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Simple Summary: Colorectal cancer often develops via the adenoma–carcinoma sequence, a process
which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes
in fibroblast populations. Recent studies have made it clear that these fibroblast populations which,
in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important
role in intestinal tumor progression. This review provides an overview on the emerging role of
fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation
to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets
and phenotypes during cancer development, a better functional understanding of stage-specific
(alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based
prognosticators and therapies.

Abstract: In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand
the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts con-
tribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural
framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis,
(pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in
epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive
carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are
the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist
of various functionally heterogeneous subsets which can promote or restrain cancer progression.
Although most previous research has focused on the biology of epithelial cells, accumulating evi-
dence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and
progression, thereby possibly providing avenues for improvement of clinical care for CRC patients.
In this review, we summarized the current literature on the emerging role of fibroblasts in various
stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells.
In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different
stages of intestinal tumor progression.

Keywords: colorectal cancer; tumor stage; adenoma–carcinoma sequence; cancer-associated fibroblast

1. Introduction and Definitions

Colorectal cancer (CRC) is the most commonly diagnosed malignancy in the gas-
trointestinal tract, constituting almost two million new cases and one million deaths per
year worldwide [1,2]. The majority of CRC cases develop via the adenoma–carcinoma
sequence [3]. This process is accompanied by sequential accumulation of (epi) genetic
alterations in epithelial cells that lead to the formation of benign precursor lesions called
adenomas [4]. Some of these adenomas eventually progress into invasive carcinomas.
Although most previous research has focused on the biology of epithelial cells, it has
become clear that the tumor microenvironment (TME), also known as the tumor stroma,
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plays an important role in CRC initiation and progression as well [5,6]. For instance, a high
stromal content at the invasive front of CRCs is strongly correlated to an increased risk of
CRC-related death [7,8]. Moreover, several studies have demonstrated that the prognostic
value of the recently developed Consensus Molecular Subtypes (CMS) classification system
for CRC [9] can be mainly attributed to genes expressed by stromal cells, rather than tumor
cells [10–12]. Of all the CMS categories, the mesenchymal or stromal CRC subtype (CMS4)
is associated with the worst survival outcomes [9], thereby underlining the significant
involvement of the TME in tumor progression.

The tumor stroma of CRC consists of several cell types (e.g., immune cells and en-
dothelial cells), of which the cancer-associated fibroblasts (CAFs) are most abundant. CAFs
are defined as fibroblasts surrounding malignant tumor cells [13], and consist of various
heterogeneous subsets which can exert both tumor-promoting and -suppressing func-
tions [5,6,13,14]. Many studies have shown that CAFs can make an important contribution
to CRC progression, making them a promising target for improving therapeutic strate-
gies for CRC [15]. However, a major challenge hampering progress in the field of CAF
research is the lack of precision of fibroblast-specific markers (i.e., markers which can
identify all the different fibroblast subsets and which are also not expressed in any other
cell type) [13]. This has led to inconsistent definitions and nomenclature across studies on
(cancer-associated) fibroblasts [16]. For our review, we have adopted the recommendations
of a 2020 consensus statement on fibroblast research [13]. Fibroblasts are defined as spindle-
shaped, elongated cells with slender cytoplasmic processes, which do not express lineage
markers for endothelial (e.g., cluster of differentiation 31 (CD31)), epithelial (e.g., CD326),
or immune cells (e.g., CD45) [17]. Fibroblasts with a highly contractile phenotype which are
positive for alpha smooth muscle actin (α-SMA) will be referred to as myofibroblasts [18].
All fibroblasts (regardless of cellular origin) found within and surrounding an invasive
or metastatic carcinoma will be referred to as CAFs [13]. Expression of other commonly
used markers for (cancer-associated) fibroblasts such as fibroblast activation protein (FAP),
platelet-derived growth factor receptors alpha (PDGFR-α) and beta (PDGFR-β), CD90,
and alpha-1 type I collagen (COL1A1), is not included in our definitions but will be used
to characterize and describe fibroblast subsets whenever reported. This is because not
all fibroblasts express these markers, and not all studies use the same markers to define
(cancer-associated) fibroblasts [5,13].

CAFs can have several different cellular origins, including non-fibroblastic cell pop-
ulations (e.g., epithelial and endothelial cells) and remote circulating cells (bone marrow
derived mesenchymal stem cells) [5,6,13]. However, the many studies which have de-
scribed gradual changes occurring in the fibroblast compartment during cancer devel-
opment [19–21] suggest that the majority of CAFs initially originate from tissue-resident
fibroblasts [13]. In intestinal homeostasis, resident fibroblasts are usually in a quiescent
state and can be activated as part of a wound healing response [22], which is initiated upon
damage to the intestinal epithelium caused by mechanical (peristalsis and fecal stream) or
erosive (invasive bacteria and chemical agents) stimuli. Activated fibroblasts can acquire a
highly contractile phenotype, produce increased amounts of extracellular matrix (ECM),
and secrete factors which stimulate tissue repair and regeneration [5]. The activation of
fibroblasts during the wound healing response shows high resemblance to the formation
of tumor stroma [23]. Under physiological conditions, activated fibroblasts are reverted to
their original state or undergo apoptosis after the structural integrity of the tissue has been
restored. However, in cancers, which have also been described as “wounds that do not
heal” [23], it is believed that this resolution phase is disrupted—as the tumor progresses
into more advanced stages, local fibroblast populations are undergoing gradual changes
and eventually acquire a CAF-phenotype [19,24,25]. Currently, the exact sequential changes
are not well understood, because longitudinal sampling of the same tumor throughout
disease progression is often impossible.

In this review, we summarized the current literature on the emerging role of fibroblasts
in various stages of CRC development, ranging from adenoma initiation to the metastatic
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spread of tumor cells. As considerable heterogeneity in fibroblast phenotypes can exist
along the continuum of cancer development [6], special attention was given to currently
known fibroblast subsets and their (possible) roles in tumor progression. We also high-
lighted translational and therapeutic perspectives of fibroblasts in the different stages of
intestinal tumorigenesis.

2. Fibroblasts in Intestinal Homeostasis

First, to provide some context on (cancer-associated) fibroblasts in neoplastic disease,
we will briefly discuss the characteristics and functions of intestinal (myo) fibroblasts in
physiology. As summarized in several excellent reviews [16–18,26], fibroblasts are pheno-
typically heterogeneous and contribute to intestinal homeostasis via multiple mechanisms
(Figure 1A). They are mainly known for their role in ECM remodeling, which is essential for
maintaining the structural integrity of the intestinal mucosa [17,22,27]. However, intestinal
fibroblasts can also regulate proliferation and differentiation of epithelial (stem) cells via se-
cretion of wingless-related integration site (Wnt) ligands and bone morphogenetic proteins
(BMP) antagonists [26,28–30]. In addition, fibroblasts play important roles in intestinal
immune cell homeostasis by directly interacting with immune cells or secreting various
inflammatory cytokines, such as interleukin-6 (IL-6) or C-C motif chemokine ligand 2
(CCL2) [17,31].
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2.1. Fibroblast Subsets in Normal Intestinal Mucosa

For decades, it has been notoriously difficult to define phenotypically distinct fi-
broblast subsets and attribute specific functions to them, because they often express
overlapping marker genes and proteins. However, the recent introduction of single-cell
transcriptomics [32] has provided a powerful analysis tool for unbiased delineation and
comprehensive characterization of fibroblast subsets. In 2018, the colonic mesenchyme
of healthy humans was analyzed using single-cell RNA sequencing (scRNAseq) for the
first time [33]. Unbiased clustering analysis revealed five fibroblast subsets with distinct
expression profiles. One of these subsets was identified as myofibroblasts, while the other
four expressed much lower levels of myofibroblast genes (α-SMA, myosin heavy chain 11
(MYH11), and gamma-enteric smooth muscle actin (ACTG2)) and were termed S1–S4. The
S1 subset was characterized by enrichment for ECM-related genes, and in particular for
non-fibrillar collagens (e.g., COL14A1 and COL15A) and elastic fibers (fibronectin 1 (FN1)
and fibulin 2 (FBLN2)). The S2 subset was enriched for key constituents of the epithelial
basement membrane (COL4A5 and COL4A6), and also showed high expression of several
ligands of the transforming growth factor β (TGF-β) superfamily (BMP2 and BMP5) and
Wnt pathway (Wnt5a and frizzled related protein (FRZB)). The S3 subset (marker genes: e.g.,
osteoglycin (OGN) and gelsolin (GSN)) was enriched for genes involved in organization
of supramolecular fibers and extracellular clusters, and the S4 subset mainly showed
enrichment for immune-related processes (e.g., T-cell activation, antigen processing and
presentation). Examples of S4 marker genes were IL32, CD74, and interferon regulatory factor
8 (IRF8). Although these analyses have shed some light on the heterogeneous intestinal
fibroblast compartment, functional attributes of the identified subsets largely remain to be
elucidated.

2.2. Fibroblasts and Intestinal Adenoma Formation

Enhanced adenoma initiation has been linked to alterations in several intestinal
fibroblast-related factors (Figure 1B). For example, Nik et al. reported that adenomatous poly-
posis coli (APC) mutant mice developed significantly more intestinal adenomas upon loss
of one allele for forkhead box F2 (FOXF2), a transcription factor which is mainly expressed
in intestinal fibroblasts [34]. Complete knockout of nod-like receptor pyrin domain-containing
protein 6 (NLRP6), which is primarily expressed by colonic myofibroblasts, resulted in sig-
nificantly more colorectal tumors than control mice in a mouse model of colitis-associated
tumorigenesis (azoxymethane-dextran sulfate sodium (AOM/DSS) model) [35]. Similar
results were observed in the AOM/DSS model upon fibroblast-specific (COL1A2-driven
Cre expression) loss of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) [36] and
loss of tumor progression locus 2 (TPL2) in myofibroblasts (COL6-Cre) [37]. In contrast,
complete knockout of periostin, an ECM protein, which in the intestinal mucosa appears to
be mainly derived from stromal fibroblasts, considerably reduced the number of colorectal
tumors in both AOM/DSS-treated and APC-mutant mice [38]. Collectively, these findings
suggest that alterations in the normal intestinal fibroblast compartment could importantly
contribute to the development of neoplastic disease.

Several mechanisms have been proposed via which fibroblast alterations may lead
to enhanced intestinal adenoma formation. For instance, both IKKβ-deficient fibroblasts
and TPL2-deficient myofibroblasts were found to secrete elevated levels of hepatocyte
growth factor (HGF) [36,37], an important cytokine involved in tumor development and
progression [39–41], and pharmacological inhibition of the HGF receptor (MET) could
revert the phenotype caused by (myo)fibroblast-specific deletion of these targets [36,37].
These results indicate that intestinal fibroblast alterations may promote adenoma formation
via aberrant HGF/MET signaling. Another signaling pathway which may be affected
by alterations in fibroblasts includes Wnt signaling. FOXF2+/− fibroblasts expressed
lower levels of the Wnt antagonist secreted frizzled-related protein 1 (SFRP1) [34], thereby
possibly contributing to overactive Wnt signaling and subsequent hyperproliferation
of intestinal stem cells [42–44]. Besides, there are also some signs that alterations in
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normal fibroblast populations may lead to the formation of a microenvironment which
facilitates adenoma formation. For example, myofibroblast-specific inactivation (FOXL1-
Cre) of the BMP receptor 1a (BMPR1A/ALK3) in mice led to expansion of the fibroblast
compartment and remodeling of the intestinal microenvironment, which resulted in a
higher number of polyps compared to control mice [45]. Further support for the hypothesis
of microenvironmental remodeling prior to adenoma formation was reported by Guo et al.,
who showed that non-neoplastic normal intestinal mucosa from patients with advanced
adenomas contained a significantly higher proportion of senescent fibroblasts than normal
mucosa from individuals without any neoplastic intestinal disease [46]. These senescent
fibroblasts could promote proliferation of epithelial cells in vitro via secretion of Growth
Differentiation Factor 15 (GDF15) [46], thereby possibly contributing to adenoma formation.
Altogether, these studies indicate that alterations in normal intestinal fibroblasts may
indirectly contribute to adenoma formation via altered paracrine signaling or remodeling
of the intestinal microenvironment.

In vivo evidence of direct fibroblast-mediated adenoma initiation is quite scarce. Only
recently, it was demonstrated that a pericryptal fibroblast subset expressing prostaglandin-
endoperoxide synthase 2 (PTGS2, also known as cyclooxygenase-2 (COX-2)) could directly
initiate the formation of adenomas in APC-mutant mice (fibroblast-specific targeting using
COL6-driven Cre expression) [47]. Mechanistically, this was found to occur via the paracrine
prostaglandin E2 (PGE2)—PGE2 receptor 4 (PTGER4)—Yes-associated protein (YAP) sig-
naling axis [47]. The COX-2 fibroblast-driven adenoma-initiating pathway could be an
important underlying mechanism behind the CRC-preventative effect of COX-2 inhibitors
in humans [48], and might also provide a promising alternative (i.e., PTGER4 inhibi-
tion [49]) for chemoprevention of CRC given the substantial side effects of COX-inhibiting
drugs [48]. In the healthy human mucosa, COX-2 expression was mainly observed in S1
fibroblasts, and in particular in the S1 subset with high expression levels of fibroblast-growth
factor 2 (FGF2) and vascular cell adhesion molecule 1 (VCAM1), and low levels of PDGFR-α
expression [33]. However, COX-2 expressing fibroblasts are not unique to one of the major
fibroblast subtypes in the normal mucosa, as COX-2 is to a lesser extent also expressed in
S2–S4 fibroblasts. Besides, the amount of this adenoma-initiating fibroblast subset appears
to be regulated via several mechanisms. For instance, stromal Indian hedgehog (IHH)
signaling may be important for maintaining the population of COX-2 expressing fibroblasts,
as loss of IHH signaling in APC-mutant mice considerably reduced both the number of
intestinal adenomas and COX-2 expression levels [50]. A similar decrease in adenoma
count and COX-2 expression was reported when trametinib, a small-molecule mitogen-
activated protein kinase kinase (MEK) inhibitor, was administered to APC mutant mice [51],
suggesting that the COX-2 expressing subset could also be maintained by MEK signaling.
In another study, it was shown that COX-2 expression in fibroblasts may be induced by
pericellular hypoxia caused by densely populated epithelial cells [52]. These findings
may indicate the existence of a reciprocal loop in which (fibroblast-mediated) epithelial
hyperproliferation may escalate towards adenoma formation by increasing the number of
adenoma-promoting COX-2 expressing fibroblasts. It is currently unclear whether or not
such an expansion also occurs before adenoma formation in humans.

In summary, fibroblasts in normal intestinal mucosa display considerable phenotypic
heterogeneity and actively contribute to intestinal homeostasis via several mechanisms.
These include remodeling of the ECM as well as interaction with epithelial and immune
cells. Alterations in normal intestinal fibroblasts (e.g., loss of IKKβ or BMPR1A) may
indirectly lead to enhanced adenoma formation via altered paracrine signaling or remodel-
ing of the intestinal microenvironment. Evidence of direct fibroblast-mediated adenoma
formation in vivo has only been provided for COX-2 expressing fibroblasts, an adenoma-
promoting subset which can already be found in healthy human intestine. The abundance
of this fibroblast subset appears to be regulated via various pathways, such as IHH or MEK
signaling. Although these findings emphasize the involvement of intestinal fibroblasts in
the initiation of neoplastic disease, it largely remains to be elucidated how the composition
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of the heterogeneous fibroblast compartment in the human intestine changes prior to
adenoma formation, and to what extent these changes in (relative abundance of) fibroblast
subsets contribute to adenoma initiation.

3. Fibroblasts in Intestinal Carcinogenesis
3.1. Adenomas

There are multiple reports of tissue fibrosis (i.e., a chronic wound healing response as
a result of unabated tissue injury) and expansion of certain fibroblast subsets occurring
in precursor lesions of solid tumors [53–57]. Currently, it remains a point of discussion
whether these stromal changes accelerate or provide protection from progression to in-
vasive carcinomas. It is generally assumed that the pre-malignant stroma to a certain
degree contributes to malignant progression [5,23], since multiple studies have linked
tissue fibrosis (which is characterized by activation of fibroblasts) to an increased risk of
developing malignancies in various organs [56–59]. However, for pancreatic precursor
lesions it has been shown that depletion of all α-SMA-expressing myofibroblasts increases
the number of invasive carcinomas [60], suggesting that the pre-malignant stroma may
also play an important role in preventing malignant transformation [61]. For intestinal
adenomas, neither of these theories has been supported by functional studies yet. It has
been shown that serrated adenomas can progress towards the mesenchymal CMS4 sub-
type via aberrant TGF-β signaling [62], and that TGF-β-activated CAFs can promote CRC
formation and progression [10,63]. However, direct evidence for the TGF-β-mediated
tumor-promoting function of fibroblasts in serrated adenomas has not been provided yet.
Likewise, Glentis et al. demonstrated that colorectal CAFs can stimulate the invasion of
cancer cells through the basement membrane [64], but it is questionable whether these
fibroblasts, which were mostly isolated from advanced CRCs (≥stage III), can already be
found in premalignant lesions.

To date, the fibroblast compartment of intestinal adenomas has not been compre-
hensively characterized, and current knowledge exclusively comes from microscopic and
immunohistochemical analyses. The earliest observations of changes occurring in the fi-
broblast compartment of premalignant lesions date back to 1971, when it was reported that
the pericryptal fibroblast sheath in adenomas showed continued fibroblast division and fail-
ure of morphological maturation compared to the physiological situation [65]. Years later,
several studies showed that this fibroblast sheath underwent stage-specific changes during
intestinal carcinogenesis (Figure 2). For example, the number of pericryptal myofibroblasts
appeared to decrease in the adenoma, intramucosal and submucosally invasive carcinoma
sequence [66,67]. A similar decrease was observed in the sequence of polypoid, flat and
centrally depressed adenomas (Figure 3) [67,68], possibly explaining the observation that
submucosal invasion occurs more often in non-polypoid tumors (and in particular in the
depressed ones) compared to polypoid tumors [69]. Depressed adenomas also displayed
lower levels of COX-2 expression in pericryptal myofibroblasts than flat or polypoid le-
sions [70], and expression levels decreased even further when submucosal invasion was
present [71]. This corroborates with the finding that COX-2 expressing fibroblasts are only
required for adenoma formation and not for adenoma progression [47]. A comparable
decrease was also observed for periostin expression in pericryptal fibroblasts [72], possibly
serving as another example of the dispensability of adenoma formation-related factors in
the process of malignant transformation. However, it remains to be elucidated whether the
decrease in (subsets of) pericryptal myofibroblasts actually initiates tumor cell invasion or
only occurs as a secondary event caused by other invasion-promoting processes.
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Figure 2. Fibroblasts during malignant progression of intestinal adenomas. CD, cluster of differen-
tiation; PELP1, proline-glutamic acid-leukine rich protein 1 (PELPr1); ERβ, estrogen receptor beta;
MMP, matrix metalloproteinase. (Created with BioRender.com).
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There are also several markers which are increasingly being expressed by (myo)
fibroblasts during the adenoma–carcinoma sequence and, thus, might indicate subsets in-
volved in malignant progression. These markers include heparanase [73], proline-glutamic
acid-leukine rich protein 1 (PELP1) [74], estrogen receptor beta (ERβ) [75], urokinase-type
plasminogen activator [76], CD10 [77], and podoplanin [78]. Interestingly, high expression
levels of podoplanin in ≥stage II CRCs were reported to be associated with a favorable
prognosis [79,80], and co-culture experiments also demonstrated that podoplanin knock-
down in CAFs could enhance CRC cell invasion [79]. These findings suggest that the
increase in podoplanin expression might reflect a compensatory expansion of an invasion-
suppressing fibroblast subset during CRC development. On the contrary, CD10-expressing
fibroblasts seem to be important drivers of malignant transformation. For example, func-
tional studies showed that the invasive potential of CRC stem cells could be significantly
enhanced by CD10-positive CAFs (derived from ≥stage II CRCs) [81], a subset which has
also been shown to exert tumor-promoting functions in breast cancer [82]. Other signs of
an invasion-promoting role of CD10-expressing fibroblasts include the observation that the
highest levels of CD10 expression in CRCs were found at the invasive front [77,83]. Lastly,
fibroblasts expressing certain matrix metalloproteinases (MMPs) might also promote tumor
cell invasion. For instance, stromal fibroblasts appear to express increasing levels of MMP-1
and MMP-9 during CRC development [84]. Remarkably, such an increase was not observed
in tumors of patients with Lynch syndrome [84], which might explain why these tumors
have a less invasive potential than sporadic tumors. There are also some other MMPs which
are increasingly expressed by stromal fibroblasts in the adenoma–carcinoma sequence,
such as MMP-15 and MMP-19 [85]. Again, it remains unclear whether the aforementioned
associations represent a causal relationship with tumor invasion or not.

In short, immunohistochemical studies suggest that the fibroblast compartment in
intestinal adenomas changes dynamically during progression towards invasive cancer.
These changes include expansion of certain fibroblasts (e.g., CD10-, podoplanin- or specific
MMP-expressing fibroblasts), and a decrease in the number of pericryptal myofibroblasts
and expression levels of associated proteins (COX-2, periostin). Functional studies are
required to evaluate whether or not these changes in fibroblast composition mechanistically
contribute to malignant progression of intestinal adenomas.
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3.2. Early-Invasive Colorectal Cancers

As soon as tumor cells have invaded through the basement membrane and muscularis
mucosae into the submucosa, they are able to further invade the intestinal wall and
metastasize to other organs [86]. Although submucosally invasive cancers (T1 CRCs)
are by definition in the earliest stage of wall invasiveness, around 6–12% of tumors have
already metastasized to lymph nodes or other organs [87–89] and require surgical treatment.
However, current risk stratification models are far from accurate, resulting in >80–90%
unnecessary surgical resections for T1 CRCs [90–92]. To optimize risk stratification, a better
understanding of the biology of these tumors is needed. Recently, it was reported that
stromal/CAF expression patterns may be useful for predicting patient prognosis in T1
CRCs [93–95], suggesting that T1 CRC CAFs might also be importantly involved in early
cancer progression. So far however, evidence for this hypothesis is lacking. Unpublished
data from our research group showed that compared to matched normal fibroblasts, T1
CRC-derived CAFs had distinct gene expression profiles with around 400 differentially
expressed genes (mainly related to ECM remodeling). It would be interesting to see whether
these differentially expressed genes mark out CAF subsets in T1 CRC which play important
roles in tumor progression and/or could serve as biomarkers of aggressive disease in T1
CRC patients.

4. Fibroblasts in Advanced CRC Progression and Metastasis

Compared to the role of fibroblasts in early CRC development, much more is known
about CAFs in advanced stage CRCs and the wide range of tumor progression-related
functions that they can exert (already summarized in several excellent reviews [6,17,96,97]).
However, most of these findings have not yet been translated into applications with
clinically relevant efficacy, mainly due to the considerable heterogeneity in CAF subsets and
phenotypes in advanced CRCs [98–102]. To tackle this issue, Li et al. performed scRNAseq
on human primary CRCs and found that CAFs seem to cluster into two major CAF
types termed CAF-A (marker genes: e.g., MMP-2, FAP, and decorin) and CAF-B (marker
genes: e.g., α-SMA, transgelin and platelet-derived growth factor subunit A (PDGFA)) [103].
Although it remains unclear how these CAF clusters are functionally involved in CRC
progression, findings from clinical trials suggest that they are not exclusively composed
of tumor-promoting or tumor-suppressing CAFs. For instance, therapeutic targeting of
FAP-expressing CAFs (i.e., the CAF-A subset) does not appear to significantly affect clinical
outcomes of patients with advanced CRC [97,104,105]. These results suggest that a more
detailed, function-based subclassification of CAFs is required.

In contrast to the scarce literature on tumor-suppressing functions of CAFs, there
are quite some studies which have related various tumor-promoting functions to specific
markers expressed by certain CAFs found in human CRCs (Table 1). However, as most
of these CAFs have not been extensively characterized, it often remains unclear how they
relate to the two major CAF clusters and whether they represent phenotypically distinct
subsets or overlap with other tumor-promoting or -suppressing CAFs. In this section,
we provided an overview on (the markers of) these possible CAF subsets, stratified per
tumor-promoting function which they have been linked to.

4.1. Tumor Growth, Invasion, and TME Remodeling

Numerous studies have shown that CAFs can importantly contribute to cancer cell
proliferation and invasion [5,6,13,14]. In addition, they are also able to affect to tumor
progression via remodeling of the ECM or regulation of tumor angiogenesis [106–108]. In
advanced CRCs, tumor cell proliferation can be promoted by CAFs which express hydro-
gen peroxide-inducible clone-5 (HIC-5) [109] or Snail-1 [110], or CAFs which secrete FGF-1,
FGF-3 [111], or exosomal circular RNA SLC7A6 [112]. Interestingly, some of these CAFs
were also found to promote tumor progression via other mechanisms such as enhancing an-
giogenesis [111] or CRC cell invasion [110,112,113]. Another example of a “multifunctional
subset” includes Wnt2-expressing CAFs, which can promote CRC cell proliferation and
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migration [114,115], facilitate CRC invasion via ECM remodeling [115], and increase tumor
angiogenesis by secreting several pro-angiogenic factors (e.g., angiopoietin-2 (ANG2),
placental growth factor (PGF)) [116]. Besides, high levels of Wnt2-expressing CAFs were
also associated with an increased risk of cancer metastasis and recurrence in advanced
CRCs [114,115]. A comparable association with worse patient prognosis was found for
high expression levels of microRNA-21 [117], a factor which is predominantly expressed
in CAFs and marks a CAF population which could support CRC cell proliferation and
invasion [118,119].

4.2. Therapeutic Resistance and Immune Regulation

It is well known that CAFs can also facilitate cancer progression by promoting tumor
cell resistance to cytotoxic therapies [120,121]. Several studies have demonstrated that cer-
tain CAFs in human CRCs are also able to do so. For example, radiation-induced apoptosis
in CRC cells can be reduced by CAFs which express microRNA-31 [122] or microRNA-93–
5p [123]. Moreover, CAFs which express long non-coding RNA (lncRNA) H19 [124] and
colorectal cancer-associated lncRNA (CCAL) [125], can promote CRC cell stemness and
chemoresistance via exosomal transfer of these lncRNAs to tumor cells. TGF-β2 secreting
CAFs have also been shown to enhance chemoresistance in a paracrine manner by upreg-
ulating glioma-associated oncogene family zinc finger 2 (GLI2) expression in CRC stem
cells [126]. These CAFs may serve as an important target for prognostic applications, since
high expression levels of TGF-β2 were strongly associated with an increased risk of relapse
in chemotherapy-treated CRC patients [126]. In addition, therapeutic targeting of these
CAFs may also become feasible in the (near) future, with several TGF-β inhibitors already
being tested in clinical trials [127–130]. Next to supporting therapy resistance, certain
CAFs in advanced CRCs can actively contribute to immune evasion of tumor cells (e.g., via
aberrant TGF-β signaling [131]) and inhibition of anti-tumor immune responses [132–135].
Li et al. reported that CAFs expressing C-X-C motif chemokine 5 (CXCL5) can promote
expression of programmed death-ligand 1 (PD-L1) [136], an important suppressor of T-cell
activity [137]. The fact that CAFs are able to produce a defense against T-cells could have
important implications for immunotherapies against CRC [132–135]. Moreover, CD70-
expressing CAFs were shown to increase the survival of naturally occurring regulatory
T-cells [138], which are key mediators of immunosuppression [139]. CD73-expressing
CAFs were also able to enhance immune suppression via adenosine receptor 2A signal-
ing [140]. Notably, the abundance of CD70- and CD73-expressing CAFs was significantly
associated with a worse prognosis in CRC patients [138,140,141], thereby emphasizing the
involvement of immunomodulatory CAFs in CRC progression.
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Table 1. Examples of tumor-related functions which have been linked to factors expressed or secreted by certain cancer-associated fibroblast (CAF) populations in human advanced
colorectal cancers (CRCs).

CAF Metadata Role in CRC Progression Clinical Relevance

Name of Factor
Characteristics of

CAFs Expressing or
Secreting This Factor

Characteristics of
Tumors Which the
CAFs Originated

From

CRC
Proliferation

CRC Invasion
/Migration Angiogenesis Therapy

Resistance
Immune
Evasion

Organ
Metastasis

Association High
Expression Levels in

CAFs & Poor
Clinical Outcomes

Exosomal
circular RNA
SLC7A6 [112]

-
Primary tumor;
no neo-adjuvant

treatment
↑ ↑ - - - - Yes [112]

HIC-5 [109] Co-localization with
α-SMA Primary tumor ↑ - - - - - -

COX-2 [142,143] - Primary tumor ↑ - - - - - -

Snail-1 [110] Co-localization with
α-SMA and FAP Primary tumor ↑ ↑ - - - - Yes [144]

FGF-1 [111] Vimentin-positive Primary tumor ↑ ↑ ↑ - - - -

FGF-3 [111] Vimentin-positive Primary tumor ↑ ↑ ↑ - - - -

Wnt2 [114–116] -

Primary tumor;
rectum; stage II-IV;

well/moderate
differentiation [114].

Not described in
[115,116]

↑ ↑ ↑ - - - Yes [114,115]

miRNA-21
[118,119] -

Primary tumor;
rectum & sigmoid;

stage II-III;
well/moderate
differentiation;

microsatellite stable;
no neo-adjuvant

treatment

↑ ↑ - - - ↑ Yes [117]



Cancers 2021, 13, 183 12 of 22

Table 1. Cont.

CAF Metadata Role in CRC Progression Clinical Relevance

Name of Factor
Characteristics of

CAFs Expressing or
Secreting This Factor

Characteristics of
Tumors Which the
CAFs Originated

From

CRC
Proliferation

CRC Invasion
/Migration Angiogenesis Therapy

Resistance
Immune
Evasion

Organ
Metastasis

Association High
Expression Levels in

CAFs & Poor
Clinical Outcomes

CD10 [81] -

Primary tumor;
rectum and colon;

stage II-III;
well/moderate
differentiation

↑ ↑ - - - - -

CLEC3B [145] - Primary tumor - ↑ - - - - Yes [145] 1

Podoplanin [79] - - - ↓ - - - - No [79,80] 2

SPARC [146] - Primary tumor - ↑ - - - - Yes [146]

IGF-2 [147] - Primary tumor = ↑ - - - ↑ Yes [147]

RAB31 [148] Co-localization with
α-SMA and vimentin Primary tumor = ↑ - - - - Yes [148]

CCBE1 [149] Co-localization with
α-SMA Primary tumor - - ↑ - - - Yes [149]

miRNA-31 [122] -
Primary tumor;
no neo-adjuvant

treatment
- - - ↑ - - -

miRNA-93–5p
[123] - Primary tumor - - - ↑ - - -

CRC-associated
lncRNA [125]

FAP-positive,
co-localization with

α-SMA
Primary tumor - - - ↑ - - -

lncRNA H19
[124] - Primary tumor - - - ↑ - - -

TGF-β2 [126] - Primary tumor - - - ↑ - - Yes [126]

CXCL5 [136] - Primary tumor - - - - ↑ - -
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Table 1. Cont.

CAF Metadata Role in CRC Progression Clinical Relevance

Name of Factor
Characteristics of

CAFs Expressing or
Secreting This Factor

Characteristics of
Tumors Which the
CAFs Originated

From

CRC
Proliferation

CRC Invasion
/Migration Angiogenesis Therapy

Resistance
Immune
Evasion

Organ
Metastasis

Association High
Expression Levels in

CAFs & Poor
Clinical Outcomes

CD70 [138] Co-localization with
α-SMA and FAP Primary tumor - ↑ - - ↑ - Yes [138,141]

CD73 [140] Co-localization with
α-SMA Primary tumor - - - - ↑ - Yes [140]

Endoglin [150] Co-localization with
α-SMA Primary tumor - - - - - ↑ Yes [150]

BMP2 [151] - Primary tumor - ↑ - - - ↑ Yes [151] 3

IL-11 [63] FAP-positive Primary tumor - - - - - ↑ -

STC1 [152] - Primary tumor - ↑ - - - ↑ -
1 Combined with high expression of α-SMA. 2 High expression levels of podoplanin in CAFs were associated with favorable clinical outcomes in CRC patients. 3 Only in patients with SMAD4-deficient
tumors. CAF: cancer-associated fibroblast, CRC: colorectal cancer, ECM: extracellular matrix, α-SMA: alpha smooth muscle actin, FAP: fibroblast activation protein, COX-2: cyclooxigenase-2, HIC-5: hydrogen
peroxide-inducible clone-5, FGF: fibroblast growth factor, miRNA: microRNA, CD: cluster of differentiation, RAB31: Ras-related protein RAB-31, CLEC3B: C-type lectin domain family 3 member B, SPARC:
secreted protein acidic and rich in cysteine, IGF-2: insulin-like growth factor 2, CCBE1: collagen and calcium-binding epidermal growth factor domain 1, lncRNA: long non-coding RNA, TGF- β2: transforming
growth factor-β2, CXCL5: C-X-C motif chemokine 5, BMP2: bone morphogenetic protein 2, IL-11: interleukin 11, STC1: stanniocalcin-1. ↑ indicates a tumor-promoting role, ↓ indicates a tumor-suppressing role,
= indicates a neutral role (i.e., neither tumor-promoting nor tumor-suppressing).
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4.3. Metastasis

Currently, metastatic disease remains the major cause of death in CRC patients [153].
CAFs can play an important role in mediating CRC metastasis, as summarized by Tom-
melein et al. [154]. Recent work from our group identified several metastasis-promoting
CAFs present at the invasive front of primary CRCs, which were also significantly cor-
related with poor metastasis-free patient survival. These include CAFs which express
endoglin [150] or BMP2 [151]. Interestingly, BMP2 expression in CAFs seemed to be reg-
ulated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a cytokine
which is overexpressed in CRC cells with a deficiency for mothers against decapenta-
plegic homolog 4 (SMAD4) [151]. These findings provide further support for the idea
that the interaction between CRC cells (with a certain mutational status) and CAFs could
eventually progress to a tumor-promoting reciprocal loop [155–158]. Other examples of
metastasis-promoting CAF populations include IL-11 secreting CAFs, which could activate
apoptosis-suppressing programs in metastatic tumor cells [63], and stanniocalcin-1 (STC1)
expressing CAFs [152]. Lastly, next to CAFs in the primary tumor, several studies have
suggested that CAFs at the metastatic site, which could originate from resident fibrob-
lasts in remote organs [159–161] or CAFs co-travelling with tumor cells [162,163], can
also contribute to CRC metastasis. For instance, resident liver and lung fibroblasts can
induce formation of the pre-metastatic niche via (primary) tumor cell-driven upregulation
of pro-inflammatory cytokines such as IL-6 and IL-8 [159–161]. Studies on circulating
CAFs originating from primary CRCs have not been conducted yet, but evidence from
other cancer types suggests that circulating CAFs may be importantly involved in tumor
metastasis and, thus, may serve as useful prognosticators [164]. For breast and prostate
cancer, it has been shown that circulating CAFs are predominantly found in patients with
metastatic disease, and rarely in patients with localized cancer [165,166].

In brief, various tumor-promoting functions (e.g., enhancing tumor invasion, ther-
apy resistance, or metastasis) have been linked to markers expressed by certain CAF
populations in advanced CRC. Some of them also seem to serve as promising targets for
prognostic or therapeutic applications. However, clinical translation of these findings
should be cautiously considered, since it is yet unknown whether these CAF markers
demarcate functionally distinct subsets or show overlap with other tumor-promoting or
-suppressing CAFs. To enable more precise identification and targeting of “unfavorable”
CAFs in advanced CRC, attention needs to be paid to comprehensive characterization and
reporting of the subsets being investigated in CAF studies.

5. Conclusions

Over the past few decades, it has become clear that (cancer-associated) fibroblasts
are importantly involved in intestinal tumor initiation, progression, and metastasis. Yet,
we are still in the infancy of translating these findings into useful clinical applications for
CRC patients. This is mainly due to the considerable phenotypic heterogeneity that the
intestinal fibroblast compartment exhibits throughout cancer development. As a result,
strategies which involve targeting or normalization of “unfavorable” fibroblast/CAF sub-
sets are often not specific enough, resulting in a suboptimal clinical efficacy or on-target
side effects. Recent advances in single-cell analysis techniques (e.g., scRNAseq) have
provided powerful tools for tackling this heterogeneity by allowing precise identification
of distinct fibroblast subsets, but most of the identified subsets have not yet been func-
tionally investigated. Contrarily, multiple tumor-related functions have been attributed to
specific markers expressed by certain fibroblasts (and in particular CAFs in advanced stage
CRCs), but extensive characterization of these populations is often lacking or inadequately
reported. To resolve these issues, we think that future research should focus on connecting
findings from characterization and functional studies with each other. In our opinion,
the recently published study on COX-2 fibroblast-driven adenoma formation [47] could
serve as an example how this can be achieved, with extensive in vitro and in vivo data on
a specific fibroblast population being linked to subsets identified in scRNAseq analyses.
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Another point which deserves special attention is the context which the studied fibroblast
subsets originate from, given the stage-dependent variability of fibroblasts during CRC
development. This variability is for example reflected in the aforementioned immunohisto-
chemical studies on fibroblast alterations during malignant transformation of adenomas. To
allow proper interpretation and translation of study findings, extensive documentation on
fibroblast metadata (e.g., histology and stage of the originating tumor and spatial location
of investigated fibroblasts in the tissue) is therefore of the uttermost importance. With all
of the aforementioned things in place, we believe that research into (cancer-associated)
fibroblasts may ultimately provide valuable tools which contribute to optimizing clinical
care for patients with intestinal tumors.
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