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Abstract

Relativistic polarization offers very interesting opportunities to test fundamental
symmetries like Time-Reversal (TR). Starting from simple scattering-matrix
relations, supplemented by QCD-inspired models describing heavy quark decays, it
is shown that the polarization-vectors of resonances coming from A, decays exhibit
very clear possibilities of TR violation.
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1 Introduction

The present letter is a complement to two preceding ones [1, 2] devoted to the study of
Ay decays into AV(17) where tests of both direct CP violation and Time-Reversal were
developed. Our method is built on the procedure of cascade decays, for instance A, —
AJ/Y, A — pr— and J/v — ptu~, procedure which requires a precise determination of
the quantum properties of the intermediate resonances. In this kind of decays, resonance
polarizations play crucial role for determining the angular and energy distributions of
the final decay products. Moreover, the polarization-vectors have specific features when
physical systems are transformed by discrete symmetries, like Parity and Time-Reversal.
Since the spin of any particle is Parity-even and T-odd, studying its polarization provides
interesting tools to test both of these two symmetries, especially in weak decay processes
where parity is known to be violated. It is worth noticing that checking TR in a given
decay, like A — a; + as, or in its charge conjugate mode, A — @; + @o, is not necessarily
related to the conservation or non-conservation of the CP symmetry in these two channels.
A direct check of TR is proposed, without referring to the CPT theorem.

According to the important role of the spin in particle physics and to the existence
of different approaches to deal with the polarization problem, we suggest to clarify these
notions in the present letter. We emphasize the relativistic aspect of spin in order to
justify the intensive use of the kinematic formalism by Jacob-Wick-Jackson [4, 5] to
previous analysis of cascade decays [1, 2, 3]. These applications are non-trivial, since,
as we shall see, they involve Lorentz boosts. On the dynamical side, the Heavy Quark
Effective Theory [6, 7, 8] (HQET) formalism is used to evaluate the hadronic form factors
involved in Ap-decay. Weak transitions including heavy quarks can be safely described
when the mass of a heavy quark is large enough compared to the QCD scale, Agcp.
Properties such as flavor and spin symmetries can be exploited in such a way that
corrections of the order of 1/mg are systematically calculated within an effective field
theory. Then, the hadronic amplitude of the weak decay is investigated by means of
the effective Hamiltonian, AB = 1, where the Operator Product Expansion formalism
separates the soft and hard regimes. All results about transition form factors as well as
hadronic matrix elements are given in Ref. [2].

Our analysis is oriented towards some special aspects of relativistic kinematics in the
cascade decays of resonances. After briefly summarizing, in Section 2, the basic ingredients
of relativistic spin, we introduce the particular frames in which polarization vectors of
resonances and their physical properties are studied: mainly their transformation under
Parity and Time-Reversal. In Section 3, computations of the polarization vectors are
reviewed, stressing on the important role of the A, density-matrix. In Section 4 detailed
numerical results are displayed according to various input parameters. Emphasis is also
put on the physical observable, the normal component of the polarization vector, which
could clearly show possible violation of TR. Lastly a short conclusion is drawn in sect. 5.



2 Relativistic form of the polarization

2.1 Basics of the Relativistic Spin

The spin vector operator of a massive particle, § = (s1, s9, s3), whose components verify
the standard commutation relations, [s;, s;| = i€;jxSk, is defined in the rest frame of the
particle. A covariant extension of this operator is the Pauli-Lubanski four-vector, (S%),
defined in such a way that, in the particle rest frame, ' = (S"° = 0,9 = §). This
quadrivector fulfills the covariant constraint [9], p,S* = 0 where p, is the particle 4-
momentum and, in the particle rest-frame, p, = (m, 6)

So, (S%) behaves as an ordinary quadrivector when it is transformed from a Lorentz
frame to another one. Setting S = (5%, 5) in a given frame (R) which moves with the
velocity 5 with respect to the particle, the components of S transform in the following

way [10]:
2

SO =~3-3, S"=§+711(5-§)5, with y=1/4/1— 52 .

Thus, knowing the spin vector of a particle in its rest-frame allows us to derive the Pauli-
Lubanski quadrivector in any other frame.

These basic notions can be easily extended to the particle polarization vector, defined
as the mean value of its spin vector in its own rest-frame, P = (5). In this connection
we observe that, according to Ehrenfest’s theorem concerning the expectation value of
a quantum observable, the polarization vector P behaves as a classical quantity and
its components are transformed as indicated by the formulas above, when performing
Lorentz transformation between two different frames. It is worth noticing, too, that the
time-component of the polarization vector of a massive spinning particle vanishes in its
rest-frame, while it is generally different from zero when this particle is moving.

All these considerations can be applied to the resonances coming from A, decays into
AV(17), the beauty baryons and especially the A, are expected to be produced very
copiously in proton-proton collisions with the next LHC machine.

2.2 Choice of particular frames

We consider decays of the type Ay — R(1)R(2), where the R(; (i = 1, 2) are resonances.

The tests we propose are suitably performed by introducing, in the A, rest-frame®, a

specific frame for each resonance Ry;), according to Jackson’s method:

. P - €z X €y
p 7

ér, ér en = €1, X €r (1)

- |€ZX€L| ’

where €z is parallel to 7i; 7 being initially defined as the normal unit-vector to the A,
production plane. Then, each polarization-vector can be expressed as

P = P&, + Pyéx + Préy | (2)

where P, Py and Py are respectively the longitudinal, normal and transverse components
of P. It is useful to notice that the basis vectors €7, er and ey have the following properties

5The Ay rest frame used in our analysis is given in Figure 1.



according to parity and TR: P odd,T-odd; P-odd,T-odd and P-even, T-even respectlvely,
while the polarization- vector P is P-even and T-odd. So, any component of P defined by
the scalar product P; = P- €; with j = L, N, T gets transformed as:

Py, =P —o0dd, T —even, Pr =P —odd, T — even and Py = P — even, T — odd.

Note that the longitudinal axis defined by €7, is taken as the quantization axis; ey and er
are identified respectively to x and y axis.

In order to measure P® for each resonance, R(;, and to determine its transformation
by symmetry operations like Parity and Time-Reversal, a thorough examination of the
R decay products by sophisticated methods (Byers, Dalitz) [11] must be done in the
resonance rest-frame itself. We shall not perform numerical simulations of such decays
in the present paper. However we observe that, in the cascade decays we are concerned
with, from the experimental point of view, the above mentioned basis vectors are more
suitably defined in the A, rest frame than in the one of R(;. Therefore we have to
perform a Lorentz transformation. In particular, we shall apply a rigorous method, using
the relativistic spin, in order to understand the modification of 20 and, especially, its
normal component Py, when considering two different rest-frames: the A, one and the
R; resonance one, which are related to each other by a simple Lorentz boost. Thus, we
are led to study the spin of any particle and its polarization in their relativistic form. In
what follows, we will drop the index (i) which designates any resonance (A or J/t) and
we will assign a prime to the physical quantities defined in the R rest-frame.

2.3 Different rest-frames

According to the considerations of Subsect. 2.1, we denote by P’ = (0, ]3’) the polarization
four-vector of the A hyperon in its own rest-frame. On the other hand, we define, in the
rest-frame of Ay, the four-vectors ey = (0,€y) and e; = (0, €7), where the unit vectors
€x and ép have been previously defined in the same frame. Since these unit vectors are
orthogonal to relative momentum of A with respect to A,, they are left unchanged in the
boost from the A rest frame to the one of A. Then we have, owing to Lorentz invariance
of the scalar product of two four-vectors,

Py=-P-ex=—P -éy=P, (3)

where we have denoted by P the A polarization four-vector in the A, rest frame. Then
we conclude that the normal component, Py, of the polarization vector is the same in the
two different frames considered. An analogous reasoning leads us to stating that also the
transverse component, Pr, shares the same interesting physical property. In particular,
as regards Py, this fact allows us to cross-check TR symmetry either in the A, rest-frame
or in any resonance rest-frame coming from A, decays.



3 Polarizations of the final resonances

Basic principles of Quantum Mechanics allow us to deduce the spin density matrix of the
final AV system, which is an essential parameter to compute the polarization-vector of
each resonance, p/ = TTp"T. T is the transition-matrix (the S-matrix being defined by
S = 1+ ¢T) whose elements are explicitly given in Ref. [2]. The normalization of the

matrix p/ is obtained by

Tr(p) = 5 = NW(0,0), (1

where T'r is the trace operator and N is a normalization constant. Consequently, the
polarization-vector of any resonance R(; (R = A, Ry = V) is defined by

Pe= S0 =100 ®)

where pzf is the spin density-matrix of the resonance, R;, deduced from p?. As the final
state is a composite system made out of two particles with different spin (s; = 1/2, s, = 1),
each p{ will be obtained from the general expression of p/ by summing up over the degrees
of freedom of the other resonance. Thanks to this method, we can obtain p* and p". See
Ref. [2] for all analytical results.

The previous relation allows us to write down the formal expression of any P; by
expanding the trace operator over the different spin states® and one gets,

B W(6,6) = N 55 (46,6, X! 516,6,3)) | (6)

W (0, ) being defined by Eq. (4).
The matrix elements given in the right-hand side of Eq. (5) can be explicitly
calculated [5] and the three components of PA get the following expressions:

PwA W((g, ¢) (08 2§R€(<07 d): 1/2|pA|07 ¢7 _1/2>) )
PMW(0,¢) oc —23m((0,9,1/2|p"(0,¢,-1/2)) ,
PrW(0,¢) x w(+1/2) - w(-1/2), (7)

where the @(4) are defined in [2]. The vector meson has spin Sz = 1 and therefore three
helicity states. Based on

,P’V W(07 ¢) =N E)\2 (2)\1 <07 ¢’ )‘17 /\2|pf§‘07 ¢7 )\17 )\2>> ) (8)

the components of P_'V are obtained in the same manner, although more tedious. One has
PY W(0,¢) o« v2Re(({0]p"| = 1)) + ((1]p"]0))) ,
PYW(0,0) o VaSm(((010"] ~ 1)) + (11" ]0)) .
PYW(0,9) < ((1p¥V]1)) = ((-=1]p"| = 1)) . 9)

6In order to perform these calculations, some simple and fundamental relations are used, whatever
the spin is:

SelA) = (A +1) + A= 1)/V2,8,[X) = i(=[A+1) + A = 1)) /2, S.[A) = A]A) .

(Letters indicating other physical parameters are dropped for simplicity). Technical details of the
computation of both P* and PV are given in Ref. [2].
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As it was expected, the helicity value Ay, = 0 does not contribute to the longitudinal
polarization of the vector-meson. We also underline the importance of the initial A,
polarization, P, as well as the non-diagonal matrix element, pﬁ"_ , in the analytical
expression of the components of PV.

4 Numerical Results and related problems

e In a first step, values for all input parameters are taken from [2]. The initial
A, polarization and A, polarization density matrix element used in our numerical
computations are P2 = 100% and Re(p}t) = Sm(plt) = V/2/2, respectively. The
corresponding spectra of the three components of PA and PV are shown in Figures 2
and 3. Some comments on longitudinal, transverse and normal components of these
polarization vectors are in order: (i) the longitudinal components, P, = P,, of both
resonances are asymmetric because of parity violation in weak A, decays; (ii) the spectra
of the transverse components, Pr = P,, are quite symmetric, their asymmetries being
~ 1.0%; (iii) the normal components, Py = P,, are clearly asymmetric. Their asymmetry
values are respectively 23% and — 54% for A and J/%.

e In a second step, attempts to understand correlations between the A, initial polarization
and the physical properties of its decay products are made. All results are obtained with
Monte-Carlo simulations by varying independently P and pﬁ”_ . Non-diagonal matrix
elements being generally unknown, we set Re(ptt) = Im(p’r) = 0 and we let P vary

between 100% and 0%. The resulting spectra of the normal components, Py and P]‘\I,/ ¥ are

usually sharp, while the transverse components, both P2 and P%]/ 1/)’ are always equal to
zero. These two physical properties can be explained as direct consequences of pﬁ”, =

In Table 1, mean values and asymmetry parameters of the normal component spectra for
A and J/4 are listed. Interesting remarks can be drawn: (i) for P4 # 0, the normal
components are largely dominating and their asymmetries are nearly equal to minus one;
(ii) for P» = 0, the .J/1) normal component is still dominating (~ —0.8) while P} is

equal to zero, the A polarization being completely longitudinal (P} = —100%).

e In order to understand the role of the A azimuthal distribution and its effects on
the resonance polarization-vectors, a comparison between two series of Py spectra is
performed. One series is obtained with Re(p}t ) = Sm(p’*) = 0 , while the other one
is obtained with the standard values, Re(p}? ) = Sm(plt) = v/2/2. In Figures 4 and 5,
the spectra of Py and Pr for A and J/1 are respectively plotted. One notes that the
spectra belonging to Re(p}t ) = Sm(plt) # 0 are much broader than those belonging to
pﬁ”_ = 0. Moreover, the absolute values of the asymmetry parameters decrease for both

P4 and P]{/ ¥ when pﬁ”, # 0, while the transverse components remain symmetric with
mean values around 0. Whatever the elements of the A, spin density matrix are, this
exhaustive study indicates that the normal components of the polarization-vectors, which
are T-odd observables, must be taken as serious candidates to cross-check TR symmetry.



4.1 Final State Interactions

In the above calculations, no mention has been made about Final State Interactions, FSI,
which play an important role in all hadronic interactions. As it is known, when hadrons
are produced in any process, strong interactions among them could distort their wave-
functions by generating both additional phase-shifts and absorptive effects [12]. This
modifies physical observables like decay widths, asymmetries and, in our particular case,
T-odd observables. So, fundamental questions may arise:

(i) If T-odd parameters are experimentally observed, do these effects originate from true
physical dynamics which violate TR symmetry, or are they consequences of FSI which
mimic TR violation? (ii) The above question can also be reversed: if, in some process
where expected T-odd effects are not seen, does this situation show effects of FSI which
inhibit T-odd parameters?

Recently, in the framework of deep inelastic scattering experiments, D. Sivers [13]
emphasized the difference between the antiunitary TR operator and the “artificial” or
“naive” TR, which is unitary. As far as we are concerned, we will try to clarify this
issue and bring some insights about the particular promising channel Ay — AJ/t which
branching ratio is ~ 10~*. A simple quantum-mechanical approach has been given long
time ago by DeRujula et al. [14] and it has been developed again by the authors of
reference [15] after the discovery of T-violation by CPLEAR experiment.

Defining the S-matrix as S = 1 + ¢, and |i) and |f) being respectively the
initial and final states, the unitarity condition, SST = 1, leads to: T = Tip —
iA;; where the new term A;; = 3,75, T}, indicates the transition amplitude from the
initial state |¢) to the final state |f) by including scattering on the on-shell intermediate
states |n). This term is called the absorptive part of the transition amplitude and it is
the main contribution to the FSI.

Let 7 and f be respectively the initial and final states with reversed momenta and spins,
then the expression |Tj;|” — \Tif\z indicates the probability of a T-odd effect, while the
expression |Ty|* — |T;f|2 corresponds to the standard TR violation probability. Using the
above relation which defines A;¢, a simple relation among the two preceding probabilities
can be deduced:

I Tisl” = |7l = (Tl — | Til") — 23m(AifTy) — | Aif” -

If TR is an exact symmetry, then |Ty;| = |T;;| and the term in parenthesis on the right-
hand side vanishes; instead the other terms generate T-odd effects, even if TR is an exact
symmetry.

We turn now to the experimental case, A, — AJ/1 followed by the cascade decays A —
pn~, J/vv — ptp~. Examining thoroughly this channel, we expect that FSI occur
at the decay vertex A, — AJ/v where, at the partonic level, (virtual) gluons can be
exchanged and absorbed by the different quarks entering the A, decay mechanism. After
hadronization, and owing to the long A life-time, the hyperon A will decay far away
from the J/v and their decay products, p,7~ and u™t, u~ respectively, will interact only
electromagnetically, which is an insignificant effect because of the long distance separating
the two mother resonances.

Understanding the FSI among the A and J/v requires rigorous analysis of experimental
data which must be compared to our phenomenological model; and we can assert that it
is the most realistic solution to this crucial problem.
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5 Conclusion

Complete calculations based both on the helicity formalism (kinematics) and on the OPE
techniques supplemented by HQET (dynamics) have been performed in a rigorous way
for a precise determination of the physical properties of the Ay, — AV (JF = 1) decays.
Resonances A and V(J¥ = 17) being polarized, it is shown that the normal components
of their polarization-vectors are T-odd observables. Furthermore, these components have
large asymmetries and they are Lorentz-invariant. An exhaustive study of P]/V&’J/ ¥ has been
performed according to the A, polarization density matrix. Thanks to our analysis, it is
confirmed that these observables are truly serious candidates to cross-check Time-Reversal
symmetry, and we hope to detect these effects with the forthcoming LHC machine.
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Ph | PA Ash | PIY AsTlY
100% | -0.98 -1.0 | -0.88 -0.95
75% | -0.97 -1.0 |-0.89 -1.0
50% |-0.96 -1.0 |-0.87 -1.0
25% | -0.88 -1.0 |-0.85 -1.0
10% |-0.61 -1.0 [-0.83 -1.0
0% | 00 0.0 |-0.81 -1.0

Table 1: Mean values, Pﬁ’J/ w, and asymmetries, As™//¥_ of the polarization-vector normal
components of A and J/v, respectively. Results are given as functions of the initial A,
polarization varying from 100% to 0% and for the A, — AJ/v decay channel.

Figure 1: The €, €,, €, as well as the ér, €y, €, frames in the Ay rest-frame.
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Figure 2: Spectra of the A polarization-vector components: (from left to right) Py, Py, Pr,
respectively in case of P = 100% and Re(p}2) = Sm(pr) = v2/2.
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Figure 3: Spectra of the J/¢ polarization-vector components: (from left to right)
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Figure 4: Spectra of Py and P» with P* = 50%.

Upper histograms correspond to the

case of Re(p}t ) = Im(p}t) = 0, while lower histograms correspond to v/2/2.
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