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ABSTRACT
metacalibration is a state-of-the-art technique for measuring weak gravitational lensing
shear from well-sampled galaxy images. We investigate the accuracy of shear measured with
metacalibration from fitting elliptical Gaussians to undersampled galaxy images. In this
case,metacalibration introduces aliasing effects leading to an ensemble multiplicative shear
bias about 0.01 for Euclid and even larger for the Roman Space Telescope, well exceeding
the missions’ requirements. We find that this aliasing bias can be mitigated by computing
shapes from weighted moments with wider Gaussians as weight functions, thereby trading
bias for a slight increase in variance of the measurements. We show that this approach is
robust to the point-spread function in consideration and meets the stringent requirements of
Euclid for galaxies with moderate to high signal-to-noise ratios (SNR). We therefore advocate
metacalibration as a viable shear measurement option for weak lensing from upcoming
space missions.
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1 INTRODUCTION

Weak gravitational lensing is a powerful tool to study the growth
of large-scale structure in the Universe (see Hoekstra & Jain 2008;
Kilbinger 2015; Mandelbaum 2018, for reviews). The shearing of
the images of distant galaxies by the gravitational tidal field of inter-
vening structures is now routinely measured in ever larger surveys
(e.g. The Dark Energy Survey Collaboration 2005; de Jong et al.
2013; Aihara et al. 2018). The statistics of the resulting correlations
in galaxy shapes can be directly compared to models of structure
formation, thus constraining cosmological parameters (e.g. Troxel
et al. 2018; Hikage et al. 2019; Asgari et al. 2020). The precision
will improve dramatically in the next decade with the commence-
ment of a number of large surveys, referred to as Stage IV surveys
by the Dark Energy Task Force (Albrecht et al. 2006). Of these,
Euclid1 (Laureĳs et al. 2011) and the Nancy Grace Roman Space
Telescope2 (formerly known as WFIRST; Spergel et al. 2015; Ake-
son et al. 2019) are space-based missions, whereas the Rubin Ob-
servatory Legacy Survey of Space and Time3 (LSST; LSST Science
Collaboration et al. 2009; Ivezić et al. 2019) will carry out obser-
vations using a new 8m Simonyi Survey Telescope on the ground.

★ E-mail: arunkannawadi@astro.princeton.edu
1 https://www.euclid-ec.org
2 https://roman.gsfc.nasa.gov/
3 https://www.lsst.org/

Importantly, these experiments are designed with gravitational lens-
ing as a primary objective, so that various systematic errors could
be addressed at the early stages through optimal survey design and
observational strategies.

Several factors complicate the extraction of the cosmological
lensing signal from observed galaxy images, but the most dominant
one is the smearing of the images by the point-spread function
(PSF), which distorts the shape of the galaxies and blends galaxies
along similar lines-of-sight that may carry different shear signals.
Correcting for the effects of the PSF, even for isolated galaxies,
in the presence of pixel noise leads to biased estimates of galaxy
shapes, and hence to biased estimates of shear (e.g. Hirata & Seljak
2003). Quantifying and correcting for these biases accurately is still
an area of active research. Numerous algorithms, of several flavours,
have been developed to estimate shear with minimal biases. Broadly
speaking, there are two classes of shape measurement methods (but
see Simon & Schneider 2017, which unifies them in the absence of
blending).

(i) Model-fitting methods assume a parametric form for the sur-
face brightness profile. The model is convolved with the PSF and
the best fit to the data is determined. Various implementations have
been developed, most notably lensfit (Miller et al. 2007, 2013),
im3shape (Zuntz et al. 2013), and ngmix4 (Sheldon 2015).

4 https://github.com/esheldon/ngmix
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2 Kannawadi, Rosenberg & Hoekstra

(ii) Moment-based methods measure a few low-order moments
of the images, with a compact weight function centered at each
source (see equation 1). The observed quadrupole (second order)
moments are corrected for bias introduced by the PSF and theweight
function using higher order moments. Examples of this approach
areKSB (Kaiser et al. 1995; Luppino & Kaiser 1997), and Regaus-
sianisation (Hirata & Seljak 2003).

A comprehensive list of the methods along with their baseline per-
formances can be found in Mandelbaum et al. (2015). The perfor-
mance of a shapemeasurement algorithm is typically assessed using
simulated images of galaxies (see Plazas 2020, for a recent review).
Through such simulations, a series of community-wide blind chal-
lenges have provided important insights into the factors that affect
the performance of these algorithms (Bridle et al. 2009; Kitching
et al. 2011; Mandelbaum et al. 2014). As shown by Hoekstra et al.
(2015) and explored further in Hoekstra et al. (2017), the inferred
bias depends on the input parameters of the image simulations,
such as the number density of galaxies and stars beyond the detec-
tion limit, but also the morphological parameters of the bright input
galaxies. The presence of undetected faint sources also changes the
noise properties, thereby affecting the galaxy shapes (Gurvich &
Mandelbaum 2016; Eckert et al. 2020). Thus, inferring the actual
shear bias in any observed data set requires dedicated image sim-
ulations that match the data as closely as possible, both in terms
of galaxy properties and observational conditions (Fenech Conti
et al. 2017; Zuntz et al. 2018; Mandelbaum et al. 2018; Kannawadi
et al. 2019). These image simulations currently rely on data from
the Hubble Space Telescope for obtaining the parent galaxy cat-
alogue, which may become too restricted in terms of depth and
cosmic variance (Kannawadi et al. 2015) to use to calibrate shear
for Stage IV surveys. Furthermore, these dedicated simulations need
to capture the clustering of galaxies at the required depth to evaluate
the bias from blending (Samuroff et al. 2018; Euclid Collaboration
et al. 2019; Kannawadi et al. 2019). Since most shear measurement
methods exhibit biases that are a function of galaxy properties, any
uncertainty in the true galaxy population, particularly at the faint
end, translates to an uncertainty in shear calibration, which may be
the dominant contribution to the overall error budget (e.g. Hilde-
brandt et al. 2020).

Recently, Huff & Mandelbaum (2017) and Sheldon & Huff
(2017) proposed a method known as metacalibration (cf. Sec-
tion 2.2), that is sufficiently unbiased for any (shear independent)
subset of galaxies. Following a similar proposal earlier by Kaiser
(2000), metacalibration estimates the bias in the shear measure-
ment (using any shear measurement algorithm) from the data them-
selves. This method has been validated on image simulations mim-
icking ground-based seeing conditions to sub-percent accuracy in
shear bias (Huff & Mandelbaum 2017; Sheldon & Huff 2017) and
has been applied to Dark Energy Survey - Year 1 data (Zuntz et al.
2018). The cosmological constraints obtained in Troxel et al. (2018)
from a galaxy shape catalogue measured with im3shape and cal-
ibrated with image simulations are consistent with those obtained
from a shape catalogue measured with ngmix calibrated on the
data with metacalibration. This demonstrates the ability of the
metacalibration algorithm to calibrate shear to an accuracy to
better than 1 per cent without the need for ultra-realistic galaxy
populations in the simulations. However, image simulations are
nevertheless required to validate that shear measurement satisfies
the stringent requirements of the Stage IV surveys (e.g. Sánchez
et al. 2020). For instance, the Euclid mission requirements docu-
ment (Laureĳs et al. 2011) mandates that the shear be recovered

better than 0.2 per cent to realise the promised figure-of-merit. At
such increased levels of accuracy, one has to worry about system-
atic effects that were largely ignorable in the past. These include,
but are not limited to, instrumental effects such as pixelisation, the
brighter-fatter effect (Antilogus et al. 2014; Coulton et al. 2018),
charge transfer inefficiency (CTI, Rhodes et al. 2010; Israel et al.
2015) and the presence of colour gradients in galaxy profile due
to wavelength-dependence of a diffraction limited PSF (Voigt et al.
2012; Semboloni et al. 2013; Carlsten et al. 2018; Er et al. 2018).

A potential limitation for metacalibration in the case of
space-basedmissions is pixelisation.While the space-based surveys
enjoy a better and more temporally stable PSF than their ground-
based counterparts5, their PSFs are typically notNyquist-sampled in
any given exposure, despite the detectors having physically smaller
pixels. This can lead to small galaxies being poorly sampled as
well. As metacalibration involves reconstructing the galaxy pro-
file from a discretised image (cf. Section 2.2), when the galaxy
image is undersampled, the interpolation step will be unable to
recover the galaxy profile faithfully. In this paper, using image sim-
ulations, we investigate the level of residual biases as a result of
having an undersampled PSF. In our companion paper by Hoekstra
et al. (in prep.), we further validate our conclusions with more re-
alistic simulations. While both of these papers adopt Euclid as a
reference, our results are fairly generic and are also applicable to
the High-Latitude Imaging Survey6 (HLS), the weak lensing pro-
gramme of the Roman Space Telescope with the aim of studying
dark energy parameters.

This paper is organised as follows. In Section 2, we provide
an overview of the metacalibration procedure and how pixelisa-
tion can degrade the performance of the procedure. We explain the
computational methods used in this study in Section 3 and show our
main results on shear bias in Section 4. Finally, strategies for miti-
gating this bias are explored in Section 5 and a general discussion
of our results follows in Section 6.

2 OVERVIEW OF SHAPE MEASUREMENTS AND
METACALIBRATION

We describe the effects of pixelisation in the context of quadrupole
moments, since they are more amenable to analytical calculations
thanmodel parameters, althoughwe believe both classes ofmethods
should be affected in a similar manner for unblended sources (see
Simon & Schneider 2017, which unifies both frameworks). We will
defer the explicit treatment of model-fitting methods on undersam-
pled images to a later work.

2.1 Shape measurements

Mathematically, the quadrupole moment is a symmetric rank-2 ten-
sor that characterises the distribution of an object around a chosen
point, usually the centroid. Despite allowing for an unbiased es-
timate of the shear, one cannot use unweighted moments in the
presence of noise. One must use weighted moments instead, which

5 Even ground-based PSFs may be undersampled under extremely good
seeing conditions, which ironically then have to be rejected (e.g. Bosch et al.
2018)
6 https://www.roman-hls-cosmology.space/
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inevitably leads to biases that have to be calibrated out. The com-
ponents of the quadrupole moments7 are given by

𝑄𝑖 𝑗 =

∫
d2x 𝑥𝑖𝑥 𝑗𝑊 (x)𝐼 (x), (1)

where 𝑥𝑖 and 𝑥 𝑗 are the components of x for 𝑖, 𝑗 ∈ {1, 2} with its
centroid at the origin and 𝑊 (x) could in principle be an arbitrary
non-negative function that is sufficiently localised around x = 0
to suppress the noise at large distances. Bernstein & Jarvis (2002)
suggest for maximum SNR the use of adaptive moments, where the
weight function is the best-fitting elliptical Gaussian function of the
galaxy itself.

The complex ellipticity in terms of unweighted quadrupole
moments is then given by the combination𝑄11−𝑄22+2i𝑄12, with a
normalising factor of overall size, given by either𝑄11+𝑄22 or𝑄11+
𝑄22+2

√︃
𝑄11𝑄22 −𝑄212 so that the ellipticity is invariant under flux

scaling and length scaling. Following the notation of Bartelmann &
Schneider (2001), we refer to the former as 𝜒-type ellipticity (also
known as distortion) and the latter as 𝜖-type ellipticity, and they
transform8 differently under a lensing shear as follows:

𝜖 =
𝜖 (int) + 𝑔

1 + 𝑔∗𝜖 (int)
≈ 𝜖 (int) + 𝑔 − 𝑔∗

(
𝜖 (int)

)2
+ O(|𝑔 |2), (2)

and

𝜒 =
𝜒(int) + 2𝑔 + 𝑔2𝜒(int)

∗

1 + 𝑔∗𝑔 + (𝑔∗𝜒(int) + 𝑔𝜒(int)∗)
, (3)

where 𝜖 (int) and 𝜒(int) denote the intrinsic ellipticity of a galaxy and
𝑔 = 𝑔1+ i𝑔2 is another complex quantity referred to as the (reduced)
lensing shear (Schneider & Seitz 1995; Seitz & Schneider 1997).
Thus, the ellipticity of a galaxy is a noisy estimate of the shear,
with the intrinsic shape being the noise here. Invoking the isotropy
assumption,

〈
𝜖 (int)

〉
=
〈
𝜒(int)

〉
= 0, we can see that the ellipticity

can be considered as a one-point estimator of shear since

〈𝜖〉 = 𝑔 (4)

and

〈𝜒〉 =
(
2 −

〈
𝜒(int)𝜒(int)

∗〉)
𝑔 + O(𝑔 |𝑔 |2). (5)

Thus, at least to the lowest order, the ellipticity of a galaxy is a
noisy estimate of the shear, up to a multiplicative factor. In practice,
the dispersion in the intrinsic ellipticity is replaced by that of the
measured ellipticity and the equation is still accurate to the lowest
order.

The quadrupole moments as defined in equation (1) are them-
selves linear in the pixel values (this is not quite true for adaptive
moments), but the ellipticity is a nonlinear function of pixel values,
which can lead to biased measurements in the presence of pixel
noise (Kacprzak et al. 2012; Melchior & Viola 2012). Moreover,
the cosmological shear signal is captured by the ellipticity of the
galaxy profile, but the observed image of the galaxy is smeared by
the PSF which has to be corrected for as well. Even with a perfect
knowledge of the PSF, the PSF-correction is only approximate (and

7 We have chosen to ignore the normalisation to keep the definition of
moments linear in 𝐼 (x) , since we are not interested in measurements of
flux but of shapes, which are given by a ratio of moments (or its linear
combinations)
8 These transformations can be obtained from the transformation properties
of the unweighted quadrupole moments.

hence imperfect) due to its perturbative nature, acting as yet another
source of bias.

For small values of shear, which is usually the case in weak
gravitational lensing, we can capture the deviation of the estimated
shear ĝ from the true shear gtrue from the linear bias model (Hey-
mans et al. 2006; Massey et al. 2007) with a 2-component additive
bias c and a 2 × 2 multiplicative bias tensorM as

ĝ − gtrue = Mgtrue + c, (6)

with

c = (𝑐1, 𝑐2)𝑇 , (7)

and

M =

(
𝑚1 𝑚12
𝑚21 𝑚2

)
. (8)

Typically, the off-diagonal elements𝑚12 and𝑚21 are negligible and
𝑚1 ≈ 𝑚2. Thus, M is treated as a rotationally invariant scalar in
practice. However, we will use a more generic 2 × 2 tensor in this
study. We also denote the shear in bold font as a two component
spinor instead of a complex number for convenience.

2.2 Metacalibration algorithm

The multiplicative bias may be seen as an average response of
the shapes of a population of galaxies to a coherent shear. The
metacalibration algorithm attempts to estimate empirically the
responsitivity of each galaxy in the data. It involves deconvolving
the observed image by the PSF 𝑃 to obtain the (noisy) galaxy profile,
shearing the galaxy by a small amount (|g| ∼ 0.01) and reconvolving
by a slightly larger PSF given by Γ(x) = 𝑃

[
(1 + 2|g|)−1x

]
to obtain

the galaxy image under a different shear condition. Mathematically,
we can describe the newly obtained image as the inverse Fourier
transform of

𝐼 ′(k|g) = Γ̃∗ (k)𝑠g

(
𝐼 (k)
�̃�∗ (k)

)
, (9)

where 𝑠g is the shearing operator and 𝑓 (k) stands for the Fourier
transform of any real-space function 𝑓 (x). The per-galaxy respon-
sitivity to shear, a 2 × 2 tensor R defined as

R :=
𝜕e
𝜕g

����
g=0

≈ e+ − e−

g+ − g− , (10)

where g+ and g− are small artificial (stimuli) shears applied to the
deconvolved image through the shearing operator 𝑠g, and e+ and e−
are the correspondingmeasured ellipticities. Here,we simply denote
the ellipticity in spinor form by e and do not make a distinction
between the 𝜖- and 𝜒-type ellipticities as the multiplicative factor is
naturally captured by the shear response. The shear responsitivity
includes much of the raw multiplicative bias in the estimator and
the unbiased shear estimate in the absence of PSF anisotropy is

〈g〉 ≈ 〈R〉−1 〈e〉 . (11)

Note that in this estimator, all the galaxies carry equal weight
and it ignores the uncertainty in shape estimates. Depending on
the level of noise, we might want to downweight some galaxies in
comparison to others but in a manner that does not depend on the
ellipticity itself. The generalisation of the shear estimator given in
equation (11) in the presence of galaxy weights 𝑤 is

ĝ = 〈𝑤R〉−1 〈𝑤e〉 . (12)

MNRAS 000, 1–15 (2020)
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2.3 Effects of pixelisation

The effect of sampling and aliasing in the images can be best un-
derstood in the Fourier domain. In the absence of noise and sky
background, the observed image is the inverse Fourier transform of
𝐼 (k) = �̃� (k)�̃�(k), where �̃� (k) and �̃�(k) are the Fourier transforms
of the galaxy and the PSF respectively. In practice, 𝐼 (k) has to be
computed at discrete values of k from a discrete (pixellated) image
of finite extent. The GalSim implementation of the metacalibra-
tion algorithm involves computing a discrete approximation to the
Fourier transforms by first constructing a continuous function by
interpolating the pixel values, and taking the Fourier transform as-
suming a periodic boundary condition, which is arguably better than
using discrete Fourier transforms.

Note that the quantities above, especially 𝐼 (k), are not discrete
Fourier transforms of the pixelised image but a discrete approxima-
tion to the Fourier transform of 𝐼 interp (x) obtained by interpolating
from the discrete image. Due to the diffraction-limit, there exists
a 𝑘max such that �̃�(k) ≡ 0 for all k with magnitude |k| > 𝑘max.
This holds true irrespective of the central obscuration in the tele-
scope aperture. Thus, ignoring the read noise, the observed image
is band-limited. For interpolation using the sinc function, which is
perfect for band-limited signals, the interpolated image is formally
the inverse Fourier transform of

𝐼 interp (k) =
[ ∞∑︁
𝑛1=−∞

∞∑︁
𝑛2=−∞

𝐼 (k + nΔk)
]
Θ( |𝑘1 | − Δk)Θ( |𝑘2 | − Δk),

(13)

where n = (𝑛1, 𝑛2), Θ(·) is the Heaviside step function, and Δk is
the periodicity in Fourier space due to starting from discrete pixel
values. For square pixels of physical size 𝑎, Δk = 2𝜋/𝑎.

According to the Nyquist-Shannon sampling theorem, in order
to reconstruct a continuous function from discrete samples by inter-
polation, the (spatial) sampling frequency has to be more than twice
the maximum frequency present in the original signal, also referred
to as the Nyquist frequency. This follows from equation (13): if
𝐼 (k) = 0 for |k| > 1

2Δk, then the only contributing term is that of
n = 0 and 𝐼 interp (k) ≡ 𝐼 (k). If the above condition is not satisfied,
then frequencies higher than the Nyquist frequencies are misinter-
preted as lower frequencies, a phenomenon well-known as aliasing.
If we perform operations such as applying a lensing shear, the im-
ages obtained by shearing 𝐼 interp would be systematically different
from that obtained from 𝐼 (k), were it to be accessible.

We define9 the sampling factor 𝑄 as the ratio of the Nyquist
scale (reciprocal of Nyquist frequency) to the pixel scale. An image
is said to be Nyquist-sampled if 𝑄 > 1, critically sampled if 𝑄 = 1
and undersampled if 𝑄 < 1. An undersampled image is said to
be strongly undersampled if 𝑄 < 0.5, where all frequency modes
are aliased. Incidentally, if 𝑄 < 0.5, the true profile of the object
cannot be recovered from any set of four dithered exposures (see
Lauer 1999, for example).

If the PSF is Nyquist-sampled then by definition, Δk > 2𝑘max
for all galaxies and there is no signal present if n ≠ 0. 𝐼 interp (x)
has only a small contribution only from the (sub-dominant) detector
noise, whose effect is to change the inferred property of the noise
characteristics. For an undersampled PSF, in addition to the detector
noise, there is a finite contribution from the signal as well. This
results in 𝐼 ′(k|g) in equation (9) being different from 𝐼 (k) evenwhen

9 Our definition differs from that of Shapiro et al. (2013); Plazas et al.
(2016) by a factor of 2.

g = 0. While the PSF is not Nyquist-sampled, it can nevertheless be
modelled verywell frommultiple star images, sowewill assume that
an oversampled image of the PSF is available which does not suffer
from aliasing when interpolated between pixels. In this paper, we
refer to the bias in shear estimate arising due to aliasing as ‘aliasing
bias’. We refrain from referring to it as ‘pixelisation bias’, in order to
avoid confusing this with other sources of bias such as discretisation
of a continuous image.

A distinctive signature of aliasing is that it affects 𝑔1 preferen-
tially more than 𝑔2. Wemotivate this generic result using symmetry.
Aliasing introduces an oscillatory pattern along the axes, modulated
by the image 𝐼 (x). If, on average, the image is isotropic but for a
small 𝑔2, the contributions from the n ≠ 0 term in the integral for
𝑄12 are zero. However, if there is a net 𝑔1, then the horizontal and
vertical axes are not treated on the same footing. The oscillations
do not cancel each other, contributing to 𝑄11 − 𝑄22. This leads to
a non-zero 𝑚1, but not 𝑚2. In an image with discrete pixels, the
sub-pixel offset breaks this symmetry, which leads to a non-zero
but small 𝑚2 in practice.

3 METHOD

Our goal is to evaluate the impact that aliasing would have for
measuring shear using metacalibration from planned Stage IV
surveys. Specifically, we study the performance of metacalibra-
tion on simulated galaxy images, some of which may be poorly
sampled. We use the specifications of Euclid in our fiducial simula-
tion setup, and extend conclusions to theRoman Space Telescope by
considering corresponding sampling factors. The Euclid telescope
has an entrance pupil that is 1.2m in diameter. Euclid will cover
about 15 000 deg2 of the sky, thereby imaging about two billion
galaxies with an SNR greater than 10. The images for shape mea-
surements are captured using the Euclid visible (VIS) instrument10,
with a single broad band filter covering a wide range of wavelengths
from 550 nm to 900 nm and at a resolution of 0.′′1 per pixel. The
PSF is wavelength-dependent set by the diffraction limit, and as a
result, each galaxy is convolved by a different PSF determined by
its spectral energy distribution (SED).

3.1 Image simulations

Postage stamp images of isolated galaxies are simulated with the
publicly availableGalSim11 package (Rowe et al. 2015). We model
the surface brightness profiles of galaxies using Sérsic profiles (Sér-
sic 1968), which have well-defined ellipticities. GalSim comes
equipped with a COSMOSCatalog, which is a catalogue of best-
fitting Sérsic parameters to galaxies in the COSMOS survey (Scov-
ille et al. 2007; Koekemoer et al. 2007; Leauthaud et al. 2007). The
best-fitting parameters were obtained using the method described
in Lackner & Gunn (2012). This serves as our parent galaxy cata-
logue in estimating shear biases (cf. Section 4). Our parent galaxy
catalogue is likely to be different from catalogues from Euclid or
Roman Space Telescope due to different selection functions. Hence,
the shear biases derived in this study are not directly applicable to
those surveys but are only indicative.

Since the PSF is diffraction-limited, its size depends on the
colour of the galaxy itself. For the sake of simplicity, we use a

10 https://sci.esa.int/s/w7dEOxW
11 https://github.com/GalSim-developers/GalSim
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Metacalibration with undersampling 5

monochromatic Airy function as the PSF for all galaxies, corre-
sponding to a wavelength of 800 nm (unless otherwise mentioned)
and arising from a circular aperture of diameter 1.2m,with a central
obscuration factor of 0.3. We exploit the perfect knowledge of this
input PSF, assuming that the PSFs in the real data can be modelled
to sufficient accuracy. An imperfect knowledge of the PSF will in-
troduce bias for all shear measurement methods, and quantifying
this for metacalibration is outside the scope of this paper.

Euclid will image a given field using the VIS instrument with
three or four dithered exposures, and the HLS with the Roman
Space Telescope will include several dithered visits, over multiple
passbands however. Therefore, we render four individual exposures
for each galaxy. The exposures have the same PSF but differ by
uniform sub-pixel offsets of half a pixel in each direction. The
galaxy itself has a random sub-pixel shift to avoid consistently
sampling at the peak of the light profile. We also include a 90◦-
rotated copy (about the same randomly offset centre) for each galaxy
to beat down the intrinsic shape noise (Massey et al. 2007). The
mapping between sky coordinates and pixel coordinates is linear,
given by a constant pixel scale of 0.′′1 per pixel. Since the goal of
this paper is to study the bias just due to pixelisation and having
undersampled PSFs, we do not add any pixel noise to the images for
most simulations in this paper. The rationale is that it is sufficient
to show on noiseless simulations that aliasing bias is significant.
Adding pixel noise complicates the study by inducing correlations
in the noise and also contaminates the estimate of aliasing bias with
noise bias.

3.2 Metacalibration procedure

Although the PSFs in space telescopes are temporally stable, the
variation of the PSF over the focal plane could mean that different
exposures of the same galaxy have different PSFs. For this reason,
ideally, one might want to apply the metacalibration procedure
to the individual exposures with corresponding PSFs, rather than
applying it to a coadded image. For convenience, we refer to the
output images of metacalibration as metacalibrated exposures. We
apply the metacalibration algorithm (see Section 2.2) to each expo-
sure with five artificial shears of 0, ±0.01 and ±i 0.01, generating
five metacalibrated exposures per original exposure.

Tomimic themetacalibration procedure that will be done on
the real data, we do not use the perfectly known, smooth PSF profile,
but render the PSF image by convolving the obscured-Airy profile
with a top-hat pixel response function corresponding to a pixel
scale 𝑝 = 0.′′1 per pixel and oversampling the image by a factor of
5. A smooth PSF model is then constructed from this oversampled
PSF image, which is used for the deconvolution step. The PSF
interpolated from a finite-sized image is not strictly band-limited.
To suppress any spurious power at high spatial frequencies, we use
the band-limited Airy PSF for the reconvolution step. Following the
prescription in Huff &Mandelbaum (2017), we dilate the analytical
PSF prior to its convolution with the pixel response function and
use an oversampled image of the same for shape measurements. The
choice of re-convolving with a band-limited, preferably analytical,
function should be made for the real data to suppress any artefacts
arising from the deconvolution step.

We find that the Quintic interpolation scheme (the default
option in GalSim) is far too inaccurate and causes large differ-
ences between the ellipticities prior and posterior to interpolation.
Switching to a sinc interpolation kernel improves the accuracy,
but is extremely slow to render the images after interpolation. We
find LanczosN with 𝑁 = 50 as an optimal compromise between

speed and accuracy and is our default interpolation kernel. See
Appendix A for more details on our choice of interpolation kernel.

In order to further ensure that our results are not affected due
to moment calculations from poorly sampled PSF images or shape
measurement failures in a particular sub-population of galaxies,
we employ a control branch that is similar to the idea proposed
by Pujol et al. (2019). In our control branch, we skip the steps in
metacalibration where the galaxy image is interpolated and decon-
volved by the PSF. Instead, we include the artificial shear prior to
PSF convolution, and then render the image with dilated PSF and
measure its shear responsitivity. Therefore, by construction, we do
not expect our control branch to exhibit aliasing bias. To avoid any
subtle selection effects between the metacalibration and control
branches (some measurements are failures only in the metacali-
bration branch), we impose the two to have the same population
of galaxies. Note that our pipeline does not include detection and
deblending steps, as we simulate images of isolated galaxies. As a
result of this simplification, we do not suffer from the object detec-
tion bias discussed in Sheldon et al. (2019) and Hoekstra et al. (in
prep.).

3.3 PSF correction

In principle, metacalibration can account for the PSF in the cal-
culation of the per-object responsitivity without any explicit PSF-
correction. Hoekstra et al. (in prep.) show that metacalibration
works in a Euclid-like setup (with constant PSF) without an explicit
PSF-correction. However, in the case of variable PSFs it may prove
beneficial to use some simple PSF-correction schemes to detrend
some of the well-understood effects of PSF, so that the biases that
need to be removed by metacalibration are small to start with.
While Sheldon et al. (2019) show that smooth PSF variations, at the
levels expected for the LSST, are not an issue, it remains unclear
whether galaxy-by-galaxy PSF variation inEuclid due to their SEDs
could be similarly handled. Hence, we employ a few simple PSF-
correction methods and study their sensitivity tometacalibration.
We provide a brief overview of the methods used in this paper.

3.3.1 Gaussian fit

This method approximates both the PSF and the galaxy as elliptical
Gaussians.We use a simple single-Gaussian fittingmethodwhereby
we fit an elliptical Gaussian to the PSF and to the galaxy image. The
difference in the covariance matrices of the two Gaussians gives the
equivalent of unweighted moments for the intrinsic galaxy. Due to
its simplistic assumptions, this method is expected to suffer from
severe model bias (Bernstein 2010; Voigt & Bridle 2010). However,
in combination with metacalibration this has been shown to
achieve residual biases within a per cent on real data (Sheldon &
Huff 2017; Zuntz et al. 2018).

The fitting methodology employed above is different from
those methods that fit a PSF-convolved galaxy model to the im-
age and maximize the likelihood to find the best-fitting parameters.
However, in the absence of blending and missing pixels, model-
fitting methods and moment-based methods are equivalent (Simon
& Schneider 2017). We will therefore not concern ourselves with
the exact details of the model-fitting approach.
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3.3.2 Regaussianisation

A natural extension of the idea above is captured in the Regaus-
sianisation method (Hirata & Seljak 2003). It is a perturbative
method whereby a small non-Gaussianity in the PSF is accounted
for and the intrinsic ellipticity of the galaxy is obtained from the
second order moments, with correction terms from fourth order ra-
dial moments included (see Bernstein & Jarvis 2002, for details).
We used theGalSim implementation of the algorithm in this paper.

3.3.3 KSB

The KSB method, named after the authors of Kaiser et al. (1995),
is one of the pioneering shape measurement methods completely
based on image moments. We use the GalSim implementation of
this method described in Appendix C of Hirata & Seljak (2003).
In this implementation, the ellipticity spinor is calculated from the
quadrupole moments measured with a circular Gaussian weight
function, whose size is typically (but not necessarily) matched to
observed galaxy. The PSF moments are also calculated using the
same weight function as the galaxy following Hoekstra et al. (1998).
From the spatial derivatives of the weight function, polarisability
tensors are calculated and are used to remove the effect of PSF
anisotropy and obtain the shear.

It is worth noting that all of these methods are inexpensive
computationally, both in terms of memory and computing cycles,
in relation to metacalibration (see Table A1). Also, note that
among the three methods listed above, only KSB has a freedom in
the choice of the weight function. We will utilise this freedom in
Section 5.

The PSF-correction routines in GalSim require that both the
galaxy and PSF moments are calculated from images with the same
pixel scale. This limitation prevents us from using the perfectly-
known PSF model. The PSF moments (and moments of small
galaxies) calculated from images at native pixel scale have sam-
pling errors large enough to cause ensemble shear biases of the
order of 0.01, but are greatly mitigated when the PSF image is
oversampled by a factor of 2 or more (e.g. Hoekstra, in prep.). To
be consistent with these oversampled PSF images, we interleave
the four metacalibrated exposures to obtain a high-resolution coad-
ded image, with an effective pixel scale of 0.′′05 per pixel using
the galsim.utilities.interleaveImage routine (Kannawadi
et al. 2016). This step plays the role of a more complicated coad-
dition technique that may be used in practice and represents the
best case scenario. A typical coadded image will not be sampled
this well. In addition to the increased resolution, the advantage of
interleaving (as in any coaddition) is that it allows us to use shape
information of galaxies from multiple images simultaneously, as in
multi-epoch model fitting methods.

4 QUANTIFYING ALIASING BIAS

For a (semi-)realistic population of galaxies taken from the COS-
MOS sample (see Section 3.1), we show how well we can recover
the cosmological shear signal. As mentioned in Section 2.1, we
relate the recovered shear to the true shear via a generalised linear
shear bias model given in equation (6).

The primary source of the c term is PSF leakage, i.e., inade-
quate correction for PSF ellipticity. As we have chosen a circular
PSF for our study, we do not expect any additive bias terms. We
checked this explicitly by seeing that we recover a null signal (about
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Figure 1. Relationship between input and output shears from different PSF-
correction methods for a random subset of 10 000 galaxies. The true shear
values range from -0.04 to 0.04 in steps of 0.01 in one component, while the
other component is fixed at zero. The data points are offset slightly along
the horizontal direction for clarity. The filled points are the shear recovered
from the metacalibration branch and the open points are from the control
branch. The solid curves show the best-fitting cubic polynomial and the
dashed-dotted lines are the best-fitting straight lines (for 𝑔1 only), with the
best-fitting parameters listed in Table 1.

10−7 or smaller) when the true shear is zero. Additionally, when
only one of two shear components is non-zero, we recovered (al-
most) zero shear for the component set to zero. We also noticed a
mild linear dependence on the non-zero component, corresponding
to |𝑚12 | ≈ |𝑚21 | . 2 × 10−4.

In practice, the PSF will be slightly anisotropic, leading to
non-negligible additive bias terms due to PSF leakage, and also
possibly due to pixelisation effects.However, in this study,we are not
interested in quantifying the contribution of pixelisation to additive
biases as any residual biases can be estimated and removed from the
data themselves. We will therefore focus on the multiplicative bias
terms, and thus the ability to recover non-zero shear. Our results
already indicate that there is no discernible crosstalk between the
two shear components, and therefore the multiplicative biasMmay
be considered to be strictly diagonal.

Figure 1 shows the relationship between the true input shear
𝑔𝑖 and the recovered shear �̂�𝑖 for 𝑖 = 1, 2. The presence of a small
higher order (cubic) relation is evident in the 𝑔2 component, which
closely follows the trend in the control branch for 𝑔2 (and 𝑔1). The
cubic relation is a result of calculating 𝜒-type ellipticities as op-
posed to 𝜖-type ellipticities12 (see equation 5) and is inherent to
the Gaussian fit and Regaussianisation estimators. We notice that
the systematic error in 𝑔1 is dominated by a linear term, which is

12 Although the 𝜖 -type ellipticity appears to be the preferred type as it is
unaffected by higher order shear terms, the quantity under the square root is
not guaranteed to be positive for PSF-corrected moments in the presence of
noise, which introduces biases.
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Table 1. Residual multiplicative bias in shear measured with various PSF-correction methods after applying metacalibration. The uncertainties capture the
deviation of the mean shear from the best-fitting function, and do not include the uncertainty in the shear measurement itself. The 𝑐-terms are from the linear
fit were very similar to cubic polynomial fit.

Algorithm for Ellipticity 𝑚1 [×102 ] 𝑚1 [×102 ] 𝑚2 [×104 ] 𝑐1 [×108 ] 𝑐2 [×108 ]
PSF-correction type (linear) (cubic) (cubic) (cubic) (cubic)

Gaussian fit 𝜒 −0.81 ± 0.01 −0.8968 ± 0.0002 −6.420 ± 0.003 0.2 ± 2.0 −0.3 ± 0.3
Regaussianisation 𝜒 −1.17 ± 0.03 −1.3380 ± 0.0002 −11.97 ± 0.01 0.5 ± 2.1 −0.9 ± 1.4
KSB 𝜖 −0.853 ± 0.003 −0.8342 ± 0.0003 −7.614 ± 0.002 0.2 ± 2.5 0.2 ± 0.2

practically negligible in the control branch. In Table 1, we list the
multiplicative and additive bias terms obtained by fitting a cubic
function (without a quadratic term) to the points in Fig. 1. In all
cases, the value of 𝑚1 is an order of magnitude larger than 𝑚2 indi-
cating that aliasing affects𝑚1 more than𝑚2, which is not surprising
given the symmetry argument in Section 2.3. We also fit a straight
line to the data points in the upper panel of Fig. 1, whose slopes
are tabulated in Table 1. A comparison of the two 𝑚1 columns
for 𝜒−type measurements shows that when the nonlinear terms are
dropped, the amplitude of 𝑚1 is overestimated by a small amount,
by approximately 𝑚2.

Since the biases from higher order shear terms, cross-terms in
M, and c are negligible, we estimate the linear multiplicative bias
as

𝑚𝑖 := �̂�𝑖/𝑔𝑖 − 1, (14)

for 𝑖 = 1, 2 and for small enough 𝑔𝑖 . Note that this simple form of the
estimator implies we do not have to perform a linear regression over
multiple true shear values to find the multiplicative term, thereby
reducing the volume of simulations required. The uncertainty in 𝑚𝑖

is then simply the uncertainty in �̂�𝑖 scaled by 1/|𝑔𝑖 |. In the following
sections, the multiplicative bias is computed from simulations with
input shear of 𝑔1 = 𝑔2 = −0.02.

4.1 Dependence on galaxy sizes

We demonstrate that the bias observed in the 𝑔1 component is
predominantly due to a sub-population of small galaxies, whose
intrinsic sizes happen to be of the order of, or smaller than, the pixel
size, and hence undersampled in a single exposure. By progressively
eliminating small galaxies from our sample, we show in Fig. 2
that 𝑚1 converges to zero within the accepted range of accuracy.
Eliminating galaxies smaller than a given threshold corresponds to
a special case of equation (12) with a binary weight 𝑤(𝑟; 𝑟min) =

Θ(𝑟 − 𝑟min), where Θ(·) is the Heaviside-step function, 𝑟 is the
true intrinsic half-light radius of the galaxy (circularised, so that
the weight is independent of ellipticity), and 𝑟min is the threshold,
which sets the minimum size of the galaxy in our sample. Figure 2
also shows explicitly that the aliasing affects only 𝑚1 and has little
effect on 𝑚2.

The bias for a sample of galaxies depends on its size distri-
bution, as a result of this size dependence. The upper panel of
Fig. 2 shows the cumulative marginal distribution of input galaxy
sizes, marginalised over other galaxy properties such as intrinsic
ellipticities, Sérsic indices etc. For the COSMOS galaxy sample
we simulated, the bias is dominated by 13 per cent of the galaxies,
whose intrinsic radii is smaller than 0.′′1, or 1 native pixel.

Note that we do not have a detection stage in our simplistic
setup and are also insensitive to the absolute level of surface bright-
ness of the galaxy due to absence of a sky background and noise.
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Figure 2. Lower panel: Aliasing bias as a function of minimum half-light
radius imposed on the galaxy samples. The filled points show 𝑚1 after
metacalibration and the open points show 𝑚2. Both 𝑚2 and 𝑚1 for the
control branch (dashed-dotted lines) show signs of nonlinear bias in 𝜒−type
measurements. The shaded region represents that Euclid requirement on𝑚1
to be within ±2× 10−3. Upper panel: The fraction of galaxies in our sample
(by number) that survive the minimum size criterion.

While we do not apply an explicit magnitude cut in our simulations,
our input catalogue is nevertheless magnitude-limited. However,
those galaxies in our input catalogue with 𝑟 < 0.′′1 were well-
resolved in the Wide Field Camera of the Hubble Space Telescope
with a pixel scale of 0.′′05 (and an effective pixel scale of 0.′′03
after coaddition), but may escape detection or be poorly resolved
in Euclid and Roman Space Telescope images which have larger
pixel scales. Thus, for future Stage IV experiments from space, an
implicit selection effect due to detection may play a natural role
in excluding such small galaxies and may suffer less from aliasing
than shown here. On the other hand, galaxies are not smooth and
have complex morphologies in reality. The size parameter 𝑟 merely
describes how rapidly the surface brightness drops given a Sérsic in-
dex. In practice, even large galaxies that exhibit small scale features
will contribute to aliasing.

A plausible explanation for the bias could be mis-centering,
i.e., the offset between the centres of the galaxies and PSF models.
While the PSFs are always centred at the centre of the central
pixel, the galaxies have random sub-pixel offsets. The difference in
sampling could potentially introduce biases, with smaller galaxies
showing larger biases. If this was the dominant source of bias,
we would then expect it to be the case even in the control branch
where such mis-centering is present. Furthermore, since the PSFs
are oversampled by a factor of 5, it is highly unlikely that these biases
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Figure 3. Plot of residual shear multiplicative bias due to pixelisation for
various sampling factors, achieved by varying the pixel scale. A sampling
factor less than unity indicates undersampling of the PSF. The filled points
show the bias after metacalibration and the open points show the bias
from the control branch. The shaded horizontal region represents the Euclid
requirement on 𝑚1 to be within ±2 × 10−3 and the vertical shaded region
highlights the bias incurred by various PSF-correction methods at Euclid
pixel scale. The sampling factors for the three imaging bandpasses for the
Roman Space Telescope (RST) are also indicated by dashed vertical lines.

could be arising due to sampling. Finally, we explicitly checked if
this is the case by centering all galaxies at the pixel centre and
found no significant difference. Hence, we rule out mis-centering
as a potential source of the bias.

4.2 Dependence on sampling factor

In order to establish that this bias arises from the undersampling
of the images, we study how the shear is recovered as a function
of sampling factor 𝑄. We vary the pixel scale to vary 𝑄 and show
𝑚1 as a function of the pixel scale in Fig. 3. The pixel scale in the
Euclid VIS detectors is fixed at 0.′′1 per pixel and in the Roman
Space Telescope it is 0.′′11 per pixel. At a pixel scale of 0.′′1 per
pixel (that of Euclid VIS detectors), we see a clear difference in
signal obtained using the metacalibration branch and control
branch. The uncertainty values are obtained from 1000 bootstrap
realisations of galaxy pairs. We see that for Euclid, a residual bias
in 𝑚1 of approximately 0.01 after metacalibration is possible,
while the control branch shows no biases exceeding the tolerance.

Although our setup mimics Euclid, it is straightforward to
assess the level of bias that would be incurred in a Roman Space
Telescope-like setting using scaling arguments. A suite of dedicated
image simulations for Roman Space Telescope, one that is more
representative than this study is for Euclid, is given in Troxel et al.
(2019), albeit withoutmetacalibration. Despite the Roman Space
Telescope bandpasses covering the near-infrared wavelengths, the
telescope aperture has twice the diameter as that of Euclid and the
pixel scale of the H4RG detectors in Roman Space Telescope is only
10 per cent bigger than Euclid VIS detectors. As a result, the Roman
Space Telescope PSFs are likely to be equally undersampled or
worse than the Euclid PSFs. The sampling factor acts as a powerful
summary statistic that is robust to change in the details of the PSF,
pixel scale, aberrations etc.

The shape measurements for the HLS are intended to be done

in three bandpass filters: 𝐽, 𝐻, 𝐹, whose effective wavelengths are
1290 nm, 1580 nm and 1840 nm respectively. The sampling factors
for the three filters are approximately 0.504, 0.617 and 0.718 re-
spectively, as indicated by vertical dotted lines in Fig. 3. As shown in
Fig. 3, we obtain a bias of about 0.015 and 0.025 for 𝐹 and 𝐻 bands
respectively. For the bluest bandpass 𝐽, all of our measurements
made using our setup were failures, even in the control branch. Ex-
trapolating the data points to higher sampling factors gives a bias
estimate of about 0.1. These estimates may be approximate, but they
are sufficient to demonstrate that the bias exceeds well above the
much tighter requirement of 3.2 × 10−4 set in Doré et al. (2018).

These dependencies on the galaxy sizes and sampling ratio,
combined with the fact that |𝑚1 | > |𝑚2 |, strongly suggest that
the source of bias is aliasing. The shear measured using adaptive
Gaussian moments from metacalibrated exposures can be biased
at a few per cent level when the PSF is undersampled, thereby re-
quiring large calibration corrections that need to be calculated from
image simulations. This negates the fundamental idea behindmeta-
calibration of calibrating shear measurements from the data itself
without requiring any (or at least large) corrections from image sim-
ulations. As explained in Section 1, the size dependence of aliasing
bias introduces a sensitivity to galaxy populations that is otherwise
benign for metacalibration when the PSF is well sampled. Even
if the aliasing bias can be calculated accurately with sophisticated
simulations, it is of practical inconvenience for 𝑚1 and 𝑚2 to have
very different values, since the multiplicative bias can no longer
be treated as a scalar as they are done in cosmological parame-
ter inference studies (e.g. Hildebrandt et al. 2020). It is therefore
expected of metacalibration to provide shear estimates that are
sufficiently unbiased to begin with. In the following section, we
explore some strategies to mitigate the pixelisation bias internally
without requiring external simulations.

5 MITIGATING ALIASING BIAS

While the weight function 𝑊 (x) in the definition of moments in
equation (1) is arbitrary in principle, a careful choice of the weight
function has to be made in practice. We showed in the previous sec-
tion that shapes of best-fitting Gaussians to the galaxies, as well as
the ellipticities computed from moments using those Gaussians as
weight functions show significant aliasing biases. Thus, the choice
of 𝑊 (x) that maximises the SNR of the shear estimate is unfortu-
nately not ‘optimal’ due to the bias it incurs when combined with
metacalibration. We emphasise that this is not because of a mis-
match between the light profiles, and can therefore be expected
for all model-fitting methods, which share similar underlying prin-
ciples (Simon & Schneider 2017). In this section, we explore if
moment-based shapes estimated with a different choice of Gaussian
parameters could lead to unbiased shear, although with a slightly
lower SNR.

5.1 Non-adaptive weight functions

We argue in Appendix B that moments calculated with wide weight
functions should be less susceptible to aliasing, as long as the sam-
pling factor is greater than 0.5. We restrict ourselves to the case of
circular weight functions only, as elliptical weight functions respond
strongly to the applied shear whereas the size of the circular weight
function is rather robust to the applied shear. The only free param-
eter for the circular weight function is its width, which we vary. We

MNRAS 000, 1–15 (2020)



Metacalibration with undersampling 9

0.075 0.100 0.125 0.150 0.175 0.200
σw [arcsec]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

m m1

m2

0.10 0.15

−0.005

0.000

1.5 2.0 2.5 3.0 3.5 4.0
σw [pixels]

Figure 4. Residual shear multiplicative bias after metacalibration as a
function of 𝜎w, the width of the circular Gaussian weight function used to
compute moments from interleaved images with a pixel scale of 0.′′05 per
pixel. 𝑚1 is more adversely affected than 𝑚2 due to aliasing for small 𝜎w.
The shaded region represents that Euclid requirement on 𝑚 to be within
±2 × 10−3. The inset focuses on the region of the figure where the bias
approaches zero. The horizontal axis of the inset is in units of arcsec.

investigate three different ways of employing a large weight function
in practice:

(i) use a constant weight function, that is sufficiently sampled,
for all galaxies (used by Hoekstra et al. in prep.);
(ii) scale the width of the adaptive weight function by a constant;
(iii) set aminimum threshold for thewidth of theweight function.

We emphasise that these choices can be made using the avail-
able data themselves, without the need for external simulations.
For the remainder of the paper, we focus only on the KSB shear
measurement algorithm as the other PSF-correction methods dis-
cussed in Section 3.3 do not have the freedom to choose the weight
function.

5.1.1 Constant weight function

We begin with the simplest scheme of using wide weight functions:
a circular Gaussian with a constant width for all galaxies in our
sample. This has the advantage of avoiding calculating the adaptive
width for each galaxy and is computationally less expensive. We
employ the same circular Gaussian function of width 𝜎w for all
galaxies in the sample, and for all artificially sheared images of
them, by specifying the ksb_sig_weight keyword in GalSim.
Figure 4 shows how the bias varies as we change 𝜎w. A choice of
small 𝜎w leads to a residual bias in both 𝑚1 and 𝑚2 components,
with 𝑚1 being larger in amplitude. A non-negligible level of bias
if found in 𝑚2 for 𝜎w . 0.′′11. The non-zero 𝑚2 is because of
accentuated aliasing bias even in the 𝑔2 shear component.

We find that 𝜎w has to be at least 0.′′15 (for our choice of
PSF) for the aliasing bias to be within the allowed uncertainty. For
our simulated galaxies, 𝜎w = 0.′′15 (𝜎w = 0.′′2) is larger than
their adaptive sizes for more than 62 (38) per cent of the galaxies.
Hoekstra et al. (in prep.) use 𝜎w = 0.′′2 in their metacalibration
setup (without any PSF-correction) and find no significant aliasing
bias with more complex simulations.
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Figure 5. Residual shear multiplicative bias post metacalibration as a
function of the multiplicative factor 𝑓 to scale the size of adaptive weight
function. For the points labelled ‘KSB’ (red, downward pointing), the adap-
tive weight function is measured independently for each metacalibrated
exposure, whereas for the points labelled ‘KSB (alt.)’ (purple, upward point-
ing), the adaptive weight is calculated from the interleaved image composed
of exposures not subject to metacalibration. The open points denote the
bias for the control branch, whereas the filled points denote the metacal-
ibration branch. The steep behaviour at 𝑓 = 1 indicates that adaptive
moments are not robust in the presence of aliasing. The shaded region rep-
resents the Euclid requirement on 𝑚1 to be within ±2 × 10−3. The inset
focuses on the region of the figure where the bias approaches zero.

5.1.2 Constant scaling

An alternative approach is to scale the width of the adaptive weight
function by a constant factor for each galaxy, i.e., 𝜎w = 𝑓 𝜎adap. We
do this using the ksb_sig_factor keyword in GalSim. Figure 5
shows how the bias changes as a function of 𝑓 . Interestingly, we
notice that the bias changes steeply around 𝑓 = 1 and approaches
|𝑚1 | < 2 × 10−3 at around 1.3 and flattens. The smallest bias
(𝑚1 ≈ −6.6×10−4) was achieved for 𝑓 = 1.7 and the bias increases
ever so slightly there onwards. The latter trend is true for the control
branch as well, indicating that using a very large weight function
causes intrinsic bias (perhaps due to truncation) rather than aliasing
bias.

Since the adaptive weights themselves are biased, we inves-
tigate if the bias could be further reduced by not recomputing the
weight function for the sheared versions of the galaxy. For a given
galaxy image, we use the adaptive (circular) moments from the in-
terleaved image to give us a good initial estimate for the width of
the weight function. We re-measure galaxy shapes with the KSB
method, but nowwith the sameweight function (per galaxy).Wefind
that the estimator is biased more compared to the weight function
inferred after the metacalibration procedure. This is understand-
able as the galaxy is re-convolved with a larger PSF post metacal-
ibration and therefore the former results in a slightly wider weight
function compared to the one obtained from the interleaved image,
and hence has smaller bias.

5.1.3 Minimum thresholding

Since the use of a constant weight function leads to loss in signal-
to-noise for large galaxies that do not contribute to aliasing bias, we
devise a hybrid scheme that treats small galaxies differently from
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Figure 6. Residual shear multiplicative bias post metacalibration as a
function of 𝜎min, the minimum width of the circular Gaussian weight func-
tion used to measure moments from the interleaved image with pixel scale
0.′′05 per pixel. The greater quantity between adaptive size and the minimum
threshold size is used for moment calculations. The open points denote the
bias for the control branch, which are all within requirements, whereas the
filled points denote the metacalibration branch. The shaded region rep-
resents that Euclid requirement on 𝑚1 to be within ±2 × 10−3. The inset
focuses on the region of the figure where the bias approaches zero. The
horizontal axis of the inset is in units of arcsec.

the large ones. We propose that the width of the weight function
be 𝜎w = max(𝜎min, 𝜎adap), where 𝜎adap is the width of the cir-
cular adaptive weight function and 𝜎min is a free parameter to be
optimised. We use the KSB algorithm to estimate shear from the
ensemble of galaxies using circular Gaussian weight functions with
several different values of𝜎min. Figure 6 indicates themultiplicative
bias post-metacalibration as a function of 𝜎min. Beyond 𝜎min of
0.′′15, the bias appears to saturate to a small value that is consis-
tent with zero at the 10−4 level, and is in excellent agreement with
the control branch as well. Comparing with the results in Fig. 4,
it appears that by avoiding Gaussian weight functions smaller than
0.′′15, we can bring aliasing bias consistent with zero. The exact
threshold certainly depends on the size of the PSF (and to some
extent the galaxy size distribution), which we analyse next.

5.2 Robustness to galaxy colour

Since the diffraction-limited PSF depends on the galaxy colour, the
optimal choices for 𝜎w determined above to mitigate the aliasing
bias have to be insensitive over a broad range of PSFs in order for
these mitigation strategies to be more generally applicable. In par-
ticular, they should hold well for PSFs smaller than the one we have
considered. In reality, the PSF is the integral of monochromatic
PSFs weighted by the SED of the galaxy and filter throughput. The
band-limit is then set by the bluest wavelength determined by the
SED of the galaxy and VIS passband. We repeat the simulations
of the same population of galaxies with Airy PSFs with effective
wavelengths _eff of 700 nm and 550 nm. For these shorter wave-
length PSFs, we increased the PSF image oversampling from a fac-
tor of 5 to 10 to construct a more accurate interpolated PSF model.
We show the results only for the minimum thresholding strategy
as we expect it to be the most robust. From Fig. 7, we see only a
weak dependence on the effective wavelength, with shorter effective
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Figure 7. Same as Fig. 6 but for monochromatic PSFs corresponding to
shorter wavelengths.

wavelengths showing slightly larger biases for a given minimum 𝜎w
as expected. We found the PSF-dependence to be negligible with
other strategies as well. Note that 550 nm is the shortest wavelength
that will be covered with the Euclid VIS instrument, and hence this
case represents a scenario worse than any realistic worst possible
case. It is also reassuring that our mitigation strategy works for
strongly undersampled PSFs (𝑄 ≈ 0.47 for _eff = 550 nm).

One additional complication not included in the simulations
is that of realistic galaxy morphologies. Star-forming galaxies that
suffer more from aliasing due to their blue colour also exhibit fea-
tures such as knots and spiral arms that boost the power in the
high-frequency modes, thus aggravating the impact of aliasing. We
expect our mitigation strategies to be effective regardless, but this
is left for future work.

While the true profiles of the PSFs may be different from the
ones considered in the study, they are nevertheless band-limited.
This is true in the presence of optical aberrations. Optical imper-
fections such as guiding errors or internal reflections from dichroic
coating result in imperfect knowledge of the PSF, but do not af-
fect the band-limit. Out-of-band wavelengths shorter than 550 nm
increase the band-limit by a small amount. Nonlinear effects in real-
space that are not perfectly corrected for result in a convolution in
the Fourier domain, which can introduce a small amount of power
at arbitrarily high spatial frequencies. Furthermore, the interpolated
image from a finite-size stamp of the PSF itself is not strictly band-
limited. However, since we reconvolve the image with a perfectly
band-limited PSF, these are not major concerns.

Due to the wavelength dependence, the PSF could vary spa-
tially within a galaxy due to the spatial variation of the SED across
the galaxy, referred to as colour gradients (Voigt et al. 2012). This
introduces shear biases larger than what Stage IV experiments can
tolerate when a spatially averaged PSF is used to deconvolve the
galaxy image. Recently, Er et al. (2018) showed that metacalibra-
tion, by means of deconvolving with a wavelength-averaged PSF,
cannot fully eliminate biases due to colour gradients, which alone
happens to exceed this requirement (Semboloni et al. 2013). One
way around this limitation, at least for moment-based methods, is
to use large weight functions that can trade colour gradient bias
for noise bias, which can then be removed by metacalibration
in principle (Semboloni et al. 2013; Er et al. 2018; Kamath et al.
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2020). It is intriguing (and comforting) to see that both aliasing bias
and colour gradient biases can be minimised by the same procedure
of using a wider weight function, although for different reasons.
The low sensitivity to PSFs in Fig. 7 indicates that not only are our
strategies independent of the colour of the galaxy, but should be
robust to any colour gradients in the galaxy as well.

5.3 Robustness to pixel noise

While noiseless image simulations are sufficient to show that meta-
calibration suffers from aliasing bias when adaptive moments
are used, the mitigation strategies discussed in this section need
to be validated on more realistic images with pixel noise in order
to demonstrate their usefulness in practice. In particular, the use
of wide weight functions could lead to noisier ellipticities and re-
sponsitivities, and the shear estimate given in equation (11) may no
longer be sufficiently unbiased. We now demonstrate using noisy
images of isolated galaxies that there is a range of widths for the
weight function where the total shear bias is within the require-
ments. Sections 6 and 7 of our companion paper (Hoekstra et al. in
prep.) also validate the use of 𝜎w = 0.′′2 using images that simulate
the full field of view.

For simplicity, we add a Gaussian white noise to the postage
stamp images. The SNR is a fairly complicated function of the
galaxy magnitude, size, and ellipticity in addition to the pixel noise.
Here, we define SNR a as

a :=
1

𝑁side𝜎pix

√︄∑︁
x

𝐼2 (x) , (15)

where 𝜎pix is the root mean square (rms) of the noise per pixel
and 𝐼 (x) stand for the pixel values of an 𝑁side × 𝑁side image. This
definition assumes the use of a matched weight function, which
does not hold true as we vary the weight function. Here, we use a a
proxy for the quality of the galaxy image. For an image consistent
with noise, a ≈ 1. We vary the noise rms for each galaxy (using
galsim.Image.addNoiseSNR function) so that each galaxy in the
sample has a given value of a.

Since our bias estimate with the small sample is too noisy
in the presence of pixel noise, we made the following changes to
our simulation setup described in Section 3. We use an input shear
of larger magnitude (𝑔 = −0.05 − i0.05) in order to reduce the
uncertainty in our estimate of the multiplicative bias. Based on the
values in Table 1, we expect the higher-order shear contribution to
increase the multiplicative bias by around 0.001, much smaller than
the aliasing bias. We also augment our sample by rendering each
galaxy pair thrice with different noise realisations, which gives us
small enough uncertainties that are comparable to the requirements
of the Stage IV surveys. We continue to use a stimulus shear of
magnitude 0.01. To correct for noise correlations introduced during
this shearing process, we follow Sheldon & Huff (2017) in applying
a noise image sheared in opposite direction.

As in the noiseless case, we take a simple mean of ellipticities
and responsitivities, and hence, each galaxy contributes equally to
the shear estimate. The justification is that we do not mix galaxies
of different SNRs, because the galaxy weights within a sample are
expected to be roughly the same13. Having identical weights has
the added advantage that the rotated pairs have the same weights as
well, thereby ensuring effective shape noise cancellation.

13 This is not strictly true, as a is detection significance, and galaxies have
different shape errors based on their intrinsic properties.
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Figure 8.Multiplicative bias due to selection from noisy images applied to
noiseless measurements. The selection bias increases in the positive direc-
tion as the noise increases, fairly independent of minimum size of the weight
function, 𝜎min. The uncertainty in selection bias is smaller than the size of
markers. The dashed line shows the selection bias on 𝑚2. The differences
seen at low values of 𝜎min are due to aliasing.

The uncertainties in the estimates of the shear, and hence in𝑚1,
is calculated resampling the pairs of galaxies that are rotated by 90◦,
which also ensures shape noise cancellation within each bootstrap
realisation. We are unable to use the approach of Pujol et al. (2019)
or the more common linear regression approach since we simulated
images with only one value of true shear. The bootstrapped shear
estimates are Gaussian distributed to a very good approximation.
The 1𝜎 errorbars correspond to the 16 - 84 percentile confidence
interval over the bootstrap samples.

In the presence of the noise, the shape measurement failures
increased from none to up to 5 per cent, thereby somewhat changing
the selection function. The change in the bias then has (at least) two
new components - a selection bias component and a noise bias
component. We also found that the measurement failures had weak
dependence on galaxy size. We quantify the change in bias due to
a change in the selection function by selecting those galaxy pairs
from the noiseless simulations that have valid shape measurements
when the SNR is a given value a. We see from Fig. 8 that as the level
of noise increases, imposing the selection on noiseless simulations
increases the bias in the positive direction.

The presence of a large residual selection bias is not an inherent
limitation of metacalibration. Sheldon & Huff (2017) prescribe
how to account for this selection bias, which we have omitted from
our analysis for simplicity. A more detailed analysis of selection
bias, including those arising from object detection, is presented in
Hoekstra et al. (in prep.).

In Table 2, we report the shear multiplicative biases with vari-
ous weighting schemes from images with finite SNRs. We find that
the hybrid scheme (Section 5.1.3) is most robust in the presence of
pixel noise, with uncertaintiesmuch smaller compared to scaling the
weight function (Section 5.1.2). We do not report the values from
using constant weight functions as the estimates are not robust, and
exhibit significant outliers. The lack of robustness is mainly due to
the PSF-correction steps within the KSB algorithm, and Hoekstra
et al. (in prep.) find the use of constant weight functions robust in
the absence of explicit PSF-correction.

Figure 9 shows the bias in the shear estimated from our meta-
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Figure 9. Plot of change in multiplicative bias with change in 𝜎min parameter for different values of the SNR a. The shaded regions represent the tolerance of
±2 × 10−3. The change in bias on noisy images closely follows the trend in the noiseless images for 𝜎min . 0.′′15, suggesting the validity of the mitigation
strategy even in the presence of pixel noise.

Table 2. Multiplicative biases in the presence of noise for a selected set of
schemes that mitigated aliasing bias sufficiently in noiseless images. The
multiplicative biases are estimated using equation (14).

KSB weight a 𝑚1 [×102] 𝑚2 [×102]

𝜎w = 𝜎adap 50 −0.82 ± 0.08 −0.16 ± 0.08
𝜎w = 1.4𝜎adap 50 −0.22 ± 0.09 −0.38 ± 0.09
𝜎min = 0.′′15 50 −0.01 ± 0.08 −0.1 ± 0.08

𝜎w = 𝜎adap 40 −0.86 ± 0.10 0.02 ± 0.10
𝜎w = 1.4𝜎adap 40 −0.13 ± 0.11 −0.08 ± 0.12
𝜎min = 0.′′15 40 −0.03 ± 0.10 0.08 ± 0.10

𝜎w = 𝜎adap 30 −1.03 ± 0.13 −0.22 ± 0.14
𝜎w = 1.4𝜎adap 30 −0.45 ± 0.16 −0.35 ± 0.15
𝜎min = 0.′′15 30 −0.19 ± 0.14 −0.21 ± 0.14

𝜎w = 𝜎adap 20 −1.47 ± 0.21 −0.36 ± 0.27
𝜎w = 1.4𝜎adap 20 −2.41 ± 0.86 −5.20 ± 2.02
𝜎min = 0.′′15 20 −0.83 ± 0.21 −0.34 ± 0.27

calibration setupwith the hybrid scheme. Note that the data points
are highly correlated, since the measurements are made from the
same set of noisy images. The characteristic shape of aliasing bias
is seen in 𝑚1 values when 𝜎min . 0.′′125. The signature of aliasing
bias is absent for 𝑚2, as expected from the noiseless case, and is
largely independent of the choice of 𝜎min. The values of 𝑚1 and
𝑚2 are also consistent with each other for 𝜎min & 0.′′125, and
marginally so for the a = 20 sample. The uncertainty in the 𝑚 val-
ues are smaller than the tolerance for a ≥ 30 galaxy samples. The
values of 𝑚2 (and 𝑚1 for large enough 𝜎min) are also consistent
with 0 for high SNR (a & 30) samples, only barely consistent with
0 for a = 30 sample and inconsistent with 0 for the a = 20 sample.

Though the performance of KSB with metacalibration falls
short of the requirement for the a = 20 sample, the mitigation
strategy reduces the bias by about 0.008 for all SNR samples. The
residual bias for the low SNR samplemay be due to selection effects,
correlations in the noise etc. With further work, we believe it should

be possible to reduce the bias further for a = 20, but we leave it
outside the scope of this paper.

Despite the simplified nature of the simulations used in this
work, Fig. 9 makes evident the presence of aliasing bias and the
effectiveness of using a wider weight function in mitigating it. One
may suspect that in regions where galaxies are clustered, the ring-
ing effects from one galaxy could affect the shape measurements
of neighbouring galaxies, which our simulations do not capture.
However, we do not find any evidence of significant aliasing bias
in Hoekstra et al. (in prep.) who simulate a scene at native pixel
scale with multiple galaxies and use a wide weight function for
shear measurement. Thus, we conclude that undersampling is not a
limiting factor to use metacalibration for measuring shear using
individual exposures from space telescopes if appropriate mitiga-
tion measures are taken.

6 DISCUSSION

The problem of PSF undersampling is a fundamental one in esti-
mating the weak lensing signal, especially with metacalibration,
as this renders all galaxy images undersampled in principle. In the
previous section, we demonstrated a set of related strategies that can
sufficiently suppress the effects of aliasing. In this section, we lay-
out a few other ways of tackling this problem that may be explored
further in the future.

First, we revisit the self-imposed restriction that the metacal-
ibration procedures are to be performed on individual exposures,
and not on the coadded image (see Section 3.2). Our analysis in
Fig. 3 shows that the metacalibration procedure works, at least
in principle, if performed on a coadded image. This is due to a
smaller effective pixel scale compared to the native pixel scale. For
this study, we considered uniformly dithered exposures with iden-
tical PSFs, which are effective at cancelling aliasing effects due to
special symmetries. It is not obvious in the more generic case of
variable PSFs and random sub-pixels dither if the coadded image
would be free of aliasing. This is made worse when the exposures
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have to undergo generic geometric transformations, such as rotation
and corrections for field distortions in addition to translations before
being projected on to a common grid. A commonly used method to
produce a coadded image from the individual HST exposures is the
MultiDrizzle method (Fruchter & Hook 2002; Koekemoer et al.
2003), which generates a high-resolution image by means of inter-
polation on the individual (non-Nyquist sampled) exposures, and
therefore shapes measured on them with metacalibration would
exhibit some aliasing bias.

Since the coadded image is a linear combination of the individ-
ual exposures, one could construct a corresponding coadded PSF
using the same linear combination and use that for deconvolution.
Metacalibration has been shown to work on such coadds that are lin-
ear combination of individual exposureswith PSFs that have smooth
spatial-variation at the level expected for the LSST survey (Sheldon
et al. 2019, Armstrong et al. in prep.). The caveat however is that,
with hundreds of exposures as in LSST, the issue of PSF disconti-
nuity could be overcome by discarding the few exposures (around
3 per cent of exposures) that contribute to the discontinuity for a
given galaxy with very little loss of SNR. Such an approach may not
be feasible with Euclid with five (or fewer) exposures per field. But
fewer exposures also means that regions with PSF discontinuities
due to chip gaps are also much rarer. Additionally, pixels that are
masked or affected by cosmic rays also lead to PSF discontinuities.
However, with variable PSFs, each PSF image would be under-
sampled, and hence the coadded PSF image would also be aliased.
Alternatively, it is possible to construct a coadded image with a de-
sired target PSF, as in the IMage COMbination algorithm (imcom;
Rowe et al. 2011). This introduces additional complications to the
noise properties, which have to be dealt with carefully. Evaluating
the performance of metacalibration on coadded images where
the individual PSFs are varying and undersampled is therefore still
an open question.

Second, the requirement for the PSF to be Nyquist sampled
arises only if we wish to reconstruct the continuous image from the
pixel values without any assumption about the galaxy profile. This
is different from the requirement of having sufficient knowledge of
PSF, which can be obtained from forward modelling of the tele-
scope optics in addition to multiple star images. It is possible to
overcome the Nyquist theorem by assuming a moderately realistic
model for galaxies, as the model-fitting methods do. Such methods
assume a galaxy model with a few parameters and attempt to find
the best-fitting model parameters by maximizing the likelihood that
the observed image is given by a convolution of the model and the
PSF. A similar approach should be possible even when the PSF is
undersampled. Given an aliased image after the metacalibration
procedures, by fitting to each exposure an aliased model convolved
with an aliased PSF model, the best-fitting parameters could still be
obtained, at least in principle, by likelihood-based methods. Addi-
tionally, likelihood-based methods also enjoy adopting an accurate
description of correlated noise introduced in the image processing
steps. However, a plausible difficultywhile trying to implement such
an approach is that the continuous image becomes periodic, with a
periodicity comparable to pixel width. This could hinder likelihood
methods from achieving convergence in the presence of noise. Tight
priors on the centroid of the galaxy would be required to prevent di-
verging solutions. In this paper, we did not use any likelihood-based
model-fitting methods and are hence defer testing this hypothesis to
the future.

Third, if one were to employ inverse variance weights, or
weights that are smooth monotonically increasing functions of
galaxy sizes and use equation (12), the amplitude of the aliasing

bias may be reduced further. This could help achieve a compromise
between the systematic and statistical errors. It may even be possible
to conceive a somewhat sophisticated colour-dependent weighting
scheme for galaxies so that blue galaxies are downweighted more
compared to red galaxies (of the same SNR and size) due to their
small PSF size. Such weighting schemes are not without caveats.
A colour-dependent weight couples errors in photometric colours
(and redshifts) with errors in shear which could be difficult to de-
couple later on. Also, in the presence of noise, the estimated size
of the galaxies will themselves be noisy and a selection based on
these noisy quantities could introduce biases comparable to alias-
ing bias. Moreover, such weighting schemes might preferentially
downweight galaxies at high redshifts, thereby potentially reducing
the figure-of-merit for the dark energy equation of state parameters
significantly. A thorough investigation of optimal galaxy weights to
minimise the overall bias requires far more realistic image simula-
tions and is beyond the scope of this work.

7 SUMMARY

The shear field due to the gravitational lensing of the large-scale
structure of the Universe contains rich information about the dis-
tribution of dark matter and the rate at which it forms the cosmic
web. metacalibration is a promising way to calibrate the shear
from observed images, without having to rely on external image
simulations for calibration. In the case of space-based surveys such
as Euclid and the Roman Space Telescope, this procedure is compli-
cated by the fact that one has to interpolate a possibly undersampled
image. Galaxies that are small and barely resolved lead to a signifi-
cant aliasing bias as a result of this interpolation. Nevertheless, by
using moments of those galaxies measured with a weight function
wider than their adaptive weight function to estimate shear, it is
possible to reduce the amplitude of this bias to a tolerable level,
at the mild expense of reducing the SNR. Thus, assuming that the
PSF for the individual exposures are well known, we conclude that
metacalibration, even when applied to individual exposures, is
not limited by undersampling. We understand this conclusion as a
result of suppression of high-frequency modes which would other-
wise masquerade as low-frequency modes when interpolated.

Colour-gradient bias, an effect arising due to wavelength-
dependent PSF and spatial variation of SED within a galaxy, is
also mitigated by using similarly wide weight functions for a dif-
ferent reason (Er et al. 2018). This chromatic effect is not unique
to space-based surveys, and is also to relevant to LSST (Meyers &
Burchat 2015). Thus, sampling is the main fundamental difference
between space-based and ground-based telescopes. With the strate-
gies proposed in this paper to mitigate the bias due to sampling, the
success of metacalibration for Euclid must follow the success for
ground-based surveys as well. Our results therefore encourage the
possibility of metacalibration as an independent shear measure-
ment pipeline, which can validate the lensing shear signal measured
using methods that are already existing or under development for
Euclid.
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Table A1. Time taken for metacalibration steps per postage stamp.

Interpolation Average time in seconds
kernel per galaxy per exposure

quintic 6.8 ± 2.0
lanczos3 7.0 ± 1.8
lanczos5 7.3 ± 1.8
lanczos10 6.8 ± 1.9
lanczos15 7.3 ± 2.5
lanczos50 6.4 ± 1.5
lanczos75 9.3 ± 2.6
lanczos100 7.3 ± 1.9

sinc 808.7 ± 165.4

APPENDIX A: IMPACT DUE TO THE CHOICE OF THE
INTERPOLATION KERNEL

In principle, when a discretised signal is convolved with a sinc
kernel, it reproduces the original signal in the continuous domain,
provided that the signal was Nyquist-sampled. However, such a
perfect interpolation is computationally too expensive and other
approximate interpolation kernels may need to be used in practice.
Moreover, due to finite size of the postage stamp, the signal is never
perfectly band-limited and hence is not ideal to begin with. Table A1
shows a significant increase (about 100 fold) in run timeswhen sinc
interpolation is used instead of Lanczos kernels.

For a representative subsample of 500 noiseless galaxy pairs,
we show the effect the choice of interpolation kernel has on themea-
sured shear in Fig. A1. The Quintic interpolation scheme, which is
the default option in GalSim, could potentially introduce biases up
to a few percent in both components. However, with the sinc ker-
nel, we find that𝑚2 is fully consistent with zero but𝑚1 shows biases
about −0.01. We obtain very similar values with Lanczos kernels
for very high orders (greater than 75). For lower order Lanczos ker-
nels, the value of 𝑚1 becomes somewhat smaller but still outside
the requirements. The decrease in the bias may be attributed to the
lower order kernels having a support that is much smaller than typ-
ical postage stamp sizes. However, for a metadetection-like setup
as in Hoekstra et al. (in prep.), we expect the higher order kernels do
perform better. For this reason, we chose to use the 50th order Lanc-
zos kernel, which is closer to sinc despite it being sub-optimal.

APPENDIX B: QUADRUPOLE MOMENTS IN THE
FOURIER DOMAIN

The quadrupole moments defined in equation (1) may be expressed
as

𝑄𝑖 𝑗 = − 𝜕

𝜕𝑘𝑖

𝜕

𝜕𝑘 𝑗

∫
d2x𝑊 (x)𝐼 (x)e−ik·x

����
k=0

. (B1)

The integral is the Fourier transform of 𝑊 (x)𝐼 (x) which is given
by (�̃� ⊗ 𝐼) (k) :=

∫
d2 k′�̃� (k − k′)𝐼 (k′), where �̃� is the Fourier

transform of the weight function and 𝐼 is the Fourier transform of
the image. In terms of the Fourier transforms of the weight functions
and images, we can express the quadrupole moments as

𝑄𝑖 𝑗 = − 𝜕

𝜕𝑘𝑖

𝜕

𝜕𝑘 𝑗

∫
d2 k′�̃� (k − k′)𝐼 (k′)

����
k=0

= −
∫
d2k′ �̃�,𝑖 𝑗 (−k′)𝐼 (k′),

(B2)
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Figure A1.Themultiplicative bias𝑚 introduced in the shear measured from
undersampled images with metacalibration for Quintic, Lanczos, and
sinc interpolation kernels.

where �̃�,𝑖 𝑗 (k) := 𝜕
𝜕𝑘𝑖

𝜕
𝜕𝑘 𝑗

�̃� (k). We deliberately make 𝐼 a function
of only the variable of integration so that the derivatives are taken
not on the image 𝐼 but on the weight function which has an analytic
form typically. Using the fact that the weight function is real-valued,
we can express �̃� (−k′) ≡ �̃�∗ (k′), where ∗ denotes complex con-
jugation. Furthermore, if the weight function has even parity (in
real space), �̃�∗ (k′) ≡ �̃� (k′). This completes our recasting of the
quadrupole moments as integrals in Fourier space.

For Gaussian weight functions, the quadrupole moments may
also be expressed as an integral over Fourier modes as

𝑄𝑖 𝑗 = −
∬

|k |<𝑘max

d2k 𝑞𝑖 𝑗 (k)�̃� (k)𝐼 (k), (B3)

where 𝑞𝑖 𝑗 (k) is an appropriate quadratic expression, whose details
we need not concern ourselves with. The integral is restricted to
the disc of radius 𝑘max as 𝐼 (k) ≡ 0 outside the disc by definition.
We find that the form of the quadrupole moments expressed in
equation (B3) to be more convenient for this work. Note that this is
different from Fourier moments proposed by Zhang (2008).

The weighted moments measured post-metacalibration are

𝑄
interp
𝑖 𝑗

= −
∬

|k |<𝑘max

d2k 𝑞𝑖 𝑗 (k)�̃� (k)𝐼 interp (k) (B4)

= −
∑︁
n

∬
|k |<𝑘max

d2k 𝑞𝑖 𝑗 (k)�̃� (k)𝐼 (k + nΔk), (B5)

where 𝐼 interp (k) is given in equation (13). When the PSF is un-
dersampled, i.e. Δk < 2𝑘max, there is an undersirable contribution
to 𝑄interp

𝑖 𝑗
from some of the n ≠ 0 terms. In particular, for small

galaxies, the contribution to 𝑄interp
𝑖 𝑗

from n ≠ 0 terms is significant
not only due to large amplitude of 𝐼 (k) but also due to that of the
matched weight function �̃� (k) for |k| > 𝑘max. The amplitude of
these contributions can be reduced by choosing a weight function
that is narrow in Fourier space (equivalently, wide in real-space),
thereby reducing the amplitude of 𝑞𝑖 𝑗 (k)�̃� (k). Thus, the deviation
of𝑄interp

𝑖 𝑗
from its true value is small when the weight functions are

wide.
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