𝑗 , 𝑚𝑗 𝑝̇𝑗 = 𝐹 (𝑟𝑗 ) − 𝐹 (𝑟𝑗−1), (5.1)

ecalling that the masses are given by (1.2). The advantage of these
oordinates is that the energy function

𝛬 =
∑

𝑗∈𝛬

[1
2
𝑚𝑗𝑝

2
𝑗 +

1
2
𝑟2𝑗 +

1
3
𝑟3𝑗
]

(5.2)

is conserved in time upon taking 𝛬 = Z, but also easy to compute
for any subset 𝛬 ⊂ Z. In general, diatomic waves of the form (2.32)
will have infinite energy on account of the periodic background state.
However, for solitary waves (where 𝑎 = 0) the energy is finite, since
the pair (𝑤1, 𝑤2) is exponentially localized.

In the monatomic case 𝑚 = 1, Friesecke and Pego15–17 established
that the traveling wave solution 𝑟𝑗 (𝑡) = 𝜙𝜎𝜖 (𝑗 − 𝜎𝜖𝑡) is stable under the
dynamics of (5.1) whenever 𝜖 > 0 is sufficiently small. In particular,
any ‘‘sufficiently small’’ initial perturbation to the wave will die out
over time, although the speed and phase of the wave could be slightly
changed. In practice, one sees that perturbations produce a small
wrinkle that separates itself from the core of the wave and travels at a
slower speed.

By contrast, the stability properties of diatomic traveling waves are
poorly understood at present. The main obstruction is that one has to
control the fluctuations caused by the ripples; see, e.g., Ref. 62 for a dis-
cussion of the complications that arise in the stability analysis of water
wave nanopterons. Indeed, the numerical results from Ref. 29 – which
use the suitably scaled solitary KdV profiles (1.17) as initial conditions
for (5.1) – clearly indicate that ripples will appear that do not detach
from the core of the wave. Instead, they slowly drain energy from this
core, causing the amplitude to decay over time. Nevertheless, these
structures persist over much longer timescales than those that can be
extracted by using amplitude equations. For example, Gaison, Moskow,
Wright and Zhang25 consider a general class of polyatomic lattices
that includes our case here and show that the relevant KdV reductions
that govern the long-wave limit remain valid over algebraically long
timescales.

In order to examine these issues, we introduce the time-dependent
set of gridpoints

𝛬core(𝑡) =
{

𝑗 ∈ Z |

|

|

|

𝑗 − argmax |𝑟𝑗 (𝑡)|
|

|

|

≤ 20
}

(5.3)

that is centered around the peak of a solution to (5.1). Our goal is to
monitor the behavior of the loss function

𝛤core(𝑡) =
𝛬core(100) − 𝛬core(𝑡)

𝛬core(100)
(5.4)

or various solutions resembling diatomic and monatomic waves. This
raction measures the relative energy loss in the core of the wave
ompared to the situation at 𝑡 = 100, allowing sufficient time for initial
ransients to decay.

We deliberately do not use the peak amplitude of the wave here,
ince at each point in time only a discrete subset of the underlying
mooth waveprofile is ‘‘sampled’’ on the lattice. We do however keep
rack of the outer amplitude

out (𝑡) = max |𝑟𝑗 (𝑡)| (5.5)

𝑗∉𝛬core(𝑡)
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Fig. 10. Behavior of the core energy loss (5.4) and the outer amplitude (5.5) for several simulations of the full FPUT system (5.1). The values of 𝛼𝑃 correspond with the initial
conditions (5.6). The red curves represent the monatomic equal-mass solitary wave at 𝜅 = 5∕2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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as a secondary measure.

5.1. Implementation

We use the solve_ivp method from the SciPy package for Python
to integrate the problem (5.1) on the grid 𝛬grid = {1, 2,… , 400}. In
particular, we set both 𝑟 and 𝑝 to zero outside this grid. We consider
six separate initial conditions, which each consist of the solitary part
(i.e., the pair (𝑉1, 𝑉2)) of one of the diatomic waves computed in
Section 4. More precisely, we pick 𝜅 = 5∕2 and consider the waves
associated to the pairs

(𝛼𝑃 , 𝑚) ∈ {(10−2, 0.33797458), (10−3, 0.32800968), (10−4, 0.32711659),
(10−5, 0.32702829), (10−6, 0.32701947), (0, 0.32701849)},

(5.6)

which have wave speeds in the range 𝜎 ∈ [1.563, 1.578]. For comparison
purposes, we also considered the monatomic wave (𝛼𝑃 , 𝑚) = (0, 1), again
with 𝜅 = 5∕2. The results of these simulations can be found in Fig. 10,
where we plot the evolution of the core energy loss 𝛤core(𝑡) and the
outer amplitude out (𝑡).

We note that the solve_ivp routine utilizes the RK4 scheme with
an adaptive step-size 𝛥𝑡. We monitored the energy 𝛬grid

over the full
grid in order to keep track of potential discretization errors introduced
by the scheme. This turned out to be a crucial precaution, because
the step-size automatically chosen by solve_ivp led to unacceptable
fluctuations in this energy. To prevent this, we manually enforced
the step-size restriction 𝛥𝑡 ≤ 10−3, which is considerably lower than
in Ref. 29. We note that an alternative approach could be to use
symplectic energy-preserving schemes as described in Ref. 63, but we
believe that this is too cumbersome for our illustrative purposes here.

We run our simulations for 𝑡 ∈ [0, 5000], which means that the
waves will have shifted roughly 7850 lattice points to the left. Since this
considerably exceeds the size of our grid, we need to account for this
movement in a special fashion. Our choice here is to use a ‘‘windowing’’
procedure, where we shift the solution rightwards to recenter the peak
at the center of the computation grid, filling 𝑟 and 𝑝 with zeros at the
empty positions on the left side of the grid. In order to prevent large
discontinuities arising from the sudden cutoff at the right end of the
grid, we apply the pointwise multiplication

(𝑟𝑖, 𝑝𝑖) ↦ 𝑒−𝑦
2
𝑖 ∕(1−𝑦

2
𝑖 )(𝑟𝑖, 𝑝𝑖), 𝑦𝑖 = max{(𝑖 − 300)∕100, 0}. (5.7)

In particular, we use a smooth cut-off function to gradually scale the
solution on the right 25% of the lattice sites down to zero. In contrast
to the approach in Ref. 29, we only perform this recentering and
 t

12
windowing procedure once per sixty units of time. We emphasize that
other methods are available to deal with this problem, such as the
freezing technique developed by Beyn and coworkers.64

5.2. Discussion

Naturally, due to discretization effects and rounding issues there
will always be some energy leakage as a numerical wave moves through
the lattice. In addition, sampling and interpolation errors occur when
passing initial conditions from the boundary value problem solver used
in Section 4 to the FPUT simulator discussed here. This causes the
initial transient behavior and subsequent slow energy leakage that is
displayed in Fig. 10 for the monatomic wave. We use this as a baseline
to interpret the behavior of the diatomic waves.

The results in Fig. 10a show that our numerical diatomic solitary
wave loses energy at an extremely slow rate that is comparable to
its monatomic counterpart. In addition, the initial transient clearly
indicates that our diatomic solitary wave is stable in a certain sense.
Notice furthermore that this coherence disappears rapidly if the mass
𝑚 is disturbed. Indeed, the size of the ripple-amplitude 𝛼𝑃 is clearly
correlated with the speed at which the core of the wave loses energy.

We reiterate that the results in Ref. 29 already suggest that – in
general – diatomic waves decay at rates that are much slower that
those suggested by their formal KdV approximations. This effect is
amplified in the small-amplitude regime, where29 contains examples
that display practically no decay on very long time-scales. For this
reason, we consider the relatively large value 𝜅 = 5∕2, which through
the parameter translation

(𝜅, 𝑚) ∼ (
√

24𝜖, 1∕𝑚2) (5.8)

eans that our results should be compared to the results in Ref. 29
ith 𝜖 = 1∕2 and 𝑚2 = 𝜋, which were the largest values that the authors

onsider. In particular, our results should be compared with the top-left
lot in Ref. 29, Fig. 8, noting that our time-interval corresponds roughly
ith [0, 104] in that figure.

The conclusion from this comparison is that the observed ‘‘outer
amplitude’’ out for our diatomic solitary waves is orders of magnitude
smaller than the wakes observed in Ref. 29. The loss function 𝛤core
xhibits a similar scale reduction, although this is harder to read-off
rom the figure due to the smaller numbers. Together, we feel that these
bservations strongly suggest that the 𝑚 ∼ 0.33 branch of solitary waves
ound in Section 4 are indeed solitary and stable, providing a robust
ransport mechanism in the diatomic setting.
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6. Future directions

In this paper we considered the numerical behavior of diatomic
FPUT lattices with the quadratic spring force 𝐹 (𝑟) = 𝑟 + 𝑟2. The MiM
lattice is a natural candidate for future investigations of this sort, since
its traveling wave equations are MFDEs similar to (1.5), and since
it possesses a sturdy theory of solitary waves40,44 and nanopterons45

n the small bead-resonator mass limit. In particular, from Ref. 40
nd Ref. 44 there is a simple, explicit formula for those mass ratios
ccumulating at 0 at which the MiM lattice has solitary waves. It is
lso possible to pose a ‘‘stiff internal spring’’ limit for the MiM lattice,
n which the bead-resonator spring becomes arbitrarily stiff, and the
iM lattice again reduces to a monatomic FPUT lattice. Solitary waves

re known to exist in this limit, too,44 and one expects nanopterons
there was well. There could be an interesting parameter overlap, similar
to the regimes in Fig. 2, in which the bead-resonator spring force is
extremely stiff and the bead-resonator mass ratio is extremely small.

While we numerically simulated periodic solutions to FPUT lattices,
we did not consider how different families of periodics relate to each
other, in the spirit of the full nanopterons and micropterons in Fig. 2.
Friesecke and Mikikits-Leitner65 construct periodic traveling waves in
he long wave limit for monatomic lattices. Do these have any connec-
ion to the periodic waves in diatomic lattices from Ref. 23 when the
ass ratio is close to 0 or 1? We also mention that Betti and Pelinovsky

tudy periodic waves in a diatomic lattice with Hertzian spring forces.66

hey begin with periodic solutions in the small mass limit but manage
o extend them numerically to the equal mass limit. For a given wave
peed 𝜎, is it possible to extend the FPUT periodics in the same way,
rom 𝑚 ≈ 0 to 𝑚 ≈ 1?

Last, in more general polyatomic FPUT lattices, in which both
he masses and the spring forces repeat with some finite periodicity,
t is known that solutions to the equations of motion with suitably
caled initial data look like KdV sech2-type solitary waves over long
imes.25 However, it is not yet known whether these solitary wave
pproximations persist for all time, as in the monatomic lattice, evolve
nto nanopterons, as in the diatomic lattice, or become something else
ntirely. In a more complicated polyatomic lattice, there are fewer
pportunities for a natural ‘‘material’’ limit, like the small or equal mass
egimes, to reduce the polyatomic lattice to monatomic. Nonetheless,
ur numerical methods could give insight into the formation of, at least,
olitary waves in the long wave polyatomic limit.
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