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Symbolic execution formally explained
Frank S. de Boer1,2 and Marcello Bonsangue2
1Centrum Wiskunde and Informatica (CWI), Leiden, The Netherlands
2Leiden Institute Of Advanced Computer Science (LIACS), Leiden University, Leiden, The Netherlands

Abstract. In this paper, we provide a formal explanation of symbolic execution in terms of a symbolic transition
system and prove its correctness and completeness with respect to an operational semantics which models the
execution on concrete values.We first introduce a formalmodel for a basic programming languagewith a statically
fixed number of programming variables. This model is extended to a programming language with recursive
procedures which are called by a call-by-value parameter mechanism. Finally, we present a more general formal
framework for proving the soundness and completeness of the symbolic execution of a basic object-oriented
language which features dynamically allocated variables.
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1. Introduction

Symbolic execution [Kin76] plays a crucial role inmodern testing techniques, debugging, and automated program
analysis. In particular, it is used for generating test cases [AAGR14, BCD+18]. Intuitively, its success is mainly
due because one symbolic execution abstracts away a possibly infinite set of concrete executions, all having in
common a similar execution path.

Although symbolic execution techniques have improved enormously in the last few years, not much effort has
been spent on its formal justification. In fact, the symbolic execution community has concentrated most of the
effort on effectiveness (improvement in speed-up) and significance (improvement in code coverage) and payed
little attention to correctness so far [BCD+18].

Further, there exists a plethora of different techniques for one of the major problems in symbolic execution,
namely the presence of dynamically allocated program variables, e.g., describing arrays and (object-oriented)
pointer structures (“heaps”). For example, in [XMSN05] a heap is modeled as a graph, with nodes drawn from
a set of objects and updated lazily, whereas [BDP15] introduces a constraint language for the specification of
invariant properties of heap structures. In [DLR06] the symbolic state is extended with a heap configuration used
to maintain objects which are initialized only when they are first accessed during execution. In the presence of
aliasing, the uncertainty on the possible values of a symbolic pointer is treated either by forking the symbolic
state or refining the generated path condition into several ones [TS14]. In [KC19] the expensive forking is avoided
by using a segmented memory model. Powerful symbolic execution tools [CDE08, CGP+08, EGL09] handling
arrays exploit various code pre-processing techniques, though formal correctness of the theory behind these tools
is acknowledged as a potential problem that might limit the validity of the internal engine, and is validated only
experimentally by testing [PMZC17]. The KeY theorem prover [ABB+16] supports symbolic execution of Java
programs which is defined in terms of the underlying dynamic logic and which uses an explicit representation of
the heap. In all of the above work no explicit formal account of the underlying model of the symbolic execution,
and its correctness, is presented.
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The main contribution of this paper is a formal explanation of symbolic execution in terms of a symbolic
transition system and a general definition of its correctness and completeness with respect to an operational
semantics which models the actual execution on concrete values. It extends the work presented in [dBB19] first of
all by detailed proofs of correctness and completeness. It further describes two different approaches to symbolic
execution, focusing on the generation of so-called path conditions. These are symbolic conditions on the initial
states which ensure the concrete execution of the program along a given path, i.e., a particular “flow” of control
described by the program.

In this paper, following [dBB19],we first formalize the standard approach to symbolic executionwhich consists
of generating a path condition on-the-fly bymaintaining during the symbolic execution a symbolic representation
of the concrete program state, i.e., the assignment of values to program variables. This approach gives rise to what
is usually called forward symbolic execution.

In this paper, we further introduce a new, more fundamental approach to the symbolic generation of path
conditions. This approach is based on the application of a weakest precondition calculus on symbolic execution
traces which are generated by a static unfolding of the program. We describe this new approach, which we claim
is applicable to any programming language, in terms of a basic object-oriented language.

In [dBB19] we briefly sketched how to extend the on-the-fly generation of a path condition to object-oriented
languages. The forward symbolic execution of object-oriented programs however is complicated by the symbolic
description of the concrete program state in terms of the unbounded number of heap (or navigation) expressions
of the programming language. This requires a complicated treatment of aliasing between these expressions in the
symbolic description of heap assignments. We show that this new approach overcomes the above complications
of the standard forward symbolic execution of object-oriented languages.

In [SAB10] a forward symbolic executionmodel is introduced as an extension of the operational semantics of a
low-level assembly like languagewhich adds to the configuration the accumulated path condition. The operational
semantics itself is extended by the inclusion of symbolic values, that is, partially evaluated expressions, in the set of
concrete values. In [SAB10] no formal justification of this hybrid approach is given, in fact, this hybrid approach
does not allow for a formal statement of a (simulation) relation between the concrete and the symbolic semantics.
The only other approach to a formalmodeling and justification of symbolic execution, we are aware of, is thework
presented in [LRA17]. A major difference with our approach is that in [LRA17] symbolic execution is defined in
terms of a general logic (called “Reachability Logic”) for the description of transition systems which abstracts
from the specific characteristics of the programming language. A symbolic execution then consists basically of a
sequence of logical specifications of the consecutive transitions. On the other hand, a model of the logic defines
a concrete transition system. Thus correctness basically follows from the semantics of the logic. In our approach
we both model symbolic execution and the concrete semantics (of any language) independently as transition
systems. However, in both cases the transitions are directly defined in terms of the program to be executed. This
allows to address the specific characteristics of the programming language (like dynamically allocated variables)
still in a general manner. In [LRA17], however, these specific characteristics (like arrays) need to be imported in
the general framework by corresponding logical theories which require an additional justification.

Detailed plan of the paper. InSection 2we introduce a formalmodel of symbolic execution for abasic programming
language with a statically fixed number of programming variables. A configuration of the symbolic transition
system consists of the program statement to be executed, a substitution, and a path condition. Correctness then
states that for every reachable symbolic configuration and state which satisfies the path condition, there exists a
corresponding concrete execution. Conversely, completeness states that for every concrete execution there exists
a corresponding symbolic configuration such that the initial state of the concrete execution satisfies the path
condition and its final state can be obtained as a composition of the initial state and the generated substitution.
In Subsection 2.1 we describe an extension of the basic theory with arrays symbolically modeled as mathematical
functions.

In Section 3, we extend the basic theory of symbolic execution to a programming language with recursive
procedures which are called by a call-by-value parameter mechanism. This extension requires a formal treatment
of local variables stored on the stack of procedure calls.

In Section 4 we introduce a different, andmore fundamental, approach to symbolic execution and its applica-
tion to a basic object-oriented language. We conclude this section with a brief discussion of how to symbolically
execute this language in the on-the-fly generation of path conditions, using the symbolic interpretation of fields
as arrays.
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In the final Section 5 we conclude with a brief discussion how multi-threading, and concurrent objects can
be treated, showing the generality of our theory of symbolic execution.

2. Basic symbolic execution

We assume a set of Var of program variables x , y, u, . . ., and a set Ops of operations op, . . . . We abstract from
typing information, but we assume Ops includes standard Boolean operators. The set Expr of programming
expressions e is defined by the following grammar.

e ::� x | op(e1, . . . , en )
where x ∈ Var and op ∈ Ops. Expressions e consist of program variables x and operators op applied to
expressions (as a special case, we include values v as nullary operators).

Statements S of the basic programming language are then defined by the grammar:

S ::� x :� e assignment
| S ; S sequential composition
| if b {S1}{S2} choice
| while b {S } iteration

This basic language thus consists of (side-effect free) assignments x :� e, and the usual control structures of
sequential composition, choice, and iteration. In the latter two constructs b denotes a Boolean expression. We
assume associativity of the sequential composition operator, and use the “empty” statement ε, e.g., x :� x , which
acts as the neutral element with respect to sequential composition. It will be used to denote termination. As a
consequence, every statement is equivalent to a statement of the form A; S , where A is either an assignment,
a choice or an iteration construct. Finally, we work only with programs that are well-typed, so operators are
recursively applied to the correct number of correctly typed sub-expressions.

A substitution σ is a function Var → Expr which assigns to each variable an expression. By eσ we denote the
application of the substitution σ to the expression e, defined inductively by

xσ � σ (x )
op(e1, . . . , en )σ � op(e1σ, . . . , enσ )

A symbolic configuration is a triple 〈S , σ, φ〉 where S denotes the statement to be executed, σ denotes the
current substitution, and the Boolean condition φ denotes the path condition. Next we describe a transition
system for the symbolic execution of our basic programming language defined above.
Symbolic assignment

• 〈x :� e; S , σ, φ〉 → 〈S , σ [x :� eσ ], φ〉
where σ [x :� e] is the update of a substitution defined by σ [x :� e](y) � σ (y) if x and y are syntactically distinct
variables, and σ [x :� e](x ) � e otherwise.
Symbolic choice

• 〈if b {S1}{S2}; S , σ, φ〉 → 〈S1; S , σ, φ ∧ bσ 〉
• 〈if b {S1}{S2}; S , σ, φ〉 → 〈S2; S , σ, φ ∧ ¬bσ 〉

Symbolic iteration

• 〈while b {S }; S ′, σ, φ〉 → 〈S ; while b {S }; S ′, σ, φ ∧ bσ 〉
• 〈while b {S }; S ′, σ, φ〉 → 〈S ′, σ, φ ∧ ¬bσ 〉
We illustrate the symbolic semantics by the following simple example of the symbolic execution of a while

statement.
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We formalize and prove correctness with respect to a concrete semantics. A valuation V is a function Var →
Val, where Val is a set of values (including the Boolean values true and false). By V (e) we denote the value of the
expression e with respect to the valuation V , defined inductively by V (op(e1, . . . , en )) � op(V (e1), . . . ,V (en ))
where op : Valn → Val denotes the interpretation of the operation op as provided by the implicitly assumed
underlying model. For technical convenience we assume that the interpretation of the operations are total func-
tions, thus avoiding errors as generated by division by zero, e.g., we stipulate that x div 0 � 0 (using the infix
notation). A valuation obtained as a compositionV ◦σ of a valuationV and a substitution σ is defined as usual:
(V ◦σ )(x ) � V (σ (x )). In the sequel we omit the parentheses and writeV ◦σ (e) for the application of a valuation
V ◦ σ to the expression e (as defined above). We have the following basic substitution lemma which states that
evaluating an expression e in a composition V ◦ σ , as defined above, gives the same result as evaluating in V the
expression eσ which results from first applying the substitution.

Lemma 2.1 (Substitution). V ◦ σ (e) � V (eσ ) .

Proof The proof of the lemma proceeds by induction on e. We have the following main case:

V ◦ σ (op(e1, . . . , en )) � op(V ◦ σ (e1), . . . ,V ◦ σ (en )) (semantics expressions)
� op(V (e1σ ), . . . ,V ((enσ )) (induction hypothesis)
� V (op(e1σ, . . . , enσ )) (semantics expressions)
� V (op(e1, . . . , en )σ ) (substitution application)

�

The concrete semantics of our basic programming language is defined in terms of transitions 〈S ,V 〉 →
〈S ′,V ′〉. The definition of this transition system is standard:

Concrete assignment

• 〈x :� e; S ,V 〉 → 〈S ,V [x :� V (e)]〉
where the valuation V [x :� v ] denotes the state update. Such a valuation is defined by V [x :� v ](y) � V (y) if x
and y are syntactically distinct variables, andV [x :� v ](x ) � v otherwise. Note that because assignments x :� e
are assumed side-effect free, the valuation V [x :� V (e)] affects only the value of the variable x . In other words,
we can define the semantics of side-effect free assignments in terms of such updates because of the absence of
aliasing, i.e., absence of two distinct variables x and y which intuitively refer to the same memory location.

Concrete choice

• 〈if b {S1}{S2}; S ,V 〉 → 〈S1; S ,V 〉 if V (b) is true
• 〈if b {S1}{S2}; S ,V 〉 → 〈S2; S ,V 〉 if V (b) is false

Concrete iteration

• 〈while b {S }; S ′,V 〉 → 〈S ; while b {S }; S ′,V 〉 if V (b) is true
• 〈while b {S }; S ′,V 〉 → 〈S ′,V 〉 if V (b) is false

From the above substitution lemma we derive the following corollary.

Corollary 2.2 (Soundness assignment). For V ′ � V ◦ σ we have that V ◦ (σ [x :� eσ ]) � V ′[x :� V ′(e)].

Proof We treat the main case:

(V ◦ (σ [x :� eσ ]))(x ) � V (σ [x :� eσ ](x )) (def. ◦)
� V (eσ ) (def. σ [x :� eσ ])
� V ◦ σ (e) (substitution lemma)
� V ′(e) (V ′ � V ◦ σ )
� V ′[x :� V ′(e)](x ) (def. V ′[x :� V ′(e)])

�



Symbolic execution formally explained 621

Let id be the identity substitution, i.e., id(x ) � x , for every variable x . We have the followingmain correctness
theorem.

Theorem 2.3 (Correctness). If 〈S , id, true〉 →∗ 〈S ′, σ, φ〉1 and V (φ) � true then

〈S ,V 〉 →∗ 〈S ′,V ◦ σ 〉
Proof Induction on the length of 〈S , id, true〉 →∗ 〈S ′, σ, φ〉 and a case analysis of the last execution step. We
consider the following cases.

First, we consider the case of an assignment as the last execution step:

〈S , id, true〉 →∗ 〈x :� e; S ′, σ, φ〉 → 〈S ′, σ [x :� eσ ], φ〉
Induction hypothesis (note that V (φ) � true):

〈S ,V 〉 →∗ 〈x :� e; S ′,V ◦ σ 〉
Let V ′ � V ◦ σ . By the concrete semantics we have

〈S ,V 〉 →∗ 〈x :� e; S ′,V ′〉 → 〈S ′,V ′[x :� V ′(e)]〉
By the above Corollary 2.2 it then suffices to observe that V ◦ (σ [x :� eσ ]) � V ′[x :� V ′(e)].

Next we consider the selection of the then-branch of a choice construct:

〈S , id, true〉 →∗ 〈if b {S1}{S2}; S , σ, φ〉 → 〈S1; S , σ, φ ∧ bσ 〉
We have that V (φ ∧ bσ ) � true implies V (φ) � true, so by the induction hypothesis we obtain the concrete
computation

〈S ,V 〉 →∗ 〈if b {S1}{S2}; S ,V ◦ σ 〉
By the above substitution lemma V ◦ σ (b) � V (bσ ) � true, we derive

〈S ,V 〉 →∗ 〈if b {S1}{S2}; S ,V ◦ σ 〉 → 〈S1; S ,V ◦ σ 〉
All other cases are treated similarly. �

Theorem 2.3 guarantees that all possible inputs satisfying a path condition lead to a concrete state with
variables conform to the substitution of the corresponding symbolic configuration. Correctness, however, is about
coverage [LRA17], meaning that satisfiable symbolic execution paths can be simulated by concrete executions.
The converse of correctness is completeness and is about precision [LRA17]: every concrete execution can be
simulated by a symbolic one.

Theorem 2.4 (Completeness). For any concrete computation 〈S ,V0〉 →∗ 〈S ′,V 〉 there exists a symbolic compu-
tation

〈S , id, true〉 →∗ 〈S ′, σ, φ〉
for some path condition φ and a substitution σ such that V0(φ) � true and V � V0 ◦ σ .

Proof As above, the proof of this theorem proceeds by induction on the length of the concrete computation and
a case analysis of the last concrete execution step. We consider the following cases.

First, we consider the case of an assignment as the last execution step:

〈S ,V0〉 →∗ 〈x :� e; S ′,V 〉 → 〈S ′,V [x :� V (e)]〉
By the induction hypothesis there exists a symbolic computation

〈S , id, true〉 →∗ 〈x :� e; S ′, σ, φ〉
for some path condition φ and a substitution σ such thatV0(φ) � true andV � V0◦σ . By the symbolic semantics
we have that

〈S , id, true〉 →∗ 〈x :� e; S ′, σ, φ〉 → 〈S ′, σ [x :� eσ ], φ〉
By the above Corollary 2.2 again it then suffices to observe that V0 ◦ (σ [x :� eσ ]) � V [x :� V (e)].

1 For any transition relation → its reflexive, transitive closure is denoted by →∗
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Next we consider the case when the Boolean guard of a choice construct evaluates to true:

〈S ,V0〉 →∗ 〈if b {S1}{S2}; S ,V 〉 → 〈S1; S ,V 〉
where V (b) � true. By the induction hypothesis there exists a symbolic computation

〈S , id, true〉 →∗ 〈if b {S1}{S2}; S , σ, φ〉
for some path condition φ and a substitution σ such thatV0(φ) � true andV � V0◦σ . By the symbolic semantics
we have that

〈S , id, true〉 →∗ 〈if b {S1}{S2}; S , σ, φ〉 → 〈S1; S , σ, φ ∧ bσ 〉
We then can conclude this case by again an application of the above substitution lemma from which we derive
that V0(bσ ) � V0 ◦ σ (b) � V (b) � true.

All other cases are treated similarly. �

The above correctness and completeness theorems establish a correspondence between reachable symbolic
and concrete states. It is straightforward to generalize these theorems to computations represented by sequences
of (symbolic or concrete) states.

2.1. Extension to arrays

In this subsection we briefly discuss the symbolic execution of our basic programming language extended with
arrays. For notational convenience we restrict to one-dimensional arrays. Following [AdBO09] and [Gri81] we
view such arrays semantically as (mathematical) functions, i.e., an array variable has a type T → T ′, where the
basic types T and T ′ denote the type of its domain and co-domain, respectively. Thus the domain of an array
can be unbounded (below we discuss the extension of our theory to bounded arrays). Given an array variable
a of type T → T ′, the expression a[e] of type T ′ denotes the result of applying the function associated with a
to the value of e, where the expression e is of type T . We extend the basic language with expressions a[e] and
assignments a[e] :� e ′, following the approach initially proposed in [Gri81] to the Hoare logic of assignments to
sub-scripted variables: symbolically an assignment a[e] :� e ′ is viewed as an assignment a :� (a[e] :� e ′), where
the expression (a[e] :� e ′) denotes an update of the array a defined by

(a[e] :� e ′)[e ′′] � if e � e ′′ then e ′ else a[e ′′] fi

(assuming ternary operators for the description of conditional expressions). Formally, array expressions are
defined inductively as follows: every array variable is an array expression, if a is an array expression of type
T → T ′ so is (a[e] :� e ′), where e and e ′ are of type T and T ′, respectively.

A substitution σ representing a concrete state then assigns to all the program variables a corresponding
expression. For any array variable a, σ (a) thus denotes an array expression. Given this symbolic interpretation of
arrays asmathematical functions it is straightforward to extend the symbolic execution of our basic programming
language to arrays, and generalize the above correctness and completeness theorems.

There are various ways to symbolically execute bounded arrays (see for example [FLP17]). One possible way
to extend our approach to bounded arrays (of type N → T , for some T , where N denotes the type of the natural
numbers) consists of adding the expression | a |which denotes the length of the array a. The symbolic execution of
(initially) setting the bound of an array, described by the statement | a |� e, then updates the path condition with
the information | a |� eσ , where σ is the current substitution. We describe the absence of an array-out-of-bound
error by a predicate δ(e) defined inductively by

δ(x ) � true
δ(a[e]) � 0 ≤ e ≤| a | ∧δ(e)
δ(op(e1, . . . , en )) � δ(e1) ∧ · · · ∧ δ(en )

We indicate the occurrence of an array-out-of-bound error by a statement array-out-of-bound. This statement then
can be further evaluated in the context of error-handling constructs. The symbolic execution of such constructs
is out of scope of this paper though.

It is then straightforward to update the above symbolic transition system to account for array-out-of-bound
errors. For example, for the symbolic execiution of an assignment x :� e we have the following two transitions:
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• 〈x :� e; S , σ, φ〉 → 〈S , σ [x :� eσ ], φ ∧ δ(eσ )〉
• 〈x :� e; S , σ, φ〉 → 〈array-out-of-bound, σ, φ ∧ ¬δ(eσ )〉

As another example, for the symbolic execution of the choice construct we have four transitions, of which we
present the following two:

• 〈if b {S1}{S2}; S , σ, φ〉 → 〈S1; S , σ, φ ∧ δ(bσ ) ∧ bσ 〉
• 〈if b {S1}{S2}; S , σ, φ〉 → 〈array-out-of-bound, σ, φ ∧ ¬δ(bσ )〉

For an array assignment a[e] :� e ′ we have the following symbolic transitons.

• 〈a[e] :� e ′; S , σ, φ〉 → 〈S , σ [a :� (a[eσ ] :� e ′σ )], φ ∧ δ(a[eσ )] ∧ δ(e ′σ )〉
• 〈a[e] :� e ′; S , σ, φ〉 → 〈array-out-of-bound, σ, φ ∧ ¬(δ(a[eσ ]) ∧ δ(e ′σ ))〉

Note that, as defined above, δ(a[eσ ]) equals 0 ≤ eσ ≤| a | ∧δ(eσ ). We do not need to apply the current
substitution σ to a in the expression | a | because the bound of an array is not affected by any of its assignments.

We conclude this discussionwith the observation that alternativelywe can include insteadof the array variables
the expressions a[e] themselves in the domain of a substitution representing the concrete state. This however
gives rise to aliasing between an unbounded number of such expressions: to execute symbolically an assignment
a[e] :� e ′ we need to update in the given substitution all possible aliases of a[e], namely all those expressions
a[e ′′] such that the value of e ′′ after the assignment a[e] :� e ′ equals that of e. We therefore recommend the
above approach.

3. Recursion

In this section we extend our basic programming language with procedures. We assume a finite set of Var of
program variables x , y, u, . . . to be partitioned in global variables GVar and local variables LVar , without name
clashes between them. Global variables are visible within the entire program while local variables are used as
formal parameters of the procedure declarations, and their scope lie within the procedure body itself. We denote
by x̄ a tuple of variables.

The set Expr of programming expressions e is defined as in the previous section, except that (Boolean)
operators involve now both local and global variables. A program consists of set of procedure declarations of
the form P (ū) :: S and a main statement S ′. Every procedure name P had a unique declaration. For simplicity
we assume here that ū consists of all local variables LVar . Statements of the basic programming language with
procedures are defined by extending the grammar of the previous section with procedure calls:

S ::� x :� e (global and local) assignment
| P (ē) procedure call
| S ; S sequential composition
| if b {S1}{S2} choice
| while b {S } iteration

Beside (side-effect free) assignments to global and local variables (here x ∈ Var ), sequential composition, choice,
and iteration, we have procedure calls P (ē), assuming a call by value parameter passing mechanism. Again, we
consider only programs that are well-typed, meaning, among other things, that the length of ē in the call P (ē) is
the same as that ū in the declaration P (ū) :: S . For technical convenience we do not consider the introduction of
local variables by block statements here, that could be easily modelled using procedures.

A symbolic configuration is of the form 〈�, σ, φ〉, where
• � denotes a stack of closures of the form (τ,S ), where τ : LVar → Expr is a local substitution (assigning
expressions to local variables, including the formal parameters). The top of a stack � is the leftmost closure,
if it exists. In the sequel, we denote by (τ,S ) · � the result of pushing the closure (τ,S ) unto the stack �.

• σ : GVar → Expr is the current global substitution mapping expressions to global variables,
• φ is a Boolean expression denoting the path condition.

A configuration 〈(id,S ), id, φ〉 is called initial if no local variable occurs in S , that, in this case, denotes the main
statement.
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We denote by τ ∪ σ : Var → Val the union of a local substitution τ and a global substitution σ (defined
in terms of their representations as sets of pairs argument/value). This is well-defined and total because of the
absence of name clashes between local and global variables of a programs. Further, e(τ ∪ σ ) represents the
expression e in which all occurrences of local and global variables have been substituted as dictated by their
respective substitutions. We have the following symbolic transitions.

Symbolic assignment global variable Let x be a global variable.

• 〈(τ, x :� e; S ) · �, σ, φ〉 → 〈(τ,S ) · �, σ [x :� eθ ], φ〉,
where θ � τ ∪σ . Note that expressions may contain both global and local variables, and that is why we need θ in
the update global substitution σ [x :� eθ ]. Also, the topmost local substitution τ in � is not affected by a global
assignment because it is side-effect free.

Symbolic assignment local variable Let u be a local variable.

• 〈(τ, u :� e; S ) · �, σ, φ〉 → 〈(τ [u :� eθ ],S ) · �, σ, φ〉,
where θ � τ ∪σ . As for the case of assignment global variable, expressions may contain any variables, and that is
why we need θ in the update local substitution τ [u :� eθ ]. Only the topmost substitution in the stack is affected
by a local assignment.

Symbolic procedure call Given a procedure declaration P (ū) :: S ′, we have

• 〈(τ,P (ē); S ) · �, σ, φ〉 → 〈(τ ′,S ′) · (τ,S ) · �, σ, φ〉,
where τ ′(ū) � ē(τ ∪σ ) (defined component-wise). A procedure call thus pushes a new closure unto the stack. This
closure consists of the body of the procedure and a new local substitution which assigns the actual parameters to
the formal parameters, implementing a call by value parameter passing mechanism. This mechanism thus avoids
name clashes between the formal parameters of different procedures because each procedure call is symbolically
executed with respect to its own local substitution. Termination of a procedure call is indicated by the empty
statement ε, so that the return of a procedure call can be described simply by “popping” the top closure of the
stack. Execution then can continue with executing the closure (τ,S ) that generated the call. This is formalized
by the following transition.

Symbolic procedure return

• 〈(τ, ε) · �, σ, φ〉 → 〈�, σ, φ〉,
Recall that ε denotes the empty statement, sowhen there is nothingmore to be currently executed, a pop operation
on the stack of closure ensures that the control goes back to the procedure caller, restoring the local substitution
but continuing with the global one.

Symbolic choice

• 〈(τ, if b {S1}{S2}; S ) · �, σ, φ〉 → 〈(τ,S1; S ) · �, σ, φ ∧ b(τ ∪ σ )〉
• 〈(τ, if b {S1}{S2}; S ) · �, σ, φ〉 → 〈(τ,S2; S ) · �, σ, φ ∧ ¬b(τ ∪ σ )〉

Symbolic iteration

• 〈(τ,while b {S }; S ′) · �, σ, φ〉 → 〈(τ,S ; while b {S }; S ′) · �, σ, φ ∧ b(τ ∪ σ )〉
• 〈(τ,while b {S }; S ′) · �, σ, φ〉 → 〈(τ,S ′) · �, σ, φ ∧ ¬b(τ ∪ σ )〉
Because the main statement does not contain local variables, we have that local variables will never appear in

global and local substitution of any reachable configuration.

Proposition 3.1 For any computation 〈(id,S ), id, true〉 →n 〈(τ,S ′) · �, σ, φ〉 of n > 0 steps, where S denotes the
main statement, we have that both τ (u), for any local variable u in its domain, and σ (x ), for any global variable
x , do not contain local variables.
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Proof We prove it by course of value induction on the length of the computation. For the case when S begins
with a global assignment x :� e it is enough to notice that θ � id∪ id, and that e does not contain local variables
because they do not occur in the main statement S .

Assignment to local variables cannot occur in S , so the only remaining interesting base case of our induction
is when S begin with a procedure call P (ē). In this case the new local substitution τ ′ assigning expressions
ē(id ∪ id) � ē to the formal parameter (i.e. local variables) ū. But every expression in ē does contain local
variables, so they will not occur in the local substitution in the closure of the new top of the stack.

All other base cases are trivially true. So next we consider the case of a global assignment after a computation
of length n > 0:

〈(id,S ), id, true〉 →n 〈(τ, x :� e; S ′) · �, σ, φ〉 → 〈(τ,S ′) · �, σ [x :� eθ ], φ〉
where θ � τ ∪σ . By induction hypothesis, both τ (u), for every local variable u, and σ (x ), for every global variable
x , do not contain local variables. So eθ cannot contain local variables too. A similar reasoning can be applied to
the cases of procedure call and local assignment.

For the case of procedure return we use the the stronger hypothesis of our course of value induction: If
〈(id,S ), id, true〉 →n 〈(τ, ε) · �, σ, φ〉 → 〈�, σ, φ〉 then σ (x ) does not contain local variables by induction
hypothesis. If � is the empty string then there is nothing more to prove, and otherwise � � (τ ′,S ′) · �′ which
means that there must exist an intermediate configuration 〈(τ ′,S ′) · �′, σ ′, φ′〉 such that

〈(id,S ), id, true〉 →m 〈(τ ′,S ′) · �′, σ ′, φ′〉 →l 〈(τ, ε) · (τ ′,S ′) · �′, σ, φ〉
withm > 0 and such that the same intermediate configuration does not occur in the last l steps of rightmost part
of the computation. By course of value induction, for all local variables u, τ ′(u) does not contain local variables.

�

Since path conditions are constructed by local and global substitutions applied to Boolean expressions, we
have the following immediate corollary.

Corollary 3.2 For any computation 〈(id,S ), id, true〉 →∗ 〈(τ,S ′) · �, σ, φ〉 where S denotes the main statement,
the generated path condition φ does not contain local variables.

Proof The case for a computation of length n > 0 is a consequence of Proposition 3.1. The case when a compu-
tation is of length 0 is immediate. �

A concrete configuration is of the form 〈	,G〉, where G : GVar → Val is an assignment of values to global
variables, and 	 denotes the stack of concrete closures, i.e. a finite string of element of the form (L,S ). Here
L : LVar → Val is an assignment of values to local variables and S denotes the statement to be executed.

As in the previous section, we have a substitution lemma which states that evaluating an expression e in the
composition of a valuation V after a substitution θ gives the same value as evaluating in V the expression eθ .

Lemma 3.3 (Substitution). Let V � G ∪ L and θ � σ ∪ τ . Then V ◦ θ (e) � V (eθ ) for every expression e.

Proof The proof of the lemma proceeds by induction on e, exactly as in the substitution Lemma in the previous
section. �

Next we present a concrete transition system semantics which instead of substitutions is defined in terms of
valuations both for the local and the global variables.

Concrete assignment global variable Let x be a global variable.

• 〈(L, x :� e; S ) · 	,G〉 → 〈(L,S ) · 	,G [x :� V (e)]〉, where V (e) � (L ∪ G)(e).

Concrete assignment local variable Let u be a local variable.

• 〈(L, u :� e; S ) · 	,G〉 → 〈(L[u :� V (e)],S ) · 	,G〉, where V (e) � (L ∪ G)(e).

Concrete procedure call Given a procedure declaration P (ū) :: S ′, we have

• 〈(L,P (ē); S ) · 	,G〉 → 〈(L′,S ′) · (L,S ) · 	,G〉,where L′(ū) � (L ∪ G)(ē) (defined component-wise).



626 F S de Boer and M Bonsangue

Concrete procedure return

• 〈(L, ε) · 	,G〉 → 〈	,G〉.
Concrete choice

• 〈(L, if b {S1}{S2}; S ) · 	,G〉 → 〈(τ,S1; S ) · 	,G〉, if (L ∪ G)(b) is true;
• 〈(L, if b {S1}{S2}; S ) · 	,G〉 → 〈(τ,S2; S ) · 	,G〉, if (L ∪ G)(b) is false.

Concrete iteration

• 〈(L,while b {S }; S ′) · 	,G〉 → 〈(L,S ; while b {S }; S ′) · 	,G〉, if (L ∪ G)(b) is true;
• 〈(L,while b {S }; S ′) · 	,G〉 → 〈(L,S ′) · 	,G〉, if (L ∪ G)(b) is false.

From the above substitution lemma we derive the following corollary.

Corollary 3.4 (Soundness assignment). Let V � G ∪ L and θ � σ ∪ τ . For V ′ � V ◦ θ , let G ′ be the restriction
of V ′ to global variables, and L′ the restriction of V ′ to local variables. For every expression e, global variable x ,
and local variable u we have that V ◦ (σ [x :� eθ ]) � G ′[x :� V ′(e)] and V ◦ (τ [u :� eθ ]) � L′[u :� V ′(e)].

Proof We treat the case of global variables, the one for local variables is analogous:

(V ◦ σ [x :� eθ ])(x ) � V (σ [x :� eθ ](x )) (def. ◦)
� V (eθ ) (def. σ [x :� eθ ])
� V ◦ θ (e) (substitution lemma)
� V ′(e) (V ′ � V ◦ θ )
� V ′[x :� V ′(e)](x ) (def. V ′[x :� V ′(e)])
� G ′[x :� V ′(e)](x ) (def. G ′ and x global variable)

�

Wehave the following correctness theoremof the symbolic executionof recursive programs: for every reachable
configuration of a symbolic execution there exists an analogous concrete configuration reachable from every
valuations satisfying the last path condition.

Theorem 3.5 (Correctness). For a main statement S with no occurrences of local variables and V � G ∪ L if
〈(id,S ), id, true〉 →∗ 〈(τ,S ′) · �, σ, φ〉 and V (φ) � true then

〈(L,S ),G〉 →∗ 〈(V ◦ τ,S ′) · V • �,V ◦ σ 〉
where (V ◦ σ )(x ) � V (σ (x )) for any global variable x , V ◦ τ ′(x ) � V (τ ′(u)) for any local substitution τ ′ and
local variable u, and V • � denotes the concrete stack resulting from replacing every local environment τ ′ in �
by V ◦ τ ′.

ProofAs in Theorem 2.3, we proceed by induction on the length of the symbolic computation and a case analysis
of the last execution step.

First, we consider the case of a global assignment as the last execution step:

〈(id,S ), id, true〉 →∗ 〈(τ, x :� e; S ′) · �, σ, φ〉 → 〈(τ,S ′) · �, σ [x :� eθ ], φ〉 ,

where θ � τ ∪ σ . Let V � G ∪ L such that V (φ) is true. By induction hypothesis there exists a concrete
computation

〈(L,S ),G〉 →∗ 〈(V ◦ τ, x :� e; S ′) · V • �,V ◦ σ 〉
LetV ′ � V ◦σ andG ′ its restriction to global variables. By the concrete semantics of global assignment we have

〈(V ◦ τ, x :� e; S ′) · V • �,V ◦ σ 〉 → 〈(V ◦ τ,S ) · V • �,G ′[x :� V ′(e)]〉
ByCorollary 3.4 it then suffices to observe thatV ◦ (σ [x :� eθ ]) � G ′[x :� V ′(e)]. The case of a local assignment
is similar, using the local variable part of Corollary 3.4.

Given the procedure declaration P (ū) :: S ′, next we consider the case of a procedure call as last step of a
symbolic execution

〈(id,S ), id, true〉 →∗ 〈(τ,P (ē); S ′′) · �, σ, φ〉 → 〈(τ ′,S ′) · (τ, ; S ′′) · �, σ, φ〉
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where τ ′(ū) � ē(τ ∪ σ ). LetV � G ∪L be such thatV (φ) is true. By induction hypothesis there exists a concrete
computation

〈(L,S ),V 〉 →∗ 〈(V ◦ τ,P (ē); S ′′) · V • �,V ◦ σ 〉 .

By the concrete semantics of procedure call we have

〈(V ◦ τ,P (ē); S ′′) · V • �,V ◦ σ 〉 → 〈(τ ′′,S ′) · (V ◦ τ ; S ′′) · V • �,V ◦ σ 〉 ,

where τ ′′(ū) � (V ◦ τ ∪ V ◦ σ )(ē) � V ◦ (τ ∪ σ )(ē) � V (ē(τ ∪ σ )) � V ◦ τ ′(ū), concluding the proof for this
case.

The remaining interesting case of procedure return as last step of a symbolic computation is easier:

〈(id,S ), id, true〉 →∗ 〈(τ, ε) · (τ ′,S ′) · �, σ, φ〉 → 〈(τ ′,S ′) · �, σ, φ〉 .

Let V � G ∪ L be such that V (φ) is true. By induction hypothesis there exists a concrete computation

〈(L,S ),V 〉 →∗ 〈(V ◦ τ, ε) · (V ◦ τ ′,S ′) · V • �,V ◦ σ 〉 .

By the concrete semantics of procedure call we have

〈(V ◦ τ, ε) · (V ◦ τ ′,S ′) · V • �,V ◦ σ 〉 → 〈(V ◦ τ ′,S ′) · V • �,V ◦ σ 〉 .

The choice construct and the iterations can be treated in a similar way as in Theorem 2.3. �

As in the basic case, we have a similar completeness result for recursive procedures expressed in terms reachable
concrete configurations: for every reachable concrete configuration starting from a global valuationG there exists
an analogous reachable symbolic configuration with a path condition satisfied by G .

Theorem 3.6 (Completeness). Let S be a statement with no occurrence of local variables. For any concrete com-
putation 〈(L,S ),G〉 →∗ 〈〈(L′,S ′) · 	,G ′〉 there exists a symbolic computation

〈(id,S ), id, true〉 →∗ 〈(τ,S ′) · �, σ, φ〉
for some path condition φ and local substitution τ and global substitution σ such that V (φ) is true, 	 � V • �,
L′ � V ◦ τ , and G ′ � V ◦ σ , for V � G ∪ L.

Proof The proof proceeds by induction on the length of the concrete computation and a case analysis of the last
concrete execution step. First, we consider the case of a local assignment as the last execution step:

〈(L,S ),G〉 →∗ 〈(L′, u :� e; S ′) · 	,G ′〉 → 〈(L′[u :� V ′(e)]) · 	,G ′〉 ,

where V ′ � L′ ∪ G ′. By induction hypothesis there exists a symbolic computation

〈(id,S ), id, true〉 →∗ 〈(τ, u :� e; S ′) · �, σ, φ〉
for some path condition φ and a substitutions τ and σ such that V (φ) is true, 	 � V • �, G ′ � V ◦ σ and
L′ � V ◦ τ .

By the symbolic semantics of local assignment we have that

〈(τ, u :� e; S ′) · �, σ, φ〉 → 〈(τ [u :� eθ ],S ′) · �, σ, φ〉
with θ � τ ∪ σ . It now suffices to see that by Corollary 3.4 we have V ◦ (τ [u :� eθ ]) � L′[u :� V ′(e)].

The case of global assignment is analogous. Next we treat another case, the one of a procedure call as the last
execution step:

〈(L,S ),G〉 →∗ 〈(L′,P (ē); S ′) · 	,G ′〉 → 〈(L′′,S ′′) · (L′,S ′) · 	,G ′〉 ,

where P (ū) :: S ′′ and L′′(ū) � V ′(ē), with V ′ � L′ ∪ G ′. By induction hypothesis there exists a symbolic
computation

〈(id,S ), id, true〉 →∗ 〈(τ,P (ē); S ′) · �, σ, φ〉
for some path condition φ and a substitutions τ and σ such that V (φ) is true, 	 � V • �, G ′ � V ◦ σ and
L′ � V ◦ τ .

By the symbolic semantics of procedure call we have that

〈(τ,P (ē); S ′) · �, σ, φ〉 → 〈(τ ′,S ′′) · (τ,S ′) · �, σ, φ〉
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where τ ′(ū) � ēθ , with θ � τ ∪ σ . By the above we can conclude the proof with the following series of equality
L′′(ū) � V ′(ū) � (L′ ∪ G ′)(ū) � ((V ◦ τ ) ∪ (V ◦ σ ))(ū) � (V ◦ (τ ∪ σ ))(ū) � (V ◦ τ ′)(ū).

The case of choice and iteration constructs can be essentially treated in the same way as the completeness
theorem of the previous section. All other cases are treated similarly. �

4. Object orientation

We next extend the language of the previous section with object-oriented features. We first introduce a distinction
between variables x , y, . . . , e.g., the formal parameters of methods, including the keyword this, and fields f , f ′, . . .
(of the classes of a program). In contrast to the previous sections, because of dynamically allocated objects, we
need to assume here an infinite number of variables.We abstract again from the typing information of the variables
and fields. We have the following syntax of side-effect free programming expressions e:

e ::� nil | x | e.f | op(e1, . . . , en )
where nil stands for “undefined’ (used to initialize the fields of newly created objects)’, x is a variable, and in
the expression e.f we implicitly assume that f is a field of the class of the object denoted by e. For notational
convenience, in the sequel h denotes a variable x or an expression e.f . An expression h is called a heap variable.
As in the previous section op denotes a built-in operation (which includes for example equality ‘=’). We assume
a ternary operation which describes conditional expressions written as if b then e1 else e2 fi, where b denotes a
Boolean expression. Without loss of generality we assume that expressions which denote objects can only be
used for dereferencing, for checking equality (denoted by ‘=’), or as argument of a conditional expression. More
specifically, we do not have, for example, built-in operations for constructing sets or sequences of objects.

Statements S of the object-oriented programming language are then defined by the grammar:

S ::� h :� e assignment
| h :� new C object creation
| h :� e0.m(ē) method call
| return e return statement
| S ; S sequential composition
| if B {S1}{S2} choice
| while B {S } iteration

A statement h :� newC creates an instance of classC (wemodel a call x :� newC (ē) of a constructormethod by
the object creation statement x :� newC followed by amethod call x .C (ē)). Amethod call h :� e0.m(ē) specifies
the called object e0. The execution of a method terminates with a statement return e which returns the value of e.
Each class definition consists of a set of method definitions. A method definition specifies its formal parameters
and a statement (its “body”). Finally, a program consists of some class definitions and a main statement which
only involves (global) variables.

The approach of the previous sections is naturally extended by interpreting fields as arrays, i.e., a heap ex-
pression e.f is then interpreted as f [e]. This is briefly discussed in Section 4.1. Here we proceed with a more
fundamental approach to symbolic execution which is based on symbolic execution traces and a weakest precon-
diton calculus. In this new approach the symbolic execution of a program is described in terms of a transition
relation between configurations of the form 〈S , ρ〉, where ρ denotes a symbolic execution trace consisting of
Boolean expressions and assignments. We will define the path condition of a symbolic trace by means of a
weakest precondition calculus. Since our language does not include error-handling constructs, it suffices that the
resulting path condition will ensure absence of so-called nil-pointer errors, which are generated by expressions
e.f in case the expression e denotes the nil pointer. Note that such path conditions still can be used to test nil
pointer errors occurring at a specific control point. The symbolic execution of constructs for handling nil pointer
errors can be modeled following the basic approach described in subsection 2.1 for array-out-of-bound errors,
but is out of scope of this paper, as are other object-oriented features like dynamic method dispatch. Most of
such additional features however we expect can be integrated by a symbolic representation of their standard
operational semantics (similar to the symbolic representation of the standard operational semantics of the choice
and iteration constructs).
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For our object-oriented language we have the following transition rules for generating such traces by statically
unfolding a statement.

Symbolic assignment

• 〈h :� e; S , ρ〉 → 〈S , ρ · h :� e〉

Symbolic object creation

• 〈h :� new C ; S , ρ〉 → 〈S , ρ · x :� new C · h :� x 〉,
where x is a fresh variable not appearing in 〈h :� new C ; S , ρ〉.The introduction of a fresh variable in the above
transition allows to disentangle aliasing and object creation in the definition of a path condition (as defined
below).

Symbolic method call Given a method declaration m(ū){S }, we have
• 〈h :� e0.m(ē); S ′), ρ〉 → 〈S [this, ū :� e0, ȳ ]; h :� r ; S ′, ρ · e0 � nil · ȳ :� ē〉,

where application of the simultaneous substitution [this, ū :� e0, ȳ ] replaces in S all occurrences of the distin-
guished variable this by the expression e0 and all the formal parameters ū by fresh variables (i.e., not appearing
in the configuration 〈h :� e0.m(ē); S ′), ρ〉). The condition e0 � nil records that the callee is not nil. By ȳ :� ē
we denote a sequence of assignments of the expressions ē to the variables ȳ (note that the order does not matter,
because the variables ȳ do not appear in ē). The variable r is used to denote the return value (see below). Note
that thus a method call symbolically is described by inlining the method body, replacing the formal parameters
by fresh variables thus avoiding name clashes between different method invocations. Note that in the semantics
of (recursive) procedures (described in the previous section) such name clashes are avoided because of the use of
an explicit stack of closures so that each call is executed in its own local environment (which assigns values to its
local variables).

Symbolic method return

• 〈return e; S , ρ〉 → 〈S , ρ · r :� e〉,
where r is the distinguished variable used to denote the return value. The following symbolic transitions of the
choice and iteration statements simply record the (negation of) the Boolean condition.

Symbolic choice

• 〈if b {S1} {S2}; S , ρ〉 → 〈S1; S , ρ · b〉
• 〈if b {S1} {S2}, ρ〉 → 〈S2; S , ρ · ¬b〉

Symbolic iteration

• 〈while b {S }; S ′, ρ〉 → 〈S ; while b {S }; S ′, ρ · b〉
• 〈while b {S }; S ′, ρ〉 → 〈S ′, ρ · ¬b〉
Note that theabove symbolic transition systemabstracts fromnil-pointer errors, e.g., for the symbolic execution

of the Boolean conditions in the choice and iteration statements we do not consider the third possibility that
the evaluation of the condition generates a nil-pointer error. We emphasize here again that for the purpose of
generating path conditions this is not needed because our language does not include error-handling constructs
and thus a path condition should only ensure absence of such errors.

To define the path condition and the substitution of a symbolic execution trace, we first need the following
basic substitutions. By e ′[x :� e] we denote the result of replacing all occurrences of the variable x in e ′ by e. On
the other hand, we define e ′[h.f :� e] by

nil[h.f :� e] � nil
x [h.f :� e] � x
(h ′.f ′)[h.f :� e] � h ′[h.f :� e].f ′
(h ′.f )[h.f :� e] � if h ′[h.f :� e] � h then e else h ′[h.f :� e].f fi
op(e1, . . . , en )[h.x :� e] � op(e1[h.x :� e], . . . , en [h.x :� e])
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where in the third clause f ′ is different (syntactically) from f . The conditional expression in the fourth clause
captures aliasing. The overall idea of the substitution e ′[h.f :� e] is that it generates an expression the value of
which equals that of e ′ after the execution of the assignment h.f :� e. In case of an expression h ′.f we have to
check whether h ′ after the assignment h.f :� e equals h, in which case the value of h ′.f after the assignment
h.f :� e equals that of e. Otherwise, the value of h ′.f after the assignment h.f :� e equals the value of the field
of the object denoted by the value of h ′ after the assignment h.f :� e. The last clause, instead, captures basic
substitution of Boolean expressions too. Simultaneous substitutions e ′[h̄ :� ē] are defined by extending the above
as expected, thus denoting the result of replacing all occurrence of variables hi ∈ h̄ in e ′ by the correspondent
ei ∈ ē.

Next we define e[x :� new C ], for expressions e (syntactically) different from x . First we observe that
we can assume without loss of generality that e also does not contain conditional (sub)expressions with the
variable x as argument, because we can transform every equation if b then e1 else e2 fi � e between object ex-
pressions to if b then e1 � e else e2 � e fi (and similarly for e � if b then e1 else e2 fi). Further, any expression
if b then e1 else e2 fi.f can be transformed into if b then e1.f else e2.f fi. Consequently, we may assume that the
variable x can only be dereferenced or appear as an argument of an equation (in the expression e). We thus can
restrict the definition of e[x :� new C ] to the following cases:

• nil[x :� new C ] � nil;
• y [x :� new C ] � y , y a variable distinct from x ;
• (x .f )[x :� new C ] � nil;
• (e.f )[x :� new C ] � e[x :� new C ].f , where e is different from x ;
• (x � e)[x :� new C ] � false, where e is different from x ;
• (e � x )[x :� new C ] � false, where e is different from x ;
• (x � x )[x :� new C ] � true.
• op(e1, . . . , en )[x :� new C ] � op(e1[x :� new C ], . . . , en [x :� new C ]).

The last clause also covers the case of conditional expressions.
Further, following subsection 2.1, we define the absence of a nil-pointer errors by a predicate δ(e).

Definition 4.1 (Absence of nil-pointer errors). We define δ(e) inductively by

δ(nil) � true
δ(x ) � true
δ(e.f ) � e � nil ∧ δ(e)
δ(op(e1, . . . , en )) � δ(e1) ∧ · · · ∧ δ(en )

We can now define the path condition of an execution trace by moving forward (from left to right) through
it. Recall that until now, we always appended the last “action” to the right of the execution trace.

Definition 4.2 (Path condition). We define the path condition path(ρ) of a symbolic execution trace inductively
by (here ε denotes the empty path):

path(ε) � true
path(b · ρ) � path(ρ) ∧ b
path(h :� e · ρ) � path(ρ)[h :� e] ∧ δ(h, e)
path(x :� new C · ρ) � path(ρ)[x :� new C ]

where in the third clause δ(h, e) abbreviates the conjunction δ(h) ∧ δ(e).

Note that we do not include the predicate δ(b) in the path condition in case of a Boolean expression, because,
as we will see below, if a Boolean expression evaluates to true then clearly its evaluation does not generate a
nil-pointer error. In general, the above definition of a path condition thus ensures absence of nil-pointer errors.

Next we discuss the concrete semantics. Given a program, for each of its classes we assume an unbounded set
of object identities (which for different classes are disjoint). Such identities we denote in the sequel by o, o ′, etc..
A concrete configurationV � (G,H ) consists of an assignmentG of values to the variables and a heapH which
assigns to each object o in its finite domain a local state H (o). Such a local state assigns to every field f of the
object o its value denoted by H (o.f ). As a special case, we identify the expression nil with its value. The objects
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in the domain of H represent the current set of existing objects. We restrict to consistent concrete configurations
V � (G,H ): if G(x ) � o then the object o exists, i.e., the domain of H includes o, and any field f of an existing
object o used to denote objects denotes either an existing object or has the value nil.

The concrete semantics then can be defined by a translation relation between configurations 〈S ,V 〉, where the
semantics of method calls is defined as above in terms of body replacement (replacing the local variables by fresh
variables). The details of this semantics are standard (see for example [AdBO09]) and therefore omitted. Here it
suffices to observe that in general the standard concrete semantics of a program in any (imperative) programming
language can be defined also in terms of the concrete semantics of its symbolic execution traces. Below we illustrate
this general approach by means of our object-oriented language.

First, we define the value V (e) of an expression e in the configuration V . By ‘V (e) �⊥’ we denote that the
evaluation of e gives rise to a nil-pointer error. Let V � (G,H ).

V (nil) � nil
V (x ) � G(x )

V (e.f ) �
{
H (V (e).f )) if V (e) �⊥ and V (e) � nil
⊥ otherwise

V (op(e1, . . . , en )) � op(V (e1), . . . ,V (en ))

where op again denotes the given semantic interpretation of op, which is strict in the sense that it yields ⊥ if one
if its arguments is ⊥.

The following lemma proves a semantic justification of the predicate δ(e).

Lemma 4.3 For any expression e we have that

V (e) �⊥ iff V (δ(e)) � true

Proof The proof involves a straightforward induction on the structure of e. �

Note that for any Boolean expression b we have that V (b) � true thus implies V (δ(b)) � true. In words, if a
Boolean expression evaluates to true then clearly its evaluation does not generate a nil-pointer error. This explains
the above definition of a path condition in case of Boolean expressions.

We further define for V � (G,H ) and value v the update V [x :� v ] by (G [x :� v ],H ) and V [o.f :� v ]
by (G,H [o.f :� v ])], where H [o.f :� v ] is a shorthand for updating the field f of the object o. For notational
convenience,we abbreviateV [V (e).f :� v ], whereV (e) � o, for someobject o (that is,V (e) �⊥ andV (e) � nil),
by V [e.f :� v ]. Finally, for V � (G,H ) we define the update V [x :� new C ] by (G [x :� o],H ′)], where the
object identifies o of type C does not belong to the domain of H and H ′ results from H by adding o to the
domain of H and assigning to every field of o the value it nil, i.e., H ′(o.f ) � it nil, for every field f .

We are now sufficiently equipped to define the concrete semantics of symbolic execution traces as a transition
relation between configurations 〈V , ρ〉.
Concrete assignment

• 〈V , h :� e · ρ〉 → 〈V [V (h) :� V (e)], ρ〉, provided V (h) �⊥ and V (e) �⊥
Concrete object creation

• 〈V , x :� new C · ρ〉 → 〈V [x :� new C ], ρ〉
Concrete Boolean test

• 〈V , b · ρ〉 → 〈V , ρ〉, provided V (b) � true.

In order to formally relate the semantics of a path condition of a symbolic execution trace and its concrete
semantics as defined above, we need the following substitution lemma (see also [dB99]).

Lemma 4.4 (Substitution). Let V (h) �⊥ and V (e) � v ( �⊥). If V [h :� v ](e ′) �⊥ and V (e ′[h :� e]) �⊥ then

V [h :� v ](e ′) � V (e ′[h :� e])
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Further, if V [x :� new C ](e) �⊥ and V (e[x :� new C ]]) �⊥ then if

V [x :� new C ](e) � V (e[x :� new C ]])

where the expression e is different from x and also does not contain conditional expressions with the variable x
as argument.

Proof Let V (e) � v . We first prove for a variable x that V [x :� v ](e ′) � V (e ′[x :� e]) for V � (G,H ), by
induction on e ′. Let V ′ � V [x :� v ], we have four cases e ′:

e ′ � x e ′ � y
V ′(x )
� G [x :� v ](x )
� V (e)
� V (x [x :� e])

V ′(y)
� V (y)
� V (y [x :� e])

e ′ � h.f e ′ � op(e1, . . . , en )

V ′(h.f )
� H (V ′(h).f ))
� H (V (h[x :� e]).f )
� H (V ((h.f )[x :� e]))

V ′(op(e1, . . . , en ))
� op(V ′(e1), . . . ,V ′(en ))
� op(V ((e1[x :� e]), . . . ,V ](en [x :� e]))
� V (op(e1[x :� e], . . . , en [x :� e]))
� V (op(e1, . . . , en )[x :� e])

Next we prove that V [h.f :� v ](e ′) � V (e ′[h.f :� e]) for V � (G,H ), by induction on e ′.
Let V ′ � V [h.f :� v ]. Also here we have four cases for e ′:

e ′ � x
V ′(x )
� V (x )
� V (x [h.f :� e])

e ′ � h ′.f ′
V ′(h ′.f ′)
� H (V ′(h ′).f ′)
� H (V (h ′[h.f :� v ]).f ′)
� V (h ′[h.f :� v ].f ′)
� V ((h ′.f ′)[h.f :� v ])

e ′ � h ′.f
V ′(h ′.f )
� H [V (h).f :� v ](V ′(h ′).f )
� if V (h) � V ′(h ′) then v else H (V ′(h ′).f ) fi
� if V (h) � V (h ′[h.f :� e]) then v else H (V (h ′[h.f :� e]).f ) fi
� if V (h) � V (h ′[h.f :� e]) then v else V (h ′[h.f :� e].f ) fi
� V (if h � h ′[h.f :� e] then e else h ′[h.f :� e].f fi)
� V ((h ′.f )[h.f :� e])

e ′ � op(e1, . . . , en )
V ′(op(e1, . . . , en ))
� op(V ′(e1), . . . ,V ′(en ))
� op(V ((e1[h.f :� e]), . . . ,V ](en [h.f :� e]))
� V (op(e1[h.f :� e], . . . , en [h.f :� e]))
� V (op(e1, . . . , en )[h.f :� e]) .

We continue with a proof of V [x :� new C ](e) � V (e[x :� new C ]), where the e, distinct from x , does not
contain conditional expressions with the variable x as argument. Let V � (G,H ), and V [x :� new C ] be
(G [x :� o],H ′)], where o does not belong to the domain of H (o of type C ) and H ′ results from H by assigning
nil to every field of o, i.e., H ′(o.f ) � nil, for every field f .

First we show that V [x :� new C ](e) � nil or V [x :� new C ](e) denotes an “old” object, i.e., H (V [x :�
new C ](e)) �⊥, for every object expression e different from x (and which does not contain conditional subex-
pressions with x as argument). Let V ′ � V [x :� new C ]. It suffices to consider the following cases.
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• V ′(y) � G [x :� o](y) � G(y). From the consistency ofV we conclude thatG(y) � nil impliesH (G(y)) �⊥.

• V ′(if b then e1 else e2 fi) equals either V ′(e1) or V ′(e2). By assumption both e1 and e2 are different from x ,
and so by induction both V ′(e1) and V ′(e2) are either nil or an old object.

• V ′(x .f ) � nil.

• V ′(e.f ) � H ′(V ′(e).f ), where e is different from x . By induction V ′(e) is either nil or an old object, and so
by the consistency of V and the So H ′(V ′(e).f ) � H (V ′(e).f )) denotes an old object.

We can now proceed with the following case analysis.

• V (nil[x :� new C ]) � nil � V ′(nil).
• V (y [x :� new C ]) � V (y) � V ′(y), y a variable distinct from x .
• V ((x .f )[x :� new C ]) � nil � V ′(x .f ).
• V ((e.f )[x :� new C ]) � H (V (e[x :� new C ]).f , where e is different from x . By induction V (e[x :�
new C ]) � V ′(e). Further, by the above V ′(e) denotes an “old” object, and so by definition of V ′, we have
that H (V ′(e).f ) � H ′(V ′(e).f ) � V ′(e.f ).

• V ((x � e)[x :� new C ]) � false, where e is different from x . By the above again, V ′(e) denotes an “old”
object, so V ′(x � e) � false. (Similarly, V ((e � x )[x :� new C ]) � V ′(e � x )).

• V ((x � x )[x :� new C ]) � true � V ′(x � x ).
• V (op(e1, . . . , en )[x :� new C ]) � op(V (e1[x :� new C ]), . . . ,V (en [x :� new C ]))

� op(V ′(e1), . . . ,V ′(en ))
� V ′(op(e1, . . . , en ))

The last clause also covers the case of conditional expressions. �

The following soundness and completeness theorem abstracts from programs and is stated directly in terms of
symbolic execution traces (which we only assume to be well-typed). For notational convenience, let 〈V , ρ〉 →∗ ε
denotes the existence of a concrete configuration V ′ such that 〈V , ρ〉 →∗ 〈V ′, ε〉.
Theorem 4.5 (Soundness and completeness). For any symbolic execution trace ρ we have that

〈V , ρ〉 →∗ ε iff V (path(ρ)) � true

Proof The proof proceeds by induction on ρ.
First, let ρ be of the form h :� e ·ρ ′ (the base case ρ � ε is trivial).We have 〈V , h :� e ·ρ ′〉 →∗ ε iffV (h) �⊥,

V (e) �⊥, 〈V , h :� e · ρ ′〉 → 〈V [h :� V (e)], ρ ′〉, and 〈V [h :� V (e)], ρ ′〉 →∗ ε. By Lemma 4.3 we have that
V (h) �⊥ andV (e) �⊥ iffV (δ(h, e)) � true. By the induction hypothesis we have that 〈V [h :� V (e)], ρ ′〉 →∗ ε
iff V [h :� V (e)](path(ρ ′)) � true. By definition path(ρ) � path(ρ ′)[h :� e] ∧ δ(h, e). It then suffices to observe
that by the substitution lemma 4.4 we have V (path(ρ ′)[h :� e]) � V [h :� V (e)(path(ρ ′)).

Next , let ρ be of the form y :� new C · ρ ′. By definition path(ρ) � path(ρ ′)[y :� new C ]. We have
〈V , y :� new C · ρ ′〉 →∗ ε iff 〈V , y :� new C · ρ ′〉 → 〈V [y :� new C ], ρ ′〉 and 〈V [y :� new C ], ρ ′〉 →∗ ε.
From the induction hypothesis we infer that 〈V [y :� new C ], ρ ′〉 →∗ ε iff V [y :� new C ](path(ρ ′)) � true. By
definition of path(ρ) and the above substitution lemma 4.4 we have V (path(ρ)) � V (path(ρ ′)[y :� new C ]) �
VV [y :� new C ]path(ρ ′)).

We are left with the following case: ρ � b · ρ ′. By definition of the concrete semantics, 〈V , ρ〉 →∗ ε iff
V (b) � true and 〈V , ρ ′〉 →∗ ε. By the induction hypothesis we have that 〈V , ρ ′〉 →∗ ε iff V (path(ρ ′)) � true.
Suffices then to observe that by definition path(ρ) � b ∧ path(ρ ′). �

Note that the above theorem is thus applicable to any symbolic trace generated by the symbolic transitions
system, that is, to any symbolic execution 〈S , ε〉 →∗ 〈S ′, ρ〉.Differently from the approachof the previous sections
however we do not have a direct symbolic representation by a substitution of the stateV ′ for which there exists a
computation 〈V , ρ〉 →∗ 〈V ′, ε〉. This state V ′ is only implicitly given by the symbolic trace ρ itself. In fact, the
development of our new approach is primarily motivated by avoiding the computation of such a substitution in
the construction of the path condition.
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4.1. Fields as arrays

In the above approach to the generation of a path condition no substitution representing a concrete state is needed.
Instead, a weakest precondition calculus is used to calculate the path condition as the weakest precondition of
the given symbolic trace (seen as a basic straight-line program). As such the path condition is calculated in a
backward manner whereas the trace is generated by a basic forward symbolic execution of the given program.

We briefly describe here how to generate the path condition in one pass by a standard forward symbolic
execution of the given program, using a substitution to represent symbolically the concrete state. As already
stated above, we can do so simply by modeling symbolically fields as arrays of type O → T , where O is the
type of all objects, and process field updates symbolically as array updates, as described in Subsection 2.1).
More specifically, any expression e is processed symbolically as the expression A(e) defined inductively, e.g.,
A(e.f ) � f [A(e)]. A heap update h :� e then is symbolically processed as the array assignment A(h) � A(e).
Thus we have reduced the object-oriented language to the language with recursive procedures (as introduced in
Section 3) extended with arrays. The main question then remains how to update the substitution representing
a concrete state in case of an assignment h :� new C . We can do so by simply processing such an assignment
symbolically in terms of a statement

h :� x ; x .f1 :� nil; . . . x .fn :� nil

where x is a fresh variable and f1, . . . , fn are all the fields declared in class C . We can remove again occurrences
of these fresh variables in the generated path condition by applying the substitutions [x :� new C ], as defined
above but now reformulated in terms of arrays, e.g., the clause for (x .f )[x :� new C ] becomes

(f [x ])[x :� new C ] � nil.

5. Conclusion

Despite the popularity and success of symbolic execution techniques, to the best of our knowledge, a general
theory of symbolic execution is missing which covers in an uniform manner mainstream programming features
like arrays and (object-oriented) pointer structures, as well as local scoping as it arises in the passing of parameters
in recursive procedure calls. In fact, most existing tools for symbolic execution lack an explicit formal specification
and justification.

In this paper we provided a detailed discussion of the on-the-fly (or forward) symbolic generation of path
conditions, using a symbolic representation of the concrete program state. We discussed main (object-oriented)
programming features, including arrays. In fact, we showed how to model symbolically arrays as mathematical
functions and object structures as arrays.

We further introduced a new, more fundamental approach which computes the path condition by means of a
weakest pre-conditon calculus ([BK94]), and as such avoids the use of a symbolic representation of the concrete
program state. This approach (introduced in Section 4) is based on symbolic execution traces which are obtained
fromunfolding statically the control flowof a program, accumulating the basic instructions , e.g., assignments and
Boolean tests. As such these traces abstract from the specific control structures of the programming language.
In the second phase, the application of a weakest precondition calculus for these basic instructions allows to
generate a path condition from a symbolic execution trace.

It should be noted that the notion of a path condition as a Boolean condition on the initial state which
ensures the concrete execution of the program along a given path is only applicable to deterministic languages.
However, our approach based on symbolic execution traces is applicable also to non-deterministic languages, e.g.,
multi-threaded shared variable programs. For example, in [dBBJ+20] information about the non-deterministic
choices, e.g., scheduling information, is naturally integrated in such traces for multi-threaded shared variable
programs. In [dBBJ+20] this information is further used for partial order reduction of the exploration of the
symbolic execution traces.

In general, symbolic execution traces can be subject to different kinds of analysis: e.g., the path condition,
the symbolic representation of the concrete program states, and partial-order reduction. Its abstraction from
control structures also allows to simulate the actual execution of a program by executing instead the symbolic
representation of the final concrete program state encoded in such a trace. This also allows to combine deductive
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verification and testing: for a path condition φ and a substitution σ representing the final concrete program state
of a symbolic execution trace, instead of executing the program for a given initial state which satisfies φ and
testing whether the final state satisfies a condition ψ , we can also verify the implication φ → (ψσ ).

A further illustration of the generality of our approach is its application to concurrent objects as, for example,
in theAbstract Behavioral Specification (ABS) language [JHS+12] which describes systems of objects that interact
via asynchronous method calls. Such a call spawns a corresponding process associated with the called object.
Return values are communicated via futures [dBCJ07]. Each object cooperatively schedules its processes one at a
time. The processes of an object can only access their local variables and the instance variables (fields) of the object.
Symbolically, the semantics can be described analogously to the one in Section 4. To model the communication
of the return values by futures we can introduce for each process a distinguished local variable.

The major potential practical implication of computing path conditions as the weakest precondition of a
symbolic trace is that it supports a clear separation of concerns between the generation of symbolic traces by
unfolding the program and the computation of the path condition by means of a weakest precondition calculus.
The use of a backward calculation of path conditions by a weakest precondition calculus further avoids the
(symbolic) state-space explosion due to various forms of aliasing. To investigate the practical implications of our
work, we will develop prototype implementations to compare the performance between the two different formal
models of symbolic execution discussed in this paper. These prototype implementations will further be used to
compare performance with other tools, and investigate optimizations.

Another interesting research direction is the development of a further extension of our theory for concolic
execution, mixing symbolic and concrete executions [GKS05], and the symbolic backward execution [CFS09].
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