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ABSTRACT

Context. Time delay lensing is a powerful tool to measure the Hubble constant H0. In order to obtain an accurate estimate of H0 from
a sample of time delay strong lenses, however, it is necessary to have a very good knowledge of the mass structure of the lens galaxies.
Strong lensing data on their own are not sufficient to break the degeneracy between H0 and the lens model parameters, on a single
object basis.
Aims. The goal of this study is to determine whether it is possible to break the H0-lens structure degeneracy with the statistical com-
bination of a large sample of time-delay lenses, relying purely on strong lensing data (that is, with no stellar kinematics information).
Methods. I simulated a set of 100 lenses with doubly imaged quasars and related time delay measurements. I fitted these data with a
Bayesian hierarchical method and a flexible model for the lens population, emulating the lens modelling step.
Results. The sample of 100 lenses, on its own, provides a measurement of H0 with 3% precision, but with a −4% bias. However,
the addition of prior information on the lens structural parameters from a large sample of lenses with no time delays, such as that
considered in Paper I, allows for a 1%-level inference.
Conclusions. Breaking the H0-lens model degeneracy with lensing data alone is possible, but 1% measurements of H0 require either
a number of time delay lenses much larger than 100, or the knowledge of the structural parameter distribution of the lens population
from a separate sample of lenses.
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1. Introduction

Gravitational lensing time delays, the measurements of the dif-
ference in light travel time between two or more strongly lensed
images of the same source, are powerful probes of cosmology
(Treu & Marshall 2016). For a single strong gravitational lens,
the time delay between the multiple images of the background
source depend on the lens mass distribution and on the geometry
of the lens-source system, which in turn depends on the struc-
ture and expansion history of the Universe. In particular, in a
Universe described by a Friedman-Lemaître-Robertson-Walker
metric, time delays scale with the inverse of the Hubble con-
stant H0 (Refsdal 1964). The typical time delays of galaxy-scale
strong lenses are on the order of weeks (see for example Millon
et al. 2020), and can be measured if the flux from the background
source varies in time. In order to convert a time delay measure-
ment into an estimate on H0, however, it is necessary to know
the mass distribution of the lens.

Some lens properties, such as the total projected mass en-
closed within the multiple images, can be inferred very accu-
rately by modelling the strongly lensed images. However, there
is a fundamental limit to how much information can be extracted
from strong lensing data alone, set by the mass-sheet degener-
acy (Falco et al. 1985): given a model that reproduces the image
positions and magnification ratios of a strongly lensed source, it
is always possible to define a family of alternative models that
leave those observables unchanged and predict different time de-
lays.

There are a few ways to break the degeneracy between the
lens mass profile and H0. One possibility is to assert a lens model

that artificially breaks the mass-sheet degeneracy, such as, for
example, a model with a density profile described by a single
power law. The parameters of a power-law lens model can be un-
ambiguously constrained with lensing data alone, provided that
the images of the background source can be well resolved (see
for example Suyu 2012). By modelling a time delay lens with a
power-law lens model, then, it is possible to estimate H0 directly,
given the observed time delays. However, if the true density pro-
file of the lens is different from a power law, that estimate will
be biased (see for example Schneider & Sluse 2013).

Another possibility is to use stellar kinematics data to further
constrain the mass model of the lens. This is the approach used
in the latest analysis of the TDCOSMO collaboration1 by Bir-
rer et al. (2020). In their study of seven time-delay lenses, Birrer
et al. (2020) combined lensing data with stellar kinematics obser-
vations, consisting for the most part of measurements of the cen-
tral velocity dispersion of the lens galaxy, and obtained a mea-
surement of H0 with 8% precision. The addition of prior infor-
mation from similar measurements on gravitational lenses with
no time delays allowed them to reduce the uncertainty to 5%, and
the precision can be further improved by replacing central veloc-
ity dispersion measurements with spatially resolved kinematics
data(Yıldırım et al. 2020; Birrer & Treu 2021).

In order to incorporate stellar kinematics constraints into a
time delay lensing study, however, it is necessary to model a va-
riety of additional aspects of the lens system: most critically, the
full 3D mass distribution of the lens galaxy and the phase space
distribution of the kinematical tracers (that is, the stars that con-

1 http://tdcosmo.org
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tribute to the observed spectrum). This can be a very challenging
effort, especially if percent precision on the measurement of H0
is required.

In this paper I explore an alternative method for breaking the
degeneracy between the lens mass profile and H0, based on the
statistical combination of a large number of time-delay lenses.
Building on the work of Sonnenfeld & Cautun (2021, hereafter
Paper I), I use a Bayesian hierarchical inference approach to
simultaneously fit strong lensing data from a large sample of
lenses, including time delay observations. As in Paper I, the chal-
lenge is to find a model that is sufficiently flexible to allow for an
accurate inference of the key parameters, most importantly H0,
while not too flexible, so that it can be constrained without the
need for stellar kinematics data.

While there are currently only a few lenses with the all nec-
essary data to carry out a time delay analysis, the number of
known strongly lensed quasars that could be followed-up and
used for this purpose is already larger than two hundred2, and
is expected to grow steadily, thanks to new surveys like Euclid3

and the LSST4. Most importantly, the LSST will enable the mea-
surement of hundreds of time delays (Liao et al. 2015), in virtue
of its observations over hundreds of epochs with a cadence of a
few days. This paper lays out a strategy for the optimal use of
these data.

I test this approach on simulated data for a set of 100 time
delay lenses. As in Paper I, I emulate the lens modelling process:
instead of simulating and modelling lens images in full detail, a
lengthy process in terms of both human and computational time,
I compress the information that can be obtained via modelling
with a handful of summary observables. With this choice I can
focus on the statistical aspect of the problem, leaving aside the
technical challenges associated with lens modelling. The recent
work of Park et al. (2021) on Bayesian neural networks offers a
viable solution to the latter.

I address three questions. The first one is how well we can
constrain H0 with strong lensing information from a sample of
100 time-delay lenses on its own. The second question is how the
inference improves with the addition of prior information from
a larger set of strong lenses with no time delay measurements,
such as the sample considered in Paper I. Finally, I investigate
a scenario in which the value of H0 is known from a different
experiment, and ask what can be learned about the structure of
massive galaxies by combining this external information with a
sample of 100 time-delay lenses.

The structure of this paper is as follows. In Section 2 I ex-
plain the basics of lensing time delays. In Section 3 I present the
simulations. In Section 4 I describe the model that I fit to the
simulated data. In Section 5 I show the results of the experiment.
I discuss the findings and draw conclusions in Section 6.

I assume a flat Lambda cold dark matter cosmology with
matter energy density ΩM = 0.3 and cosmological constant
ΩΛ = 0.7 throughout the paper. With this choice, I reduce the
degrees of freedom in the cosmological model to the value of the
Hubble constant alone. For the creation of the simulated data, I
assume H0 = 70 km s−1 Mpc−1.

The Python code used for the simulation and analysis of the
lens sample can be found in a dedicated section of a GitHub
repository5.

2 https://research.ast.cam.ac.uk/lensedquasars/
3 https://www.euclid-ec.org/
4 https://www.lsst.org/
5 https://github.com/astrosonnen/strong_lensing_tools

2. Lensing time delays

In this section I present the theoretical foundation for the simu-
lation and modelling of time delay data. For an introduction to
the strong lensing formalism, including an overview of the im-
age configurations produced by axisymmetric lenses, I refer to
Section 2 of Paper I.

Let us consider a point source at angular position β, gravita-
tionally lensed by a single lens plane with lensing potential ψ(θ).
If θ1 is the position of one of the images associated to the source,
then the difference in the light travel time with respect to the case
without lensing is

t(θ1) =
D∆t

c

[
(θ1 − β)2

2
− ψ(θ1)

]
. (1)

In the above equation, c is the speed of light and D∆t is called
the time-delay distance. This is defined as

D∆t ≡ (1 + zd)
DdDs

Dds
, (2)

where zd is the lens redshift, and Dd, Ds and Dds are the an-
gular diameter distances between observer and lens, observer
and source and lens and source, respectively. In a Friedman-
Lemaître-Robertson-Walker Universe, D∆t scales with the in-
verse of the Hubble constant H0.

The part in square brackets in Equation 1 is the sum of two
terms: the first is a geometrical term, describing the increase in
the light travel time due to the extra distance covered by a light
ray, compared to a straight line; the second term is a delay due
to the lens potential. When no lensing is present, θ = β and both
terms go to zero. From Equation 1 follows that if the source is
strongly lensed into an additional image at angular position θ2,
then the time delay ∆t2,1 between the two images is

∆t2,1 =
D∆t

c

[
(θ2 − β)2

2
− ψ(θ2) −

(θ1 − β)2

2
+ ψ(θ1)

]
. (3)

In summary, the time delay between two images is the prod-
uct of a term that depends on cosmology, D∆t/c, and a part that
depends on the lens configuration and mass distribution, the term
in square brackets. Of the quantities that enter the latter term,
only the image positions (θ1, θ2) are directly observable: the lens
potential ψ and the source position β must be inferred via lens
modelling.

2.1. Mass-sheet transformations

Given a lens model, consisting of a lens potential ψ(θ) and a
source position β, that reproduces all of the observed image po-
sitions and magnification ratios between images, the following
class of transformations

ψ(θ)→ λψ(θ) +
(1 − λ)

2
|θ|2, (4)

β→ λβ, (5)

leaves those observables unchanged. That of Equation 4 is called
a mass-sheet transformation. The fact that image positions and
magnification ratios alone can only constrain a lens model up
to a transformation of this kind is referred to as the mass-sheet
degeneracy.

Time delays, however, are not invariant under a mass-sheet
transformation. By applying the transformation of Equation 4 to
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Equation 3, we find that the time delay between the two images
transforms as

∆t2,1 → λ∆t2,1. (6)

This means that, without any assumptions on the lens mass dis-
tribution, it is not possible to use image positions and magnifi-
cation ratios to unambiguously predict the time delay between
two images. The strategy that I propose to break the mass-sheet
degeneracy consists in the adoption of physically motivated lens
models and on the statistical combination of a large number of
lenses.

3. Simulations

The experiment is carried out on a sample of 100 simulated
lenses. We generated this sample using a very similar prescrip-
tion to that of Paper I, then added time delay measurements. In
this section I summarise the procedure used to create this simu-
lation and show the time delay distribution of the sample.

3.1. Properties of the lens systems

All of the lenses are assumed to be isolated and to have an ax-
isymmetric mass distribution. Moreover, for the sake of reducing
the computational burden of the analysis, all of the lenses are at
the same redshift zd = 0.4 and all of the sources are at zs = 1.5.
Each lens consists of the sum of a stellar component, described
by a de Vaucouleurs profile, and a dark matter halo. The density
profile of the dark matter halo is determined following the pre-
scription of Cautun et al. (2020): starting from a Navarro, Frenk
& White (NFW Navarro et al. 1997) halo, the mass distribution
is modified to simulate the contraction of the dark matter dis-
tribution in response to the infall of baryons. The resulting dark
matter profile can be well approximated by a generalised NFW
(gNFW) model with an inner density slope steeper than that of
an NFW profile (see Figure 3 in Paper I).

The source is approximated as a point. This is intended to de-
scribe both a time-varying active galactic nucleus (AGN) com-
ponent, used for the measurement of the time delay, and its host
galaxy. The point source approximation for the host galaxy is
done to reduce the amount of data that needs to be simulated and
modelled. In real time delay lens analyses, the full surface bright-
ness distribution of the source is used to constrain important pa-
rameters of the lens model (see for example Suyu et al. 2013).
While a point source does not allow for such a measurement,
I still take into account the information provided by the source
surface brightness distribution, by emulating the lens modelling
process. Section 3.3 explains how this is done.

The properties of each lens system are fully determined by
the following set of parameters.

– The total stellar mass of the galaxy, M(true)
∗ .

– The ‘stellar population synthesis-based stellar mass’, M(sps)
∗ .

This is the stellar mass corresponding to a stellar popula-
tion synthesis model that reproduces the observed luminos-
ity and colours of the galaxy, in the absence of photomet-
ric errors. The relation between M(sps)

∗ and M(true)
∗ is de-

scribed by the stellar population synthesis mismatch param-
eter, αsps = M(true)

∗ /M(sps)
∗ , which is in general different from

unity because of unknown systematic uncertainties associ-
ated with the stellar population synthesis model.

– The galaxy half-light radius, Re. I assume that the stellar
mass surface mass density follows the surface brightness

profile of the galaxy. Therefore, Re is also the half-mass ra-
dius of the stellar component.

– The virial mass of the dark matter halo, M200.
– The source position with respect to the lens centre, β.

As a consequence of the axisymmetric lens assumption, ev-
ery lens produces either two or three images of the background
source. Only the two brighter images are considered for the
analysis, as the third image, if present, is usually highly de-
magnified. Although five of the seven time delay lenses studied
in the latest analysis of the TDCOSMO collaboration are quadru-
ple (quad) lenses (Birrer et al. 2020), which are qualitatively dif-
ferent from the doubly-imaged systems of this simulation, dou-
bles are expected to dominate over quads in a survey like the
LSST by a factor of ∼ 6 (Oguri & Marshall 2010). Therefore, a
sample consisting entirely of doubles is a good first approxima-
tion of upcoming samples of time-delay lenses.

Let us consider a Cartesian coordinate frame centred on the
lens, with the x̂ axis aligned with the source position, so that
β = βx̂, with β > 0. For a lens with Einstein radius θEin, the two
images are located at θ1 = θ1x̂, with θ1 > θEin, and θ2 = θ2x̂,
with −θEin < θ2 < 0. In other words, image 1, which I refer to as
the main image, is outside of the tangential critical curve, while
image 2, the counter-image, is inside of the critical curve, on the
opposite side with respect to the lens centre.

3.2. Sample creation algorithm

I created the sample as follows.

1. I drew values of log M(sps)
∗ from a Gaussian distribution, set

to approximate the stellar mass distribution of known lens
samples.

2. I obtained the true stellar masses by setting the stellar popu-
lation synthesis mismatch parameter to logαsps = 0.1 for all
galaxies.

3. I assigned half-light radii using a power-law mass-size rela-
tion with log-Gaussian scatter.

4. I drew values of the halo mass using a power-law scaling
relation with M(sps)

∗ and log-Gaussian scatter.
5. I set the concentration parameter (the ratio between the virial

radius and the scale radius) of the initial (pre-contraction)
NFW profile of the dark matter halo to 5.

6. I applied the Cautun et al. (2020) prescription to obtain the
contracted dark matter density profile.

7. I drew the position of the source β from a uniform distri-
bution within a circle of radius βmax, where βmax was set
in a way to avoid very asymmetric image configurations. In
particular, I considered the asymmetry parameter ξasymm, de-
fined as

ξasymm ≡
θ1 + θ2

θ1 − θ2
. (7)

This quantity is 0 for a lens with θ2 = −θ1, corresponding
to the case in which the source is aligned with the optical
axis (β = 0), and increases as the relative position of the
two images with respect to the lens centre becomes more
asymmetric. I set βmax to be the value of the source position
corresponding to a maximum allowed asymmetry parameter
ξasymm = 0.5. This criterion is meant to simulate an arbitrary
selection effect associated with the detectability of lenses: in
a real survey, strong lenses can only be identified as such if
multiple images are detected. In a lens with a highly asym-
metric configuration, the counter-image is close to the centre
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and has typically low magnification, therefore it is more diffi-
cult to detect. The choice of the ξasymm threshold is arbitrary,
but does not affect the results. Paper I used a slightly different
criterion to assign the source position, based on the magnifi-
cation of the inner image. I opted for a different criterion for
this experiment, one that is not based on any magnification
information, which is difficult to obtain in practice.

3.3. Observational data

I take the two image positions, (θ1, θ2), to be measured exactly.
In addition, I simulate measurements of the radial magnification
ratio between the two images, rµr . For a lensed extended source,
such as the host galaxy of a strongly lensed AGN, it is possible
to measure the radial magnification ratio between the main im-
age and its counter-image by comparing the widths of the two
arcs. This piece of information is usually implicitly obtained by
modelling the full surface brightness distribution of the source,
and is a model-independent constraint on the radial profile of
the lens mass distribution (Sonnenfeld 2018; Shajib et al. 2021).
By providing directly an estimate of rµr I am emulating the lens
modelling process.

I set the uncertainty on rµr to be 0.05, based on the constrain-
ing power of Hubble Space Telescope data on the density profile
of typical lenses, as indicated by the work of Shajib et al. (2021).
I am thus assuming a scenario in which imaging data with suffi-
cient depth and resolution to detect and resolve the host galaxy
of the AGN are available for each lens.

I then calculated the time delays of the sample. The bottom-
left panel of Figure 1 shows the distribution of ∆t2,1 as a function
of the Einstein radius. The two quantities are strongly correlated.
This is expected, given Equation 3: the time delay scales as the
square of the angular scale of a lens, which in turn is set by the
Einstein radius. The time delays of the sample span the range
between 2 to 469 days, with a median value of 55 days.

Figure 1 also shows the distribution of the image config-
uration asymmetry parameter ξ. As the top-left panel of Fig-
ure 1 shows, ξasymm does not correlate with the Einstein radius.
The time delay, however, correlates with ξasymm, as shown in
the bottom-right panel of Figure 1: lenses with a more asym-
metric image configuration tend to have longer time delays. In
the limiting case of a perfectly symmetric image configuration
(θ2 = −θ1), the time delay is zero.

I added a Gaussian observational noise to the time delay
measurements with a dispersion equal to 10% of the true time
delay. The uncertainty on a time delay of 50 days is therefore 5
days. This value is similar to the uncertainties observed in the
Time Delay Challenge II (Liao et al. 2015), which was designed
on the basis of expectations for the LSST. A constant relative
error on the time delays is perhaps not very realistic, as it trans-
lates into an uncertainty of only a few hours for the lenses with
the smallest values of ∆t2,1, which is difficult to achieve. How-
ever, this choice makes the interpretation of the results easier,
as it ensures that each lens has equal weight on the inference of
H0. On the contrary, if I adopted a constant absolute uncertainty
on ∆t2,1 in a sample such as this, which spans more two orders
of magnitude in the time delay, the lenses with the longest time
delays would end up dominating the inference.

I also assume the lens and source redshifts to be known ex-
actly. Finally, for each galaxy, I simulated a measurement of the
stellar population synthesis-based stellar mass, M(sps)

∗ , with an
uncertainty of 0.15 dex.

In summary, for each lens I have the following data.

– The positions of the two brightest images of the source,
(θ1, θ2), measured exactly.

– The lens and source redshift, known exactly.
– The observed ratio of the radial magnification between im-

age 1 and 2, r(obs)
µr , measured with an uncertainty of 0.05.

– The observed time delay between image 2 and 1, ∆t(obs)
2,1 ,

measured with an uncertainty of 10%.
– The observed stellar mass, M(obs)

∗ , obtained from stellar pop-
ulation synthesis fitting and under the assumption of a refer-
ence value of the Hubble constant, measured with an uncer-
tainty of 0.15 dex.

Among these measurements, only the last one depends on as-
sumptions on cosmology. In order to make it independent of H0,
I consider the following quantity instead:

M(obs)
∗

h2
70

, (8)

where h70 is the ratio between the assumed value of H0 and the
reference value of 70 km s−1 Mpc−1,

h70 ≡
H0

70km s−1 Mpc−1 . (9)

The fact that the reference value of H0 is the same as the value
used to generate the mock has no influence on the analysis.

4. The model

I want to fit a model to the mock data, to simultaneously infer
the distribution in the mass structure of the lenses and the value
of H0. In Sonnenfeld (2018) I showed that, in order to predict the
time delay of a strong lens with an accuracy of 1%, a lens model
with at least three degrees of freedom in the radial direction is
needed. Motivated by this result, I employ the same model used
in Paper I, which satisfies this requirement, with slight modifi-
cations to allow for the additional freedom in the value of the
Hubble constant. In this section I describe the model and the
Bayesian hierarchical inference method that I adopt to fit it to
the data.

4.1. Individual lens model

I describe each lens as the sum of a stellar component and a dark
matter halo. I assume that the stellar profile of each lens can be
measured exactly up to a constant scaling of the mass-to-light
ratio. This is a reasonable assumption, as the light profile of a
lens galaxy can be determined with high precision, at least in the
region enclosed by the Einstein radius.

I describe the dark matter component with a gNFW profile,
that is a model with 3D density profile given by

ρ(r) ∝
1

(r/rs)γDM (1 + r/rs)3−γDM
. (10)

The parameter γDM is the inner density slope. If γDM = 1, the
gNFW profile reduces to the NFW case.

A gNFW profile has three degrees of freedom: γDM, the scale
radius rs and an overall normalisation. As in Paper I, I eliminate
one degree of freedom by fixing the value of the scale radius to

rs

h70
= 100 kpc. (11)
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Fig. 1. Distribution in the time delay between image 2 and 1, Einstein radius, and image configuration asymmetry parameter ξasymm of the lens
sample.

With this choice, the angular size of the scale radius is fixed and
independent of the assumed value of H0. I parameterise the re-
maining two degrees of freedom of the dark matter component
with the inner slope γDM and the projected mass enclosed within
an aperture of 5 kpc h−1

70 , MDM,5/h2
70. Each lens system is then

fully described by the following set of parameters:

ψ ≡

 M(true)
∗

h2
70

,
M(sps)
∗

h2
70

,
Re

h70
,

MDM,5

h2
70

, γDM, β

 , (12)

where β is the source position and Re is in physical units.

This model is underconstrained on an individual lens basis:
the two image positions and the radial magnification ratio can
only constrain three degrees of freedom, one of which must be
the source position β. The time delay measurement provides an
additional constraint, but its interpretation depends on the value
of H0, which I want to infer. My strategy consists in statistically
constraining only the overall properties of the lens population,
together with H0, rather than determining the exact structure of
each lens.

4.2. Population distribution

I assume that the parameters of each lens, ψ, are drawn from
a common probability distribution P(ψ|η) describing the popu-
lation, which is in turn summarised by a set of parameters η. I
choose the following functional form for the population distri-
bution,

P(ψ|η) =S

 M(sps)
∗

h2
70

,
Re

h70

 A  M(true)
∗

M(sps)
∗

 H  MDM,5

h2
70

×
G(γDM)B

β ∣∣∣∣∣∣ M(true)
∗

h2
70

,
Re

h70
,

MDM,5

h2
70

, γDM

 , (13)

which is the same used in Paper I.
The first term, S, describes the distribution in stellar mass

and half-light radius of the lens sample. For the sake of simplify-
ing calculations, I assume that it is known exactly. Therefore I set
it equal to the distribution used to generate the sample, which is a
bi-variate Gaussian in (log M(sps)

∗ /h2
70, log Re/h70). This is a rea-

sonable approximation, since this term can be constrained very
well with a sample of 100 lenses (see for example Sonnenfeld
et al. 2015).

The term A describes the distribution in the stellar popu-
lation synthesis mismatch parameter introduced in section 3.1,
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αsps = M(true)
∗ /M(sps)

∗ . I model this term as a Dirac delta function,
that is I assume a single value of αsps for the whole lens sample:

A = δ

 M(true)
∗

M(sps)
∗

− αsps

 . (14)

The terms H and G describe the distribution in the two pa-
rameters related to the dark matter distribution, MDM,5 and γDM.
I model the former as a Gaussian in log MDM,5/h2

70 and the latter
as a Gaussian in γDM:

H

 MDM,5

h2
70

 ∼ Nlog (MDM,5/h2
70)

µDM

 M(sps)
∗

h2
70

,
Re

h70

 , σ2
DM

 (15)

G (γDM) ∼ NγDM

µγ  M(sps)
∗

h2
70

,
Re

h70

 , σ2
γ

 . (16)

One of the main results of Paper I was the finding that, in order to
obtain an accurate inference of the average properties of the dark
matter distribution of a lens sample, it is necessary to allow for a
dependence of the average dark matter mass and inner slope with
all of the dynamically relevant properties of the lens galaxy: in
this case, the stellar mass and half-light radius. For this reason,
I allow for the means of the Gaussian distributions in the above
equations to scale with M(sps)

∗ and Re as follows:

µDM = µDM,0 + βDM

log
 M(sps)

∗

h2
70

 − 11.4
 +

ξDM

log
(

Re

h70

)
− µR

 M(sps)
∗

h2
70

 (17)

µγ = µγ,0 + βγ(log
M(sps)
∗

h2
70

− 11.4)+

ξγ(log
Re

h70
− µR(M(sps)

∗ )), (18)

where µR is the average value of log (Re/h70) for a lens with stel-
lar mass M(sps)

∗ /h2
70.

The last term in Equation 13 is B, which describes the distri-
bution in the source position. At fixed lens properties, this term
determines the distribution in the asymmetry of the image con-
figuration. This aspect is directly related to the selection func-
tion of the sample: when building the mock data, I imposed a
condition on the maximum value of ξasymm, to simulate a selec-
tion that disfavours highly asymmetric configurations with a de-
magnified counter-image. I assume an uninformative prior on the
source position: given the lens mass model parameters, I assume
that the source has equal prior probability of being anywhere
within the source plane circle of radius βSL that is strongly lensed
into multiple images. If the lens has a radial caustic, then this sets
the value of βSL. Otherwise, I set βSL to the value that produces
a counter-image at a very small distance from the lens centre.
With this definition, the source prior term reads

B (β) =


2β
β2

SL

if 0 < β < βSL

0 elsewhere

. (19)

The functional form of Equation 19 is the same as the probabil-
ity distribution used to generate the sample, with one important
difference: instead of truncating the distribution at the value βmax
corresponding to ξasymm = 0.5, I use the more conservative value

of βSL. This is a different choice compared to the analysis of Pa-
per I, where it was assumed that the source position distribution,
which is related to the selection function, was known exactly by
the observer.

The population model, then, is described by the set of free
parameters introduced in Equations 14, 15, 16, 17 and 18, plus
the Hubble constant H0:

η ≡
{
H0, αsps, µDM,0, βDM, ξDM, σDM, µγ, βγ, ξγ, σγ

}
. (20)

Table 1 provides a brief description of each parameter.
I point out that this model differs from the one used to gen-

erate the mock, described in Section 3, in two key aspects: 1)
the true dark matter density profile is not a gNFW model with
fixed scale radius; 2) the distributions in the projected dark mat-
ter mass within 5 kpc and inner dark matter slope do not follow
strictly Equations 15 and 16. These differences make the exper-
iment realistic: in a real-world application, it is unlikely that a
simply parameterised model can reproduce exactly the dark mat-
ter distribution of a sample of galaxies.

4.3. Inference technique

I want to calculate the posterior probability distribution of the
model parameters, η, given the data d. Using Bayes’ theorem,
this is

P(η|d) ∝ P(η)P(d|η), (21)

where P(η) is the prior probability of the parameters and P(d|η)
the likelihood of observing the data given the model. Since mea-
surements carried out on different lenses are independent of each
other, the latter is the following product:

P(d|η) =
∏

i

P(di|η), (22)

where di is the data relative to lens i.
The parameters η do not predict directly the data: those de-

pend on the values of ψ taken by the individual lenses. In order to
evaluate each product P(di|η), then, it is necessary to marginalise
over all possible values of ψ:

P(di|η) =

∫
dψiP(di|ψi, η)P(ψi|η). (23)

Formally, this is a 6-dimensional integral. A similar calculation
to that performed in Paper I allows one to reduce it to the follow-
ing:

P(di|η) =

∫
dγDM

∫
d log

 MDM,5

h2
70

 |detJ|(
M(true)
∗

h2
70

,β

)
=

 M(true)
∗,Ein
h2
70

,βEin


P

r(obs)
µr

∣∣∣∣∣∣∣γDM,
MDM,5

h2
70

,
Re

h70
,

M(true)
∗,Ein

h2
70

, βEin


P

∆t(obs)
2,1

∣∣∣∣∣∣∣H0, γDM,
MDM,5

h2
70

,
Re

h70
,

M(true)
∗,Ein

h2
70

, βEin


P

 M(obs)
∗

h2
70

∣∣∣∣∣∣∣ M
(true)
∗,Ein

h2
70

, αsps


P

 M(true)
∗,Ein

h2
70

,
Re

h70
,

MDM,5

h2
70

, γDM, βEin
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 .

Article number, page 6 of 11



Sonnenfeld & Cautun: Statistical strong lensing. II.

(24)

In the integrand function, M(true)
∗,Ein /h

2
70 and βEin are the values of

the stellar mass and source position needed to reproduce the two
image positions, given the dark matter parameters MDM,5 and
γDM. The factor detJ is the Jacobian determinant corresponding
to the variable change from (log (M(true)

∗ /h2
70), β) to the image po-

sitions (θ1, θ2), evaluated at M(true)
∗,Ein /h

2
70 and βEin.

I assumed uniform priors on all of the population parameters
in Equation 20, with the exception of αsps, for which I assumed a
uniform prior on its base-10 logarithm. The bounds on each pa-
rameter are listed in Table 1. I sampled the posterior probability
distribution P(η|d) with emcee (Foreman-Mackey et al. 2013), a
Python implementation of the Goodman & Weare (2010) affine-
invariant sampling method. At each draw of the parameters η,
I calculated the integrals of Equation 24 numerically, by com-
puting the integrand function on a grid and doing a spline in-
terpolation and integration over the two dimensions. I verified
that the inference method is accurate within the uncertainties by
applying it to mock lens populations generated with the same
properties as the model fitted to them.

5. Results

Before showing the results of the inference, it is useful to make a
few general consideration on the degree of precision that we can
expect, given the dataset. A single lens in the sample provides
a time delay measurement with a 10% precision. This means
that, if the lens model parameters were known exactly, this single
measurement could be used to obtain an estimate of H0 with the
same precision.

The statistical combination of 100 such lenses would reduce
the uncertainty to 1%. This is the highest possible precision at-
tainable, in the ideal case with no uncertainties related to the
lens model. In this experiment, however, not only one needs to
determine the lens model parameters from noisy data, but these
parameters are underconstrained on an individual lens basis: by
fitting the model of section 4.1 to a single lens, one obtains a
posterior probability that is dominated by the prior (section 5.4
shows this more quantitatively). This means that a single-lens in-
ference on H0 carries, in addition to the uncertainty on the time
delay, an uncertainty related to the lens model parameters, which
in turn depends on their prior probability distribution.

When combining the 100 lenses in the sample with a hierar-
chical inference formalism, the population distribution of Equa-
tion 13 acts as a prior on the individual lens parameters ψ. This
distribution is not fixed, but its parameters η are inferred from
the data at the same time as H0. In summary, the final uncer-
tainty on H0 will depend on 1) the uncertainties on the time de-
lay measurements, 2) the uncertainties associated with the lens
models of the individual lenses, and 3) the uncertainties on the
population distribution parameters η. Each one of these aspects
can dominate over the others, depending on the sample size, data
quality and model complexity. As I show in this Section, 3) is the
dominant source of error on H0 in this experiment.

5.1. Inference from 100 time-delay lenses

Figure 2 shows, in purple filled contours, the posterior probabil-
ity distribution of the main parameters of the model: the Hub-
ble constant, the stellar population synthesis mismatch parame-
ter, the average dark matter mass within 5 kpc, and the average
dark matter slope. The median and 68% credible bounds of the

marginal posterior probability of each parameter is reported in
Table 1. I defined the true values of the model parameters by fit-
ting the model distribution of section 4.2 directly to the values of
MDM,5 and γDM of the mock sample, which I obtained by fitting a
gNFW profile to the projected surface mass density of each lens.

Most of the lens structure parameters are recovered within
1σ. The true value of the Hubble constant, however, is out-
side of the inferred 68% credible region: the measured value
is H0 = 67.5+1.7

−2.2 km s−1Mpc−1. This corresponds to a statisti-
cal uncertainty of ∼ 3%, with a systematic bias of ∼ −4%. I
verified that the bias is significant by repeating the analysis on
new samples of 100 lenses generated with the same procedure of
Section 3 but different noise realisations. The origin of this bias
must be searched in the differences between the truth and the
model used to fit the sample: these differences are the dark mat-
ter density profile, the population distribution of the dark matter
parameters and the assumed source position distribution.

As we can see from Figure 2, the uncertainty on H0 is due in
large part to a strong degeneracy with the parameters αsps, µDM,0
and µγ,0. In the next section I investigate whether the precision
and the accuracy on H0 can be improved by making use of prior
information from a separate lens sample.

5.2. Inference with a prior from a sample of 1000 strong
lenses

Paper I simulated a statistical strong lensing measurement on a
sample of 1000 lenses. It showed how, with such a sample, it
is possible to measure the average properties of the lens pop-
ulation with much higher precision than that obtained with the
sample of 100 time-delay lenses considered in this work so far.
For example, the average stellar population synthesis mismatch
parameter αsps was recovered with a precision of ∼ 0.01 dex,
compared to the ∼ 0.03 dex precision obtained in section 5.1.
In this section I investigate a scenario in which the information
from a such a sample of 1000 lenses is used as a prior on the
parameters describing the lens population, in combination with
the 100 time-delay lenses simulated in this work.

I proceeded as follow. I repeated the analysis of section 5.1,
using the posterior probability distribution from Paper I as a prior
on the model parameters η (with the exception of H0, which is
unconstrained by the analysis of Paper I). There is an important
caveat with this approach: I implicitly assumed that the two lens
samples are drawn from the same population of galaxies. To sim-
plify the calculations, I approximated this prior probability dis-
tribution as a multivariate Gaussian, with mean and covariance
matrix equal to those of the sample obtained from the Markov
Chain Monte Carlo of Paper I. The resulting posterior probabil-
ity distribution in the key parameters is shown as solid red con-
tours in Figure 2, while the median and 68% credible region of
the marginal posterior probability of all parameters is reported
in Table 1.

Remarkably, H0 is now recovered with a precision slightly
above 1%. As I pointed out earlier in Section 5, 1% is the max-
imum attainable precision on H0 in the case of perfect knowl-
edge of the lens model parameters, as this is the amplitude of the
uncertainty associated with the time delay measurements alone.
This result tells us that, once the parameters describing the lens
population are known with sufficient precision, the main remain-
ing source of uncertainty on H0 is that related to the measure-
ments of ∆t2,1. This is a key advantage of using a Bayesian hier-
archical approach, which I further illustrate in section 5.4.
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100 time-delay lenses
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Fig. 2. Posterior probability distribution of the four key parameters of the model: the Hubble constant, the stellar population synthesis mismatch
parameter, the average log MDM,5 and the average γDM. Purple filled contours correspond to the fit to the sample of 100 time-delay lenses, with no
extra information. Red lines show the posterior probability obtained by using prior information on the model parameters from the sample of 1000
strong lenses simulated in Paper I. Contour levels correspond to 68% and 95% enclosed probability regions. Dashed lines indicate the true values
of the parameters, which are defined by fitting the model directly to the distribution of log MDM,5, γDM, and logαsps of the mock sample.

Table 1. Inference on the model parameters. Column (2): true values of the population parameters. For the parameters relative to the dark matter
component, these are defined by fitting the model directly to the distribution of MDM,5 and γDM. Column (3): priors on the parameters. Columns
(4)-(6): median, 16th and 84th percentile of the marginal posterior probability distribution of each parameter obtained using the sample of 100
time-delay lenses on its own, in combination with a prior on the lens structural parameters from the analysis of Paper I, and in combination with a
prior on H0 with 1% precision.

Parameter Truth Prior 100 time-delay With prior With H0 Description
lenses from Paper I prior

H0 70 U(50, 90) 67.5+1.7
−2.2 69.4+0.8

−0.8 69.6+0.6
−0.6 Hubble constant, in km s−1 Mpc−1

µDM,0 11.04 U(10, 12) 11.06+0.03
−0.02 11.052+0.008

−0.008 11.09+0.02
−0.02 Mean log MDM,5 at log M(sps)

∗ = 11.4 and
average size

βDM 0.57 U(0, 3) 0.49+0.06
−0.06 0.56+0.02

−0.02 0.53+0.06
−0.05 Dependence of log MDM,5 on M(sps)

∗

ξDM −0.15 U(−1, 1) −0.20+0.10
−0.12 −0.13+0.04

−0.04 −0.21+0.09
−0.11 Dependence of log MDM,5 on galaxy size

σDM 0.05 U(0.0, 0.5) 0.032+0.014
−0.009 0.058+0.008

−0.008 0.035+0.017
−0.011 Intrinsic scatter in log MDM,5

µγ,0 1.47 U(0, 1) 1.38+0.10
−0.12 1.44+0.02

−0.02 1.48+0.06
−0.06 Mean γDM at log M(sps)

∗ = 11.4 and
average size

βγ −0.39 U(−1, 1) −0.37+0.10
−0.10 −0.27+0.04

−0.04 −0.42+0.10
−0.10 Dependence of γDM on log M(sps)

∗

ξγ −0.37 U(−1, 1) −0.4+0.2
−0.2 −0.28+0.08

−0.08 −0.47+0.18
−0.19 Dependence of γDM on galaxy size

σγ 0.06 U(0.0, 0.5) 0.08+0.05
−0.04 0.059+0.016

−0.017 0.07+0.03
−0.03 Intrinsic scatter in γDM

logαsps 0.10 U(0.00, 0.25) 0.11+0.02
−0.02 0.101+0.007

−0.007 0.10+0.02
−0.03 Log of the stellar population synthesis

mismatch parameter
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5.3. Inference with a narrow prior on H0

There are many different ways of measuring the Hubble con-
stant. Therefore, there is the possibility that H0 will be deter-
mined with high precision with an experiment different from
time delay lensing. In that case, measurements of time delays
could be used to constrain the properties of the lens population.
I investigated this scenario by repeating the analysis of the 100
time-delay lenses of section 5.1, with the addition of a prior on
H0 with 1% precision. The resulting posterior probability distri-
bution is shown in green in Figure 2.

The main improvement brought by the prior knowledge of
H0 is in the precision on the inferred average dark matter slope
parameter, µγ,0: its uncertainty becomes 0.06, which is much
smaller than the value of 0.12 obtained in the fiducial analy-
sis. The other parameters are relatively unchanged: the stellar
population synthesis mismatch parameter αsps, for instance, is
determined with a 0.02 − 0.03 dex precision, independently of
whether an H0 prior is applied or not.

5.4. What Bayesian hierarchical inference does

Early statistical analyses of time-delay lenses (that is, prior to
the Birrer et al. 2020 study) consisted in obtaining estimates
of the time-delay distance D∆t separately for each lens system,
by marginalising each posterior probability distribution over the
parameters describing the lens mass, and then combining the
resulting marginal posterior probabilities to infer H0 (see for
example Bonvin et al. 2017). Here I investigate how this ap-
proach compares to the Bayesian hierarchical inference method,
in terms of precision and accuracy.

Firstly, I calculated for each lens the marginal posterior prob-
ability distribution in H0 given the data, P(H0|di). Formally, this
is given by

P(H0|di) ∝ P(H0)
∫

dψiP(di|ψi,H0)P(ψi). (25)

The term P(ψi) is the prior on the individual lens parameters. In a
Bayesian hierarchical approach, this is a function of population-
level parameters η, while in this context the prior is fixed. I as-
sumed a flat prior on the following parameters,

log M(sps)
∗ ∼ U(10, 13)

logαsps ∼ U(0.0, 0.2) (26)
log MDM,5 ∼ U(10, 12)

γDM ∼ U(0.2, 1.8),

and the same prior as Equation 19 on the source position β.
Figure 3 shows P(H0|di) for ten lenses of the sample (grey

curves). The 1σ uncertainty on H0 is typically around 15− 20%.
If we consider this to be the result of the quadrature sum between
the error on the time delay, which is 10%, and that on the indi-
vidual lens parameters, it follows that the latter is the dominant
source of uncertainty. This is not surprising, since the lens model
is underconstrained.

I then considered the joint inference on H0, obtained by com-
bining the marginal posterior probabilities of the 100 lenses of
the sample. This is defined as

P(H0|d) ∝ P(H0)
∏

i

∫
dψiP(di|ψi,H0)P(ψi). (27)

The resulting posterior probability distribution is shown as a
cyan curve in Figure 3. The value of the Hubble constant in-
ferred in this way is H0 = 66.6 ± 1.2 km s−1 Mpc−1. The relative

40 50 60 70 80 90 100
H0 (km s−1 Mpc−1)

0.0

0.1

0.2

0.3
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P
(H

0
)

Individual lenses

Combination
of P(H0|di)

Hierarchical
inference

Hierarchical
inference,
Paper I prior

Fig. 3. Marginal posterior probability on H0. Grey curves: individual
lens P(H0|di) obtained from Equation 25 assuming flat priors on the
lens model parameters, for 10 time-delay lenses. Cyan curve: statistical
combination of the marginal posterior probabilities from the 100 time-
delay lenses, obtained following Equation 26. Filled purple histogram:
hierarchical inference from section 5.1 Red histogram: hierarchical in-
ference with a prior from Paper I, from section 5.2. The vertical dashed
line marks the true value of H0 used to simulate the data.

uncertainty on H0 is 1.7%, a factor 1/
√

N smaller than the in-
dividual lens measurements, which is the standard result when
N independent measurements of a given quantity are combined.
The inference, however, is highly biased.

This is a good example of a result driven by the prior. The
choice of prior on the dark matter slope made with Equation 26 is
particularly detrimental in this case: P(γDM) is centred at γDM =
1, corresponding to an NFW profile, and gives equal probability
to values of γDM above or below it. While this appears to be a
reasonable choice, the true dark matter slope of the lenses is on
average much steeper than that of an NFW profile. As a result,
the inferred value of H0 is biased low. I verified that, repeating
this analysis with a higher lower bound on γDM, the inference on
H0 gets closer to the truth.

With the Bayesian hierarchical approach, the inference on H0
is more uncertain, but also more accurate: the true value of H0 is
recovered within 2σ. This is because the hierarchical model aims
at inferring the probability distribution of the individual lens pa-
rameters, P(ψ|η), along with H0, instead of assuming a fixed
prior on them. As a result, the uncertainty on quantities such as
the average dark matter slope (parameter µγ,0) propagates over
the inference on H0 and ends up being the dominant source of er-
ror. The data from the simulated 100 lenses does not allow one to
distinguish between a scenario in which a) H0 is close to the true
value and the average γDM is 1.5, or b) H0 ≈ 65 km s−1 Mpc−1

and µγDM,0 ≈ 1.2. This uncertainty is properly taken into account
by the hierarchical model. In other terms, while the simple statis-
tical combination of Equation 27 treats each lens independently
of the others, the hierarchical model takes into account corre-
lated errors due to our ignorance of the average properties of
galaxies.

Finally, the Bayesian hierarchical method can also provide
higher precision than a traditional approach, when prior infor-
mation on the lens population parameters is available. This is
illustrated by the example of section 5.2, which makes use of the
prior from the sample of Paper I. The resulting marginal poste-
rior on H0, shown as a red curve in Figure 3, has a 1σ uncer-
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tainty of 1.3%, which is significantly smaller than the 1.7% un-
certainty obtained by assuming flat priors on the individual lens
parameters. This is because, if the population-level parameters η
are known with sufficient precision, lens models corresponding
to tails of the P(ψ|η) distribution are suppressed, resulting in a
more precise measurement.

6. Discussion and summary

The experiments carried out in this work were realised under a
series of simplifying assumptions. In order to apply the statisti-
cal inference method developed here to a real sample of lenses,
there are several challenges to be overcome. Many of these chal-
lenges apply in the same way to the analysis of Paper I. These
are: generalising the lens model to the non-axisymmetric case,
modelling the full surface brightness distribution of the lensed
source and computing the individual lens parameter marginali-
sation integrals of Equation 23 in a computationally efficient yet
accurate way. Dropping the axisymmetric lens assumption can
be particularly challenging, as it requires increasing the dimen-
sionality of the problem. I refer to section 6.5 of Paper I for a
thorough discussion of these points.

One important aspect in time delay lensing studies that I left
out in this work is the line-of-sight structure. The effect of mass
perturbers along the line of sight can usually be described with
a constant sheet of mass. As such, the line-of-sight structure has
the same impact on the time delay as the mass-sheet transfor-
mation described in 2.1: if not taken into account, it will bias
the inference on H0. In state-of-the-art time delay lensing stud-
ies, the effect of line-of-sight perturbers is modelled on the basis
of measurements of the environment of each lens (see for ex-
ample Rusu et al. 2017 for details). In principle, the modelling
of the line of sight could be incorporated in the same hierarchi-
cal model describing the lens galaxy population, although that
would complicate the analysis.

The first result of this study is the finding that, with a sam-
ple of 100 doubly lensed quasars, each with a 10% precision
measurement of the time delay and with high resolution imag-
ing data, the Hubble constant can be measured with a precision
of about 3%. The main source of uncertainty is the knowledge
of the lens structural parameters distribution: the stellar mass-to-
light ratio and the dark matter density profile. The experiment,
however, also showed that the inference can suffer a bias of com-
parable amplitude. The origin of this bias lies most likely in the
fact that the model that I used for the inference, although rela-
tively flexible, is not a perfect description of the reality assumed
when creating the simulated sample of lenses. While I cannot ex-
clude that, with alternative models, a higher degree of accuracy
could be reached, it is clear that in order to obtain a 1% mea-
surement of H0, additional information is needed, either from a
much larger sample of time delay lenses, from external datasets,
or from predictions from hydrodynamical simulations (such as
with the method proposed by Harvey 2020).

The LSST should be able to provide the data necessary to
measure time delays for about 400 strongly lensed quasars (Liao
et al. 2015), with the actual number depending on the observ-
ing strategy and the required precision on these measurements
(see also section 5.2 of Lochner et al. 2021). Such a sample
would allow to achieve a substantially higher precision on the in-
ferred lens population parameters, and consequently on the Hub-
ble constant, compared to the 100-lens scenario examined here.
Carrying out a quantitative forecast of the constraining power
of LSST time delay lenses, however, is beyond the goals of this
work.

The second result is that, when prior information on the lens
structure distribution from a large external lens sample is com-
bined to a set of 100 time-delay lenses, then it is possible to reach
a precision and accuracy of about 1%. This result also showed
that, when the lens population parameters are known very well,
uncertainties associated with the modelling of individual lenses
are greatly reduced, in virtue of the knowledge of their probabil-
ity distribution.

Combining time-delay lenses with larger samples of regu-
lar strong lenses (that is, with no time delays) is the strategy
currently pursued by the TDCOSMO collaboration (Birrer et al.
2020; Birrer & Treu 2021). Birrer & Treu (2021) forecast that a
joint sample of 40 time delay lenses and 200 regular lenses can
lead to a 1.5% precision on H0. The main difference between
their work and this one is that Birrer & Treu (2021) relied on stel-
lar kinematics measurements to further constrain the lens model
parameters. While a larger sample of lenses is needed to achieve
the same precision with the approach of the present paper, the
advantage of not relying on stellar kinematics is that the infer-
ence is immune to possible systematic effects associated with
the stellar dynamical modelling step. In order to have a good
handle on systematic errors, it is then worth pursuing both of
these strategies.

An implicit assumption made in both this and the Birrer &
Treu (2021) study is that the samples of time-delay and non-
time-delay lenses are drawn from population of galaxies with
the same properties. Differences in the selection criteria, how-
ever, can mean that the two samples probe different subsets of
the general galaxy population, with potentially different under-
lying distributions in the lens structural parameters. When apply-
ing this method in practice, then, it is important to either make
sure that these differences do not introduce significant biases, or
to explicitly model the selection effects relative to both lens sam-
ples. Paper III will provide a framework for taking lens selection
effects into account in a Bayesian hierarchical inference.

Finally, I showed that if a 1% measurement of H0 is avail-
able from a separate experiment, then a sample of 100 time-delay
lenses can be used to constrain the properties of the mass struc-
ture of the lens population. The main effect of the prior informa-
tion on H0 is that of improving the determination of the average
dark matter density slope. Stellar mass measurements can be cal-
ibrated with a 0.03 dex precision with such a sample, regardless
of prior knowledge on H0.

The strong lensing data simulated in this study consisted of
image positions, magnification ratios and time delays. However,
if the background source is a standardisable candle, such as a
Supernova Ia, it is possible to obtain information on the abso-
lute magnification, which can break the mass-sheet degeneracy.
A scenario in which such magnification measurements are avail-
able was explored by Birrer et al. (2021) with promising results.

In summary, time-delay lenses are very powerful probes of
both cosmology and galaxy structure. The LSST will provide
data that will enable time delay measurements for hundreds of
lenses. This work presented a strategy to exploit these data with
minimal use of external (non-lensing) information.
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