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Abstract

Background Patient-reported outcomes (PROs) are of increasing importance for health-care evaluations. However, the
interpretation of change in PROs may be obfuscated due to changes in the meaning of the self-evaluation, i.e., response
shift. Structural equation modeling (SEM) is the most widely used statistical approach for the investigation of response shift.
Yet, non-technical descriptions of SEM for response shift investigation are lacking. Moreover, application of SEM is not
straightforward and requires sequential decision-making practices that have not received much attention in the literature.
Aims To stimulate appropriate applications and interpretations of SEM for the investigation of response shift, the current
paper aims to (1) provide an accessible description of the SEM operationalizations of change that are relevant for response
shift investigation; (2) discuss practical considerations in applying SEM; and (3) provide guidelines and recommendations
for researchers who want to use SEM for the investigation and interpretation of change and response shift in PROs.
Conclusion Appropriate applications and interpretations of SEM for the detection of response shift will help to improve our
understanding of response shift phenomena and thus change in PROs. Better understanding of patients’ perceived health
trajectories will ultimately help to adopt more effective treatments and thus enhance patients’ wellbeing.

Keywords Structural equation modeling (SEM) - Patient-reported outcomes (PROs) - Health-related quality of life
(HRQL) - Change - Response shift

Introduction clinical practice [1]. The importance of measuring PROs,

such as health-related quality of life (HRQL), is especially

Patient-reported outcomes (PROs) are increasingly recog-
nized as a critical endpoint in health care and medicine, and
routine assessment of PROs is becoming standard part of

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/s1113
6-020-02742-9.

P4 M. G. E. Verdam
m.g.e.verdam @fsw.leidenuniv.nl

Department of Methodology and Statistics, Institute
of Psychology, Leiden University, P.O. Box 9555,
2300 RB Leiden, The Netherlands

Department of Medical Psychology, Amsterdam University
Medical Centre, Amsterdam Public Health Research
Institute, Amsterdam, The Netherlands

Research Institute Child Development and Education,
University of Amsterdam, Amsterdam, The Netherlands

salient in view of aging societies and more powerful health-
care interventions, which have led to an increasing num-
ber of people living with chronic disease [2]. That is, the
ultimate purpose of health-care interventions may often not
be prolonged survival but maintenance or optimization of
patients’ quality of life [3].

Evaluating the impact of disease and treatment on
patients’ perceived health trajectories requires longitudinal
assessment. However, interpretation of change in PROs is
complicated by the fact that the meaning of respondents’
self-evaluations may change too. Sprangers and Schwartz
[4] proposed a theoretical model for change in the mean-
ing of self-evaluations, which they called ‘response shift,” a
term coined by Howard et al. [5]. Sprangers and Schwartz
distinguish three types of response shift: recalibration refers
to a change in respondents’ internal criteria with which
they assess the construct of interest; reprioritization refers
to a change in respondents’ values regarding the relative
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importance of subdomains; and reconceptualization refers
to a change in the meaning of the target construct. Although
various refined definitions and theoretical models have sub-
sequently been proposed [6—8], they all share this working
definition of response shift. While response shift can often
be considered a beneficial treatment or time effect, its effect
may lead to an over- or under-estimation of intervention
effects, hindering the interpretation of change in HRQL out-
comes. It is, thus, important to detect and take into account
possible response shift effects.

Structural equation modeling (SEM) is currently the
most widely used statistical approach for the investiga-
tion of response shift [9] and has been applied to examine
response shift in various patient populations, disease types,
and PRO measures. However, application of SEM is rela-
tively complex as it includes many steps that require several
decisions regarding, for example, the number and types of
response shift to consider. When one is not aware of these
different decisions and their consequences, there is a risk of
using the SEM method inappropriately. Moreover, there is
a lack of non-technical explanations of SEM for response
shift detection; the original paper by Oort [10] is difficult
to follow for non-statisticians as it contains many technical
specifications, makes an unnecessary distinction between
two types of recalibration, and distinguishes several other
types of change that are not directly relevant for response
shift investigation. The aim of the current paper is therefore
to provide an accessible description of the SEM method and
its associated sequential decision-making practices, in order
to stimulate valid applications and interpretations of SEM
for the investigation of response shift and change in HRQL
outcomes. Specifically, we describe the operationalization
and interpretation of change with SEM addressing only
those parameters of interest for the detection of recalibra-
tion, reprioritization, and reconceptualization response shift
and ‘true’ change in the target construct (i.e., change in the
target construct while taking into account response shift),
and discuss practical considerations in the application of
the SEM approach. In doing so, we provide guidelines and
recommendations for the investigation and interpretation of
change and response shift.

Our paper is targeted at researchers who are interested in
applying SEM for response shift detection and are familiar
with latent variable modeling (e.g., see [11]). Note that SEM
can be used to investigate response shift from both a concep-
tual and a measurement perspective (see [9] for formal defini-
tions of both perspectives). In the current paper, we address
response shift investigation from the measurement perspec-
tive, where response shift is defined as a change in the relation
between the underlying (latent) target construct (e.g., HRQL)
and the observed questionnaire responses. To explain the SEM
method, enhance its accessibility, and facilitate the interpreta-
tion of its results, we use an example of HRQL measurement
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over time. However, we would like to emphasize that response
shift can occur—and be investigated—in any PRO measure
(PROM).

Operationalization and interpretation
of change and response shift

Suppose cancer patients are administered a HRQL question-
naire prior to and at the end of chemotherapy. We have their
scores on nine different items from a HRQL questionnaire that
measures physical (i.e., ‘nausea,’” ‘pain,” and ‘fatigue’), mental
(‘anxiety, ‘sadness,” and ‘happiness’) and social (‘family rela-
tions,” ‘friendships,” and ‘work relations’) aspects of health.
SEM is a statistical technique that can be used to model rela-
tionships between observed responses (e.g., patients’ scores
on the nine items of the HRQL questionnaire) to be reflective
of one or more unobserved latent variables or common factors
(e.g., the three domains of the HRQL construct that the items
aim to measure) (see Fig. 1). Within the SEM framework, the
variances and covariances (X, ‘Sigma’) and means (i, ‘mu’)
of the observed variables (X) are given by

Cov(X,X') =Z=ADA' +0,
and
Mean(X) = p =1+ AK,

where A (‘Lambda’) is a matrix of common factor loadings
that describes the relationships between the observed vari-
ables and underlying common factors (e.g., the relationships

Py || P2 || P3 my | My | M3 Si || S2 | S3
+ + + + * + + + T

Fig.1 A SEM model for physical (P), mental (M), and social (S)
health. The squares at the bottom represent nine observed indica-
tors, where p, to p; refer to the three measures of physical health (i.e.,
‘nausea,’” ‘pain,’ and ‘fatigue’), m, to mj; refer to the three measures
of mental health (i.e., ‘anxiety,” ‘sadness,” and ‘happiness’) and s, to
s5 refer to the three measures of social health (i.e., ‘family relations,’
‘friendships,” and ‘work relations’). The solid single-headed arrows at
the bottom of the squares represent the residual factors of each indi-
cator variable. The circles at the top represent the underlying latent
variables that measure everything that the indicators that load on that
factor have in common [i.e., a physical (P), mental (M), and social (S)
domain of HRQL]. Each arrow from a latent variable to an observed
indicator represents a factor loading. The solid double-headed arrows
between the latent variables represent common factor covariances
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between the underlying common factor mental health and
the three associated item scores are specified by three com-
mon factor loadings), ® (‘Phi’) is a matrix of common fac-
tor variances and covariances that describes the relation-
ships between the underlying factors (e.g., the relations
between physical, mental, and social health), ® (‘Theta’) is
a matrix of residual variances and covariances that cannot
be explained by the underlying common factors (e.g., the
variances of the nine observed item scores that cannot be
explained by the three underlying common factors), T (‘tau’)
is a vector of intercepts (e.g., one intercept value for each of
the nine item scores), and k (‘kappa’) is a vector of common
factor means (e.g., the means of the underlying common fac-
tors physical, mental, and social health). The full matrices
of the SEM model for the example from Fig. 1 are provided
in Online Appendix A.

Assessment of different types of change

SEM can be applied to data from multiple measurement
occasions to assess change (see Fig. 2). Specifically, the
SEM method for the investigation of different types of
changes in HRQL outcomes [10] uses change in the pattern
of factor loadings, values of factor loadings, and intercepts
to operationalize reconceptualization, reprioritization, and
recalibration, respectively. In the presence of response shift,
the meaning of the construct is not consistent across time.
In other words, a comparison of the indicators for which
response shift has been detected is compromised, as change
in the observed indicators does not (only) reflect change in

PO —_——

the underlying variables. A decomposition of change can be
used to investigate the impact of response shift on change
in the observed indicators [12]. Moreover, SEM enables the
investigation of change in the underlying latent variables,
while taking into account possible response shifts. Changes
in the common factor means across occasions are indicative
of ‘true’ change in the construct of interest. Table 1 provides
an overview of the four steps of the SEM approach as pro-
posed by Oort [10], including examples of the interpretation
of response shift.

Added value of the SEM approach

There are three main advantages of the SEM approach to
investigate change in HRQL outcomes. First, it allows for
an operationalization of different types of response shift.
Second, it can account for the different types of response
shift. Third, the flexibility of the SEM framework enables
the inclusion of multiple measurements (e.g., analyze more
extensive follow-up designs; see [13]), multiple groups (e.g.,
compare different patient groups based on disease, treat-
ment, or patient characteristics; see [14]), multidimensional
scales (e.g., include multiple HRQL domains, or other latent
variables, simultaneously; see [15]), or variables with differ-
ent measurement levels (e.g., continuous subscale scores and
categorical item scores; see [16]), and exogenous variables
that possibly explain response shift. For an interpretation of
the impact of response shift on the assessment of change, it
is also possible to calculate SEM-based effect-size indices
[12].
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Fig.2 A longitudinal SEM model for the investigation of change and
response shift in physical (P), mental (M), and social (S) health. This
is the longitudinal SEM model of the same HRQL measurement as
depicted in Fig. 1. The squares at the bottom represent the observed
indicators, measuring physical (p; to p;), mental (m; to ms), and
social (s, to s3) aspects of health (see Fig. 1) at two occasions (T1
and T2). The solid single-headed arrows at the bottom of the squares
represent the residual factors of each indicator variable. The dotted
double-headed arrows represent the longitudinal relations between
the residual factors, where only the residual factors of the same indi-

cator are allowed to correlate. The circles at the top represent the
underlying latent variables that measure everything that the indi-
cators that load on that factor have in common [i.e., a physical (P),
mental (M), and social (S) domains of HRQL, both at T1 and T2].
Each arrow from a latent variable to an observed indicator represents
a factor loading. The solid double-headed arrows between the latent
variables represent common factor covariances. The dotted double-
headed arrow represents the (nine) longitudinal correlations between
the common factors
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as a three-factor model, where all items that measure the
same domain load on the associated common factor (such
as in Fig. 1). However, specification of the measurement
model can become more complicated in situations where
the dimensional structure of a questionnaire is unclear,
or where (items of) different questionnaires are combined
(cf. [14]). Moreover, it is often necessary to modify the
initially specified measurement model to obtain a well-
fitting model. A well-fitting measurement model is nec-
essary, as the measurement model is the baseline model
against which all further models (that are used to test for
the presence of response shift) will be compared. Thus, the
measurement model represents the most parsimonious, the
most reasonable or defendable, and the best-fitting model
to the data [22].

To evaluate whether the model fit of the measurement
model is appropriate (e.g., assessment of overall model fit)
and to guide model specification, when the initial model
fit is suboptimal or inadequate (e.g., using differences in
model fit), one can use statistical criteria. However, evalu-
ation of statistical criteria for (differences in) model fit is
complicated by the fact that there exist many different fit
indices, with different decision rules that may be more or
less appropriate depending on the context of the study. An
overview of the most important fit measures and their (dis)
advantages are provided in Table 3. As a general recom-
mendation, the researcher could inspect and report several
fit indices but should be aware that choice of the specific fit
index might depend on the specifics of the data (e.g., sample
size), complexity of the model, and/or the hypothesis that
is being tested. Detailed discussions on the use of differ-
ent SEM-based fit indices are provided elsewhere (e.g., see
[23-25]).

Making decisions in model (re-)specification also require
substantive considerations (i.e., does a model make sense?).
For example, statistical indices may indicate that the larg-
est improvement in fit can be achieved by freeing a factor
loading of a physical functioning item on a common factor
that measures mental health; such a model specification may
not make sense substantively. On the other hand, freeing a
residual covariance between indicators that share the same
item format may be sensible cf. [26] even though it will
not lead to a large improvement in model fit or to a change
in interpretation of the common factors. In order to find a
substantively reasonable measurement model, it is at least
equally—and possibly even more—important to rely on sub-
stantive knowledge as on statistical criteria.

Identification of possible response shift
The mere presence of response shift is evaluated by testing

whether the equality restrictions on all model parameters
associated with response shift are tenable (i.e., Step 2 of

the SEM procedure), representing an ‘omnibus test’ for the
presence of response shift. This procedure has also been
advocated by others [27] and has been shown to protect
against false positives [28]. However, if there is evidence of
the presence of response shift, how does one then accurately
locate which observed variable is affected by which type of
response shift?

The search for response shift (i.e., step 3 of the SEM
approach) requires exploratory model fitting or re-speci-
fication, which is referred to as the ‘specification search.’
The specification search can be guided using statistical
criteria, such as modification indices, expected parameter
changes, Wald tests, inspection of residuals, or differences
in model fit [29]. In order to correctly identify the change in
model parameters, it has been recommended to use an itera-
tive procedure [30], where all model parameters associated
with response shift are freed one at a time, and the freely
estimated parameter that shows the largest improvement
in model fit is incorporated in the model. However, it may
be that two different model modifications lead to equiva-
lent improvement in model fit. A decision on which model
modification to prioritize can, therefore, not be based on
statistical criteria alone. Given the dependence of sequential
model re-specification, freeing one model parameter may
render freeing the other model parameter unnecessary, i.e.,
a change to the model can affect other parts of the model too.
It may therefore be possible that alternative series of model
re-specifications lead to different results. For example, in
the search for response shift in our illustrative example of
HRQL, it may be that freeing the intercept value of either
‘family relations’ or ‘friendships’ (both indicators of social
health; see Fig. 1) would lead to an equivalent improvement
in model fit, but that freeing one would render freeing the
other intercept unnecessary. One thus needs other—substan-
tive—reasons to decide on which response shift effect to
include in the model. It may be, for example that recali-
bration of ‘family relations’ is much more plausible given
the type of catalyst (e.g., type of disease or treatment) or
prevalence of married patients/marital status in the study
population.

Instead of strictly adhering to a procedure where only
the modification that leads to the largest model-fit improve-
ment is considered, it may be important to follow different
sequences in model re-specification—i.e., choose different
modifications that lead to different but more-or-less equiva-
lent model-fit improvement—to investigate whether and to
what extent these different sequential decisions lead to dif-
ferent results. This will allow the researcher to see whether
detection of response shift is dependent on sequential deci-
sion-making practices and to choose among possible differ-
ences in these sequences based on a combination of both
statistical and substantive considerations. It is this repeated
back-and-forth specification search in which one can find

@ Springer
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confidence in the robustness of results or, alternatively, find
that a confident conclusion about the number and types of
response shift is not warranted. Clearly, these sequential
decision-making practices thus require subjective judgment,
and different researchers may make different decisions. This
is a necessary consequence of ensuring interpretability of
findings. For example, it may be that in different sequences
of response shift investigation for our illustrative example
of HRQL, the difference in intercepts of ‘family relations’
re-occurs frequently, while the difference in intercepts of
‘friendships’ only occurs sporadically. Such a pattern of
results may help to decide between different modifications
that lead to similar improvements in model fit.

The specification search for possible response shift effects
also requires a decision on when to stop searching. The aim
of the specification search is to identify all possible response

son of nested models is lacking
e Cannot be used to test whether the difference in model fit is significant

o Stringent evaluation of the performance of the ECVI for the compari-

§0 shift effects (i.e., identify all true positives). Meanwhile,
g however, one wants to prevent the identification of trivial
E differences in model parameters across time as being of
g substantive interest (i.e., identification of false positives, or
type 1 errors). In addition to the improvement in model fit

for freeing individual parameters, one can rely on the dif-

‘E ference in model fit between the measurement model and

= the model that includes all identified response shift effects.

g When the overall difference in fit between these models is

o] not significant, this may be taken as an indication that free-

g ing additional model parameters is no longer necessary.

E Also, one can use the overall model fit of the model to judge

§ *E whether the model that includes response shift is tenable.

7 g ; These model-fit evaluations may provide more robust stop-
& P 2 ping criteria. However, it has also been argued that in order
g é Vé) to adequately identify all response shift effects, it may be
< o . necessary to continue the specification search, even when

the established model already shows adequate model fit
[31]. Therefore, model-fit criteria should be used in combi-
nation with substantive criteria with regard to the (possible)
response shifts. For example, it may be that freeing an addi-
tional model parameter will lead to a small, non-significant
improvement in model fit, but that the associated response
shift has a clear interpretation. For example, when in our
illustrative example of HRQL, there is an a-priori hypothesis
about the occurrence of reprioritization response shift of
‘nausea’ (see Table 1), it may be informative to report on a
small but non-significant effect. As a researcher, one has to
find a balance between the goodness of fit and the interpret-
ability of the model. Again, subjective judgment is needed
to ensure meaningfulness of the results.

Interpretation of detected response shift and ‘true’
change

model has significantly worse approximate fit. Similarly, the differ-

ence between two model’s AICs (or BICs) can be used

CFI difference
models [44]. As a rule of thumb, CFI difference values larger than

The difference in ECVI values of two nested models may be used to
test the equivalence in approximate model fit, where a value that
is significantly larger than zero indicates that the more restricted

It has been proposed that the difference between CFI values can be
used to evaluate the difference in model fit between two nested
0.01 are taken to indicate that the more restricted model should be
rejected

With SEM, we do not look at response shifts directly, but at
the effects, these response shifts have on the measurement

ECVI difference test

Description and interpretation

Table 3 (continued)

@ Springer
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of change in HRQL. This allows us to describe what occurs
(i.e., patterns of different types of change), but it does not
imply that we also know how it occurs (i.e., what the causes
are of the identified response shift). For the substantive
interpretation of change, it is therefore important to pro-
vide an interpretation and possible explanation of detected
response shift. For example, imagine that in our illustrative
example, recalibration was detected in the indicator ‘pain’ of
physical health, where patients showed a larger decrease in
pain as compared to the other indicators of physical health.
A possible explanation for this result may be that patients
adapted to the experience of pain and therefore rated their
pain to be lower at follow-up, even though their actual expe-
rience of pain did not change (or changed to a lesser degree),
i.e., recalibration response shift (see Table 1). It may also be
that patients received treatment or medication that reduced
their experienced level of pain. However, one could argue
that only the first interpretation coincides with what Sprang-
ers and Schwartz [4] describe as recalibration response shift.
The SEM approach for the detection of response shift does
not make such substantive distinctions. Therefore, substan-
tive interpretation of detected response shift is of paramount
importance; it is needed both to clarify what is taken as evi-
dence of response shift and to exclude, or make less likely,
alternative explanations.

The interpretation of detected response shifts can be
based on substantive knowledge of the patient group, the
treatment, or disease trajectory. In addition, it is possible
to include operationalizations of potential explanations of
response shift in the SEM model. If measures of anteced-
ents (e.g., sociodemographic or personality characteristics)
or mechanisms (e.g., coping strategies, social comparison)
are available, they can be incorporated in the model as pos-
sible explanatory variables for response shift effects cf. [32].
For example, in order to investigate the role of appraisal pro-
cesses (following [7]) for the detected recalibration response
shift of pain as described above, one could include a direct
measure of appraisal in the model and investigate the effect
of appraisal on the (change in) scores of the indicator ‘pain.’
Such investigations will help to substantiate whether and
how the detected response shifts are influenced by individu-
als’ cognitive changes in standards, values, or conceptualiza-
tions. As such, substantive interpretation and explanation of
response shift are necessary to understand both the mecha-
nisms of response shift, and how it affects change in the
construct that we intend to measure (i.e., HRQL), which in
turn will help to better understand patients’ perceived health
trajectories.

Finally, the (clinical) relevance of occurrences of
response shift can be evaluated by calculating the impact
of response shift on the assessment of change. First, the
decomposition of change [12] can be used to interpret the
impact of response shift on change in the observed variables

@ Springer

(e.g., change in item scores). The decomposition entails
that observed change is decomposed into so-called ‘true’
change (i.e., change due to change in the underlying target
construct) and change due to response shift. Second, the
impact of response shift on ‘true’ change in the underlying
target construct (e.g., HRQL) can be evaluated by compar-
ing estimates of change before and after taking into account
response shifts. SEM-based effect-size indices can help to
interpret the magnitude of the impact on change assessment
[12]. This is important because substantial and interpretable
response shifts do not always exert a considerable impact on
‘true’ change. For example, it may be that the detected recal-
ibration response shift in the indictor ‘pain’ is statistically
significant, interpretable (see above), and has substantial
impact on the observed change in pain. At the same time, it
may be that ‘true’ change in physical health is not influenced
by the detected response shift. Then, the detected recalibra-
tion response shift has no impact on the interpretation of
change in HRQL. Still, the occurrence (and investigation)
of response shift is insightful because it shows how change
in the target construct is (differentially) related to change in
the observed measures. Both types of information regarding
the impact of response shift on change assessment can thus
be used to better interpret the findings from response shift
investigations.

Conclusion

In the current paper, we discuss practical issues that are
important for researchers who want to apply SEM for the
assessment of change and detection of response shift. We
provide general recommendations that can be used for all
applications, while acknowledging that decisions are made
on a case-by-case basis and require the substantive issues
at stake. We wish to emphasize the importance of taking
into account substantive considerations in addition to sta-
tistical information to guide the sequential decision-mak-
ing practices. These decisions require subjective judgment
and are needed for any statistical modeling procedure to
ensure interpretability of findings. Moreover, for a mean-
ingful interpretation of change, it is important to try to sub-
stantiate the linkage between detected response shift and
patients’ perceived health trajectories, e.g., by using sub-
stantive knowledge or direct measures of possible explana-
tory variables. With the recommendations provided in this
paper, we aim to stimulate the appropriate application and
interpretation of SEM for the investigation of response shift
and assessment of change in PROs and thus improve the
scientific stringency of the field. As sound statistical tech-
niques can contribute to a better understanding of patients’
perceived health trajectories, this will ultimately improve the
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evaluation and interpretation of the effectiveness of health-
care interventions and thus improve the quality of patients’
lives.
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