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Abstract
When a ranking of institutions such as medical centers or universities is
based on a numerical measure of performance provided with a standard error,
confidence intervals (CIs) should be calculated to assess the uncertainty of
these ranks. We present a novel method based on Tukey’s honest significant
difference test to construct simultaneous CIs for the true ranks. When all the
true performances are equal, the probability of coverage of our method attains
the nominal level. In case the true performance measures have no exact ties,
our method is conservative. For this situation, we propose a rescaling method
to the nominal level that results in shorter CIs while keeping control of the
simultaneous coverage. We also show that a similar rescaling can be applied
to correct a recently proposed Monte-Carlo based method, which is anticon-
servative. After rescaling, the two methods perform very similarly. However,
the rescaling of the Monte-Carlo based method is computationally much more
demanding and becomes infeasible when the number of institutions is larger
than 30–50. We discuss another recently proposed method similar to ours
based on simultaneous CIs for the true performance. We show that our method
provides uniformly shorter CIs for the same confidence level. We illustrate the
superiority of our new methods with a data analysis for travel time to work in
the United States and on rankings of 64 hospitals in the Netherlands.
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1 INTRODUCTION

Estimation of ranks is an important statistical problem
that appears in many applications in health care, edu-
cation, and social services (Goldstein and Spiegelhalter,
1996). Institutions such as hospitals and universities are
compared through league tables based on some numerical
performance measure. Since such measures are accompa-
nied by a standard error, the ranks are uncertain and CIs
for the ranks are thus crucial (Goldstein and Spiegelhalter,
1996; Marshall and Spiegelhalter, 1998). Since ranking

of an institution involves comparison with all the other
institutions, the uncertainty related to ranks may be
very high.
In applications, ranks are rarely accompanied with CIs

and, if so, these are generally pointwise. Pointwise CIs are
useful when we are interested in a single, a priori named,
institution. However, if the institution of interest is cho-
sen after seeing the data, simultaneity of CIs is crucial.
Moreover, simultaneity is also necessary to quantify the
uncertainty about which institutions are ranked best, sec-
ond best, etc. In this paper, we present amethod to produce
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simultaneous CIs with correct coverage of the true ranks at
a prespecified joint level 1 − 𝛼.
The literature includes several methods for pointwise

CIs for the ranks. We mention the parametric bootstrap
method of Goldstein and Spiegelhalter (1996), which is
widely used; seeMarshall and Spiegelhalter (1998), Gerzoff
and Williamson (2001), and Feudtner et al. (2011) among
others. It was pointed out, however, by Hall and Miller
(2009) andXie et al. (2009) that the bootstrap pointwise CIs
fail to cover the true ranks in the presence of ties or near
ties among the compared institutions. Othermethodswere
proposed based on testing pairwise differences between
institutions; see Lemmers et al. (2007), Holm (2012), and
Bie (2013). Lemmers et al. (2007) tested pairwise differ-
ences among Dutch hospitals by calculating Z-scores for
their performance measures, but they did not correct for
multiple testing and thus their CIs for ranks are pointwise
and not simultaneous. Holm (2012) and Bie (2013) also cal-
culated a Z-score, but applied Holm’s sequential algorithm
to correct formultiple comparisons on the institution level,
that is for each institution they correct for comparisons
with other institutions.
In a recent report at the US Bureau of the Census, Klein

et al. (2018) showed how to construct simultaneous CIs for
ranks based on CIs for themeans. Zhang et al. (2014) intro-
duced a method that produces simultaneous CIs for ranks
using a Monte-Carlo approach. The method was used in
recent papers such as Moss et al. (2018). The method of
Zhang et al. (2014) can be seen as a generalization of the
method proposed by Goldstein and Spiegelhalter (1996)
and can be considered as a parametric bootstrap method.
However, it is not clear why this method should have a
simultaneous coverage of at least 1 − 𝛼. Since it depends
on the method of Goldstein and Spiegelhalter (1996), we
argue that it inherits thatmethod’s lack of correct coverage
as shown by Hall and Miller (2009) and Xie et al. (2009).
We show through extensive simulations that themethod of
Zhang et al. (2014) is indeed highly anticonservative when
the performance measures are close to each other, and it
attains the nominal level only when the performancemea-
sures are quite far from each other.
We present a novel method which uses Tukey’s honest

significant difference (HSD) test (Tukey, 1953). We show
that Tukey’s HSD can be used to produce simultaneous
CIs for ranks with simultaneous coverage of at least 1 − 𝛼

and exactly 1 − 𝛼 if all true performances are equal. Our
method bear similarities to the methodology presented by
Klein et al. (2018). We show in Section 3 that our method is
more powerful than the methods proposed in Klein et al.
(2018).
Next, we focus our attention to an important and

practical situation where we can assume that the insti-
tutions performance measures are all different. In this

situation, we may have near ties but no exact ties in the
true performance. In this situation our method becomes
conservative. We show that it is then possible to adjust the
confidence level so that we reduce this conservativeness.
We show similarly that it is possible to repair the method
of Zhang et al. (2014) in order to regain control of the con-
fidence level. After rescaling, the two methods produce
similar results, but the rescaling method for Zhang et al.
(2014) becomes computationally infeasible as the number
of institutions exceeds 30–50.
The paper is organized as follows. In Section 2, we

explain the context of this paper, the notations and the
objective. In Section 3, we review Tukey’s HSD and show
that it can be used to provide simultaneous CIs for the
ranks. In Section 3, we review the Monte-Carlo method of
Zhang et al. (2014). In Section 4, we show how to rescale
the confidence level of our method and the method of
Zhang et al. (2014). Section 5 is devoted to simulation stud-
ies comparing our method with the method of Zhang et al.
(2014) with and without rescaling the coverage. Finally,
an example of travel time to work from Klein et al. (2018)
and a new example on ranking Dutch hospitals are also
used to compare our methods with the ones available from
the literature. Software for the methods presented in this
paper is available in R package ICRanks, downloadable
fromCRAN. The supplementary information provides fur-
ther details, proofs and code.

2 CONTEXT AND OBJECTIVE

Let 𝜇1, … , 𝜇𝑛 be real valued numbers which represent the
true performance of the 𝑛 institutions we want to rank,
for example the mortality rates of hospitals in our example
in Section 5.3. For each institution 𝑖, we have an observed
performance 𝑦𝑖 , which is an estimator of 𝜇𝑖 . We assume
that each institution’s estimator is based on many inde-
pendent subjects (eg, students, patients) within the insti-
tution, so that it becomes reasonable to assume that 𝑦𝑖 is
normally distributed with known standard error 𝜎𝑖 . Our
starting point, therefore, is a sample 𝑦 = (𝑦1, … , 𝑦𝑛) of 𝑛
independent observed performances, each drawn from a
Gaussian distribution

𝑦𝑖 ∼  (𝜇𝑖, 𝜎
2
𝑖
), for 𝑖 ∈ {1, … , 𝑛}, (1)

where the standard deviations 𝜎1, … , 𝜎𝑛 are known but the
means 𝜇1, … , 𝜇𝑛 are unknown.
Denote by 𝑟1, … , 𝑟𝑛 the true ranks of the means of insti-

tution 𝑖 = 1, … , 𝑛. These ranks are our target of inference,
and our objective is to build simultaneous CIs for them. Let
us first define the ranks 𝑟1, … , 𝑟𝑛, allowing for the possibil-
ity of ties.
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Definition 1 (Set-ranks). We define the lower rank 𝑙𝑖 and
the upper rank 𝑢𝑖 of mean 𝜇𝑖 by

𝑙𝑖 = 1 +
∑
𝑗≠𝑖

𝟙𝜇𝑗<𝜇𝑖 , 𝑢𝑖 = 𝑛 −
∑
𝑗≠𝑖

𝟙𝜇𝑗≥𝜇𝑖 .

We finally define the set-rank of 𝜇𝑖 as the set of natural
numbers 𝑟𝑖 = {𝑙𝑖, 𝑙𝑖 + 1, … , 𝑢𝑖} denoted here [𝑙𝑖, 𝑢𝑖].

When there are ties between themeans, we suppose that
each of the tied means possesses a set of ranks 𝑟𝑖 = [𝑙𝑖, 𝑢𝑖].
For example, suppose that we only have three means
𝜇1, 𝜇2, and 𝜇3 such that 𝜇1 = 𝜇2 < 𝜇3. Then, the set-rank
of 𝜇1 is [1, 2], which includes both ranks 1 and 2, and
the set-rank of 𝜇2 is also [1,2], whereas the rank of 𝜇3 is
[3, 3], which is simply rank 3. The rationale of the defi-
nition of the set-ranks is that in case of ties, the ranking
is arbitrary, and a small perturbation of the true perfor-
mance may produce any rank in the set of ranks. We call
the ranks induced from the observed sample 𝑦 the empir-
ical ranks. These ranks might be different from the true
ranks of the means, and since the sample is assumed to
have a continuous distribution, the empirical ranks are
all singletons.
In the second part of this paper we will avoid the set-

ranks by assuming the following.

Assumption 1. The means have no ties.
Under this assumption,we get 𝑟𝑖 = 𝑙𝑖 = 𝑢𝑖 . Thus, the set-

ranks coincidewith the usual ranking definition; the ranks
are calculated for each mean by counting down howmany
means are below it.
We aim on the basis of the sample 𝑦 to construct simul-

taneous CIs for the set-ranks of the means. In other words,
for each 𝑖 we search for a [𝐿𝑖, 𝑈𝑖] such that:

ℙ([𝑙𝑖, 𝑢𝑖] ⊆ [𝐿𝑖, 𝑈𝑖], ∀𝑖 ∈ {1, … , 𝑛}) ≥ 1 − 𝛼 (2)

for a prespecified confidence level 1 − 𝛼. It is worth noting
that the CIs here are sets in ℕ, the set of natural numbers.
Two different types of statement can be obtained from

the simultaneous CIs (2). First, for each institution the pos-
sible ranks that it might take (which is ourmain objective).
Second, for each rank (first best, second best, etc.) the list
of institutions that might attain this specific rank. In other
words, we have confidence sets for the best mean(s), sec-
ond best mean(s), etc. These confidence sets have also a
joint confidence level of at least 1 − 𝛼. Indeed, in order to
find the means that can be the best, it suffices to check for
the means whose rank CI starts at 1. In the same way, we
can look at the means whose rank CI includes rank 2 to
obtain a confidence set of the means ranked second best
and so on.

3 SIMULTANEOUS CIs FOR RANKS:
THE GENERAL CASE

We assume here that the means 𝜇1, … , 𝜇𝑛 might have ties.
We start with our main new method using Tukey’s HSD
and show the linkwith thework ofKlein et al. (2018). Then,
we compare with the method of Zhang et al. (2014).
Tukey’s pairwise comparison procedure (Tukey, 1953)

is an easy way to compare means of observations with
(assumed) Gaussian distributions especially in ANOVA
models. The procedure is usually used for providing
simultaneous confidence statements about the differences
between the means and controls the family-wise error rate
(FWER) at level𝛼.We showhow it can be used to construct
simultaneous confidence intervals (CIs) for ranks.
We consider the general case with possibly unequal 𝜎𝑖s.

Tukey’s HSD tests all null hypotheses𝐻𝑖,𝑗 ∶ 𝜇𝑖 − 𝜇𝑗 = 0 at
level 𝛼 using the rejection region

⎧⎪⎨⎪⎩
|||𝑦𝑖 − 𝑦𝑗

|||√
𝜎2
𝑖
+ 𝜎2

𝑗

> 𝑞1−𝛼

⎫⎪⎬⎪⎭
, (3)

where 𝑞1−𝛼 is the 1 − 𝛼 quantile of the distribution of the
Studentized range

max
𝑖,𝑗=1,…,𝑛

|�̃�𝑖 − �̃�𝑗|√
𝜎2
𝑖
+ 𝜎2

𝑗

, (4)

and �̃�1, … , �̃�𝑛 are independent and �̃�𝑖 ∼  (0, 𝜎2
𝑖
).

The following theorem states the main result of our
paper. We show how to construct simultaneous CIs for the
ranks using Tukey’s HSD, allowing the possibility of ties.

Theorem 1. Let

𝐿𝑖 =1 + #
{
𝑗 ∶ 𝑦𝑖 − 𝑦𝑗 −

√
𝜎2
𝑖
+ 𝜎2

𝑗
𝑞1−𝛼 > 0

}
𝑈𝑖 =𝑛 − #

{
𝑗 ∶ 𝑦𝑖 − 𝑦𝑗 +

√
𝜎2
𝑖
+ 𝜎2

𝑗
𝑞1−𝛼 < 0

}
.

The intervals [𝐿𝑖, 𝑈𝑖] for 𝑖 = 1, … , 𝑛 are (1 − 𝛼)-joint CIs for
the ranks of means 𝜇1, … , 𝜇𝑛.

Klein et al. (2018) also proposed to construct simultane-
ous CIs for ranks using Theorem 1 but started from simul-
taneousCIs for themeans and not the pairwise differences.
It is more efficient to look at pairwise differences directly
as we do in Theorem 1. The optimality of Tukey’s HSD
(Hochberg and Tamhane, 1987, p. 81) allows our procedure
to be more powerful. We prove this for the equal 𝜎 case in
the following proposition.
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Proposition 3.1. Let [𝑦𝑖 − 𝜎𝑧𝛼, 𝑦𝑖 + 𝜎𝑧𝛼] be simultaneous
CIs for 𝜇𝑖 for 𝑖 = 1, … , 𝑛 with joint confidence level 1 − 𝛼,
then the simultaneous CIs for the ranks using the method
of Klein et al. (2018) based on those intervals are uniformly
longer than the CIs [𝐿𝑖, 𝑈𝑖] defined in Theorem 1.

When the standard deviations are not equal, we do not
have a proof of the analogous result. Still, Tukey’s HSD
is a preferred procedure for simultaneous CIs for the dif-
ferences and still has some optimality properties when
the standard deviations are not equal, see, for example,
Hochberg and Tamhane (1987, p. 81) and Rafter et al.
(2002). We will see in Section 5.2 how our Tukey-based CIs
for ranks are uniformly shorter than those obtained using
the method of Klein et al. (2018).
Theorem 1 states that the Tukey-based method controls

the 𝛼-level, but allows that it may be conservative in gen-
eral. We show in the following result that when all the
means are equal, it is exact.

Proposition 3.2. Under the full null, that is when 𝜇1 =

⋯ = 𝜇𝑛, the simultaneous coverage of the CIs [𝐿𝑖, 𝑈𝑖] for
𝑖 = 1… , 𝑛 produced by Tukey’s HSD is exactly 1 − 𝛼.

This result demonstrates that, if it cannot be excluded
that the true means are equal, there is no room for
improvement of the procedure by increasing the 𝛼-level.
In other scenarios, such as under Assumption 1, we may
improve upon the resulting CIs by rescaling 𝛼, as we shall
see in the next section.
Zhang et al. (2014) were the first to discuss and propose a

method for simultaneous CIs for ranks. While our method
based on Tukey’s HSD has a proven simultaneous cover-
age proven in Theorem 1, the method of Zhang et al. (2014)
fails to achieve nominal coverage. This is mainly because
the method of Zhang et al. (2014) is based on the method
of Marshall and Spiegelhalter (1998), seeWeb Appendix A.
In the settings where there are ties or near ties (Hall and
Miller, 2009; Xie et al., 2009) showed that confidence inter-
vals for ranks based on bootstrap, such as the method of
Marshall and Spiegelhalter (1998), have coverage less than
the nominal level. In the next sections, we will investi-
gate this in more detail. We will show that the simultane-
ous coverage of the resulting CIs reaches the nominal level
1 − 𝛼 onlywhen the differences among themeans are large
enough. The true coverage depends not only on the range
of values of the means, but also on 𝑛 and on the way the
means are dispersed in their range. Otherwise, themethod
is anti-conservative and the simultaneous coverage could
drop to very low levels. We see this phenomenon in simu-
lations (see Section 5) both with and without Assumption
1. To remedy this problem, we will propose a method to
readjust the simultaneous coverage in Section 4.

4 SIMULTANEOUS CIs FOR RANKS
WHEN TIES ARE NOT ALLOWED

It might be reasonable in the context of ranking to assume
Assumption 1, hence the means 𝜇1, … , 𝜇𝑛 are all different,
and that there are in reality no ties. Under Assumption
1, the intervals (set-ranks) that should be covered include
only one element, so covering them is relatively easy for
Tukey’s method. We show in this section that power may
be gained by adjusting the 𝛼-level of that method. We first
start by treating the case when the standard deviations are
the same, that is 𝜎1 = ⋯ = 𝜎𝑛 = 𝜎. We move then to the
general case of different standard deviations. Finally, we
argue that a similar approach may be used to repair the
anticonservativeness of the method of Zhang et al. (2014).
When there are no ties, the configuration of Propo-

sition 3.2 is excluded, and the Tukey-based approach
becomes more conservative. Moreover, as the differences
among the means become greater, we found empirically
that the joint coverage probability increases. We illustrate
this in the left part of Figure 1 by considering vectors of
means of the form 𝜀𝜇where 𝜀 ∈ (−1, 1) and 𝜇 = (1, … , 10)𝑡

with dimension 10. The common standard deviation is set
to 1. When 𝜀 = 0, we assume arbitrary ranks for themeans,
say 1, … , 10, in order to conform with the assumption that
there are no ties. In otherwords, the case 𝜀 = 0 corresponds
to a situation where the means are unequal but arbitrary
small, say of order 10−100, that we cannot distinguish from
0 by machine precision.
In Figure 1, the coverage probability of the Tukey-based

method reaches a minimum when 𝜀 = 0. The worst case
that corresponds to the minimum simultaneous coverage
at level 1 − 𝛼 happens when all the means are arbitrarily
small while not having ties. The following fact was verified
empirically. For any 𝜇 ≠ 0

ℙ𝜇(∀𝑖, 𝑟𝑖 ∈ [𝐿𝑖, 𝑈𝑖]) ≥ ℙ𝜇=0(∀𝑖, 𝑖 ∈ [𝐿𝑖, 𝑈𝑖]). (5)

Note that when 𝜇 = 0, we attribute the ranks 1, … , 𝑛 to the
coordinates of 𝜇. This worst-case configuration is known
in hypothesis testing, for example, when we test if the vec-
tor of means has an ascending order (Robertson and Weg-
man, 1978). The type I error is the highest when all the
means are equal. In the case of the Kramer-Tukey pro-
cedure (Tukey, 1953; Kramer, 1956), Hayter (1984) showed
that it is conservative and has a worst-case configuration
when all the standard deviations are the same. In these
procedures, the worst-case configuration corresponds to a
type I error exactly equal to 𝛼. In the Tukey-based method,
the worst-case configuration corresponds to a type I error
equal to 𝛼 based on Proposition 3.2, but much less than 𝛼

under Assumption 1. The gap between the true and nom-
inal levels will be exploited in order to gain more power.
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F IGURE 1 The simultaneous coverage of the Tukey-based method at vectors of true means of the form 𝜀𝜇 with 𝜀 ∈ (−1, 1)

Note: The nominal level is 1 − 𝛼 = 0.9. The left figure corresponds to the actual coverage 𝛽𝜇(𝛼) at joint confidence level 1 − 𝛼, whereas the
right one corresponds to the actual coverage 𝛽𝜇(�̃�) after rescaling the worst case to the nominal level. The coverage curve for the method of
Zhang et al. (2014) is also illustrated before and after rescaling (Section 4)

TABLE 1 Values of �̃� necessary to rescale the coverage at the worst case back to 1 − 𝛼

Rescaled coverage
𝟗𝟓% 𝟗𝟎% 𝟖𝟎%

Tukey Zhang Tukey Zhang Tukey Zhang
𝑛 = 10 0.158 6.5 × 10−4 0.285 0.0015 0.467 0.006
𝑛 = 30 0.303 9.8 × 10−6 0.491 4.6 × 10−5 0.693 4 × 10−5

𝑛 = 50 0.418 < 5 × 10−6 0.574 7 × 10−6 0.778 3.1 × 10−5

𝑛 = 100 0.545 < 5 × 10−6 0.725 < 5 × 10−6 0.893 5 × 10−6

We propose to rescale our method so that the Tukey-based
method delivers a simultaneous coverage of at least 1 − 𝛼

but in a less conservative way (a scaling down). Due to (5),
the problem reduces to rescaling the worst case. We look
for �̃� ∈ (𝛼, 1) such that

ℙ𝜇=0(∀𝑖, 𝑖 ∈ [𝐿𝑖(�̃�), 𝑈𝑖(�̃�)]) = 1 − 𝛼. (6)

We have now, for any 𝜇 ≠ 0,

ℙ𝜇(∀𝑖, 𝑟𝑖 ∈ [𝐿𝑖(�̃�), 𝑈𝑖(�̃�)]) ≥ ℙ𝜇=0(∀𝑖, 𝑖 ∈ [𝐿𝑖(�̃�), 𝑈𝑖(�̃�)])

= 1 − 𝛼.

If we do so, the simultaneous coverage of the Tukey-based
method will be equal to the nominal level 1 − 𝛼 near zero
and higher than 1 − 𝛼 elsewhere as illustrated in the right
part of Figure 1. Since the coverage probability increases
as 𝛼 decreases, then using �̃� the joint coverage at any 𝜇 is
lower than the joint coverage using 𝛼. Moreover, Equation
(6) has a unique solution in the interval (𝛼, 1).

Solving Equation (6) can be performed using any math-
ematical program, for example using function uniroot
available in the statistical program R. Table 1 shows the
rescaled significance level �̃� necessary to reach an actual
coverage of 80%, 90%, and 95% when the number of
means increases from 10 to 100. Although the rescaled
significance level moves toward 1 for the Tukey-based
method, the resulting CIs retain simultaneous coverage
of at least 1 − 𝛼. Therefore, they will be shorter than
the ones we obtain using 𝛼.Note that as 𝑛 increases, the
rescaled level increases because the actual simultaneous
coverage increases as illustrated through simulations
in Web Appendix D. When the standard deviations are
not the same, the worst-case configuration still happens
when the means are arbitrarily close to each other, but
the order of the 𝜎s has an influence on it. We propose
to reorder the standard deviations in the following
manner:

𝜎1 ≤ ⋯ ≤ 𝜎𝑛∕2, 𝜎𝑛∕2 ≥ ⋯ ≥ 𝜎𝑛, (7)
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The idea is that the middle (empirically) ranked means
tend to have large CIs for their ranks whereas the lowest
and highest (empirically) ranked means tend to have
small CIs. In the Web Appendix A, we show through
simulations that our chosen configuration, while not the
worst case, is indeed very close to the worst case.
We observed a similar empirical result to (5) for

the method of Zhang et al. (2014); see Figure 1. However,
the problemwith this method is that it is, in contrast to the
Tukey-based method, very anticonservative. Therefore,
we will readjust the significance level in order to regain
control of the joint confidence level at 1 − 𝛼. Therefore, let
[𝐿𝑍

1
, 𝑈𝑍

1
], … , [𝐿𝑍𝑛 ,𝑈

𝑍
𝑛 ] be the simultaneous CIs produced

by the method of Zhang et al. (2014) at level 1 − 𝛼. We
need to find an �̃� such that

ℙ𝜇=0

(
∀𝑖, 𝑖 ∈ [𝐿𝑍

𝑖
(�̃�), 𝑈𝑍

𝑖
(�̃�)]

)
− (1 − 𝛼) = 0,

which can also be done using function uniroot fromR.We
then get the rescaled coverage in the right part of Figure 1
and the corresponding �̃� in Table 1. The table shows that in
order to use the method of Zhang et al. (2014) and ensure
not to be anticonservative, we need to use very small values
of the significance level. However, as �̃� becomes smaller
we need to increase the number of Monte-Carlo samples
𝐾 required to estimate the joint distribution of the ranks as
mentioned by Zhang et al. (2014). For example, when 𝑛 =

50 we need at least 𝐾 = 106 𝑛-samples, and thus rescaling
the method of Zhang et al. (2014) becomes quickly infea-
sible for higher number of means so that the resulting CIs
are not ensured to have the desired coverage of 1 − 𝛼.

5 SIMULATION STUDY AND REAL
DATA ANALYSIS

In this section, we provide several examples (real and
simulated) to demonstrate the CIs produced using our
approaches from Sections 3 and 4. We also compare the
coverage and the efficiency of the CIs produced by the
method proposed by Zhang et al. (2014) and Klein et al.
(2018) to the ones obtained by our method in different sce-
narios. The efficiency is calculated as 1 − �̂�𝑛 where �̂�𝑛 is
called the (estimated) rankability, which is equal to the
average lengths of the CIs

�̂�𝑛(𝛼) = 1 −
1

𝑛(𝑛 − 1)

𝑛∑
𝑖=1

(𝑈𝑖 − 𝐿𝑖). (8)

Web Appendix C provides further discussion on this mea-
sure and the idea behind it. In Web Appendix A, we also
provide further simulations that shows that even if the

distribution of the data is not Gaussian, our methods are
still robust.
The analysis is done using the statistical program R,

and the code of the functions is available in the R pack-
age ICRanks, which can be downloaded from the CRAN
repository. The R code for the method of Zhang et al.
(2014) is provided in the supplementary materials (see also
Web Appendix E). We note that the running time for our
approaches never exceeded 3 seconds using a standard lap-
top.

5.1 The case of a common standard
deviation

The simulation setup is the following. We aim to estimate
the average simultaneous coverage of the Monte-Carlo
method of Zhang et al. (2014) and the Tukey-basedmethod.
To do so, we generate the means 𝜇𝑖s independently from
the Gaussian distribution (0, 𝜏2) for 𝜏 = 0.5, 1, 2, so that
Assumption 1 holds with probability 1. For each value of
𝜏, we generate 1000 𝑛-samples of means 𝜇 = (𝜇1, … , 𝜇𝑛)

for 𝑛 = 10, 30, and 50. Then, a Gaussian vector 𝑦 is gener-
ated from themultivariate Gaussian distribution (𝜇, 𝐼𝑛).
The simultaneous coverage based on these samples is esti-
mated. The rescaled values of 𝛼 for both methods have
already been calculated in Table 1. We provide a table of
the estimated coverage before and after rescaling the sig-
nificance level so that the actual coverage at the worst case
becomes 1 − 𝛼 for 𝛼 = 0.1. We calculate also the average
1 − �̂�𝑛(𝛼), where �̂�𝑛(𝛼) is the rankability measure (8). The
results are provided in Table 2.
We conclude from the table the following points.

(1) The method of Zhang et al. (2014) clearly provides
shorter CIs for ranks. However, this comes at the cost
of an unacceptably low simultaneous coverage.

(2) The simultaneous coverage of the method of Zhang
et al. (2014) increases as the range ofmeans increases at
a fixed 𝑛. On the other hand, it decreases as 𝑛 increases
when the range of the means is held fixed.

(3) In average, the Tukey-based method seems to produce
shorter CIs than the method of Zhang et al. (2014)
when they are both rescaled, but this difference is not
statistically significant.

(4) Reducing the conservativeness of the Tukey-based
method is always possible since the rescaled 𝛼 is in the
interval (𝛼, 1).

(5) Repairing the anticonservativeness of the method of
Zhang et al. (2014) is only possible in practice for 𝑛 ≤

50 since the rescaled 𝛼 becomes too close to 0 in that
case.
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TABLE 2 Coverage probability and efficiency when 𝜏 ∈ {0.5, 1, 2} and 𝛼 = 0.1 before and after rescaling the worst case

Coverage 𝟏 − �̂�𝒏(𝜶)

Not rescaled Rescaled Not rescaled Rescaled
Tukey Zhang Tukey Zhang Tukey Zhang Tukey Zhang

𝜏 = 0.5

𝑛 = 10 0.998 0.468 0.961 0.976 0.990 0.789 0.971 0.977
𝑛 = 30 1.000 0.027 0.978 0.987 0.998 0.740 0.990 0.991
𝑛 = 50 0.997 0.000 0.976 0.984 0.999 0.726 0.994 0.995
𝜏 = 1

𝑛 = 10 0.996 0.603 0.972 0.994 0.959 0.698 0.916 0.935
𝑛 = 30 1.000 0.088 0.993 0.996 0.987 0.651 0.957 0.967
𝑛 = 50 0.999 0.016 0.996 0.998 0.992 0.640 0.970 0.976
𝜏 = 2

𝑛 = 10 0.997 0.814 0.989 0.997 0.811 0.529 0.734 0.788
𝑛 = 30 0.998 0.262 0.988 0.996 0.888 0.479 0.802 0.844
𝑛 = 50 1.000 0.065 0.997 1.000 0.911 0.468 0.831 0.867

5.2 Travel time to work case study: A
case of different standard deviations

We use a dataset collected by the American Community
Survey for the average time to travel to work in 51 states in
the United States. The data are available from Klein et al.
(2018) and they apply their new method to obtain simulta-
neous CIs for the ranks of the 51 states. We use it to illus-
trate our method based on Tukey’s HSD and to compare it
with the method proposed in Klein et al. (2018) using the
Sidàk correction 1 − (1 − 𝛼)1∕𝑛 that gives the best result in
their report. The full comparison is in theWebAppendixD,
andwe only cite the results of four states. The CIs obtained
by our Tukey-based procedure are shorter than the ones
obtained by the method of Klein et al. (2018) for 28 states.
The ones obtained by the rescaled Tukey procedure are bet-
ter for 45 states.

5.3 Ranking hospitals in the
Netherlands: A case of different standard
deviations

We studied a dataset for Dutch hospitals concerning
abdominal aneurysms surgery. The study included 9489
patients operated at 64 hospitals in the Netherlands at
dates mostly between the years 2012 and 2016. The num-
ber of patients per hospital ranged from 3 to 358 with an
average of 150 patients per hospital. The dataset included
the following variables.

∙ The hospital ID where the patient was treated.
∙ The date of surgery.
∙ The context of surgery: elective, urgent, emergency.

∙ The surgical procedure: “Endovascular,” “Endovascu-
lar converted,” and “Open.” “Endovascular” means the
patient had a minimal invasive procedure through the
femoral artery in the groin. “Endovascular converted”
means the surgeons first tried a minimal invasive pro-
cedure through the femoral artery in the groin, but then
realized they had to do an open surgery.

∙ A complication within 30 days (yes or no).
∙ The mortality within 30 days (yes or no).
∙ VpPOSSUM: a numerical score that summarizes the
preoperative state of the patient.

In order to conform to the normality assumption in
our model, we excluded hospitals with small number of
patients. The hospital effect is then estimated based on
enough samples to assume an approximate Gaussian dis-
tribution. This left us with 61 hospitals and each one of
them had at least 54 patients. We compared these hospi-
tals according to two kinds of measures, a performance
measure which is the complication within 30 days and a
process measure which is the surgical procedure. Differ-
ences among hospitals based on the complication within
30 days are not usually expected to be huge. However, hos-
pitals may be quite different in the choice of the type of
surgery because the “Endovascular” type is rather new to
surgeons so that the choice of surgery will depend on what
the surgeon is most practiced at. Therefore, we can expect
to obtain huge differences among the hospitals.
We corrected for case-mix effect with a fixed effect logis-

tic regressionmodel using the VpPOSSUM variable and with
fixed effects for the hospitals. To make a fair comparison
between the hospitals, it is important to adjust for the pre-
operative state of the patients, that is the so-called “case
mix.” We use the clinical measure V(p)-POSSUM, which
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F IGURE 2 Forest plots for the hospitals effect after case-mix correction based on the complication or the surgical procedure

is specifically developed for patients undergoing abdom-
inal aortic aneurysm surgery; see Prytherch et al. (2001).
We do stress that our ranking serves as an illustration of
the method, and in any real application one should study
the case-mix adjustment in more detail. Here, we model
the probability 𝑝𝑖,𝑗 that patient 𝑗 from hospital 𝑖 gets an
open surgery by

log

(
𝑝𝑖,𝑗

1 − 𝑝𝑖,𝑗

)
= 𝛼𝑖id𝑖 + 𝛽𝑖,𝑗VpPOSSUM𝑖,𝑗 .

The measures are then the estimates of the hospital fixed
effect 𝛼𝑖 accompanied by its standard error. The resulting
scores based on the complication seems to have a few dif-
ferences especially between the two extremities; see the left
part of Figure 2. We also fit a random effect mixed model
to the hospital effect using function rma from package
metafor (Viechtbauer, 2010) and estimated the variance of
the random effects using the Sidiki-Jonkman method and
tested for heterogeneity among the hospitals.We found a p-
value of 0.09 which was in-line with the result of the forest
plot that the overall differences do not seem substantial.
By correcting for case-mix effect similarly to the compli-

cation we obtained the right part of Figure 2. One of the
hospitals had no patients operated with an open surgery,
therefore, we added to all the hospitals a row of data with
a virtual patient who had an open surgery and with a value

of VpPOSSUM equal to the average in the corresponding
hospital. The resulting scores showed clearly more differ-
ences than the ones obtained using the complication with
smaller standard deviation. When we tested for hetero-
geneity among the hospitals, we got a P-value lower than
.001, which also supports the large differences seen in the
forest plot (Figure 2).
We calculated simultaneous CIs for the ranks of these

hospitals. We started with the complication. We calculated
the rescaled significance level at the worst-case config-
uration, that is, we considered a null vector of means
and the vector of standard deviations, obtained from the
data, ordered according to the worst configuration we
found in Section 4, namely configuration (7). We used
the first 10 hospitals, 30 hospitals, and finally all the
hospitals and looked at how the rescaled significance level
changed.
In order to apply the Monte-Carlo method of Zhang

et al. (2014) and ensure that the confidence level was
at least 90%, we needed to use a significance level of
.0003 when taking the first 10 hospitals. We then needed
a rescaled significance level below 5 × 10−6 for more
than 30 hospitals. Thus, it was not possible to rescale
the simultaneous coverage of the method of Zhang et al.
(2014) on the full dataset to 90%. Therefore, we only show
the results for the Tukey-based method. For the latter, the
rescaled significance level is 0.583 on the full dataset.
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F IGURE 3 Simultaneous CIs for the ranks of 61 hospitals in
the Netherlands
Note: Data are corrected for case-mix effect.

The simultaneous CIs for the ranks of the hospitals
based on the complication at the joint level 90% are illus-
trated in the Web Appendix D. The CIs cover almost the
whole range of ranks, and there are barely any differences
among the hospitals according to the complication. The
rankability is 0.098 for the Tukey-based method without
rescaling, and is 0.186 after rescaling. Simultaneous CIs for
the ranks of the hospitals based on the type of surgery at
joint level 90% are illustrated in Figure 3 with a rankability
of 0.240 for Tukey’s HSD. Rescaling the significance level
clearly improves the results of the Tukey-based CIs. The
rescaled significance level is �̃� = 0.607. The new ranka-
bility is 0.358. Here again, we could not apply the method
of Zhang et al. (2014) because the number of hospitals
was too large. The simultaneous CIs for the ranks using
the method of Klein et al. (2018) are larger than the ones
obtained using our Tukey-based procedures. The full list
of resulting CIs is provided in the Web Appendix D.

6 DISCUSSION

Wepresented a novelmethod to produce simultaneous CIs
for ranks based on Tukey’s HSD and proposed a practi-
cal improvement under Assumption 1 that there are no
ties among the means. We showed through simulations
that the simultaneous confidence level of the method of
Zhang et al. (2014) goes below the nominal level unless the
means are very far from each other. We proposed a solu-
tion to fix this problem by rescaling the confidence level.
Surprisingly, after rescaling, the results of the Tukey-based
method and the method of Zhang et al. (2014) seem to be
almost the same and the differences are not significant.We
also compared our method to a similar method proposed
by Klein et al. (2018) and showed that our method provides
uniformly shorter CIs for ranks.

By providing valid methods for simultaneous CIs for
ranks, practitioners may look at all the institutions
together instead of only looking at a specific one, and they
obtain valid CIs chosen on the basis of the data such as
the one with the worst empirical rank. Simultaneity also
provides a way to state which of the institutions could (or
could not) be ranked first best, second best, and so one.
The data analysis of two real datasets show that although

the league tables tend to show a ranking, this ranking is
not really reflected in the CIs for the ranks showing again
that the rank of an institution is one of the most difficult
quantities to estimate (Spiegelhalter, 2005).
Ourmethods are shown inWebAppendix A to be robust

against deviations from the normality assumption. Devi-
ations from the independence assumption is not studied
here, but further research could benefit from the paper of
Seco et al. (2001) that studies this in Tukey’s HSD. Another
limitation of our approach is that the proof of the rescaled
methods is based only on simulations. Therefore, a more
solid proof is needed.
For a different objective, using Dunnet’s test, it is possi-

ble to look for the rank of only one prespecified institution
that we are interested in, see also Finner and Strassburger
(2007).
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