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Abstract: We consider the problem of constructing simultaneous confi-
dence intervals (CIs) for the ranks of n means based on their estimates
together with the (known) standard errors of those estimates. We present
a generic method based on the partitioning principle in which the param-
eter space is partitioned into disjoint subsets and then each one of them
is tested at level α. The resulting CIs have then a simultaneous coverage
of 1 − α. We show that any procedure which produces simultaneous CIs
for ranks can be written as a partitioning procedure. We present a first
example where we test the partitions using the likelihood ratio (LR) test.
Then, in a second example we show that a recently proposed method for
simultaneous CIs for ranks using Tukey’s honest significant difference test
has an equivalent procedure based on the partitioning principle. By em-
bedding these two methods inside our generic partitioning procedure, we
obtain improved variants. We illustrate the performance of these methods
through simulations and real data analysis on hotel ratings. While the novel
method that uses the LR test and its variant produce shorter CIs when the
number of means is small, the Tukey-based method and its variant produce
shorter CIs when the number of means is high.

MSC2020 subject classifications: Primary 62F07; secondary 62F03, 62F30.
Keywords and phrases: Rankings, simple order, likelihood ratio test,
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1. Introduction

In many applications, we seek to rank objects, entities or institutions on the
basis of some numerical characteristic that is measured with uncertainty. One
important example is assessing the quality of institutions such as medical centers
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and universities [19, 3]. Ranking institutions is usually carried out using per-
formance indicators calculated based on samples. However, these indicators are
only estimates of the true ones, and they are accompanied by standard errors,
so that confidence intervals for their ranks are crucial.

We refer to a collection of CIs for ranks as having pointwise coverage of, say,
95% when the rank of any particular object is covered with 95% probability.
We refer to simultaneous coverage if all ranks are covered with 95% probability.
The latter is more useful, because it allows us to consider selected centers. For
example, it ensures correct coverage for the object with the highest observed
rank. Or the second-highest. Or for all objects in the top-5.

In the literature, the ranking problem is considered in several papers mostly
focusing on pointwise CIs for the ranks. We mention the parametric bootstrap
approach of [19] which is widely used, see [34, 17, 14] among others. Other
methods are proposed based on testing pairwise differences between institutions
[29, 30, 23, 10].

Methods for simultaneous CIs for ranks are proposed only by [47, 1, 25].
The method of [47] uses the parametric bootstrap to construct CIs for ranks
and then Monte-Carlo simulations to estimate the simultaneous coverage. In
[1], the authors show that the method of [47] is anticonservative and propose
a new method based on Tukey’s honest significant difference (HSD) test which
ensures that the simultaneous confidence level is at least 1− α. The method of
[25] creates simultaneous CIs for ranks starting from simultaneous CIs for the
means which result in less powerful results than the method of [1].

Other papers from the literature considered the ranking problem but not
with the objective to calculate CIs for the ranks, see [9, 21, 7, 27, 11, 31, 32, 33,
36, 43, 40]

We introduce in this paper a generic method for simultaneous CIs for ranks of
a vector of means. We propose to partition the parameter space by considering
all possible orderings of a set of means. Then, using a suitable (local) test, we
test all the partitions at level α. The partitioning principle [42, 15, 18] ensures
that by doing so, the familywise error rate is controlled at level α which enables
us to build simultaneous CIs for ranks at level 1− α. The properties of the CIs
for ranks depend on the local test we use, therefore different choices of the local
test will lead to different methods.

Another important property of our generic procedure is that given some
procedure that produces simultaneous CIs for ranks, we can construct a local
test for the partitions so that the resulting partitioning procedure is equivalent
to the original procedure. This shows that all valid procedures for simultaneous
CIs are special cases of our approach, motivating the use of our generic procedure
when looking for new methods for simultaneous CIs for ranks. Furthermore, in
order to improve the partitioning procedure, it suffices to improve its local test
which might be easier than improving the original procedure.

We present two examples of local tests. First, we use the likelihood ratio test
as a local test and show how the partitioning procedure can be carried out.
Although the complexity of the procedure is very high, we show some shortcuts
which allow the method to be feasible with up to 30− 40 means with a regular
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computer. Second, we show that the method of [1] based on Tukey’s HSD can
be written as a partitioning procedure by giving an explicit local test for the
partitions. Using our generic partitioning procedure, we present two variants of
the partitioning procedure that uses the LR test and the Tukey-based method
which uniformly improve their corresponding methods.

Simulation studies show that the method of [1] based on Tukey’s HSD is more
powerful than the one based on the LR test especially when the number of means
is high while the converse happens when the number of means is small. The
improved versions of these methods are shown to be computationally feasible
only up to n = 10.

The paper is organized as follows. In Section 2, we give a formal definition of
the ranking problem and set the objectives. In Section 3, we present the testing
problem and show how to use it in order to produce simultaneous confidence
intervals for the ranks. In Section 4, we show how, for any procedure for CIs for
ranks, we can construct an equivalent one based on the partitioning principle.
In Section 5, we present the likelihood ratio (LR) test and use it as a first
example of a local test. In Section 6, we revisit the Tukey-based method of [1]
and give an equivalent procedure using the partitioning principle. Finally, in
Section 7, we compare the results of the LR test and the Tukey-based method
on simulated and real data samples. In the Appendix, we provide proofs of
main results and further details (algorithms, simulations and data). Software
to perform the methods presented in this paper are available in the ICRanks

package downloadable from CRAN.

2. Context and notation

Let μ1,T , · · · , μn,T be real valued numbers which represent the unknown true
means, that represent for example the true performance of n institutions we
want to rank. Denote μT = (μ1,T , · · · , μn,T ). For ease of readability, we will use
μi in place of μi,T when reference to the true mean is clear from context. The
performance could be the mortality rates of hospitals or the customer rating
as in our example in Section 8. We estimate μi,T using yi. We assume that the
estimator yi is calculated based on many independent and identically distributed
subjects (e.g. customers, patients), so that it becomes reasonable to assume that
yi is normally distributed with known standard error σi. Our starting point,
therefore, is a sample y = (y1, · · · , yn) of n independent observations, each
drawn from a Gaussian distribution N (μi,T , σ

2
i ).

Definition 1 (Ranks in the presence of ties). Let μ = (μ1, · · · , μn) ∈ Rn. We
define the lower-rank of μi by

li = 1 +
∑
j �=i

1μj<μi .

We also define the upper-rank of μi by

ui = n−
∑
j �=i

1μj>μi .
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We finally define the set-rank of μi as the set of natural numbers ri = {li, li +
1, · · · , ui} denoted here [li, ui]. Furthermore, if for all j �= i we have μj �= μi,
then li = ui and the set-rank is the singleton {li}.

When there are ties between the means, then each one of the tied means
possesses a set of ranks ri = [li, ui]. For example, suppose that we only have 3
means μ1, μ2 and μ3 such that μ1 = μ2 < μ3. Then, the set-rank of μ1 is [1, 2]
which includes both ranks 1 and 2, and the set-rank of μ2 is also [1, 2], whereas
the rank of μ3 is [3, 3] which is simply rank 3. The rationale of the definition of
the set-ranks is that in case of ties, the ranking is arbitrary, and a small pertur-
bation of the true performance may produce any rank in the set of ranks. We
call the ranks induced from the observed sample y the empirical ranks. These
ranks might be different from the true ranks of the means, and since the sample
is assumed to have a continuous distribution, the empirical (set-)ranks are all
singletons.

We aim on the basis of the sample Y to construct (rectangular) simultane-
ous confidence intervals for the set-ranks of the means μ1,T , · · · , μn,T . In other
words, for each i we search for a confidence interval [Li, Ui] such that:

P ([li, ui] ⊆ [Li, Ui], ∀i ∈ {1, · · · , n}) ≥ 1− α

for a prespecified confidence level 1− α.

3. The testing problem and the partitioning principle

To obtain simultaneous confidence intervals for the set-ranks, we propose to test
simultaneously all possible sets of set-ranks and then use the non-rejected ones
to construct these CIs. Proposition 1 establishes this result. First, we need to
define the hypotheses more formally. Consider the special case of three means
A,B and C. The possible set-ranks for A,B,C are

{{1, 2, 3}, {1, 2, 3}, {1, 2, 3}};
{{1, 2}, {1, 2}, {3}}; {{1}, {2, 3}, {2, 3}}; {{1, 2}, {3}, {1, 2}};
{{2, 3}, {1}, {2, 3}}; {{2, 3}, {2, 3}, {1}}; {{3}, {1, 2}, {1, 2}};

{{1}, {2}, {3}}; {{1}, {3}, {2}}; {{2}, {3}, {1}};
{{2}, {1}, {3}}; {{3}, {2}, {1}}; {{3}, {1}, {2}}. (1)

Each set of set-ranks correspond to an ordering of the means. For exam-
ple, the set-ranks {{1}, {2}, {3}} correspond to A < B < C. The set-ranks
{{1, 2, 3}, {1, 2, 3} , {1, 2, 3}} correspond to A = B = C. Figure (1) shows all
the corresponding cases. Note that these cases partition the space R3. In order
to calculate simultaneous CIs for the ranks of the three means, we propose to
test if the vector of means (A,B,C) comply with each of the cases in Figure (1)
which is equivalent to testing all sets of set-ranks (1). Note that in this example,
if we assume that there no ties, only the third level of hypotheses remain.
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A = B = C Level 1

A = B < C A < C = B C = A < B B < A = C C < A = B B = C < A Level 2

A < B < C A < C < B C < A < B B < A < C C < A < B B < C < A Level 3

Figure 1: Example of a partitioning scheme with three means A,B and C.

More generally, let =:< denote either = or <. In order to calculate simulta-
neous CIs for the ranks of μ1,T , · · · , μn,T , we test the elementary hypotheses

H : μπ(1) =:< · · · =:< μπ(n), (2)

for all possible configurations of equalities and inequalities among the means
and for all permutations π ∈ Sn (the symmetric group of all permutations with
n numbers). Some of these hypotheses are the same because permuting tied
means has no effect on the ordering. Therefore, we do not need these redundant
copies.

Clearly, the elementary hypotheses (2) become disjoint after we omit the
redundant copies. In other words, if (μ1, · · · , μn) ∈ H1 ∩ H2, then H1 = H2.
Moreover, the union of the parameter spaces implied by these elementary hy-
potheses is equal to Rn, and hence they form a partitioning of Rn. In order to
test all these hypotheses simultaneously at level α, it suffices to test each one of
them at level α due to the so-called the partitioning principle [42, 15, 18]. Two
examples of tests will be introduced later on, in Sections 5 and 6.

The following result states how the confidence intervals are constructed. This
is the general approach for simultaneous CIs for ranks based on testing the
elementary hypotheses (2) and using the partitioning principle.

Proposition 1. Assume we have a statistical test for the elementary hypotheses
(2) with significance level equal to α. The union of unrejected elementary hy-
potheses at level α constitutes simultaneous confidence intervals for the set-ranks
of the means μ1,T , · · · , μn,T at level 1− α.

Although this is useful as a general method, it is not always practical because
the number of elementary hypotheses increases rapidly with n. Proposition 2
states the exact number of the elementary hypotheses (2) defining the parti-
tioning of Rn.

Proposition 2. The total number of elementary hypotheses (2) in the parti-
tioning scheme is

n∑
l=1

l!S(n, l)

where S(n, l) are the Stirling numbers of the second type.
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When there are no ties, the number of hypotheses to test drops to n!, there-
fore, in general the number of hypothesis to test is higher than n!, and we can
even be more precise and calculate an upper and a lower bound using the result
in [37]. In the statistical tool R, function Stirling2 from package multicool

calculates these numbers. In any case, the total number of hypotheses is large,
and it is very important to find a way to reduce this complexity by finding
relations among tested partitions. In the literature, these relations are called
shortcuts [12]. We provide two examples where some shortcuts are exploited in
order to reduce the number of tested hypotheses.

4. Any procedure generating valid simultaneous CIs for ranks is
equivalent to a partitioning procedure

Although the literature on simultaneous CIs for ranks includes the two pa-
pers [1, 47], it is always possible to start from pointwise CIs methods such as
[23, 10, 29] and correct for multiplicity, for example using Bonferroni’s method,
so that the resulting CIs become simultaneous, but they tend to be very con-
servative. In this section, we show that any procedure which produces valid
simultaneous CIs for ranks can be written as a partitioning procedure with el-
ementary hypotheses (2) and a suitable statistical test. We note that the class
of partitioning procedures is larger than the class on rectangular confidence
intervals for ranks, since partitioning may sometimes lead to non-rectangular
confidence intervals.

Assume that we have a procedure that generates confidence intervals for ranks
with joint confidence level 1−α. Let [L̃1, Ũ1], · · · , [L̃n, Ũn] be the corresponding
confidence intervals. This means

PμT

(
∀i, ri ⊆ [L̃i, Ũi]

)
≥ 1− α. (3)

Let H be some elementary hypothesis from (2). This partition includes all vec-
tors of means having one specific set of set-ranks, say r1(H), · · · , rn(H). Hence,
for any (μ1, · · · , μn) under H, we have ri(μi) = ri(H) according to Definition
1. We define a local test for H, say ϕ by

ϕ(H) =

{
0 if ri(H) ⊆ [L̃i, Ũi], ∀i;
1 otherwise .

(4)

Proposition 3. ϕ is a valid test for H at level α.

The test does not reject an elementary hypothesis H if the confidence in-
tervals [L̃1, Ũ1], · · · , [L̃n, Ũn] cover the set-ranks of any vector of means under
H. Since we have a valid local test for the partitions, we can build a partition-
ing scheme leading to a set of simultaneous CIs with joint confidence level of
1− α for the ranks, say [L1, U1], · · · , [Ln, Un] due to Proposition 1. We show in
the following proposition that they are the same as the ones produced by the
original procedure (3).



2614 D. Al Mohamad et al.

Proposition 4. The confidence intervals produced by the method (3) are the
same as the ones produced by the partitioning procedure using the elementary
hypotheses (2) and the local test ϕ, that is for all i, Li = L̃i and Ui = Ũi.

This fundamental result indicates that our partitioning procedure is complete
[28, Section 1.8] for constructing simultaneous confidence intervals for ranks: ev-
ery valid method is a special case of this method. Partitioning should, therefore,
be considered as a design principle when thinking about new methods. When
designing a method, it suffices to look for a new local test for the elementary
hypotheses. In order to improve a procedure uniformly, it suffices to improve
the local test. Note that the result holds whether there are ties or not. Two ex-
amples are given in the following sections. Note that in these two examples, the
resulting confidence intervals are invariant against a translation of the means
by a common constant.

5. A first example: The likelihood ratio test

In the literature on ordered hypotheses such as our elementary hypotheses (2),
there is not yet a general result about an optimal test. However, as stated by
[8] “the method has a strong intuitive appeal and leads to a meaningful test”,
referring to the likelihood ratio test. Let H be some elementary hypothesis. The
likelihood ratio statistic (LR) related to testing H against all alternatives is
given by

LR = min
μ1,··· ,μn∈H

n∑
i=1

(yi − μi)
2

σ2
i

. (5)

Note that the term related to the alternative hypothesis is zero since the
minimum is attained at μi = yi. In some cases, the minimum in (5) can be
calculated directly. For example, when H is the hypothesis under which the
means are equal, the minimum in (5) is attained at the average of the observa-
tions. In the sequel, we will use the following notation. Let H be the hypothesis
μ1 = μ2 < μ3 < μ4 = μ5. We convene the following writing H : B1 < B2 < B3

with B1 = {μ1, μ2}, B2 = {μ3} and B3 = {μ4, μ5}. More generally, assume that
H can be written as a union of blocks of means B1, · · · , Bl where in each block
the means are equal under H and such that if μi is in block Bt and μj is in
block Bs such that t < s, then μi < μj under H. Using our new notation, we
write H : B1 < · · · < Bl. Let

μ̂Bj =
1∑

k:μk∈Bj

1
σ2
k

∑
s:μs∈Bj

ys
σ2
s

. (6)

It can be shown [8] that if μ̂B1 ≤ · · · ≤ μ̂Bl
, the minimum in (5) is attained on

H and the LR is given by

LR = min
μ1,··· ,μn∈H

n∑
i=1

(yi − μi)
2

σ2
i

=

l∑
j=1

∑
i:μi∈Bj

(yi − μ̂Bj )
2

σ2
i

, (7)
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Note that if the block Bj contains only one mean, say μk, the argument of the
minimum μ̂Bj is equal to the single observation yk. Hence, all subsets Bj with
a single mean do not appear in the calculation of the LR statistic.

In general, the basic R function isoreg or function activeSet from pack-
age isotone [13] can be used to calculate the minimum in (5) using the Pool
Adjacent Violators Algorithm known as the PAVA ([5, 45, 8, 6, 13]).

In order to perform a LR test of H against all alternatives, two approaches
from the literature are available; an adaptive [46, 24, 2] and a non adaptive
one [38]. The adaptive approach compares the LR with a quantile of a chi-
square with data-dependent degrees of freedom whereas the non adaptive one
compares the LR with the quantile of a mixture of chi-squares. Paragraph B in
the Appendix provides further details. We will see later on that the adaptive
approach is always more suitable in this context.

5.1. Some shortcuts and practical issues

The complexity of the partitioning scheme is very high (Lemma 2), so that it
is important to find a way to simplify calculations as much as possible and
preferably reduce the complexity of the algorithm we use.

We start by the most simple and immediate shortcut.

Lemma 1. If the hypothesis μ1 = · · · = μn is not rejected, then there is no
need to test any other hypothesis and the confidence intervals for the ranks are
the trivial ones, that is [1, n].

Without loss of generality, assume that y1 < ... < yn. The hypotheses in the
partitioning scheme are three types according to the relative ordering of the yi’s
with respect to the ordering of the μi’s in the hypothesis. Let H : B1 < · · · < Bl

be some partition where we group the means which are equal under H in the
blocks B1, · · · , Bl. Let μ̂Bj be given by (6). We say that

1. H is a correctly ordered hypothesis whenever μ̂B1 < · · · < μ̂Bl
and for any

i < j then μi ≤ μj ;
2. H is a partially correctly ordered hypothesis whenever μ̂B1 < · · · < μ̂Bl

and there exist i < j such that μi > μj . This means that the sample
means of the blocks respect the empirical ordering (of the yi’s) whereas
the means do not;

3. H is an incorrectly ordered hypothesis if there exist i < j such that μ̂Bi >
μ̂Bj , which means that neither the means nor the sample means of the
blocks respect the empirical ordering of the yi’s.

Note that in the first two cases, the LR is given by (7) which means that the solu-
tion of the PAVA does not pool any adjacent blocks. In the third case, the LR re-
sults from the PAVA by pooling all blocks of means Bi, · · · , Bj violating the em-
pirical ordering into one block, and then using formula (7). The resulting pooled
blocks are partially correctly ordered hypotheses. To illustrate the differences
among the three types of hypotheses, assume for example y1 = 0, y2 = 2, y3 = 3.
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First we have y1 < y2 < y3. The hypothesis μ1 = μ2 < μ3 is a correctly ordered
hypothesis since (y1 + y2)/2 < y3. The hypothesis μ1 = μ3 < μ2 is a par-
tially correctly ordered hypothesis because under the hypothesis μ3 < μ2 and
(y1 + y3)/2 < y2. Finally, the hypothesis μ2 = μ3 < μ1 is an incorrectly ordered
hypothesis because (y2+y3)/2 > y1. Note that we only require the knowledge of
the observed values of y1, · · · , yn and the relative positions of μ1, · · · , μn under
the current hypothesis and not their actual values.

The following propositions state that only the correctly and partially correctly
ordered hypotheses are required. When we have a common standard deviation,
we show that only a subset of the partially correctly ordered hypotheses is
required.

Proposition 5. Assume that all the standard deviations are the same. If we
use the LR to test the elementary hypotheses (2), then in order to obtain si-
multaneous CIs for ranks at joint level 1 − α, it suffices to test at level α the
following list of hypotheses:

1. the correctly ordered hypotheses;
2. if the correctly order hypothesis H : μ1 =:< · · · =:< μn is not rejected, test

all partially correctly ordered hypotheses of the form μπ(1) =:< · · · =:< μπ(n)

for all permutations π from the list⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(i, i+ 1), ∀i = 1, · · · , n− 1
(i, i+ 1, i+ 2), (i+ 2, i+ 1, i), ∀i = 1, · · · , n− 2

(i, i+ 1, i+ 2, i+ 3), (i+ 3, i+ 2, i+ 1, i), ∀i = 1, · · · , n− 3
...

...
...

(1, 2, 3, · · · , n), (n, n− 1, · · · , 2, 1)

(8)

Furthermore, if we apply the list (8) column after column, then for each column
it suffices to test until we encounter the first rejected partially correctly ordered
hypothesis.

Proposition 5 shows that in order to construct the simultaneous CIs for the
ranks, we need to test first all correctly ordered hypotheses. For n = 3, these are
μ1 = μ2 = μ3, μ1 < μ2 = μ3, μ1 = μ2 < μ3 and μ1 < μ2 < μ3. Recall that we
assumed y1 < y2 < y3. According to Proposition 5, if hypothesis μ1 < μ2 = μ3

is not rejected then we need to apply the first column of permutations which are
π = (1, 2) that results in hypothesis μ2 < μ1 = μ3 and π = (1, 2, 3) that results
in hypothesis μ3 < μ2 = μ1. Then we use the second column of permutations
which are π = (2, 3) that results in μ1 < μ3 = μ2 and (3, 2, 1) that results in
hypothesis μ2 < μ3 = μ1. Otherwise, if the hypothesis μ1 < μ2 = μ3 is rejected,
we move to the next correctly order hypothesis.

When the standard deviations are not equal, the proof of Proposition 5 is
no longer valid. This is because we use (and prove) the fact that the LR does
not decrease as the number of permuted means increases. For example, let H :
B1 < · · · < Bk be some correctly ordered hypotheses. If we permute μi with μj ,
then the LR increases. When the standard deviations are not the same, then
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this result no longer holds in general, especially when we permute two means,
one with high standard deviation and one with small standard deviation.

Proposition 6. Assume that there exist i �= j such that σi �= σj. If we use the
LR to test the elementary hypotheses (2), then it suffices to test the correctly
ordered and partially correctly ordered hypotheses.

While this result shows that there is no need to test the incorrectly ordered
hypotheses, we do not know how to characterize the set of partially correctly
ordered hypotheses in general efficiently. In the Appendix, we provide an algo-
rithm to test all the elementary hypotheses. In that algorithm, we test first the
correctly ordered hypotheses, then, we permute the indexes using some π ∈ Sn

and repeat the same procedure while taking into account that some hypotheses
become incorrectly ordered because of the permutation and they can be dis-
carded. When n > 10, this becomes computationally infeasible. In that case,
we may still use the list of permutations (8) and then randomly select another
some 105 permutations from Sn and apply them all. Of course, this is an ap-
proximation and we might just hope that the resulting CIs get a joint confidence
level of 1 − α, but we have no guarantee that they will. In the Appendix, we
provide a few simulations for the case of different standard deviations when
n = 10, 15 which show that the approximate CIs are still conservative for a
variety of vectors of means and vectors of standard deviations.

As we mentioned here above in this section, it is possible to test the LR
statistic using either an adaptive test [24, 46, 2] or using a non adaptive test
[38]. According to Propositions 5 and 6, we only test the correctly and partially
correctly ordered hypotheses for which the LR is given by (7). Therefore, the
adaptive quantile is the quantile of a χ2(�) where � is the number of equalities
in H whereas the non adaptive quantile is the quantile of a mixture of the
chi-squares χ2(�), · · · , χ2(n− 1). This proves the following corollary.

Corollary 1. If we compare the LR to the adaptive quantile, the resulting simul-
taneous CIs for ranks are never longer than the ones obtained if we compare the
LR to the non adaptive quantile, that is the quantile of a mixture of chi-squares.

5.2. An improved variant

We give in this paragraph a way to improve the partitioning procedure when
the local test is the LR test using our generic procedure from Section 4. We use
the partitioning procedure in order to produce simultaneous CIs for the ranks
of μ1,T , · · · , μn,T and then define function ϕLR through (4).

Consider the hypothesis H : μ1 = · · · = μn. Using the LR test, it is tested
at an exact level α by comparing LR(H) with the quantile qn−1 of χ2(n −
1). However, using the test ϕLR, hypothesis H is not rejected not only when
LR(H) ≤ qn−1, but also whenever a set of partitions implying the trivial CIs
[1, n] to all the means is not rejected either. For example, the CI for the rank
of μ1,T can be [1, n] if the elementary hypotheses μ1 < μ2 = · · · = μn and
μ2 < μ1 = · · · = μn are both not rejected. This means that the test ϕLR(H)
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does not exhaust the α-level and thus we can estimate the gap between the
actual level of the test and α and rescale the test significance level in order to
gain power. In Section 7, we show that when μ1,T = · · · = μn,T with n = 10
and α = 0.1, then 95.6% of the simulations result in trivial CIs [1, n] for all the
means simultaneously. This means that we actually reject μ1 = · · · = μn using
function ϕLR at the rate of 0.044 instead of the 0.1 used in the simulations.

In order to rescale the local tests ϕLR, we need to find a least favorable vector
μ0 with respect to which we can rescale. In other words, μ0 has to verify for any
μ under H,

Pμ(ϕLR(H) = 1) ≤ Pμ0(ϕLR(H) = 1).

It appears that μ0 = (0, · · · , 0), and the following lemma states this result when
the non adaptive critical value is used. The case when we use the adaptive
critical value remains unknown.

Lemma 2. Let H be some elementary hypothesis from (2). Assume that we
compare the LR with the non adaptive critical value [38], then for any μ ∈ H

Pμ(ϕLR(H) = 1) ≤ P0(ϕLR(H) = 1).

Let ϕLR(α) denote ϕLR when the original partitioning procedure is calculated
at level α. Rescaling the partitioning procedure defined using ϕLR(α) as a local
test is done by looking for a zero of the function α̃ 
→ P0(ϕLR(α̃)(H) = 1) −
α for all the elementary hypotheses H from (2). For any α̃, the probability
P0(ϕLR(α̃)(H) = 1) can be estimated by simulations.

This improved variant is uniformly more powerful than the original parti-
tioning procedure since the rescaled level α̃ is in [α, 1]. However, in practice, the
variant is computationally feasible only for small number of means. As imple-
mented in our R package ICRanks, when the standard deviations are the same,
the improvement is computationally feasible up to n = 10. When the standard
deviations are not the same, then we have to calculate the non adaptive quantile
for each one of the elementary hypotheses (2) by simulations or using iterative
methods [20] which makes the improvement computationally feasible only for
n ≤ 5.

6. A second example: Tukey’s procedure for ranks

Tukey’s pairwise comparison procedure [44, 22] well-known as the Honest Sig-
nificant Difference test (HSD) is an easy way to compare a set of n means based
on a Gaussian sample especially in ANOVA models. The interesting point about
the procedure is that it provides simultaneous confidence intervals for the dif-
ferences and controls the FWER at level α. Tukey’s HSD is employed by [1]
to produce simultaneous CIs for the ranks. The objective here is to review this
method and get more insights about it in terms of the partitioning principle.
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6.1. The method

Suppose that y1, · · · , yn are generated independently from the Gaussian dis-
tributions N (μi,T , σ

2
i ). In order to produce simultaneous confidence intervals

for the ranks of the means μ1,T , · · · , μn,T , we test all hypotheses of the form
Hi,j : μi = μj using the following rejection region⎧⎨

⎩ |yi − yj |√
σ2
i + σ2

j

> q1−α

⎫⎬
⎭

where q1−α is the quantile of order 1− α of the distribution of the Studentized
range

max
i,j=1,··· ,n

|Yi − Yj |√
σ2
i + σ2

j

, (9)

and Yi and Yj are two independent Gaussian random variables with mean 0
and standard deviations σi and σj respectively. The confidence interval for the
rank of mean μi,T , say [Li, Ui] is calculated by counting how many hypotheses
Hi,j are rejected and such that yj < yi (which yields Li− 1). Then we calculate
how many hypotheses Hi,j are not rejected and such that yj > yi (which yields
n− Ui).

6.2. A new look at Tukey’s pairwise comparison using the
partitioning principle

We define a statistical (local) test over the elementary hypotheses (2) which
yields the same confidence intervals for the ranks as the method based on Tukey’s
HSD. Assume that σi = σ for all i. Let H : B1 < · · · < Bl, where as before Bi

is a block of means which are equal under H. For each block, we calculate the
maximum and minimum observed values. If the observed maximum of a block
Bi (calculated using the yi’s) is larger than the observed minimum of block
Bi+1, then the two blocks are combined (pooled) into one, say B̃i. Denote l̃ the
number of remaining blocks after pooling. We test the hypotheses H using the
following rejection region{

max
k=1,...,l̃

max
μj ,μs∈B̃k

|yj − ys|√
2σ

> q1−α

}
, (10)

where q1−α is the quantile of order 1 − α of the Studentized range (9) as in
Tukey’s HSD procedure. Note that we use the same critical value for all the
elementary hypotheses.

Proposition 7. If we use the Tukey-based method for ranks to construct a new
partitioning procedure using the local test ϕ, then {ϕ = 1} is equivalent to the
rejection region (10).
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When the standard deviations are not the same, we can show that the par-
titioning procedure produces slightly shorter CIs for the ranks than the Tukey-
based method. Although this would seem as if we obtained an improved proce-
dure through the partitioning procedure, we do not have a proof that the local
test (10) is an α-level test and hence the resulting CIs are not guaranteed to
have a joint level 1− α.

6.3. An improved variant based on the partitioning principle

Similarly to the partitioning procedure that uses the LR as a local test, we can
define an equivalent partitioning procedure to the Tukey-based method of [1]
using the test ϕ (4). We show using Proposition 3.2 from [1], that μ = 0 is the
least favorable case. We consider a new partitioning procedure in which we test
the elementary hypotheses (2) using a local test ϕ = ϕTKY of the form of (4)
that uses the simultaneous CIs for the ranks obtained through the Tukey-based
method of [1].

Lemma 3. Let H be some elementary hypothesis from (2). For any μ ∈ H

Pμ (ϕTKY(H) = 1) ≤ P0(ϕTKY(H) = 1).

Rescaling the partitioning procedure defined using function ϕTKY as a local
test is done by looking for a zero of the function α̃ 
→ P0(ϕTKY(α̃)(H) = 1)−α for
all the elementary hypotheses H from (2). The probability P0(ϕTKY(α̃)(H) = 1)
can be estimated through simulations.

Similarly to the case of the partitioning procedure that uses the LR test,
in practice, this improvement is computationally feasible on ordinary comput-
ers for n ≤ 10. In contrast to the LR case, when the standard deviations are
not the same, the procedure does not imply any further complications and is
computationally feasible up to n = 10.

7. Simulation study: A comparison of simultaneous coverage and
efficiency

The goal of this section is to compare the performance of the novel LR-based
method with the Tukey-based method of [1] which is the only method available
in the literature which provides valid simultaneous CIs for ranks. Note that [1]
show that the method of [47] does not control the joint confidence level of the
CIs, therefore, it is unfair to include it in the comparison. We also illustrate the
performance of the method of [25] that uses the Sidak correction.

The simulation setup is the following. We estimate the simultaneous coverage
of both methods, the LR-based and the Tukey-based method of [1] for vectors
of n means with n ∈ {5, 10, 20}. We generate 1000 means μ1,T , · · · , μn,T inde-
pendently from the Gaussian distribution N (0, τ2) for τ ∈ {0, 1, 3, 5}. For each
vector of means, we generate independently a Gaussian sample y1, · · · , yn such
that yi ∼ N (μi,T , 1). For each τ , the coverage is estimated as the proportion of
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vectors of means which are being covered simultaneously by the CIs calculated
based on the corresponding samples y1, · · · , yn. The results are presented in
Table 1. We also calculate the average length of the confidence intervals

1− R̂n(α) =
1

n(n− 1)

n∑
i=1

(Ui − Li),

where R̂n(α) is the rankability measure defined in [1]. The quantity 1− R̂n(α)
is a measure of efficiency of a method producing CIs for ranks. A better method
has shorter CIs and therefore a smaller 1 − R̂n(α). We provide in Appendix D
simulations when the standard deviations are not the same, cases when more
ties are present among the true means and when the normality assumption is
violated.

The results of Table 1 show that on average the Tukey-based method produces
shorter confidence intervals than the LR-based one especially as the number of
means increases to 20. When the number of means is smaller than 10, our LR-
based method produces shorter CIs. Both variants produce shorter CIs than
their corresponding methods.

It is not surprising that when τ = 0 (all the means are tied and their true
set-ranks are all [1, n]), the Tukey-based method delivers CIs for ranks with
joint level equal to 1− α because this method is exact when μ1,T = · · · = μn,T

[1, Proposition 3.2]. On the other hand, our novel method based on the LR
test does not seem to share this property empirically except for n = 5. The
method of [25] is the least performing method. We recall Proposition 3.2 from
[1] that states that when the standard deviations are the same, the Tukey-based
method produces shorter simultaneous confidence intervals for the ranks than
the method of [25].

The rescaled version of the Tukey-based method does not improve as much
as the rescaled version of the partitioning procedure that uses the likelihood
ratio test. When the standard deviations are equal, we show in Lemma 3 in
the Appendix that in order to perform the partitioning procedure that uses
the local test (10), it suffices to test the correctly ordered hypotheses. We can
see the implication of such result on the example of testing the hypothesis
μ1 = · · · = μn. Indeed, we obtain trivial CIs for the ranks only when that
hypothesis is not rejected, because if μ1 = · · · = μn is rejected, then there
is no correctly ordered hypothesis that has μ1 in the nth position except for
μ1 = · · · = μn. This means that it is not possible to improve the local test for
this hypothesis. In the case of the partitioning procedure that uses the LR test,
it is possible to improve the level at which we test the hypothesis μ1 = · · · = μn.
When the standard deviations are not the same, Lemma 3 from the Appendix
no longer holds, and the improved procedure may be more efficient.

8. Data analysis

Ratings of hotels is one of the tools that booking websites use to show the quality
of these hotels and guide new customers choose a suitable one. Booking.com is
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Table 1

Coverage probability and efficiency for different values of τ . Nominal simultaneous level is
90%.

n = 5 n = 10 n = 20
Coverage Average

length
of CIs

Coverage Average
length
of CIs

Coverage Average
length
of CIs

τ = 0 Tukey 0.912 0.790 0.896 0.896 0.911 0.949
Rescaled Tukey 0.912 0.789 0.895 0.896 - -

LR 0.912 0.789 0.942 0.899 0.999 0.950
Rescaled LR 0.900 0.787 0.928 0.897 - -

Klein 0.989 0.799 0.990 0.899 0.991 0.950
τ = 1 Tukey 0.989 0.735 0.997 0.866 0.999 0.931

Rescaled Tukey 0.988 0.729 0.993 0.861 - -
LR 0.984 0.721 0.998 0.874 1.000 0.947

Rescaled LR 0.974 0.709 0.991 0.864 - -
Klein 1.000 0.784 1.000 0.891 1.000 0.945

τ = 3 Tukey 0.993 0.446 1.000 0.585 1.000 0.669
Rescaled Tukey 0.992 0.425 0.997 0.557 - -

LR 0.980 0.393 0.995 0.572 1.000 0.734
Rescaled LR 0.954 0.348 0.970 0.512 - -

Klein 1.000 0.559 1.000 0.670 1.000 0.748
τ = 5 Tukey 0.993 0.298 0.997 0.391 1.000 0.461

Rescaled Tukey 0.989 0.276 0.991 0.360 - -
LR 0.980 0.247 0.993 0.358 1.000 0.499

Rescaled LR 0.950 0.209 0.954 0.293 - -
Klein 1.000 0.375 1.000 0.471 1.000 0.531

one of the world leading websites for booking hotels. A hotel is rated by some of
its customers for different criteria such as cleanness, breakfast, etc. An overall
rating between 1 and 5 stars is also attributed to the hotel by the customer. We
used the data publicly available on the website www.booking.com for a room
reservation in the city of Leiden (The Netherlands) to rent a room for one night
on the 2nd of May 2019. The query was made on the 15th of April 2019. We
restricted our search for hotels with free Wifi, free cancellation and within 1
Km from the city center. We obtained a list of 9 hotels (see raw data in the
Appendix). For each hotel, we have the number of customers who rated the
hotels for 1, 2, 3, 4 or 5 stars. We compute the average rating for each hotel
and its standard error in the following way. Let X be a random variable taking
values in the set {1, 2, 3, 4, 5} which represents the rating of a customer. We
calculate

yi =

5∑
j=1

j
ni,j

ni
;

σ2
i =

5∑
j=1

j2
ni,j

n2
i

− 1

ni
y2i

where ni is the number of customers reviews for the ith hotel and ni,j is the
number of customers reviews of j stars in the ith hotel. The result is in table 2.

We apply both the Tukey-based method of [1] and our new LR-based method
on this data and calculate simultaneous CIs for the ranks of these hotels at joint

www.booking.com
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Table 2

Average and standard error of ratings of 9 hotels in the city of Leiden (The Netherlands).
Simultaneous CIs of joint level 90% for their ranks are calculated using our novel LR-based

method and the Tukey-based method.

Hotel name Average
rating

Standard
error

CI - LR CI -
rescaled
LR

CI -
(rescaled)
Tukey

Klein

Hotel Mayflower 3.825 0.0258 [8,9] [9,9] [8,9] [8,9]
Best Western City Hotel Leiden 3.888 0.0169 [8,9] [8,8] [8,9] [8,9]

City Resort Hotel Leiden 3.996 0.0197 [7,7] [7,7] [7,7] [7,7]
City Hotel Rembrandt 4.110 0.0191 [5,6] [5,6] [5,6] [5,6]
Ibis Leiden Centraal 4.149 0.0131 [5,6] [5,6] [5,6] [5,6]
Tulip Inn Leiden 4.254 0.0183 [3,4] [3,4] [3,4] [3,4]

Golden Tulip Leiden 4.277 0.0182 [3,4] [3,4] [3,4] [3,4]
Boutique Hotel d’Oude Mors 4.717 0.0154 [2,2] [2,2] [2,2] [2,2]

Boutique Hotel Steenhof Suites 4.839 0.0137 [1,1] [1,1] [1,1] [1,1]

level 90%. We also apply the rescaled versions of these methods presented in
paragraphs 5.2 and 6.3. Since the standard errors of the means are not the same,
Proposition 5 does not hold so that we have to test all elementary hypotheses
(2). Furthermore, the rescaled version of the partitioning procedure that uses
the LR as a local test is not computationally feasible, therefore, we use the
maximum standard error of all the hotels ratings as the common standard error
for all the hotels ratings. The resulting simultaneous CIs are upper-bounds of
the CIs that the procedure will produce in case applied. We illustrate the result
of the method of [25] that uses the Sidak correction.

The method of [25], the partitioning procedure that uses the LR, the Tukey-
based procedure and its rescaled version gave all the same result. The rescaled
version of the partitioning procedure that uses the LR delivered the best result.
Furthermore, all the methods single out the best and second best hotels. The
rescaled version of the partitioning procedure that uses the LR singles out the
worst two hotels.

9. Discussion

We presented in this paper a generic method for simultaneous CIs for ranks
where we partitioned the parameter space Rn into sets defined through possi-
ble orderings of a set of means μ1, · · · , μn. The Partitioning principle allowed
to control the FWER below α by testing each set at level α which was used to
construct simultaneous CIs for the ranks at level 1−α. We showed that any pro-
cedure producing simultaneous CIs for ranks could be written as a partitioning
procedure with a suitable local test for the partitions.

We presented an example of our procedure using the likelihood ratio test and
also showed that a recently developed method based on Tukey’s HSD could be
written as a partitioning procedure. We proposed rescaled versions of these two
methods by embedding them inside a new partitioning procedure. Although the
rescaled version uniformly improve these methods, they are computationally
feasible only up to 10 means. Recall that the procedure that uses the LRT is
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feasible up to n = 40 when the standard deviations are equal and only up to
n = 10 when they are not equal. The Tukey-based approach has a polynomial
complexity and is feasible for large n.

In [1], the authors propose a rescaling method based on empirical evidence in
order to reduce the conservativeness of the Tukey-based method. The idea is to
rescale the Tukey-based method with respect to a worst-case which is different
from our rescaling idea in this paper where the rescaling is done for each partition
separately. We believe that a similar method can be developed for our LR-based
method which could lead to a procedure that is more computationally feasible.

We assumed the standard errors to be known, which is a standard assump-
tion in most papers considering confidence intervals for ranks, see [34, 40, 25]
among others. This assumption becomes challenging when the standard errors
are estimated with a few measurements (patients, rating, etc.). In Appendix
D.4, a simulation example shows that using estimated standard errors still re-
sults in conservative CIs for the ranks with close results to when we used the
true standard errors except for the case when there are only three measurements
for each sample mean. More extensive simulations are needed and developing
rigorous approach under the assumption of unknown standard errors remains
an open question.

For a different objective, it is possible to look for the rank of only one pre-
specified institution that we are interested in. [16] use the partitioning principle
to make multiple comparisons to the best or to a control. Combining their work
with ours could be the objective of a future work.

We provide in this appendix proofs of the main results in the paper and a
detailed algorithm of how to perform the partitioning scheme when we use the
likelihood ratio (LR) test. It also includes further simulations and the raw data
that we collected for the data analysis section of the paper.

Appendix A: Proofs

A.1. Proof of Proposition 1

Proof. Since the partitioning principle ensures that the FWER is below α, we
may write

P (Number of type I errors ≥ 1) ≤ α

which is equivalent to

1− P (Number of type I errors = 0) ≤ α.

Denote ∪i∈IPi the set of rejected elementary hypotheses at level α and μT the
true vector of means. We can write

P (μT /∈ ∪i∈IPi) ≥ 1− α.

Since the Pi’s partition the parameter space Rn, then

P (μT ∈ ∪i/∈IPi) ≥ 1− α.
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Finally, recall that each partition represents a single set of set-ranks of the
means. Thus, the union of unrejected partitions implies a set of simultaneous
confidence intervals for the ranks of the means, this set has a confidence level
of at least 1− α.

A.2. Proof of Proposition 2

Following the example in figure 1, we arrange the set of elementary hypotheses
by levels according to the number of ties between the means. The 1st level corre-
sponds to the hypothesis where all means are tied. The second level corresponds
to hypotheses with n−1 ties and so on. The nth level corresponds to hypotheses
without any ties. We calculate the number of hypotheses in each level and then
sum them up, that is the hypotheses having the same number of inequalities
between the means.

At level n − i, for i ∈ {0, · · · , n − 1}, with i equalities, we have i equalities
and n − i − 1 inequalities. Any partition H from level n − i can be written as
a set of n − i − 1 blocks H : B1 < · · · < Bn−i−1 where each block includes
means which are related to each others by an equality. Given a set of blocks, the
number of different orderings of these blocks is equal to (n− i− 1)!. It remains
then to calculate the number of possible partitions for a given ordering of the
means. This number is the same for all possible orderings. Assume then that
μ1 ≤ μ2 ≤ · · · ≤ μn. The indexes are the set {1, · · · , n} and the blocks are
mere ordered subsets (or partitions) of indexes which are disjoint and whose
union is equal to the whole set {1, · · · , n}. This is an ordered partition of the
set {1, · · · , n} [41, Lemma 1.4.11] and the number of partitions of a set of n
numbers into n− i−1 blocks is equal to the Sterling number of the second kind
S(n, n− i−1), see Stanley [41, Section 1.9, page 81]. Finally, the overall number
of configurations in level n− i− 1 is equal to (n− i− 1)!S(n, n− i− 1).

A.3. Proof of Proposition 3

Due to equation (3), it is straightforward that ϕ is a valid test for H at level α.
Indeed,

P(ϕ(H) = 1) = 1− P(ϕ(H) = 0)

= 1− P(ri(H) ⊂ [L̃i, Ũi], ∀i)
≤ 1− (1− α)

≤ α.

A.4. Proof of Proposition 4

We first show that [Li, Ui] ⊂ [L̃i, Ũi]. This is straightforward because by con-
struction of the test ϕ, a partition (a set of set-ranks) is not rejected only if it
induces set-ranks in the CIs [L̃i, Ũi]. Moreover, the confidence intervals for the
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ranks based on the partitioning scheme are built based on only the unrejected
partitions. Thus, the inclusion holds.

We need to show the converse. We show first that there exist permutations
π1, · · · , πJ ∈ Sn such that for some J ∈ N

[L̃1, Ũ1]× · · · × [L̃n, Ũn] =
⋃

(r1,··· ,rn)=πj(1,··· ,n),j=1,··· ,J
{r1} × · · · × {rn}. (11)

Indeed, the ranks 1, · · · , n are simultaneously included in the CIs. In other
words,

∃j1, s.t. 1 ∈ [L̃j1 , Ũj1 ];

...

∃jn, s.t. n ∈ [L̃jn , Ũjn ]. (12)

In order to show (11), let r1,1 ∈ [L̃1, Ũ1]. We start with r1,1 = L̃1. Due to

(12), there exist r1,2 �= r1,1, · · · , r1,n �= r1,1 such that r1,t ∈ [L̃j , Ũj ] for all
j = 1, · · · , n and such that (r1,1, · · · , r1,n) = π1(1, · · · , n) for some permutation

π1 ∈ Sn. We then take r2,1 = L̃1 + 1 (in case Ũ1 > L̃1), and do the same as

with the first step to obtain r2,t ∈ [L̃t, Ũt] for all t = 1, · · · , n and such that
(r2,1, · · · , r2,n) = π2(1, · · · , n). We repeat this until we scan all the ranks in the

interval [L̃1, Ũ1]. This way we scan all the ranks in the first CI through sets of
the form {r1} × · · · × {rn}. Set

A1 =

Ũ1−L̃1+1⋃
s=1

{rs,1} × · · · × {rs,n};

Π1 =

Ũ1−L̃1+1⋃
s=1

{πs}.

If {r1,2, · · · , rŨ1−L̃1+1, 2} � [L̃2, Ũ2], we then scan the remaining elements

of [L̃2, Ũ2] (that is [L̃2, Ũ2] \ {r1,2, · · · , rŨ1−L̃1+1, 2}) in a similar way to the

elements of the interval [L̃1, Ũ1] and we set the union of the resulting sets as
A2. Finally, we obtain the sets A1, · · · , An (some of them may be empty). By
construction, we have

[L̃1, Ũ1]× · · · × [L̃n, Ũn] =

n⋃
i=1

Ai.

Equation (11) shows that the simultaneous CIs for the ranks [L̃i, Ũi] can be
represented by sets of single ranks. Let {r1} × · · · × {rn} be one of these sets.
Let H : μi1 < · · · < μin be a partition such that ir1 = 1, · · · , irn = μn. In
other words, μi is in the rith position. This partition is not rejected because the
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ranks of any vector of means μ1, · · · , μn ∈ H are actually r1, · · · , rn, thus they
are in the confidence intervals [L̃1, Ũ1], · · · , [L̃n, Ũn] respectively. Therefore, the
partition H is not rejected. Hence, for any set of ranks {r1}×· · ·×{rn}, we can
find a partition H which is not rejected using our test ϕ. Therefore,

[L̃1, Ũ1]× · · · × [L̃n, Ũn] ⊂ [L1, U1]× · · · × [Ln, Un].

A.5. Proof of Proposition 5

The proof requires the following Lemma.

Lemma 4. Let B1, · · · , Bl be subsets that partition the set {μ1, · · · , μn} so that
Bi ∩ Bj = ∅ and ∪iBi = {μ1, · · · , μn}. Assume that we obtain B̃1, · · · , B̃l by
swapping μj1 with μj2 such that yj1 < yj2 (so that all subsets remain the same
except for two). Let μ̂j denote the sample mean over block Bj whereas μ̃j denote

the sample mean over block B̃j. Then

l∑
j=1

∑
μi∈Bj

(yi − μ̂j)
2 ≤

l∑
j=1

∑
μi∈B̃j

(yi − μ̃j)
2.

In particular, if H : B1 < · · · < Bl and H̃ : B̃1 < · · · < B̃l be two (partially)
correctly ordered hypotheses, then

LR(H) ≥ LR(H̃).

Proof. Let B̃i1 and B̃i2 be the two subsets that have changed due to swapping
μj1 with μj2 . Let also Bi1 and Bi2 be the corresponding subsets before swapping.

When both H and H̃ are partially correctly ordered hypotheses, then

μ̂i1−1 <μ̂i1 < μ̂i1+1 < · · · < μ̂i2−1 < μ̂i2 < μ̂i2+1;

μ̂i1−1 <μ̃i1 < μ̂i1+1 < · · · < μ̂i2−1 < μ̃i2 < μ̂i2+1.

Thus, we can write easily the LR of both hypotheses H and H̃ as

LR(H)=
∑

s∈{1,··· ,l}\{i1,i2}

∑
μi∈Bs

(yi − μ̂s)
2 +

∑
μi∈Bi1

(yi − μ̂i1)
2 +

∑
μi∈Bi2

(yi − μ̂i2)
2;

LR(H̃)=
∑

s∈{1,··· ,l}\{i1,i2}

∑
μi∈Bs

(yi − μ̂s)
2 +

∑
μi∈B̃i1

(yi − μ̃i1)
2 +

∑
μi∈B̃i2

(yi − μ̃i2)
2.

We study the contribution of the blocks that have changed. Let

LR(Bi1 , Bi2) =
∑

μi∈Bi1

(yi − μ̂i1)
2 +

∑
μi∈Bi2

(yi − μ̂i2)
2,

LR(B̃i1 , B̃i2) =
∑

μi∈B̃i1

(yi − μ̃i1)
2 +

∑
μi∈B̃i2

(yi − μ̃i2)
2.
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Note that the two likelihood ratios LR(H) and LR(H̃) have the same first term.
Therefore, it suffices to prove that

LR(Bi1 , Bi2) ≤ LR(B̃i1 , B̃i2). (13)

Note that #Bi1 = #B̃i1 = ni1 and #Bi2 = #B̃i2 = ni2 . Moreover, Bi1 ∪Bi2 =
B̃i1 ∪ B̃i2 := Bi1i2 . Denote μ̂i1i2 the sample mean over Bi1i2 . We have [see 4,
Theorem 5]

∑
μi∈Bi1i2

(yi − μ̂i1i2)
2 = LR(Bi1 , Bi2) +

ni1ni2

ni1 + ni2

(μ̂i2 − μ̂i1)
2

= LR(B̃i1 , B̃i2) +
ni1ni2

ni1 + ni2

(μ̃i2 − μ̃i1)
2
.

Finally, since all these terms are non negative, then in order to prove the lemma,
it suffices to compare μ̂i2 − μ̂i1 with μ̃i2 − μ̃i1 . It is straightforward to see that

μ̂i2 − μ̂i1 − μ̃i2 − μ̃i1 =

(
1

ni1

+
1

ni2

)
(yi2 − yi1) > 0

and
LR(H) ≤ LR(H̃).

Without loss of generality, we assume that σi = 1 for all i = 1, · · · , n. The
proof consists of two main parts. We prove in the first part that it suffices to
test only hypotheses corresponding to cases 1 and 2. In other words, there is
no need to test incorrectly ordered hypotheses (case 3). We show in the second
part that not all the hypotheses corresponding to case 2 need to be tested and
give only the relevant list.

We prove the first part. Consider a hypothesis Hl from the lth level, that is it
contains l−1 inequalities. Write this hypothesis as a union of blocks where each
block contains all means which are equal under Hl, that is Hl = A1 < · · · < Al.
Suppose that this hypothesis is incorrectly ordered. According to Proposition
1, we are interested in Hl only if it is not rejected. Suppose then that the
hypothesis Hl is not rejected. When we calculate the maximum likelihood under
this hypothesis by the pool adjacent violators algorithm (PAVA), adjacent blocks
which violate the ordering μ̂A1 < · · · < μ̂Al

will be pooled together. By merging
the pooled blocks of hypothesisHl, we can construct a partially correctly ordered
hypothesis H̄s = {Ã1, · · · , Ãs} with s < l such that μ̂Ã1

< · · · < μ̂Ãs
. Note that

LR(H̄s) = LR(Hl) due to the PAVA. Moreover, the adaptive critical value is
also the same since it depends on the PAVA solution. Thus, the non rejection
of Hl will imply the non rejection of the hypothesis H̄s. The set-ranks induced
by Hl are subsets of the set-ranks induced by H̄s since in the later the pooled
blocks become one so that their means are equal under H̄s whereas they where
not under Hl. Thus, testing the partially correctly ordered hypothesis H̄s

We prove the second part. The partially correctly ordered hypotheses result
from the correctly ordered hypotheses by switching at least a pair of means in
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a way that the switching does not result in a modification of the ordering of the
observed means inside the blocks. Moreover, the switching only influences the
position of the means and not the size of the blocks defining the hypothesis.
We need to show two things.

1. If a partially correctly ordered hypothesis is not rejected then the corre-
sponding correctly ordered hypothesis is not rejected either. This allows
to conclude that we need to look at switches only if we find a correctly
ordered hypothesis which is not rejected. As long as we are rejecting the
correctly ordered hypothesis, we do not need to care about partially cor-
rectly ordered ones because they are automatically rejected.

2. If a correctly ordered hypothesis is not rejected, then we need to consider
permutations of indexes only from the list (8).

We prove the first claim. Let H be any hypothesis (correctly ordered or
partially correctly ordered) that consists of l blocks such that μ̂B1 < · · · < μ̂Bl

.
Assume that we switch between two means μj1 from block Bi1 with mean μj2

from block Bi2 such that j1 < j2. Assume also that this permutation does not
result in changing the hypothesis from being (partially) correctly ordered into
incorrectly ordered hypothesis. Due to Lemma 4, we have

LR(H) ≤ LR(H̃).

Now, if the hypothesis H̃ is not rejected, then so does H since they are tested
against the same adaptive quantile, that is a quantile of χ2(l). Conversely, if the
hypothesis H is rejected, then so does H̃.

Last but not least, assume that a partially correctly ordered hypothesis H̃
results from a correctly ordered hypothesis H by permuting s means following
some permutation p. It is possible to write p as the composition of a finite set
of transpositions, that is there exist m ≤ s transpositions τi such that p =
τmτ2...τ1. Applying the permutation p on the set of means indexes is equivalent
to applying successively the transpositions on the set of means. In other words,
the hypothesis H̃ is the result of m single switches applied successively on the
indexes of means considered in H. Denote τ(H) the hypothesis which results
from H by applying the transposition τ on the means indexes. Then

H̃ = τ1τ2 · · · τm(H)

In order to apply Lemma 4, the transpositions must change the positions of two
means μj1 < μj2 (under H̃) only if yj1 > yj2 . In order to do so, we start by
picking the mean which corresponds to y1 (the smallest observation), that is μ1.
If it is already in position 1 in H̃, we do nothing, otherwise, we switch it with
the mean in position 1 in H̃. We thus set τ1 = (1, iy1). More generally, let iyj

be the position of μj in H̃. Then, we have

τj = (j, iyj ).

Some of these transpositions may be the identity function so that only m ≤ s
transpositions remain. Thus, by recurrence and using Lemma 4, we have

LR(H̃) ≥ LR(τ1(H̃)) ≥ · · ·LR(τm−1 · · · τ1(H̃)) ≥ LR(H)
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This reads as follows. Any supplementary switch between two means in a (par-
tially) correctly ordered hypothesis results in increasing the LR.

We prove now our second claim. Since we need to consider a partially correctly
ordered hypothesis only when the corresponding correctly ordered hypothesis
is not rejected, let H be a correctly ordered hypothesis which is not reject.
Let H̃ be some partially correctly ordered hypothesis which results from H by
permuting the means indexes using a permutation p such that H̃ is not rejected.
We show that if H̃ induces wider CI for the rank of μi,T than H, then there
exist permutations p1, · · · , pk from the list (8) such that the partially correctly
ordered hypotheses resulting from applying these permutations on the indexes
of the means through H, denoted as before p1(H), · · · , pk(H) are not rejected.
Furthermore, the unrejection of those hypotheses result in the same CI for the
rank of μi,T as H̃. This suffices to conclude that only permutations from the list
(8) are needed.

Any permutation has a disjoint decomposition of cycles. Two cycles in this
decomposition have disjoint orbits. Two disjoint cycles modify the set-ranks
of two disjoint groups of means. Therefore, it is possible to treat each cycle
separately. For this reason and without loss of generality, we assume that p =
(i1, · · · , ik) is a permutation with one cycle. Note that if the orbit is smaller
than n, that is k < n, then the permutation p leaves some of the means in their
own position. Otherwise, all the means move from their original positions in H
to new ones in H̃.

Let s ∈ {1, · · · , n}. Suppose that the original position of mean μis in H
is is−1, then its new position in H̃ is is with the convention i0 = ik. If is >
is−1, then μis−1 moves forward in H̃ (with respect to H). Otherwise, it moves

backward in H̃. The proof slightly differs according to whether μis−1 moves
forward or backward.

We assume first that μis−1 moves forward in H̃. It is possible to reorder all
the means which have new positions different from is by composing p succes-
sively with suitable transpositions. The reordering will be done based on the
corresponding observed values. We will prove that this reordering results in a
decrease of the LR or at least does not increase it. Indeed, we choose the mean
with the maximum observed value among the means with new positions differ-
ent from is. If its new position is different from n, say imax1 , then there is some
mean whose new position is n and whose observed value is inferior to the max-
imum. We switch these two by composing p with the transposition (imax1

, n).
This single reordering puts a mean with a small observed value back before an-
other mean with a larger observed value. Therefore, this single reordering does
not make the LR increase similarly to (13). Now, we consider again the set of
means whose new positions in (imax1

, n)p(H) = (imax1
, n)H̃ are different from

is except for the one who is at position n, that is the set {1, · · · , n− 1} \ {is}.
We choose the mean with maximum observed value. If its new position, say
imax2 , is inferior to n− 1, then we switch it with the one whose new position is
n− 1 by composing (imax1 , n)H̃ with the transposition (imax2 , n− 1). Similarly
to the previous switch, this one also makes the LR decrease (or at least does not
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increase). We iterate this procedure t times until we reorder all the means whose
new positions are different from is. The result of this reordering is denoted H̃t

and is given by
H̃t = (imaxt

, n− t+ 1) · · · (imax1
, n)H̃.

This can also be written as

H̃ = (imaxt , n− t+ 1) · · · (imax1 , n)H̃t.

so that using Lemma 4, we have

LR(H̃t) ≤ LR(H̃). (14)

Moreover, we can write H̃t explicitly as

H̃t : μ1 =:< · · · =:< μis−1−1 =:< μis−1+1 =:< · · · =:< μis =:< μis−1 =:< μis+1

=:< · · · =:< μn

In other words,

H̃t =(is, · · · , is−1)H

=(is, is−1) · · · (is−1 + 1, is−1)H.

Thus using Lemma 4, we have LR(H̃t) ≤ LR(H) which together with (14)
implies

LR(H) ≤ LR(H̃t) ≤ LR(H̃).

We conclude that if H̃ is not rejected, then any mean whose position in H moves
forward in H̃ does not get a wider CI for its rank than the CI that it gets from
testing the partially correctly ordered hypotheses resulting from applying the
list (8) on H.

Last but not least, if μis moves backward in H̃ with respect to H to position
is−1, then similar steps to the previous case allows to reorder the means whose
new positions are different from is−1. Denote the resulting hypothesis H̄t, we
have

H̄t = (imaxt , n− t+ 1) · · · (imax1 , n)H̃,

which can be written as

H̃ = (imaxt , n− t+ 1) · · · (imax1 , n)H̄t,

so that
LR(H̄t) ≤ LR(H̃). (15)

We can write H̄t explicitly as

H̄t : μ1 =:< · · · =:< μis−1−1 =:< μis =:< μis−1 =:< · · · =:< μis−1 =:< μis+1

=:< · · · =:< μn
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In other words,

H̄ =(is−1, · · · , is)H
=(is−1, is) · · · (is − 1, is)H.

Using Lemma 4, we get LR(H̄t) ≤ LR(H) which together with (15) implies

LR(H) ≤ LR(H̄t) ≤ LR(H̃).

We conclude that if H̃ is not rejected, then any mean whose position in H moves
backward in H̃ does not get a wider CI for its rank than the CI that it gets
from testing the partially correctly ordered hypotheses resulting from applying
the list (8) on H.

To end the proof, since any transposition (i, j) is the composition of trans-
positions (i, i + 1), · · · , (j − 1, j), we conclude that for any partially correctly
ordered hypothesis that we do not reject, we may construct partially correctly
ordered hypotheses using the list (8) which are not rejected either and which
produce the same CIs for the ranks of μ1,T , · · · , μn,T .

Finally, if we test the list (8) column after column, then for each column it
suffices to test until one of the permutations gets rejected then the remaining
permutations with a larger orbit (the set of indexes to permute) will automati-
cally be rejected. Indeed, by Lemma 4, as the orbit of the permutation contains
more means, the LR increases.

A.6. Proof of Proposition 6

See the first part of the proof of Proposition 5.

A.7. Proof of Lemma 2

Proof. We characterize the event {ϕLR(H) = 1} when μ ∈ H. We abbreviate
PP for the partitioning procedure that uses ϕLR as a local test, and PLR for
the partitioning procedure which uses the LR as a local test. Let [Li, Ui] for i =
1, · · · , n be the set of simultaneous CIs produced by PLR. Note that according
to Proposition 4, the simultaneous CIs produced by PP are the same as the ones
produced by PLR, which are [Li, Ui] for i = 1, · · · , n. For μ = (μ1, · · · , μn), let
ri(H) be the set-rank of μi when μ ∈ H. According to the definition of ϕLR,
we reject H in PP (ϕLR = 1) if for any μ ∈ H, ri(H) � [Li, Ui] for some
i ∈ {1, · · · , n}. In other words,

{ϕLR(H) = 1} =

n⋃
i=1

{ri(H) � [Li, Ui]}.

The event {ri(H) � [Li, Ui]} occurs if we reject all the elementary hypotheses
H̄ in PLR that have μi in one of the positions j ∈ ri(H). We may now write

{ϕLR(H) = 1} =
n⋃

i=1

⋂
H̄:ri(H̄)⊂ri(H)

{LR(Y, H̄) > q(H̄)}.
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Recall that [20] if Y = (y1, · · · , yn) and V = diag(σ2
1 , · · · , σ2

n), then

LR(Y, H̄) = ‖Y − H̄‖2V .

Using Proposition 3.12.1 from [39], if μ ∈ H̄, then

‖Y − H̄‖2V ≤ ‖Y − μ− H̄‖2V

so that
{LR(Y, H̄) > q(H̄)} ⊂ {LR(Y − μ, H̄) > q(H̄)}.

Since Y has a mean μ under H, then we prove the lemma.

Further results for the Tukey-based method

Lemma 5. For the partitioning procedure defined for the Tukey-based method
using the local test ϕTKY, it suffices to test only the correctly ordered hypotheses,
that is the hypotheses whose ordering does not violate the empirical one.

Let H be an elementary hypothesis. Without loss of generality, suppose that
it has only three blocks H : B1 < B2 < B3. Suppose that the empirical ordering
is such that maxμi∈B1 yi > minμi∈B2 yi, then our testing procedure will pool B1

and B2 into B̃1. In the same spirit of the proof of Proposition 5 and according to
Proposition 1, if H is rejected, this changes nothing in terms of the confidence
intervals and we only need to look at the unrejected hypotheses.

Suppose now, that H is not rejected, then

max
μj∈B̃1

|yj − yi1 |√
σ2
i1
+ σ2

j

≤ q1−α, and max
μj∈Hi,3

|yj − yi3 |√
σ2
i3
+ σ2

j

≤ q1−α (16)

where yi1 and yi3 correspond to the smallest observed values related to the
means in blocks B̃1 and B3 respectively. The hypothesis H̃ : B̃1 < B3 is also
an elementary hypothesis whose ordering coincides with the empirical one so
that it is a correctly ordered one. Besides, this hypothesis is not rejected due
to (16) because on the one hand, it has the same test statistic as Hi and on
the other hand, it is tested against the same common critical value q1−α. Thus,
for any hypothesis H with incorrect ordering, there exists a correctly ordered
hypothesis H̃ which has the same test statistic so that whenever one of them is
not rejected the other one is not, either.

Proposition 8. Assume that we have a common standard deviation σ. In terms
of ranks, the partitioning procedure defined using the rejection region (10) is
equivalent to the Tukey-based method of [1]. In other words, they produce the
same simultaneous confidence intervals for the ranks of the means μ1,T , · · · , μn,T

at level 1− α.

Due to Lemma 5, we only need to test the correctly ordered hypotheses.
The rejection region for these hypotheses turns out to be a calculus of the
maximum of the maximal differences inside the blocks composing the hypothesis.
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Take mean μi,T . Suppose that with the Tukey-based procedure, we determine a
confidence interval for the rank of μi,T to be [Li, Ui]. This means that we could
not reject all hypotheses μi = μj for j ∈ [Li, Ui]. In other words, we have:

|yi − yj |√
2σ2

≤ q1−α, ∀j ∈ [Li, Ui].

Besides, we reject all hypotheses μi = μl for l ≤ Li − 1 and l ≥ Ui + 1. In other
words

|yl − yi|√
2σ2

> q1−α, ∀l ∈ {1, · · · , Li − 1} ∪ {Ui + 1, · · · , n}.

Let us check what is the confidence interval that we can get using the partition-
ing with (10) from these rejections and non rejections. First of all, we have

yUi+1 − yi√
2σ2

> q1−α,
yi − yLi−1√

2σ2
> q1−α

Thus any partition containing the block μi = · · · = μUi+1 or the block μLi−1 =
· · · = μi (or larger ones) is rejected using the rejection region (10). This also en-
tails that any hypothesis producing a larger confidence interval (more equalities)
will also be rejected. Therefore, we can conclude that the confidence interval for
μi,T produced by the partitioning procedure is at most the one produced by the
Tukey-based method, that is [Li, Ui].

Suppose now that with the partitioning procedure, we get a confidence inter-
val for μi,T equal to [LP , UP ]. We are then sure that any hypothesis containing
the block μi = · · · = μUP+1 or the block μLP−1 = · · · = μi is also rejected.
In particular, the hypotheses {μ1 < · · · < μi = · · · = μUP+1 < · · · < μn} and
{μ1 < · · · < μLP−1 = · · · = μi < · · · < μn} are rejected. This means that

max
j=i,··· ,UP+1

|yi − yj |√
2σ2

=
yj1 − yi√

2σ2
> q1−α, max

j=LP−1,··· ,i

|yi − yj |√
2σ2

=
yi − yj0√

2σ2
> q1−α.

for some j0 ∈ {LP − 1, · · · , i} and j1 ∈ {i, · · · , UP + 1} verifying

∀j ∈ {i, · · · , UP + 1}, yj1 − yi√
2σ2

>
|yi − yj |√

2σ2

∀j ∈ {LP − 1, · · · , i}, yi − yj0√
2σ2

>
|yi − yj |√

2σ2
.

This entails that with the Tukey-based procedure, we must reject hypotheses
μi = μj1 and μj0 = μi. Thus, the confidence interval provided by Tukey’s
procedure is at most the confidence interval produced by the partitioning, that
is [LP , UP ].

We proved that the Tukey-based procedure cannot produce larger confidence
intervals than the partitioning procedure using (10), and that the latter can-
not produce larger confidence intervals than the former. Hence, Both methods
are equivalent in terms of ranks, that is they produce the same simultaneous
confidence intervals for the ranks.
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A.8. Proof of Proposition 7

Proof. Assume y1 < · · · < yn. Let H be a correctly ordered hypothesis that
consists of l blocks, that is H : B1 < · · · < Bl. Assume that H is not rejected.
Let μis (μit , resp.) denote the mean with the smallest (highest, resp.) observed
value in block Bi. Since H is not rejected, then for all j ∈ {is, · · · , it}, the
rank CI of μj includes the ranks {is, · · · , it}. Since the standard deviations are
the same, then it implies that Tukey’s procedure does not reject the hypothesis
μis = μit and any hypothesis μk = μr for k, r ∈ {is, · · · , it}. This means that if
H is not rejected, then

max
k,r∈{is,··· ,it}

|yk − yr| < q1−α. (17)

Similarly, if for all blocks of means in H (17) holds, then μk = μr is not rejected
for μk, μr ∈ Bi for i = 1, · · · , l. Thus, not rejecting H is equivalent to

max
i=1,··· ,l

max
μk,μr∈Bi

|yk − yr| < q1−α.

Let H̃ be a hypothesis that results from H by switching μi with μj . Assume

also that μi ∈ Bs and μj ∈ Bt and denote B̃s and B̃t the new blocks after

switching μi with μj . We only need to take care of the blocks B̃s, Bs+1, If

ϕ(H̃) = 1, then H̃ is not rejected and μi gets rank j whereas μj gets rank i. On
the other hand, since the empirical ranks are never rejected, μi has already rank
i in its rank CI. Since the standard deviations are assumed equal, then μi = μj

is not rejected by the Tukey procedure. Moreover, for all k ∈ {i+1, · · · , j − 1},
Tukey’s procedure does not reject μi = μk.

Since H̃ is not rejected, then all means in block B̃s get the same set-rank. If
μis corresponds to the mean with the lowest observed value in block B̃s, then
μj gets also rank is. Similarly, if μit corresponds to the mean with the highest

observed value in block B̃t, then μi gets also rank it. Since yi − yis < yj − yis ,
then Tukey’s procedure does not reject any of the hypotheses μi = μk for any
k ∈ {is, · · · , ij}. This is equivalent to pooling all the blocks Bs, · · · , Bt into one
block. Moreover, not rejecting H is equivalent to yit − yis < q where q is the
Studentized range quantile.

More generally, any conflict of ordering between the empirical ranks and the
ranks that the elementary hypothesis imply leads to pooling all the blocks of
means in between and all means in these blocks share the same set-ranks.

A.9. Proof of Lemma 3

Proof. Let [Li, Ui] for i = 1, · · · , n be the set of simultaneous CIs produced
by the Tukey-based method. Note that according to Proposition 4, the si-
multaneous CIs produced by partitioning procedure defined on the elementary
hypotheses (2) through function ϕTKY are also [Li, Ui] for i = 1, · · · , n. For
μ = (μ1, · · · , μn), let ri(H) be the set-rank of μi when μ ∈ H.
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Using Proposition 3.2 from [1], we have

Pμ=0(ri ⊂ [Li, Ui]) = α.

On the other hand,

Pμ (ϕTKY(H) = 1) ≤ α

≤ Pμ=0(ri ⊂ [Li, Ui])

≤ Pμ=0 (ϕTKY(H) = 1) .

Appendix B: Testing a simple order

Let Y1, · · · , Yp be random variables distributed independently as N (μi,T , σ
2
i ) for

i = 1, · · · , p. We test the null hypothesis H : μ1 ≤ · · · ≤ μp against all alterna-
tives based on the observation (y1, . . . , yn). The likelihood ratio can be calculated
using the pool adjacent violators algorithm known as the PAVA (Bartholomew
[8], van Eeden C. [45]). Function isoreg in the statistical program R does
the job. Note that the maximum likelihood estimator results from the vector
y = (y1, . . . , yn) by pooling certain adjacent observations so that the maximum
likelihood estimator has � distinct coordinates at most equal to n. From the
literature, [38] proposed to compare the LR statistic with the quantile of a mix-
ture of chi-squares with degrees of freedom ranging from 1 to n. In our paper,
this refers to the nonadaptive test since the critical value does not adapt to the
form of the maximum likelihood estimator. The nonadaptive test is defined by

P(LR > γ) ≤ Pμi=0,∀i(LR > γ) =

n−1∑
j=1

wj,nqn−j

where

w1,n =
1

n
,wn,n =

1

n!
, wj,n =

1

n
wj−1,n−1 +

n− 1

n
wj,n−1

These weights can be calculated using Stirling numbers of the second kind, see
[35].

The adaptive LR test compares the likelihood ratio statistics with the quantile
of a χ2(p− �) at order 1− α. The adaptive critical value is given by

q(y, α) = qp−�.

Theorem 1 from [2] shows that this adaptive LR test has level α.
Similarly, if we want to test H : μ1 = · · · = μm ≤ μm+1 ≤ · · · ≤ μp, then

the PAVA provides a solution where the first m observations are always pooled
(possibly together with other ones). The adaptive LR test compares the LR
statistic with the quantile of a χ2(p − �) at order 1 − α where � is the number
of levels in the result of the PAVA. Note that p − � ∈ {m − 1, · · · , p − 1}. The
nonadaptive test compares the LR statistic with the quantile of a mixture of
chi-squares with degrees of freedom ranging from m− 1, · · · , p− 1.



Simultaneous confidence intervals for ranks 2637

Appendix C: Algorithms to calculate the confidence intervals for
the ranks based on the partitioning principle

We present an algorithm to produce simultaneous confidence intervals (CIs)
for ranks based on the partitioning scheme presented in the paper and using
the likelihood ratio (LR) test. The algorithm groups the elementary hypotheses
in n levels where each level l contains all hypotheses with l − 1 inequality for
l = 1, · · · , n. Figure (1) is reproduced here as an illustration.

It is important to find a suitable way to represent or code the hypotheses
so that the generation of these codes is efficiently carried out with a statistical
package. We provide two ways of representing the hypotheses. Other possibilities
can exist and finding a simpler way to generate and keep track of the hypotheses
may improve significantly the performance of the algorithm.

When the standard deviations are the same, then according to Proposition
5, it suffices to test the correctly ordered hypotheses. Then for each unrejected
hypotheses, we apply the list of permutations (8) on the means indexes and test
them again. When the standard deviations are not the same, then according to
Proposition 6, we need to avoid testing only the incorrectly ordered hypotheses.
Since we do not know how to represent the partially correctly ordered hypotheses
efficiently, then we need to test all the elementary hypotheses keeping in mind
that for each hypothesis the LR statistic is calculated using the PAVA. Still,
for the correctly ordered and partially correctly ordered hypotheses, the LR
statistic has an explicit formula and we do not need to use the PAVA. Therefore,
a PAVA-Check procedure is needed which tests if the hypothesis is incorrectly
ordered. If so, then the hypothesis is skipped, otherwise, we test it. To go through
all the partitions, we may start by the correctly ordered hypotheses. Then, we
permute the means indexes using some π ∈ Sn and test the same hypotheses
with an additional step to check if the hypothesis is incorrectly ordered using
our PAVA-Check procedure. We have to go through all the permutations from
Sn in order to map all the elementary hypotheses. However, when the number of
means exceeds 10, it becomes computationally infeasible. Therefore, we sample
randomly a set of permutations from Sn, say 105 permutations, and then apply
them on the means indexes. As pointed out in the paper, the list of permutations
from Proposition 5 seemed in practice very efficient, therefore we can use it as
well.

In any case, testing the correctly ordered hypotheses is in the core of all
these algorithms. Therefore, we will present two algorithms to do so, and then
elaborate on them in order to include the partially correctly ordered hypotheses.

C.1. A level-by-level algorithm

In this algorithm, the idea is to use the partitioning scheme presented in figure
(1) for three centers. We start by explaining the case of the correctly ordered
hypotheses. In practice, it is not possible to code all the correctly hypotheses
prior to the testing, because this concerns keeping in hand a matrix of size
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2n−1 × c where c is the length (or the lengths) of the representation. Thus,
for “normal” computers it becomes easily impossible to generate such matrix
(or structure) as n grows. Therefore, it is necessary to be able to generate the
configurations (representations) one by one to avoid memory issues.

We propose to represent a hypothesis by keeping track of the positions of
the inequalities so that a hypothesis is made into groups of means which are
equal under that hypothesis. This is the same representation considered in the
paper. Let H : B1 < · · · < Bl. Since the hypotheses are grouped in levels where
the level number is given by the number of inequalities, then H belongs to the
(l+1)th level. This representation ofH also provides an efficient way to calculate
the LR. Indeed, since we only test hypotheses with a correct ordering w.r.t the
empirical one, the PAVA is not needed and the LR for some partition is only
a sum of averages of the blocks of equal centers and our representation tells us
directly where are the bounds of each block. Indeed, the LR is given by

LR = min
μ1,··· ,μn∈H

n∑
i=1

(yi − μi)
2

σ2
i

=

l∑
j=1

∑
i:μi∈Bj

(yi − μ̂Bj )
2

σ2
i

,

where

μ̂Bj =
1∑

k:μk∈Bj

1
σ2
k

∑
s:μs∈Bj

ys
σ2
s

.

The first level has only one hypothesis which is μ1 = · · · = μn. This hypoth-
esis is tested at the beginning of the procedure. The hypotheses from level 2 to
level n − 1 are coded according to the positions of the inequalities among the
means in the following manner. Consider first the case of 3 means A,B and C,
the representation of the correctly ordered hypotheses (excluding the 1st level),
say A < B = C, A = B < C and A < B < C, is the set

A < B = C → (0)

A = B < C → (1)

A < B < C → (0, 1)

For n ≤ 25, it is possible (on regular computer) to use function combn from the
utils package in the statistical program R in order to generate efficiently the
set of configurations for levels 2 to n − 1. For higher values of n, we need to
generate these configurations one by one in order to avoid memory issues.

In the ICRanks package, we generate the representations for any n in the
same way by considering the following function C well-known in combinatorics
as the combinatorial number system, see [26]. Consider level l + 1 where the
hypotheses have l inequality. Let (c1, · · · , cl) be a vector of natural numbers
such that c1 < · · · < cl. Define function C as follows

C(c1, · · · , cl) =
(
c1
1

)
+ · · ·+

(
cl
l

)
.

This is a one-to-one function between the set of configurations

{(c1, · · · , cl) ∈ Nk, 0 ≤ c1 < · · · < cl ≤ n− 2, }
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which represent the correctly ordered hypotheses from level number l + 1 and
the set of numbers

Sl =

{
1, · · · ,

(
n− 1

l

)}
.

In order to generate the coding, we go through the numbers from Sl. For each
number m, we calculate the inverse of function C using Algorithm 1.

Algorithm 1: An iterative algorithm to calculate C−1.

Data: Level number l and a number m between 1 and maxSl.
Result: A vector (c1, · · · , cl) such that 0 < c1 < · · · < cl < n.
Set m1 = m;
Find the maximum natural number cl such that cl!/(l!(cl − l)!) ≤ m1;
Update m1 = m1 − cl!/(l!(cl − l)!);
for i from l − 1 to 1 do

Find the maximum number ci such that ci!/(i!(ci − i)!) ≤ m1;
Update m1 = m1 − ci!/(i!(ci − i)!);

end

Algorithm 2 provides a pseudo-code of the procedure explained here above
when the standard deviations are the same. If the standard deviations are not
equal, Algorithm 3 provides the corresponding pseudo-code. In both algorithms,
the set Π refers to the list of permutations (8). The set S represents a subset of
Sn selected randomly that the user provides. For n ≤ 10, we can take S = Sn,
otherwise it becomes computationally infeasible with a normal laptop.

Appendix D: Extended simulations

D.1. The case of different standard deviations

We generate randomly 1000 vectors of means (μ1,T , · · · , μn,T ) with n = 10, 15
independently according to a Gaussian distribution N (0, τ) for τ = 1, 3 and
vectors of standard deviations (σ1, · · · , σn) according to a uniform distribution
over [0, 3]. For each couple, a vector of means and a vector of standard deviations,
we generate 1000 Gaussian samples y1, · · · , yn such that yi ∼ N (μi,T , σi). We
calculate the simultaneous coverage for α = 0.1 for each vector of means. The
result is in figure 2. When τ = 3, the number of random permutations is 106

whereas it is 103 when τ = 1. The list of permutations (8) was also used together
to permute the means indexes.

It appears that when the means are far from each other, then it becomes
difficult to find the permutations required to make the CIs conservative.

D.2. What if the normality assumption is not valid

For the unusual situations when the normality assumption is not fulfilled but
e.g. is affected by skewness in the distribution we illustrate what happens if the
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Algorithm 2: (1− α)-Simultaneous CIs when the standard deviations are
the same.
Data: y1, · · · , yn, σ. Significance level α.
Result: (1− α)-simultaneous CIs for the ranks of μ1,T , · · · , μn,T .
if the hypothesis μ1 = · · · = μn is not rejected then

Set confidence intervals to [1, n]; ∀i, ai = 1, bi = n.
else

for l from 2 to n− 1 do
m = choose(n− 1, l− 1) ;
for i from 1 to m do

Generate a hypothesis Hi,l using C−1(i);
Calculate the LR under Hi,l ;

if LR(Hi,l, y1, · · · , yn) ≤ χ2
1−α(n− l) then

Update the ranks;
for π ∈ Π do

(ỹ1, · · · , ỹn) = (yπ(1), · · · , yπ(n));

Do a PAVA-Check;
if Hi,l is (partially) correctly ordered then

Calculate the LR under Hi,l using (ỹ1, · · · , ỹn);
if LR(Hi,l, ỹ1, · · · , ỹn) ≤ χ2

1−α(n− l) then
Update the ranks;

end

end

end

end

end

end

end

true distribution of the data is the Gamma distribution with shape λ and scale
1/

√
λ with λ ∈ {1, 2, 5}. An observation yi is generated using

yi ∼ μi,T +Gamma(λ, 1/
√
λ)

The expectation of yi is μi,T +
√
λ and the standard deviation is 1. Since the

ranking problem does not change if all the means are translated by the same
fixed quantity, that is

√
λ, then we are in the same context of the paper as

described in Section 2. Note that as the shape value increases, the Gamma
distribution takes closer form to the Gaussian distribution. As in the simulations
of the paper, we generate the means μi,T ’s independently from the Gaussian
distribution N (0, τ2) for τ = 0.5, 1, 2. For each value of τ , we generate 1000
n-samples of means μT = (μ1,T , · · · , μn,T ) for n = 10.

The results of Table (3) shows that deviations from the normality assumption
has a small effect when ties are present. When there are no ties, the resulting
simultaneous CIs are still conservative.
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Algorithm 3: (1− α)-Simultaneous CIs when the standard deviations are
not the same.
Data: Sample y1, · · · , yn. Standard deviations σ1, · · · , σn. A significance level α.
Result: For each i, [ai, bi] such that μi,T ∈ [ai, bi] with joint probability greater than

1− α.
if the hypothesis μ1 = · · · = μn is not rejected then

Set confidence intervals to [1, n]; ∀i, ai = 1, bi = n.
else

for π ∈ Π ∪ S do
(ỹ1, · · · , ỹn) = (yπ(1), · · · , yπ(n));

for l from 2 to n− 1 do
m = choose(n− 1, l − 1) ;
for i from 1 to m do

Generate a hypothesis Hi,l using C−1(i);
Do a PAVA-Check;;
if Hi,l is (partially) correctly ordered then

Calculate the LR under Hi,l ;

if LR(Hi,l, ỹ1, · · · , ỹn) ≤ χ2
1−α(n− l) then

Update the ranks;
end

end

end

end

end

end

Table 3

Coverage probability and efficiency for different values of τ . Nominal simultaneous coverage
is 90%

n = 5 n = 10
Coverage Average length of CIs Coverage Average length of CIs

τ = 0, shape = 5 Tukey 0.898 0.785 0.897 0.810
Rescaled Tukey 0.898 0.784 0.895 0.809

LR 0.887 0.7822 0.929 0.813
Rescaled LR 0.875 0.774 0.907 0.811

τ = 0, shape = 2 Tukey 0.878 0.780 0.886 0.807
Rescaled Tukey 0.876 0.778 0.886 0.806

LR 0.880 0.777 0.906 0.810
Rescaled LR 0.865 0.769 0.891 0.808

τ = 0, shape = 1 Tukey 0.892 0.777 0.877 0.803
Rescaled Tukey 0.891 0.776 0.875 0.802

LR 0.879 0.773 0.887 0.807
Rescaled LR 0.869 0.767 0.865 0.805

τ = 1, shape = 5 Tukey 0.979 0.735 0.988 0.864
Rescaled Tukey 0.977 0.727 0.978 0.859

LR 0.974 0.723 0.990 0.873
Rescaled LR 0.954 0.697 0.978 0.863

τ = 1, shape = 2 Tukey 0.976 0.733 0.969 0.863
Rescaled Tukey 0.971 0.726 0.963 0.859

LR 0.968 0.719 0.971 0.873
Rescaled LR 0.950 0.697 0.960 0.863

τ = 1, shape = 1 Tukey 0.962 0.737 0.941 0.863
Rescaled Tukey 0.959 0.732 0.938 0.859

LR 0.950 0.724 0.952 0.871
Rescaled LR 0.931 0.702 0.936 0.863
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Figure 2: Simulation for the coverage of the partitioning procedure that uses the
LR as a local test when the standard deviations are not the same using vectors
of means and standard deviations randomly selected.

D.3. Example with more ties

Here is an example of 3 groups of 3 means (so that n = 9) and also 2 groups of 4
means (n = 8). We follow the same setup as in Section 7, but we only use τ = 1
(recall that we generate the true means from N (0, τ)). The results of Table (4)
show conservative confidence intervals but less than when there are no ties.

Table 4

Coverage probability and efficiency when ties are present. Nominal simultaneous coverage is
90%

Three groups n = 9 Two groups n = 8
Coverage Average

length
of CIs

Coverage Average
length
of CIs

Tukey 0.964 0.861 0.950 0.853
Rescaled Tukey 0.947 0.857 0.936 0.849

LR 0.976 0.865 0.963 0.853
Rescaled LR 0.952 0.857 0.947 0.844
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D.4. Example with estimated standard errors

In this example, we consider 2 groups of 4 means (n = 8). We follow the same
setup as in paragraph D.3, but we only use τ = 1 (recall that we generate
the true means from N (0, τ)). For each true mean, we generate m observations
randomly from the Gaussian distribution N (μi,T ,

√
m). Then, we calculate the

sample means and sample standard errors. Note that the true standard error is
1 in order to get comparable results to paragraph D.3. The results of Table (5)
show very close results to when we used the true standard error for m = 30. For
m = 3, the simultaneous coverage goes slightly below the nominal level.

Table 5

Coverage probability and efficiency when ties are present. Nominal simultaneous coverage is
90%

Three groups m = 3 Three groups m = 5 Two groups m = 30
Coverage Average

length
of CIs

Coverage Average
length
of CIs

Coverage Average
length
of CIs

Tukey 0.880 0.837 0.908 0.844 0.939 0.847
Rescaled Tukey 0.868 0.832 0.902 0.840 0.932 0.843

LR 0.898 0.836 0.928 0.845 0.955 0.848
Rescaled LR 0.857 0.824 0.902 0.834 0.936 0.838

Appendix E: Data for hotels ratings

We collected the following dataset from the website of Booking.com for a room
reservation in the city of Leiden (The Netherlands) to rent a room for one night
on the 2nd of May 2019. The query was made on the 15th of April 2019. We
restricted our search for hotels with free Wifi, free cancellation and within 1 Km
from the city center.

Table 6

Dataset of hotels ratings.

Hotel name Rating Total number 1 Star 2 Stars 3 Stars 4 Stars 5 Stars
of reviews

Ibis Leiden Centeral 8.2 2706 4 31 336 1523 812
Boutique Hotel d’Oude Mors 9.3 1033 0 1 18 253 761

Tulip Inn Leiden 8.4 1308 3 17 103 712 474
Golden Tulip Leiden 8.4 1551 5 14 131 778 619
City Hotel Rembrandt 8.1 1499 6 33 202 807 451

Hotel Mayflower 7.5 1027 8 55 224 552 186
Best Western City Hotel Leiden 7.7 2146 10 89 422 1216 405

City Resort Hotel Leiden 7.8 1695 14 55 310 861 455
Boutique Hotel Steenhof Suites 9.5 473 0 0 9 68 398
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