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ABSTRACT
The Laser Interferometer Space Antenna (LISA) will enable Galactic gravitational wave (GW)
astronomy by individually resolving > 104 signals from double white dwarf (DWD) binaries
throughout the Milky Way. In this work we assess for the first time the potential of LISA data
to map the Galactic stellar bar and spiral arms, since GWs are unaffected by stellar crowding
and dust extinction unlike optical observations of the bulge region. To achieve this goal we
combine a realistic population of Galactic DWDs with a high-resolution N-Body simulation a
galaxy in good agreement with the Milky Way. We then model GW signals from our synthetic
DWD population and reconstruct the structure of the simulated Galaxy from mock LISA
observations. Our results show that while the low signal contrast between the background
disc and the spiral arms hampers our ability to characterise the spiral structure, the stellar
bar will instead clearly appear in the GW map of the bulge. The bar length and bar width
derived from these synthetic observations are underestimated, respectively within 1σ and at a
level greater than 2σ, but the resulting axis ratio agrees to well within 1σ, while the viewing
angle is recovered to within one degree. These are competitive constraints compared to those
from electromagnetic tracers, and they are obtained with a completely independent method.
We therefore foresee that the synergistic use of GWs and electromagnetic tracers will be a
powerful strategy to map the bar and the bulge of the Milky Way.

Key words: gravitational waves – binaries: close – white dwarfs – Galaxy: structure – Galaxy:
fundamental parameters

1 INTRODUCTION

It is established that the Milky Way has a central stellar bar and
a spiral structure that propagates through its stellar and gaseous
disc. Observations of molecular masers associated with very young
high-mass stars strongly suggest that the Milky Way is a four-arm
spiral (Reid et al. 2019). However the nature and the structure of
these non-axisymmetric features remain uncertain. Indeed, the am-
plitude, length and pattern speed of the stellar bar are debated, and
constant effort to determine their values is motivated by their impor-
tance for a broad range of Galactic studies. For example, these bar
features are key to understanding the properties of the disc outside
the stellar bar (Minchev & Famaey 2010), the kinematics in the so-
lar neighbourhood (e.g., Dehnen 2000; Pérez-Villegas et al. 2017;
D’Onghia & Aguerri 2019; Monari et al. 2019), and the observed
non-circular gas flow (e.g., Bissantz et al. 2003).

Thanks to the Gaia mission – (Gaia Collaboration et al. 2016,
2018) that is releasing proper motions and distances for almost two
billion stars – progress has been made in understanding the central
region of the Galaxy, despite the strong dust extinction (e.g., Anders
et al. 2019; Bovy et al. 2019). The current picture of the central
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Galactic region is that the stellar bar extends as far as 4.5 − 5 kpc
from the Galactic centre and the pseudo-bulge is likely peanut-
shaped (Benjamin et al. 2005; Nataf et al. 2010; Zoccali & Valenti
2016; Wegg et al. 2015; Valenti et al. 2016).

Of great importance for the dynamics of the bar and its sur-
rounding disc is the pattern speedΩP of the bar itself (or equivalently
its co-rotation radius), because it defines the locations of resonances
associated to the bar (e.g., D’Onghia & Aguerri 2019, table 1). Past
measurements indicated a rather fast rotation rate (pattern speed) for
the Galactic bar of the order of ΩP = 55 km s−1 kpc−1 (Englmaier
& Gerhard 1999; Fux 1999; Debattista et al. 2002; Bissantz et al.
2003) with a bar length of ∼ 3 kpc that suggested the Sun being
close to the outer Lindblad resonance of the bar.

However, recent measurements of both the three-dimensional
density of red clump giants (Wegg et al. 2015) and the gas
kinematics in the inner Galaxy (Sormani & Magorrian 2015)
point out that the bar pattern speed might be significantly slower.
In particular, Portail et al. (2017), by modelling the kinematics
and photometry of stars in the bar, inferred a pattern speed of
39 km s−1 kpc−1. Recently, Sanders et al. (2019) derived a pattern
speed of ΩP ≈ 41 km s−1 kpc−1, applying a modified Tremaine
& Weinberg (1984) method on a proper motion data set assem-
bled from both multi-epoch VVV survey and Gaia data release 2
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(DR2). Another study derived line-of-sight integrated and distance-
resolved maps of average proper motions and velocity dispersions
from the VVV Infrared Astrometric Catalogue, combined with data
from Gaia DR2, and found agreement with a bar pattern speed of
39 km s−1 kpc−1 (Wegg et al. 2015). A combination of Gaia DR2
and APOGEE data has been also used to infer a similar bar pattern
speed (Bovy et al. 2019), althoughmeasurementsmay be affected by
systematic uncertainties resulting from photometric distances and
the small number of Gaia stars. The Bayesian code StarHorse,
combining Gaia parallax information with APOGEE spectroscopic
information in addition to other photometric bands, obtained dis-
tances in the region dominated by the bar and bulge (Anders et al.
2019). Yet, distances are inferred with uncertainties of the order of
1 kpc (∼10 per cent precision).

Another unresolved issue concerns the bar ‘viewing angle’, i.e.
the orientation of the Sun with respect to the long-axis of the bar.
Most authors have found a viewing angle in the range between 10 –
45◦ (Simion et al. 2017, figure 17).

Recently, it has been shown that it is possible to re-construct a
full 3D picture of the Milky Way by exploiting gravitational wave
(GW) radiation from Galactic ultra-compact detached double white
dwarf (DWD) binaries (Korol et al. 2019). Galactic DWDs can be
detected in the milli-Hz GW band with the future Laser Interferom-
eter Space Antenna (LISA, Amaro-Seoane et al. 2017). Population
synthesis studies forecast > 104 DWDs to be individually resolvable
by LISA (e.g. Korol et al. 2017; Lamberts et al. 2019; Breivik et al.
2019a). Such a large number of detections distributed across the
Galaxy will allow us to map the Milky Way in GWs and precisely
measure its structural parameters like the scale radii of the bulge and
the disc (Adams et al. 2012; Korol et al. 2019), while combined GW
and optical observations of DWDs can be used to derive the mass of
the bulge and the disc component of the Galaxy (Korol et al. 2019).
At frequencies <3mHz the LISA band starts to be overpopulated
by DWDs giving rise to an unresolved confusion background (e.g.,
Robson & Cornish 2017). Although affecting detectability of extra-
galactic LISA sources, this background encodes the properties of
the overall stellar population in the Galaxy and can also be used
to recover Milky Way’s parameters such as the disc scale height
(Benacquista & Holley-Bockelmann 2006; Breivik et al. 2019b).

In this workwe explore for the first time the potential of GWs to
characterise the Milky Way’s bar and spirals structural properties.
To achieve this we combine a DWD binary population synthesis
model with GALAKOS, a high resolution Milky Way-like galaxy
simulation (D’Onghia&Aguerri 2019).We consider the population
of detached DWDs only, because distance determination for these
binaries is not affected by systematic uncertainties due to astrophys-
ical processes such as mass transfer. In Section 2 we explain howwe
combine these two tools to obtain a realistic catalogue of Galactic
DWDs. In Section 3 we describe how the catalogue is processed
to obtain mock LISA observations. Next, we outline the method
adopted to infer the structure of the Galaxy from LISA observations
(Section 4). In Section 5 we present our results. Finally, we discuss
how our results compare to electromagnetic observations and draw
conclusions in Section 6.

2 METHODS

To model the population of DWDs in the Milky Way we follow the
same method as in Korol et al. (2019), but instead of employing
an analytic gravitational potential we use high resolution numerical
simulations of D’Onghia & Aguerri (2019). This Galaxy model
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Figure 1. The star formation history giving rise to the DWD population
used in this work (Boissier & Prantzos 1999). The present day value is
1.87M� yr−1.

includes a self-consistent spiral pattern and bar whose properties
are in agreement with current observations. It allows us to test how
the Galactic structure will be observed with LISA.

2.1 Binary population synthesis model

We employ the DWD population model from Toonen et al. (2012),
obtained using binary population synthesis code SeBa, developed
by Portegies Zwart & Verbunt (1996), later adapted for DWDs by
Nelemans et al. (2001) and Toonen et al. (2012). The progenitor
population is constructed by randomly sampling binary properties
with a Monte Carlo technique from distributions motivated by cur-
rently available observations for intermediate- and low-mass stars.
Specifically, the mass of the primary star is drawn from the initial
mass function of Kroupa et al. (1993) in the range between 0.95 and
10M� . The mass of the secondary star is derived from a uniform
mass ratio distribution between 0 and 1 (Duchêne & Kraus 2013).
To draw the initial binary orbital separations and binary eccentrici-
ties we adopt respectively a log-flat and a thermal distributions (Abt
1983; Heggie 1975; Duchêne & Kraus 2013). We set the initial
binary fraction to 0.5.

First, SeBa evolves the initial population from Zero-age main-
sequence until both stars become white dwarfs. Then, from DWD
formation until the present time binaries are further evolved via GW
emission that causes binaries’ orbits to shrink (e.g., Peters 1964).
Finally, we remove binaries from the catalogue if they have begun
mass transfer (i.e. when one of the two white dwarfs fills its Roche
lobe) or they have already merged within the present time.

To assign a realistic present time age distribution of DWDs
we used the star formation rate (SFR) grid from a hydrodynamic
simulation of Boissier & Prantzos (1999). Our modelling of star for-
mation implicitly assumes that once the bar is formed, it drives gas
toward the central regions of the Galaxy enhancing star formation.
This is a reasonable assumption as the majority of the bulge forms
as part of the bar, according to the recent estimates of the kinematics
of the stars of the bulge and bar (Portail et al. 2017). Our method
does not envisage a different star formation history in the Milky
Ways’s spiral arms. However, as the bar and spiral structure develop
the stars orbiting in the disc tend to increase the amplitude of their
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LISA View of the Milky Way’s bar 3

epicycle causing an increase of the in-plane velocity dispersion and
a global heating of the disc (Binney & Tremaine 1987). As a result
the spiral arms that propagate through the old stellar disc formed
also by the old stellar population such as DWDs will be less visible.

For the distribution of DWDs in our Milky Way model we
resampled the DWD population of Korol et al. (2019), without
information whether a DWD originated in the bulge or in the disc.
Thus, our population has a single star formation history equal to
the (weighted) sum of the disc and bulge star formation histories of
Boissier & Prantzos (1999), for both its disc and bulge.

One of the most impacting assumption in binary population
synthesis is the prescription for the common envelope (CE) evo-
lution. CE is a short phase of the binary evolution (∼ 103 yr) in
which the more massive star of the pair expands and engulfs its
companion (Paczynski 1976; Webbink 1984). During this phase the
binary orbital energy and angular momentum can be transferred
to the envelope, due to the dynamical friction experienced by the
companion star experiences when moving through the envelope.
This process continues until the envelope is ejected from the sys-
tem leaving behind the core of the expanded star and its companion
in a tighter orbit. Typically, the CE is implemented in the binary
population synthesis either by parametrising the conservation equa-
tion for energy (through the α parameter) or the balance equation
of the system’s angular momentum (through the γ parameter) (see
Ivanova et al. 2013, for a review). For this study we adopt the γα
DWD evolution model, in which both parametrisations are allowed:
the γ-prescription is applied unless the binary contains a compact
object or the CE is triggered by a tidal instability, in which case
α-prescription is used. Synthetic catalogues of DWDs produced
using this evolution model have been carefully calibrated against
state-of-the-art observations of DWDs in terms of both mass ratio
distribution (Toonen et al. 2012) and number density (Toonen et al.
2017). Future optical surveys such as the Vera Rubin Observatory
(Ivezic et al. 2008) will provided large samples of new DWDs that
will help to further constrain DWD evolution models (Korol et al.
2017).

2.2 Milky Way model

To simulate the Milky Way we use a snapshot of GALAKOS, a
high-resolution N-body simulation of a stellar disc with structural
parameters that reproduce the currently observed properties of our
Galaxy (D’Onghia & Aguerri 2019). The simulation was carried
out with GADGET3, a parallel TreePM-Smoothed particle hydro-
dynamics (SPH) code developed to compute the evolution of stars
and dark matter, treated as collisionless fluids. The phase space is
discretised into fluid elements that are computationally realised as
particles in the simulation. The total number of N-Body particles
employed in the simulation is 90 million. The gravitational soften-
ing length adopted is 40 pc for the dark halo, 28 pc for the stellar
disk and 80 pc for the bulge. Note that the gas component is not
included in the simulation.

The Milky Way model consists of three components: a dark
matter halo, a rotationally supported stellar disc, and a spherical
stellar bulge. These components are modelled as follows:

• Darkmatter halo ismodelledwith theHernquist (1990) density
profile

ρDM(r) =
MDM

2π
a

r(r + a)3
(1)

where MDM = 1 × 1012 M� is the total dark matter mass and

a = 30 kpc is the radial scale length. This choice is motivated by
the fact that in its inner part, the shape of the density profile is iden-
tical to the Navarro-Frenk-White fitting formula of the mass density
distribution of dark matter halos inferred in cosmological simula-
tions (Navarro et al. 1996). The dark matter mass in GALAKOS is
sampled with 60 million particles.
• Stellar disc is represented by an exponential radial stellar disc

profile with an isothermal vertical distribution

ρdisc(R, z) =
Md

8πz0R2
d

e−R/Rd sech2(z/z0), (2)

where Md = 4.8 × 1010 M� is the disc mass, Rd = 2.67 kpc is the
disc scale length, and z0 = 320 pc is the disc scale height. The disc
mass is discretised with 24 million particles. The gas component is
not included in the model.
• Stellar bulge is also described by theHernquistmodel. The total

mass of the bulge adopted in the simulation is Mb = 8 × 109M�
with a scale length ab = 320 pc. The number of particles sampled
in the bulge is 8.4 million. Note, that the bulge in this simulation
does not rotate.

The simulation results in a Milky Way-like galaxy with the
total stellar mass of 5.6× 1010 M� and accounts for a time-varying
potential that after 2.5Gyrs forms a bar with a length of 4.5 kpc,
a width of ≈ 2.5 kpc and a pattern speed of 40 km s−1 kpc1 (see
Appendix in D’Onghia & Aguerri (2019) for the details). Figure 2
shows the Milky Way model under different projections. Note that
this model includes two prominent spiral arms, whereas the Milky
Way is believed to have four. The gas component is not included in
the simulation.

To calculate the matter density distribution of the Galaxy
(which we assume to be the DWD number density distribution) we
use the kernel density estimation (KDE) method. We approximate
the mass-density distribution of the Galaxy by placing a function
called a kernel, in our case a three dimensional Gaussian, at the
position of every simulation particle. The superposition of these
functions is then used as a probability density function to populate
the simulated Galaxy with DWD binaries. In other words, this is
equivalent to assigning a DWD’s position around a random simu-
lation particle with a Gaussian probability density centred on the
particle. We use a bandwidth of the KDE (equivalently the stan-
dard deviation of the Gaussian) of 10 pc. This choice minimises the
residuals between the original simulation particle distribution and
that reconstructed (backwards) from the KDE matter density distri-
bution. In addition, this bandwidth allows us realistically describe
the white dwarf’s spatial distribution, whose local space density is
0.0045 pc−3 (e.g., Hollands et al. 2018).

2.3 GW emission from simulated binaries

Binary population synthesis provide us orbital periods Porb and
component’s masses m1 and m2, while the Galaxy simulation gives
us the DWDs’ 3D positions. Here we provide relations between
these quantities and parameters characterising GW signals of DWD
binaries: GW frequency f , the time derivative of GW frequency
Ûf , GW amplitudeA, sky position in LISA’s reference frame (θ̄, φ̄),
inclination ι, polarisation angle ψ, and initial orbital phase φ′0. The
first three are obtained from binary properties as

f =
2

Porb
, (3)

MNRAS 000, 1–12 (2019)
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Figure 2. Projected mass density maps of the Galaxy model, in the X − Y plane, Z − Y plane, X − Z plane, and R − Z plane, where R2 = X2 + Y2 and
(X,Y, Z) is the triad of Cartesian coordinates centred on the Galactic centre. Included are the bulge and disc components.

Ûf = 96
5
π8/3

(
MG
c3

)5/3
f 11/3 (4)

and

A = 2(GM)5/3(π f )2/3

c4d
, (5)

where M = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass and d is
the luminosity distance, G and c are respectively the gravitational
constant and the speed of light. We compute sky coordinates and
the distance to the source in the LISA reference frame as

θ̄ = π/2 − arccos(zecl/d)
φ̄ = arctan(yecl/xecl)

(6)

with (xecl, yecl, zecl) being the triad of Cartesian coordinates in the
heliocentric ecliptic system and d =

√
x2

ecl + y2
ecl + z2

ecl.
We assume the distance of the Sun from the Galactic centre

is 8.1 kpc (Gravity Collaboration et al. 2019; Reid et al. 2019) and
a viewing angle with respect to the bar’s long-axis is 30◦ (Cao
et al. 2013). Finally, binary inclination angles are drawn from a
uniform distribution in cos ι, while ψ and φ′0 are randomly drawn
from uniform distributions respectively between [0, π] and [0, 2π].

3 MOCK GW OBSERVATIONS

In this work we consider the latest LISA mission concept consisting
of three identical spacecrafts in an equilateral triangle configuration
of 2.5×106 kmper side (Amaro-Seoane et al. 2017). The spacecrafts
are designed to exchange laser links (2 links per arm of the triangle)

closing the triangular configurations. This design allows generation
of two sets of data streams yielding two independent time-serieswith
uncorrelated noise, in this way maximising the signal-to-noise ratio
(SNR) of a GW event (Vallisneri 2005). We assume the nominal
detection threshold corresponding to a signal-to-noise ratio (SNR)
of 7, a mission duration of 4 years and instrument noise model from
the LISA mission proposal Amaro-Seoane et al. (2017).

To compute the number of LISA detections and predict the
uncertainties on their parameters we employ the Mock LISA Data
Challenge (MLDC) pipeline developed by Littenberg et al. (2013)1
and more recently updated by A. Petiteau. The pipeline is de-
signed for optimising the analysis of a large number of quasi-
monochromatic GW sources simultaneously present in the data.
To extract LISA detections from the input catalogues the pipeline
iteratively computes the overall noise level by running a median
smoothing function through the power spectrum of the population
and extracts high SNR sources until the convergence. Finally, the
pipeline computes the errors on GW observables by computing
Fisher information matrices for detected sources.

We find 21.7 × 103 DWDs with SNR > 7, i.e. individually
resolved by LISA, in agreement with our previous results (Korol
et al. 2019). We show their number density maps projected in the
Galactic plane in Fig. 3;we indicate the position of theLISAdetector
with the black triangle.

In contrast to electromagnetic studies, GW observations pro-
vide measurements of the amplitude of the waves. Even though the
amplitude scales as 1/d, shallower than the intensity 1/d2 scaling,
one still detects fewer sources at larger distances. This bias can be

1 The pipeline is publicly available at github.com/tlittenberg/
ldasoft.
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Figure 3. Projected number density maps of DWDs individually detected
with LISA in 4 yr of mission projected on the Galactic plane (top panel) and
the same map corrected for the distance bias using Eq. (7) (bottom panel).
The black triangle indicates the location of the LISA detector atX = 8.1 kpc,
and Y = 0.

corrected assuming that the population of DWDs is homogeneous
in its binary properties throughout the Galaxy and that the popu-
lation evolves in frequency only due to GW emission. Under these
assumptions the fraction of observed sources with respect to the
total (input catalogue) becomes a function of the distance only. We
follow the approach outlined in Korol et al. (2019, eqs. (B1)-(B3))
to construct a de-biasing function. First, we compute the detection
fraction as a function of distance using the full DWD catalogue
(detected and undetected), and we fit the resulting distribution with
a power law. Then, the multiplicative inverse of this power law is
used to assign a weight to each detected source. Effectively, each
weight represents the number of non-detections for each detected
source. The power law obtained from our data is:

w (d)−1 = 9.90 × 10−3
(

d
1 kpc

)−0.94
. (7)

The effect of the correction is clearly visible in the bottom panel of
Fig. 3, where there are relatively fewer sources around the Sun with
respect to the upper panel.

The twomaps in Fig. 3 reveal the potential of usingGWsources
as tracers of Galactic structure that allow the reconstruction of the

Figure 4. A sketch of a uniform bar with half-length Rb and full width H .
From geometrical considerations we can see that φc (R) = arcsin

(
H
2R

)
whole surface of the disc including the far side of the Milky Way.
In particular, the denser central Galactic regions are well mapped
and the shape of the bar is already clearly visible without further
data processing, unlike for optical observations (e.g., Anders et al.
2019). On the other hand, just hints of the spiral structure are present
at distances < 5 kpc from the Galactic Centre but overall it cannot
be clearly identified from visual inspection alone.

4 GALAXY STRUCTURE ANALYSIS

In this section we outline the method adopted to recover the prop-
erties of our fiducial Galaxy model from mock LISA observations.
We carry out the analysis of the density distribution in Fourier
space. First, we give the definition of the Fourier modes and dis-
cuss their meaning in our study. Next, we consider simple analytic
distributions useful for understanding results presented in the next
Section.

To define Fourier modes of the Milky Way’s density distri-
bution, we integrate over concentric rings centred on the Galactic
Centre.Within these rings, both the bar and spiral arms are expected
to appear as periodic over-densities. We define the Fourier modes
Am as

Am (R) =
∫ 2π

0
n (R, φ) exp (imφ) dφ, (8)

where m denotes the angular frequency of the mode, R is the cylin-
drical Galactocentric radius, φ is the polar angle in the Galactic
plane, and n (R, φ) is the number density distribution projected on
the Galactic plane. A prominent A2 mode implies a pair of over-
densities and thus implies either a bar or a pair of spiral arms. The
difference between the bar and spiral arm structures is encoded in
the mode (complex) phase. A bar has a complex phase which is
constant with R, while spiral arms are characterised by a radial de-
pendent phase. In the following we normalise the Fourier modes A2
to the zero mode A0, representing the total mass in the ring, so that
the ratio is confined between [0, 1].

Next, we analytically derive the Fourier modes for a num-
ber of simple analytic density distributions: a uniform density bar,
logarithmic spirals, a toy barred spiral galaxy and a 2D Gaussian
density bar. These models are useful for interpreting the results
when analysing the density distribution of the DWDs detected by
LISA.

4.1 Uniform density bar

Let us consider a bar with a uniform density n0, half-length Rb and
full width H. The density profile can be expressed as

n (X,Y ) = n0

{
1 |X | < Rb, |Y | < H/2
0 otherwise.

(9)

MNRAS 000, 1–12 (2019)
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Figure 5. Three examples of density distributions in left panels and respective the trend of the normalised m = 2 mode magnitude (solid lines) and (complex)
phase (dotted lines) with R in right panels. Top panels: A uniform density bar under two different rotations. The magnitude vanishes for radii smaller than half
the bar width, and then quickly converges to 1. The phase is constant for all radii, and is shifted by twice the angle to the x-axis. Middle panels: A toy barred
spiral with infinitesimally thin bar and logarithmic spirals. In this case the magnitude is constant for all radii and equal to 1, while the phase is constant for radii
smaller than the bar length and drops beyond. The jumps in the phase are due to the phase-wrapping to the interval (−π, π]. Bottom panels: A 2D Gaussian
bar density model. The grey solid line denotes the profile of a bar with half the width of the model shown. The magnitude is 0 only at the origin and converges
to 1. The speed of this convergence depends on the bar width. The phase is constant at 0 (except at the origin where it is undefined) like the uniform bar.
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For certain radii R there is a critical angle φc(R) = arcsin(H/2R)
that indicates the boundaries of the bar in polar coordinates. This is
represented in Fig. 4. Using the definition in Eq. (8) we can write
the Fourier modes as

Am (R) = n0

(∫ φc

−φc

exp (imφ) dφ +
∫ φc+π

−φc+π
exp (imφ) dφ

)
= n0

(
1 + eimπ

)
sin

(
m arcsin

(
H
2R

))
.

(10)

This only holds for m > 0, and the absolute value of the radial
coordinate H/2 < |R| < Rb. Inside H/2 and far outside Rb the
Fourier modes vanish. Note that there is an intermediate regime
between R = Rb , where the circle with radius R covers the bar
from −φc to φc , and R =

√
R2

b + (H/2)
2, where the bar is entirely

inside the circle (and the Fourier modes vanish). We note that in
this regime the integration boundaries will have a more complex
expression; although a detailed description is beyond the scope of
the paper.

The m = 0 mode is

A0 (R) = 4n0 arcsin
(

H
2R

)
, (11)

so the normalised Fourier m = 2 mode is

A2
A0
=

1 + ei2π

2
sin (2φc)

2φc
. (12)

Rotation of the bar by an angle φ0 implies a shift in the integration
boundaries by the same angle. This results in a constant (complex)
phase factor for the Fourier modes, i.e.

A2 (R, φ0) = ei2φ0 A2 (R, 0) . (13)

See the top left panel of Fig. 5 to visualise the density profile of a
uniform density bar with φ0 = 0 in blue and φ = π/4 in red. The
top right panel of Fig. 5 shows the normalised m = 2 Fourier mode
(solid black line) and the phase (dotted lines) for two configurations.
For R < H/2 the magnitude is zero and for R > H/2 it quickly rises
and converges to 1 at R = Rb. In contrast, the phase of the mode
remains constant at all radii with a value equal to 2φ0 as discussed
above.

4.2 Logarithmic spirals

Although both simulations and observations do not exactly follow
logarithmic spiral structure, here we consider this example as a
helpful analytic tool to construct a simple barred spiral model in
Section 4.3.

The logarithmic spiral can be parametrised as

R (φ) = R0 ebφ, (14)

where R0 is the distance to the origin for φ = 0 and fixes the phase
of the spiral, and b is related to the pitch angle. The pitch angle is
defined as µ = arctan | 1R

dR
dφ |, thus it can be expressed in terms of

b as µ = arctan |b|. The density distribution of a set of N evenly
distributed, infinitesimally thin logarithmic spirals is then

n (R, φ) =
N−1∑
n=0

Mδ [R − R0 exp (b (φ − 2πn/N))] . (15)

Again, using Eq. (8) we can express the m = 2 mode of this density

distribution as

A2 (R) = M
1∑

n=0

∫ 2π

0
δ [R − R0 exp (b (φ − πn))] ei2φdφ

= 2M exp
(

2i
b

ln
R
R0

) (16)

From this equation it follows that the normalised m = 2 Fourier
mode is
A2
A0
= exp

(
2i
b

ln
R
R0

)
. (17)

4.3 Barred spiral

Nowwe combine the uniform density bar and the logarithmic spirals
to construct a toy model for a barred spiral galaxy. We consider the
bar to be infinitesimally thin (i.e. φc → 0) out to some radius Rb and
a pair of logarithmic spirals starting from the edges of the bar (i.e.
we set R0 = Rb). The magnitude of the normalised m = 2 Fourier
mode is 1 and its phase Φ is of the form

Φ

[
A2
A0
(R)

]
=

{
0 R < Rb,
2
b ln R

Rb
R > Rb.

(18)

From which follows that rotating this toy galaxy by an angle of
φ0 results in a phase shift of 2φ0 (considering the bar example
and continuity). This is represented in the middle panels of Fig. 5.
The middle right panel shows that the magnitude of the normalised
m = 2 mode (solid line) is equal to 1 at all radii, while the phase
(dotted lines) is constant for R < Rb and drops afterwards. The
discontinuities in the phase are due to its wrapping to the interval
(−π, π].

4.4 Gaussian bar

Finally, we consider a more realistic example of a bar with density
described according to a 2D Gaussian profile. The Fourier modes
for a Gaussian bar can we written as

A2(R) =
∫ 2π

0
n0 exp

(
− 1

2R2
x

(
(R cos φ)2 + k (R sin φ)2

)
+ i2φ

)
dφ,

(19)

where k = (Rx/Ry)2 with Rx and Ry being characteristic scales in
the X- and Y -directions. Useful for later, we define the bar length
Rb in this model as

Rb =

{
Rx i f k > 1,
Rx/
√

k if k < 1,
(20)

while the bar full width H is

H =

{
2Rx/
√

k i f k > 1,
2Rx if k < 1.

(21)

Consequently, the axis ratio H/2Rb is 1/
√

k for k > 1, and
√

k if
k < 1. Note that a bar rotated by 90◦ has Rx and Ry flipped, but
it will have the same Fourier magnitude profile as the rotation is
encoded in the phase.

The integral in Eq. (19) does not have an analytic solution and
needs to be integrated numerically. We plot the numerical results
in the lower panels of Fig. 5. The grey and the black solid lines in
the right panel represent the trend of |A2/A0 | with R respectively
for the case of half bar width and full bar width. Both start from
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Figure 6.Themagnitude and phase of the normalisedFouriermode |A2/A0 |
of both the total stellar population (blue line, labelled "total density profile")
and the population of individually detected DWDs (black points, labelled
"GW data"), as a function of Galactocentric radius. The horizontal, red
dotted line denotes a phase of 60◦; this is the phase expected for the m = 2
mode of a bar rotated by 30◦ (see Section 4). The vertical, red dash-dotted
line denotes a radius of 4.5 kpc, the fiducial bar length.

0 in the origin and converge to 1 at > 2 characteristic scale radius
(Rx and Ry). It is evident from the two examples that the speed the
convergence depends on thewidth of the bar. The phase (dotted line)
is constant at 0 (except at the origin) as in the case of the uniform
bar (top panels in Fig. 5).

5 RESULTS

We calculate the number density distribution in Galactocentric co-
ordinates of gravitational wave sources (cfr. Fig. 3 lower panel) as
a superposition of delta functions weighted by the de-biasing factor
w at the location of each detection,

n (R, φ) =
∑
i

wi (Ri, φi) δ (R − Ri) δ (φ − φi) . (22)

This is the formal definition of the density distribution of a collection
of point particles. The sum is performed over all detections i, and
each is weighted by the de-biasing weight, which depends on its
position through the distance from the detector. Entering this into

0.0 0.5 1.0 1.5 2.0
R (kpc)

0.0

0.1

0.2

0.3

0.4

0.5

|A
2
/A

0
|

Total density profile

GW data

Fit to GW data

Figure 7. The magnitude of the normalised Fourierm = 2 mode of both the
full underlying DWD population (blue line, labelled total density profile)
and the reconstructed population (black points, labelled GW data), as a
function of Galactocentric radius. The best fit model is shown in red and the
corresponding parameters are bar length Rb = 4.34 ± 0.51 kpc, bar width
H = 2.32 ± 0.10 kpc, and axis ratio 0.27 ± 0.03.

the Eq. (8) results in the expression:

Am (R) =
∫ 2π

0

∑
i

wi(Ri, φi)δ (R − Ri) δ (φ − φi) eimφdφ

=
∑
i

wi (Ri, φi) δ (R − Ri) eimφi .

(23)

In practise, we calculate Fourier modes (Eq. 23) by radially
binning all detections to make a histogram, where every detection
is weighted by its de-biasing weight and a complex phase factor. We
choose a bin size [R, R + dR) with dR = 100 pc in order to obtain
the mock GW data shown in Fig. 6 (black circles).

To quantify error bars, we then repeat the above procedure for
104 realisations of the binary positions in the Galaxy. Specifically,
each realisation is obtained by randomly drawing distances and
sky positions from Gaussian distributions centred on the measured
values, with standard deviation equal to the measurement errors
provided by the MLDC pipeline. This procedure allows us to as-
sign statistical uncertainties to a given realisation, calculated as the
standard deviation over all data realisations (error bars in Fig. 6). In
particular,we show the normalisedm = 2Fouriermode’smagnitude
(top panel) and phase (bottom panel) as a function of the Galac-
tocentric cylindrical radius. For comparison we also represent the
Fourier transform of the total stellar distribution in the Galaxy with
the blue solid line. Note that the blue line in the top panel shows
two peaks: one around 2.5 kpc and another one around 6.5 kpc. The
first peak is caused by the central bar, the second one by the spiral
arms. The mock data follow the total number density profile well
up to roughly 7 kpc, describing well the first peak. Beyond 7 kpc the
data become too noisy to detect over-densities.

The bottom panel of Fig. 6 shows the phase of the total density
profile (blue line). It stays at a constant value of π/3 up to ∼ 4 kpc,
before decreasing down to −π at ∼ 7 kpc, where it suddenly jumps
to π and then it decreases again. As shown in the middle panels of
Fig. 5, this behaviour is characteristic of the barred spiral galaxy.
In particular, our model example in Sect. 4.3 reveals that the phase
of the A2 mode remains constant for the extent of the bar, while
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the jumps are due to the phase wrapping. The mock data in Fig. 6
closely follow the blue line up to roughly 5 kpc and become more
scattered at greater radii. As can be seen in Fig. 3, this is due to
the low density contrast between DWDs in the spiral arms and the
background disc. Therefore, from visual inspection of Fig. 6 we can
conclude that by using the reconstructed DWD density maps from
LISA observations one can clearly identify the bar only. The spiral
arms’ identification and characterisation is more challenging than
for the bar, whether we exploit the m = 2 Fourier magnitude or the
phase.

To derive the bar’s parameter, we fit the mock data with the
Fourier transform of the 2D-Gaussian profile defined in Eq. (19).
Specifically, we fit for the scale length Rx and the square inverse axis
ratio k. This choice is motivated by the fact that when computing the
Fourier magnitude of the Gaussian profile, the two scale lengths are
degenerate: switching the scale lengths – corresponding to a rotation
of 90◦ – does not influence the Fourier magnitude, as mentioned in
Sect. 4. The fit is performed from the origin up to and including the
maximum magnitude of A2/A0. In both cases k > 1, meaning that
the bar length is computed from the bar width and axis ratio, which
means that its error is the compound error of those of the other two
values, in turn leading to a larger error.

We then recover an axis ratio of 0.27 ± 0.03, Rb = 4.34 ±
0.51 kpc, and H = 2.32 ± 0.10 kpc. A similar fit to the Fourier
magnitude profile of the stellar mass distribution yields an axis
ratio of 0.28±0.03, Rb = 4.53±0.59 kpc, and H = 2.52±0.16 kpc.
Overall, errors vary from 5 - 15 per cent and these ‘observed’ and
‘true’ values for the bar axis ratio and length agree well within 1σ.
Instead, the observed value for the bar width H differs by about 2σ
with respect to the true value. Although we underestimate both the
bar length and bar width, the axis ratio remains consistent with the
true value well within 1σ.

As discussed in Sec. 4, bar length and orientation can be in-
dependently recovered from the phase of the m = 2 mode. This is
possible using the fact that the phase stays constant atΦ (A2) = 2φ0
for the extent of the bar and deviates from this value beyond it (see
Fig. 6). To perform these measurements we apply the following
criterion. Between 0.5 kpc (to exclude the bulge) and R we fit a
horizontal line Φ (A2) = const and compute the χ2 value of the
fit up to that given point. In this way, we obtain a function χ2 (R)
that quantifies the goodness of fit to a constant value, for data up
to R. Using the statistical distribution of χ2 we can then compute
the cumulative distribution function (CDF) for each fit, that can be
interpreted as the probability that a randomly generated set of data
fits the model better. We compute 1 - CDF, i.e. the probability of
generating a random set of data that fits the model worse. We then
have a function that quantifies, for every radius R, how well a con-
stant can fit points up to R. The bar length is then defined as the R
up to which the fit is good. We take a lower limit of 0.052 for an
acceptable fit. We find that for R 6 4.25 kpc, our statistic is always
greater than 0.6, while for R > 4.25 kpc, it is always smaller than
10−6. The boundary thus appears well-defined, and relatively insen-
sitive to our choice of the threshold probability value. In this way
we recover a bar length of Rb = 4.25 kpc. We retrieve the viewing
angle by taking the best fit to the data up to the bar length, which
gives us a value of φ0 = 30.70 ± 0.83◦, in agreement with the true
viewing angle of 30◦.

In Fig. 8, we visualise our results by over-plotting our bar width

2 i.e. the probability that a set of data randomly generated from the model
fits the model worse than this data is 5 per cent
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Figure 8. The total stellar mass density map in the Galactic plane with
over-plotted values for the bar length and bar width derived from the mock
data. The white dotted lines indicate the bar length and bar width derived
by fitting the magnitude of the m = 2 Fourier mode, while the black dotted
lines indicates the bar length derived from fitting the phase. Shaded regions
indicate the 1σ confidence level contours for the bar’s length and bar’s
width. The yellow solid line shows the true viewing angle (equal to 30◦),
whereas the black dashed line shows the observed viewing angle.

(white dotted line) and the two bar length estimates (white and
black dotted lines) onto the total density distribution in the Galactic
plane. The shaded regions show the 1σ confidence level of our fit.
The values for the bar length and width fully enclose the bar. We
note that the two values of the bar length have been independently
derived and the fact that they agree well with each other and with the
true value within one sigma confirm the robustness of our method.
To elaborate on the independence of the two measurements, the
bar length recovered from the Fourier magnitude is a scale length,
describing the decay of a density profile, while that recovered from
the Fourier phase can be interpreted as a physical length, namely
the extent of the feature that is constant in Fourier phase (and which
feature we identify as the bar). The figure also shows the agreement
between the actual viewing angle (yellow line) and our viewing
angle measurement (black dashed line).

In order to investigate the sensitivity of our results to different
viewing angles we perform a set of 13 simulations for a number
of vantage points from 0 to 180◦. In all simulations we place the
virtual LISA detector at 8.1 kpc from the Galactic Centre and rotate
it around a half-circle in steps of 15◦. The top panel of figure 9
shows the results for the bar lengths, bar widths, and axis ratio’s
derived from the magnitude of the m = 2 mode for the different
vantage points. The bar lengths and axis ratios are generally consis-
tent within 1σ with the true value (red line) obtained from fitting
to the full stellar density profile. The derived bar widths, instead,
underestimate the true value by more than 1σ for most viewing
angles. Likewise, we investigate the sensitivity to the viewing an-
gle of the Fourier phase modelling (Fig. 9, bottom panel). The bar
lengths show a discretisation due to our definition, which was based
on choosing a discrete bin. All values obtained fall in one of three
bins, meaning that they all fall within a range of 0.2 kpc. The fit-
ted viewing angles are for the most part consistent with their true
values, with errors on the order of 1◦.

For each viewing angle, the de-biasing function was recom-
puted, andwe compare the functional parameters for each in Table 1.
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Figure 9. Top figure: bar length, bar width, and their ratio derived from the
Fourier magnitude for different bar viewing angles. The red lines correspond
to the values found by fitting the Fourier magnitude of the Gaussian profile
to the total stellar mass profile. Bottom figure: The bar length, relative
viewing angle error and absolute viewing angle error (∆φ0 is the difference
between the fitted and true viewing angle) derived from the Fourier phase for
different viewing angles. In the middle panel, the red lines indicate relative
viewing angle errors of ±1; within those lines, the reconstructed viewing
angle agrees with the true viewing angle within 1σ. The red line in the
bottom plot denotes an absolute viewing angle error of 0◦; points with error
bars crossing that line are consistent with the true viewing angle within 1σ.
Note that all our previous results shown in Sec. 5 were for a given viewing
angle of φ0 = 30◦.

We note that their standard deviations are on the order of a few per
cent and that their means and medians agree to about 10 per cent of
a standard deviation, implying that these are robust results. These
values can potentially be used for as de-biasing function for actual
LISA observations of DWDs. However, the degree to which our de-
biasing function approximates the true one depends on the quality
of the LISA noise model and on the DWD population model, and
warrants a separate more careful investigation.

6 DISCUSSION AND CONCLUSIONS

It is well established that the Milky Way presents a complex bary-
onic structure including bulge, a thin and a thick disc and a stellar
halo (see Bland-Hawthorn & Gerhard 2016, for a review). In partic-
ular, the structure of the inner Galaxy is not well known due to heavy
extinction and stellar crowding. The best available structural infor-
mation on the stellar population of the inner Galaxy comes from

large samples of Red Clump Giant stars visible in near-infrared
band, for which individual distances can be determined (Minniti
et al. 2010; Wegg & Gerhard 2013; Simion et al. 2017). Numerical
simulations show that bulges represent the inner part of a longer,
planar bar structure that formed through buckling out of the galaxy
plane and/or from orbits in vertical resonance (e.g., Athanassoula
2005). Therefore our Galaxy is also expected to have a thin bar
component extending well outside the bulge. However, finding the
Galactic planar bar and characterising its properties has proven
difficult, again because of intervening dust extinction and the super-
position with the star-forming disc at low latitudes toward the inner
Galaxy.

In this paper, we exploit the fact that GW observations do not
suffer from these effects and that GW strength decreases slower
with distance than light, allowing us to reach the far side of the
Galaxy. In particular, we propose and develop for the first time a
methodology for investigating the inner structure of the Milky Way
using future LISA observations. We combine binary population
synthesis techniques with a high resolution Milky Way simulation
for a more realistic modelling of the Galactic structure (D’Onghia
& Aguerri 2019).

Our results reveal that the shape of the bar is already apparent
by simply plotting the 3D positions of LISA detections (unlike with
optical observations Anders et al. (2019)), while the spiral arms
remain elusive. To recover the bar’s parameters, we analyse the
density distribution in Fourier space of LISA detections. We find
that the m = 2 Fourier mode is the strongest, implying the presence
of a bar plus a pair of spiral arms structure.

By fitting a 2D Gaussian density function to the Fourier trans-
form of the bar, we recover a length Rb = 4.34 ± 0.51 kpc, a width
H = 2.32±0.10 kpc and an axis ratio 0.27±0.03. The results for the
bar length and bar axis ratio are consistent within 1σ with the true
values, obtained by performing the same analysis on the total stel-
lar population. The bar width, instead, is underestimated by ∼ 2σ,
although the best-fit and true values differ by just ∼ 8 per cent. We
note that the bar length was also underestimated, though within 1σ,
and that the axis ratio agrees to within 1σ and 4 per cent of the true
value. Bar parameters obtained assuming different viewing angles
are consistent with each other within 1σ, and therefore similarly
compare to the true values. By fitting the phase of the m = 2 mode
as a function of R, we recover a viewing angle φ0 = 30.70± 0.83 ◦,
consistent with the true angle within 1σ. Viewing angle estimates
inferred from other vantage points are generally consistent with the
true value within 1σ, with the fitting error being on the order of
a degree. Likewise, the bar lengths recovered with this method for
different viewing angles do not vary by more than 4 per cent.

Let’s now compare our results with the state of the art for these
measurements. Electromagnetic studies of the geometric properties
of the Galactic bar have used the optical and infra-red stellar tracers.
Recent examples include infrared observations of stars using the
2MASS survey (Robin et al. 2012), optical observations of Red
clump stars (Cao et al. 2013) and RR Lyrae stars (Pietrukowicz
et al. 2015) from the OGLE survey, and optical observations of red
clump stars with the VVV survey (Wegg & Gerhard 2013; Simion
et al. 2017). The geometric parameters of the bar obtained by these
five studies vary between 10◦ −45◦ and 0.25−0.6 in viewing angle
and in-plane axis ratio respectively (Simion et al. 2017, figure 17).
Error estimates are reported to be of the order of a few degrees
for the viewing angle (Robin et al. 2012; Pietrukowicz et al. 2015;
Wegg & Gerhard 2013); around tens of per cent for scale lengths
(Robin et al. 2012); and around ~5 per cent for the in-plane axis
ratio (Pietrukowicz et al. 2015).
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Table 1. Statistical properties of the parameters of the de-biasing function, for the 13 viewing angles (0◦ up to and including 180◦, in steps of 15◦).

Parameter Range Mean Standard Deviation Median

Scaling [0.915e-2,1.023e-2] 0.975e-2 0.029e-2 0.979e-2
Power law index [-0.967, -0.907] -0.938 0.016 -0.940

Instead from GWs measurements, one can recover the bar in-
plane axis-ratio, scale length and viewing angle accurately (within
1σ from the true values) and with a precision of < 10 per cent for
the two former quantities, and 1◦ for the latter one. Therefore, GWs
promise to be a competitive observational window for the central
region of the Galaxy.

Nevertheless, the analysis in this paper should be refined in
a few ways. We have assumed a simple Galactic plane-projected,
bi-axial Gaussian profile, whereas the bar of the MilkyWay is more
peanut-shaped and with a vertical structure we have currently ig-
nored. Additionally, we didn’t attempt to simultaneously recover
the scale height of the bulge and disc, although possible as shown
by Benacquista & Holley-Bockelmann (2006); Korol et al. (2019);
Breivik et al. (2019b), albeit with simple analytical density models.
Another improvement pertains to our choice for the star formation
rate. While we assumed that the bar follows the same star formation
as the disc, one should instead self-consistently simulate the star
formation history of the bar itself. The different star formation his-
tories between the disc and the bulge and bar can potentially give
rise to two distinct populations. Finally, the future is currently of-
fering at least two more space-based interferometers beside LISA:
the DECI-hertz inteferometer Gravitational wave Observatory (DE-
CIGO, Sato et al. 2017) and TianQin (Luo et al. 2016). An analysis
that would consider the combined detections would likely result in
a more effective and precise tomography of the Galaxy.

Despite these limitations, our analysis represents a first proof
of concept of the feasibility to recover and study the inner parts of
our Galaxy using GWs, and we anticipate that a synergistic study
with more traditional electromagnetic tracers will be a new and very
effective Galactic investigation strategy in the 2030s.

ACKNOWLEDGEMENTS

We thank Silvia Toonen for providing us the model population for
DWD, Nilanjan Banik and Tyson Littenberg for useful discussions.
This work was supported by NWO WARP Program, grant NWO
648.003004 APP-GW. VK acknowledge support from the Nether-
lands Research Council NWO (Rubicon 019.183EN.015). E.D.O
acknowledges support from the Vilas Reaserach Fellowship pro-
vided by University of Wisconsin.
This research made use of NumPy, SciPy and PyGaia python pack-
ages, matplotlib python library and the publicly available pipeline
for analysing LISA data developed by Tyson Littenberg and Neil
Cornish available at github.com/tlittenberg/ldasoft.

REFERENCES

Abt H. A., 1983, ARA&A, 21, 343
AdamsM. R., CornishN. J., Littenberg T. B., 2012, Phys. Rev. D, 86, 124032
Amaro-Seoane P., et al., 2017, arXiv e-prints, p. arXiv:1702.00786
Anders F., et al., 2019, A&A, 628, A94
Athanassoula E., 2005, MNRAS, 358, 1477

Benacquista M., Holley-Bockelmann K., 2006, ApJ, 645, 589
Benjamin R. A., et al., 2005, ApJ, 630, L149
Binney J., Tremaine S., 1987,Galactic dynamics, 2 edn. PrincetonUniversity

Press
Bissantz N., Englmaier P., Gerhard O., 2003, MNRAS, 340, 949
Bland-Hawthorn J., Gerhard O., 2016, ARA&A, 54, 529
Boissier S., Prantzos N., 1999, MNRAS, 307, 857
Bovy J., Leung H. W., Hunt J. A. S., Mackereth J. T., Garcia-Hernandez

D. A., Roman-Lopes A., 2019, arXiv e-prints, p. arXiv:1905.11404
Breivik K., et al., 2019a, arXiv e-prints, p. arXiv:1911.00903
Breivik K., Mingarelli C. M. F., Larson S. L., 2019b, arXiv e-prints, p.

arXiv:1912.02200
Cao L., Mao S., Nataf D., Rattenbury N. J., Gould A., 2013, MNRAS, 434,

595
D’Onghia E., Aguerri J. A. L., 2019, arXiv e-prints, p. arXiv:1907.08484
Debattista V. P., Gerhard O., Sevenster M. N., 2002, MNRAS, 334, 355
Dehnen W., 2000, AJ, 119, 800
Duchêne G., Kraus A., 2013, ARA&A, 51, 269
Englmaier P., Gerhard O., 1999, MNRAS, 304, 512
Fux R., 1999, A&A, 345, 787
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2018, A&A, 616, A1
Gravity Collaboration et al., 2019, A&A, 625, L10
Heggie D. C., 1975, MNRAS, 173, 729
Hernquist L., 1990, ApJ, 356, 359
Hollands M. A., Tremblay P. E., Gänsicke B. T., Gentile-Fusillo N. P.,

Toonen S., 2018, MNRAS, 480, 3942
Ivanova N., et al., 2013, A&ARv, 21, 59
Ivezic Z., et al., 2008, preprint (arXiv:0805.2366)
Korol V., Rossi E. M., Groot P. J., Nelemans G., Toonen S., Brown A. G. A.,

2017, Mon. Not. Roy. Astron. Soc., 470, 1894
Korol V., Rossi E. M., Barausse E., 2019, MNRAS, 483, 5518
Kroupa P., Tout C. A., Gilmore G., 1993, MNRAS, 262, 545
Lamberts A., Blunt S., Littenberg T., Garrison-Kimmel S., Kupfer T.,

Sanderson R., 2019, arXiv e-prints, p. arXiv:1907.00014
Littenberg T. B., Larson S. L., Nelemans G., Cornish N. J., 2013, MNRAS,

429, 2361
Luo J., et al., 2016, Classical and Quantum Gravity, 33, 035010
Minchev I., Famaey B., 2010, ApJ, 722, 112
Minniti D., et al., 2010, New Astron., 15, 433
Monari G., Famaey B., Siebert A., Wegg C., Gerhard O., 2019, A&A, 626,

A41
Nataf D. M., Udalski A., Gould A., Fouqué P., Stanek K. Z., 2010, ApJ, 721,

L28
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Nelemans G., Yungelson L. R., Portegies Zwart S. F., Verbunt F., 2001,

A&A, 365, 491
Paczynski B., 1976, in Eggleton P., Mitton S., Whelan J., eds, IAU Sympo-

sium Vol. 73, Structure and Evolution of Close Binary Systems. p. 75
Pérez-Villegas A., Portail M., Wegg C., Gerhard O., 2017, ApJ, 840, L2
Peters P. C., 1964, Physical Review, 136, 1224
Pietrukowicz P., et al., 2015, ApJ, 811, 113
Portail M., Gerhard O., Wegg C., Ness M., 2017, MNRAS, 465, 1621
Portegies Zwart S. F., Verbunt F., 1996, A&A, 309, 179
Reid M. J., et al., 2019, ApJ, 885, 131
Robin A. C., Marshall D. J., SchultheisM., Reylé C., 2012, A&A, 538, A106
Robson T., Cornish N., 2017, Classical and Quantum Gravity, 34, 244002
Sanders J. L., Smith L., Evans N. W., 2019, MNRAS, p. 1855
Sato S., et al., 2017, Journal of Physics: Conference Series, 840, 012010

MNRAS 000, 1–12 (2019)

github.com/tlittenberg/ldasoft
http://dx.doi.org/10.1146/annurev.aa.21.090183.002015
http://adsabs.harvard.edu/abs/1983ARA26A..21..343A
http://dx.doi.org/10.1103/PhysRevD.86.124032
https://ui.adsabs.harvard.edu/abs/2012PhRvD..86l4032A
https://ui.adsabs.harvard.edu/abs/2017arXiv170200786A
http://dx.doi.org/10.1051/0004-6361/201935765
https://ui.adsabs.harvard.edu/abs/2019A&A...628A..94A
http://dx.doi.org/10.1111/j.1365-2966.2005.08872.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.358.1477A
http://dx.doi.org/10.1086/504024
http://adsabs.harvard.edu/abs/2006ApJ...645..589B
http://dx.doi.org/10.1086/491785
https://ui.adsabs.harvard.edu/abs/2005ApJ...630L.149B
http://dx.doi.org/10.1046/j.1365-8711.2003.06358.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.340..949B
http://dx.doi.org/10.1146/annurev-astro-081915-023441
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..529B
http://dx.doi.org/10.1046/j.1365-8711.1999.02699.x
http://adsabs.harvard.edu/abs/1999MNRAS.307..857B
https://ui.adsabs.harvard.edu/abs/2019arXiv190511404B
https://ui.adsabs.harvard.edu/abs/2019arXiv191100903B
https://ui.adsabs.harvard.edu/abs/2019arXiv191202200B
https://ui.adsabs.harvard.edu/abs/2019arXiv191202200B
http://dx.doi.org/10.1093/mnras/stt1045
https://ui.adsabs.harvard.edu/abs/2019arXiv190708484D
http://dx.doi.org/10.1046/j.1365-8711.2002.05500.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.334..355D
http://dx.doi.org/10.1086/301226
https://ui.adsabs.harvard.edu/abs/2000AJ....119..800D
http://dx.doi.org/10.1146/annurev-astro-081710-102602
http://adsabs.harvard.edu/abs/2013ARA26A..51..269D
http://dx.doi.org/10.1046/j.1365-8711.1999.02280.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.304..512E
https://ui.adsabs.harvard.edu/abs/1999A&A...345..787F
http://dx.doi.org/10.1051/0004-6361/201833051
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...1G
http://dx.doi.org/10.1051/0004-6361/201935656
https://ui.adsabs.harvard.edu/abs/2019A&A...625L..10G
http://dx.doi.org/10.1093/mnras/173.3.729
http://adsabs.harvard.edu/abs/1975MNRAS.173..729H
http://dx.doi.org/10.1086/168845
https://ui.adsabs.harvard.edu/abs/1990ApJ...356..359H
http://dx.doi.org/10.1093/mnras/sty2057
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.3942H
http://dx.doi.org/10.1007/s00159-013-0059-2
http://adsabs.harvard.edu/abs/2013A26ARv..21...59I
http://arxiv.org/abs/0805.2366
http://dx.doi.org/10.1093/mnras/stx1285
http://dx.doi.org/10.1093/mnras/sty3440
http://adsabs.harvard.edu/abs/2019MNRAS.483.5518K
http://dx.doi.org/10.1093/mnras/262.3.545
http://adsabs.harvard.edu/abs/1993MNRAS.262..545K
https://ui.adsabs.harvard.edu/abs/2019arXiv190700014L
http://dx.doi.org/10.1093/mnras/sts507
http://dx.doi.org/10.1088/0004-637X/722/1/112
https://ui.adsabs.harvard.edu/abs/2010ApJ...722..112M
http://dx.doi.org/10.1016/j.newast.2009.12.002
https://ui.adsabs.harvard.edu/abs/2010NewA...15..433M
http://dx.doi.org/10.1051/0004-6361/201834820
https://ui.adsabs.harvard.edu/abs/2019A&A...626A..41M
https://ui.adsabs.harvard.edu/abs/2019A&A...626A..41M
http://dx.doi.org/10.1088/2041-8205/721/1/L28
https://ui.adsabs.harvard.edu/abs/2010ApJ...721L..28N
https://ui.adsabs.harvard.edu/abs/2010ApJ...721L..28N
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1051/0004-6361:20000147
https://ui.adsabs.harvard.edu/abs/2001A&A...365..491N
http://dx.doi.org/10.3847/2041-8213/aa6c26
https://ui.adsabs.harvard.edu/abs/2017ApJ...840L...2P
http://dx.doi.org/10.1103/PhysRev.136.B1224
http://adsabs.harvard.edu/abs/1964PhRv..136.1224P
http://dx.doi.org/10.1088/0004-637X/811/2/113
http://dx.doi.org/10.1093/mnras/stw2819
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.1621P
http://adsabs.harvard.edu/abs/1996A26A...309..179P
http://dx.doi.org/10.3847/1538-4357/ab4a11
https://ui.adsabs.harvard.edu/abs/2019ApJ...885..131R
http://dx.doi.org/10.1051/0004-6361/201116512
http://dx.doi.org/10.1088/1361-6382/aa9601
https://ui.adsabs.harvard.edu/abs/2017CQGra..34x4002R
http://dx.doi.org/10.1093/mnras/stz1827
https://ui.adsabs.harvard.edu/abs/2019MNRAS.tmp.1855S


12 Martijn J. C. Wilhelm

Simion I. T., Belokurov V., Irwin M., Koposov S. E., Gonzalez-Fernandez
C., Robin A. C., Shen J., Li Z.-Y., 2017, MNRAS, 471, 4323

Sormani M. C., Magorrian J., 2015, MNRAS, 446, 4186
Toonen S., Nelemans G., Portegies Zwart S., 2012, A&A, 546, A70
Toonen S., Hollands M., Gänsicke B. T., Boekholt T., 2017, A&A, 602, A16
Tremaine S., Weinberg M. D., 1984, ApJ, 282, L5
Valenti E., et al., 2016, A&A, 587, L6
Vallisneri M., 2005, Phys. Rev. D, 72, 042003
Webbink R. F., 1984, ApJ, 277, 355
Wegg C., Gerhard O., 2013, MNRAS, 435, 1874
Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050
Zoccali M., Valenti E., 2016, Publ. Astron. Soc. Australia, 33, e025

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–12 (2019)

http://dx.doi.org/10.1093/mnras/stx1832
http://dx.doi.org/10.1093/mnras/stu2316
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.4186S
http://dx.doi.org/10.1051/0004-6361/201218966
http://adsabs.harvard.edu/abs/2012A26A...546A..70T
http://dx.doi.org/10.1051/0004-6361/201629978
https://ui.adsabs.harvard.edu/abs/2017A&A...602A..16T
http://dx.doi.org/10.1086/184292
https://ui.adsabs.harvard.edu/abs/1984ApJ...282L...5T
http://dx.doi.org/10.1051/0004-6361/201527500
https://ui.adsabs.harvard.edu/abs/2016A&A...587L...6V
http://dx.doi.org/10.1103/PhysRevD.72.042003
https://ui.adsabs.harvard.edu/abs/2005PhRvD..72d2003V
http://dx.doi.org/10.1093/mnras/stt1376
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.1874W
http://dx.doi.org/10.1093/mnras/stv745
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.4050W
http://dx.doi.org/10.1017/pasa.2015.56
https://ui.adsabs.harvard.edu/abs/2016PASA...33...25Z

	1 Introduction
	2 Methods
	2.1 Binary population synthesis model
	2.2 Milky Way model
	2.3 GW emission from simulated binaries

	3 Mock GW observations
	4 Galaxy structure analysis
	4.1 Uniform density bar
	4.2 Logarithmic spirals
	4.3 Barred spiral
	4.4 Gaussian bar

	5 Results
	6 Discussion and conclusions
	Acknowledgements
	Acknowledgements

