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Abstract

Delineating the association of age and cortical thickness in healthy individuals is criti-

cal given the association of cortical thickness with cognition and behavior. Previous

research has shown that robust estimates of the association between age and brain

morphometry require large-scale studies. In response, we used cross-sectional data

from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics

through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical

thickness. We used fractional polynomial (FP) regression to quantify the association

between age and cortical thickness, and we computed normalized growth centiles

using the parametric Lambda, Mu, and Sigma method. Interindividual variability was

estimated using meta-analysis and one-way analysis of variance. For most regions,

their highest cortical thickness value was observed in childhood. Age and cortical

thickness showed a negative association; the slope was steeper up to the third

decade of life and more gradual thereafter; notable exceptions to this general pattern

were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual vari-

ability was largest in temporal and frontal regions across the lifespan. Age and its FP

combinations explained up to 59% variance in cortical thickness. These results may

form the basis of further investigation on normative deviation in cortical thickness

and its significance for behavioral and cognitive outcomes.
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aging, cortical thickness, development, trajectories
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1 | INTRODUCTION

In the last two decades, there has been a steady increase in the number

of studies of age-related changes in cerebral morphometry (Ducharme,

et al., 2015; Good et al., 2001; Mutlu et al., 2013; Salat et al., 2004; Shaw

et al., 2008; Storsve et al., 2014; Thambisetty et al., 2010; Wierenga,

Langen, Oranje, & Durston, 2014) as a means to understand genetic and

environmental influences on the human brain (Grasby, 2020;

Modabbernia et al., 2020). Here we focus specifically on cortical thick-

ness, as assessed using magnetic resonance imaging (MRI), as this mea-

sure has established associations with behavior and cognition in healthy

populations (Goh et al., 2011; Schmitt et al., 2019; Shaw et al., 2006) and

with disease mechanisms implicated in neuropsychiatric disorders

(Boedhoe, et al., 2018; Hibar et al., 2018; Hoogman et al., 2019; Schmaal

et al., 2017; Thompson et al., 2007; van Erp et al., 2018; van Rooij

et al., 2018; Whelan et al., 2018).

Structural MRI is the most widely used neuroimaging method in

research and clinical settings because of its excellent safety profile,

ease of data acquisition and high patient acceptability. Thus, esta-

blishing the typical patterns of age-related changes in cortical thick-

ness as reference data could be a significant first step in the

translational application of neuroimaging. The value of reference data

is firmly established in medicine where deviations from an expected

range are used to trigger further investigations or interventions. A

classic example is the body mass index (BMI) which has been instru-

mental in informing about risk for relating to cardio-metabolic out-

comes (Aune et al., 2016).

There is significant uncertainty about the shape and inter-

individual variability of the association between age and cortical thick-

ness. Prior studies have reported linear and nonlinear associations

(e.g., Hedman, van Haren, Schnack, Kahn, & Hulshoff Pol, 2012; Mills

et al., 2016) that may be influenced by sex (Paus, 2010; Raz, Ghisletta,

Rodrigue, Kennedy, & Lindenberger, 2010; Wierenga et al., 2020).

The present study harnessed the power of the Enhancing Neuroimag-

ing Genetics through Meta-Analysis (ENIGMA) Consortium, a multina-

tional collaborative network of researchers organized into working

groups, which conducts large-scale analyses integrating data from

over 250 institutions (Thompson et al., 2017; Thompson et al., 2020).

Within ENIGMA, the focus of the Lifespan Working group is to delin-

eate age-associations in brain morphometric measures extracted from

MRI images using standardized protocols and unified quality control

procedures harmonized and validated across all participating sites.

The ENIGMA Lifespan data set is the largest sample of healthy indi-

viduals available worldwide that offers the most comprehensive cov-

erage of the human lifespan. This distinguishes the ENIGMA Lifespan

data set from other imaging samples, such as the UK Biobank (http://

www.ukbiobank.ac.uk) which includes individuals over 40 years of

age. In the present study, we used MRI data from 17,075 healthy par-

ticipants aged 3–90 years to infer age-associated trajectories of corti-

cal thickness. We also estimated regional interindividual variability in

cortical thickness across the lifespan because it represents a major

source of inter-study variation (Raz et al., 2010; Wierenga

et al., 2020). Based on prior literature, our initial hypotheses were that

in most regions the relationship between age and thickness will follow

an inverse U-shape and will be influenced by sex.

2 | MATERIALS AND METHODS

2.1 | Study samples

De-identified demographic and cortical thickness data from 83 world-

wide samples (Figure 1) were pooled to create the data set analyzed

in this study. For samples from longitudinal studies, only baseline MRI

scans were considered. The pooled sample comprised 17,075 partici-

pants (52% female) aged 3–90 years; only participants with complete

data were included (Table 1). All participants had been screened to

exclude psychiatric disorders, medical and neurological morbidity and

cognitive impairment. Information on the screening protocols and eli-

gibility criteria is provided in Table S1.

2.2 | Image acquisition and processing

Prior to pooling the data used in this study, researchers at each partic-

ipating institution (a) used the ENIGMA MRI analysis protocols, which
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are based on FreeSurfer (http://surfer.nmr.mgh.harvard.edu), to com-

pute the cortical thickness of 68 regions from high-resolution

T1-weighted MRI brain scans collected at their site; (b) inspected all

images by overlaying the cortical parcellations on the participants'

anatomical scans and excluded improperly segmented scans;

(c) identified outliers using five median absolute deviations (MAD) of

the median value (additional details in the supplement). Information

on scanner vendor, magnetic field strength, FreeSurfer version and

F IGURE 1 ENIGMA Lifespan
samples. Abbreviations are
explained in Table 1; further
details of each sample are
provided in the supplemental
material
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TABLE 1 Characteristics of the included samples

Sample Age, mean, years Age, SD, years Age range Sample N Male N Female N

ADHD NF 14 0.7 13 14 3 1 2

AMC 23 3.4 17 32 99 65 34

Barcelona 1.5 T 15 1.9 11 17 24 10 14

Barcelona 3 T 15 2.2 11 17 31 13 18

Betula 62 12.4 26 81 231 105 126

BIG 1.5 T 28 14.3 13 82 1,319 657 662

BIG 3 T 24 8.1 18 71 1,291 553 738

BIL&GIN 27 7.7 18 57 452 220 232

Bonn 39 6.5 29 50 175 175 0

BRAINSCALE 10 1.4 9 15 172 102 70

BRCATLAS 40 17.2 18 84 163 84 79

CAMH 44 19.3 18 86 141 72 69

Cardiff 26 7.8 18 58 265 78 187

CEG 16 1.8 13 19 31 31 0

CIAM 27 4.2 19 34 24 13 11

CLING 25 5.3 18 58 323 132 191

CODE 40 13.3 20 64 72 31 41

COMPULS/TS Eurotrain 11 1 9 13 42 29 13

Edinburgh 24 2.9 19 31 55 20 35

ENIGMA-HIV 25 4.3 19 33 30 16 14

ENIGMA-OCD (AMC/Huyser) 14 2.8 9 17 6 2 4

ENIGMA-OCD (IDIBELL) 33 10.4 20 50 20 8 12

ENIGMA-OCD (Kyushu/Nakao) 45 14.1 24 64 16 6 10

ENIGMA-OCD (London Cohort/Mataix-Cols) 38 11.6 26 63 10 2 8

ENIGMA-OCD (van den Heuvel 1.5 T) 41 12.9 26 50 3 0 3

ENIGMA-OCD (van den Heuvel 3 T) 36 10.9 22 55 8 4 4

ENIGMA-OCD-3 T-CONTROLS 32 11 20 56 17 4 13

FBIRN 37 11.4 19 60 164 117 47

FIDMAG 38 10.1 19 64 123 54 69

GSP 27 16.5 18 90 2008 893 1,115

HMS 40 12.2 19 64 55 21 34

HUBIN 42 8.8 19 56 102 69 33

IDIVAL (1) 65 9.8 49 87 34 13 21

IDIVAL (3) 30 7.8 19 50 104 63 41

IDIVAL(2) 28 7.6 15 52 80 50 30

IMAGEN 14 0.4 13 16 1722 854 868

IMH 32 9.8 20 58 73 48 25

IMpACT-NL 36 12.1 19 62 91 27 64

Indiana 1.5 T 62 11.7 37 84 49 9 40

Indiana 3 T 27 19.7 6 87 199 95 104

Johns Hopkins 44 12.5 20 65 85 42 43

KaSP 27 5.7 20 43 32 15 17

Leiden 17 4.8 8 29 572 279 293

MAS 79 4.7 70 90 385 176 209

MCIC 32 12.1 18 60 91 61 30

Melbourne 20 2.9 15 25 70 39 31

METHCT 27 6.5 19 53 39 29 10

MHRC 22 3.1 16 27 27 27 0

Muenster 35 12.1 17 65 744 323 421

NCNG 51 16.9 19 80 345 110 235

(Continues)
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TABLE 1 (Continued)

Sample Age, mean, years Age, SD, years Age range Sample N Male N Female N

NESDA 40 9.7 21 56 65 23 42

NeuroIMAGE 17 3.4 9 27 252 115 137

Neuroventure 14 0.6 12 15 137 62 75

NTR (1) 15 1.4 11 18 37 14 23

NTR (2) 34 10.4 19 57 112 42 70

NTR (3) 30 5.9 20 42 29 11 18

NU 33 14.8 14 68 79 46 33

NUIG 36 11.5 18 58 92 53 39

NYU 31 8.7 19 52 51 31 20

OATS (1) 71 5.6 65 84 80 53 27

OATS (2) 69 5.1 65 81 13 7 6

OATS (3) 69 4 65 81 116 64 52

OATS (4) 70 4.7 65 89 90 63 27

Olin 36 13 21 87 582 231 351

Oxford 16 1.4 14 19 37 18 19

PING 12 4.8 3 21 431 223 208

QTIM 23 3.3 16 30 308 96 212

Sao Paolo 28 6.1 17 43 51 32 19

Sao Paolo-2 31 7.6 18 50 58 30 28

SCORE 25 4.3 19 39 44 17 27

SHIP 2 55 12.3 31 88 306 172 134

SHIP TREND 50 13.7 22 81 628 355 273

StagedDep 48 8.1 32 59 23 7 16

Stanford 45 12.6 21 61 8 4 4

STROKEMRI 45 22.1 18 78 52 19 33

Sydney 39 22.1 12 84 157 65 92

TOP 35 9.9 18 73 303 159 144

Tuebingen 40 12.4 24 61 38 12 26

UMCU 1.5 T 33 12.5 17 66 278 158 120

UMCU 3 T 44 14 19 78 144 69 75

UNIBA 27 9.1 18 63 130 67 63

UPENN 37 13.1 18 85 115 42 73

Yale 14 2.7 10 18 12 5 7

Total 31 18.2 3 90 17,075 8,212 8,863

Abbreviations: ADHD-NF, Attention Deficit Hyperactivity Disorder- Neurofeedback Study; AMC, AmsterdamMedisch Centrum; Basel, University of Basel;
Barcelona, University of Barcelona; Betula, Swedish longitudinal study on aging, memory, and dementia; BIG, Brain Imaging Genetics; BIL&GIN, a multimodal
multidimensional database for investigating hemispheric specialization; Bonn, University of Bonn; BrainSCALE, Brain Structure and Cognition: an
Adolescence Longitudinal twin study; CAMH, Centre for Addiction and Mental Health; Cardiff, Cardiff University; CEG, Cognitive-experimental and Genetic
study of ADHD and Control Sibling Pairs; CIAM, Cortical Inhibition and Attentional Modulation study; CLiNG, Clinical Neuroscience Göttingen; CODE,
formerly Cognitive Behavioral Analysis System of Psychotherapy (CBASP) study; Edinburgh, The University of Edinburgh; ENIGMA-HIV, Enhancing
NeuroImaging Genetics through Meta-Analysis-Human Immunodeficiency VirusWorking Group; ENIGMA-OCD, Enhancing NeuroImaging Genetics
through Meta-Analysis- Obsessive Compulsive Disorder Working Group; FBIRN, Function Biomedical Informatics Research Network; FIDMAG, Fundación
para la Investigación y Docencia Maria Angustias Giménez; GSP, Brain Genomics Superstruct Project; HMS, Homburg Multidiagnosis Study; HUBIN, Human
Brain Informatics; IDIVAL, Valdecilla Biomedical Research Institute; IMAGEN, the IMAGEN Consortium; IMH=Institute of Mental Health, Singapore;
IMpACT, The International Multicentre persistent ADHD Genetics Collaboration; Indiana, Indiana University School of Medicine; Johns Hopkins, Johns
Hopkins University; KaSP, The Karolinska Schizophrenia Project; Leiden, Leiden University; MAS, Memory and Aging Study; MCIC, MIND Clinical Imaging
Consortium formed by the Mental Illness and Neuroscience Discovery (MIND) Institute now the Mind Research Network; Melbourne, University of
Melbourne; Meth-CT, study of methamphetamine users, University of Cape Town; MHRC, Mental Health Research Center; Muenster, Muenster University;
NESDA, The Netherlands Study of Depression and Anxiety; NeuroIMAGE, Dutch part of the International Multicenter ADHDGenetics (IMAGE) study;
Neuroventure: the imaging part of the Co-Venture Trial funded by the Canadian Institutes of Health Research (CIHR); NCNG, Norwegian Cognitive
NeuroGenetics sample; NTR, Netherlands Twin Register; NU, Northwestern University; NUIG, National University of Ireland Galway; NYU, New York
University; OATS, Older Australian Twins Study; Olin, Olin Neuropsychiatric Research Center; Oxford, Oxford University; QTIM, Queensland Twin Imaging;
Sao Paulo, University of Sao Paulo; SCORE, University of Basel Study; SHIP-2 and SHIP TREND, Study of Health in Pomerania; Staged-Dep, Stages of
Depression Study; Stanford, Stanford University; StrokeMRI, Stroke Magnetic Resonance Imaging; Sydney, University of Sydney; TOP, Tematisk Område
Psykoser (Thematically Organized Psychosis Research); TS-EUROTRAIN, European-Wide Investigation and Training Network on the Etiology and
Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen, University of Tuebingen; UMCU, Universitair Medisch Centrum Utrecht; UNIBA, University
of Bari Aldo Moro; UPENN, University of Pennsylvania; Yale, Yale University.
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acquisition parameters for each sample as provided by the participat-

ing institutions is detailed in Table S1.

2.3 | Analysis of age-related changes in cortical
thickness

We modeled the effect of age on regional cortical thickness using

higher order fractional polynomial (FP) regression analyses (Royston &

Altman, 1994; Sauerbrei, Meier-Hirmer, Benner, & Royston, 2006)

implemented in STATA software version 14.0 (Stata Corp., College

Station, TX). FP regression is one of the most flexible methods to

study the effect of continuous variables on a response variable

(Royston & Altman, 1994; Sauerbrei et al., 2006). FP allows for testing

a broad family of shapes and multiple turning points while simulta-

neously providing a good fit at the extremes of the covariates

(Royston & Altman, 1994). Prior to FP regression analysis, cortical

thickness values were harmonized between sites using the ComBat

method in R (Fortin et al., 2018). ComBat uses an empirical Bayes

method to adjust for inter-scanner variability in the data while pre-

serving biological variability. As the effect of scanner was adjusted

using ComBat, we only included sex as a covariate in the regression

models. Additionally, standard errors were adjusted for the effect of

scanner in the FP regression. We centered the data from each brain

region so that the intercept of an FP was zero for all covariates. We

used a predefined set of power terms (−2, −1, −0.5, 0.5, 1, 2, 3) and

the natural logarithm function, and up to four power combinations to

identify the best fitting model. FP for age was written as age(p1, p2, …

p6)0β where p in age(p1, p2, …p6) refers to regular powers except age(0)

which refers to ln(age). Powers can be repeated in FP; each time a

power s repeated, it is multiplied by another ln(age). As an example:

age 0,1,1ð Þ0β = β0 + β1age
0 + β2age

1 + β3age
1ln ageð Þ

= β0 + β1ln ageð Þ+ β2age + β3age ln ageð Þ

494 models were trained for each region. Model comparison was per-

formed using a partial F-test and the lowest degree model with the

smallest p-valuewas selected as the optimal model. Following permutation,

critical alpha value was set at .01 to decrease the probability of over-

fitting. The age at maximum cortical thickness for each cortical region was

the maximum fitted value of the corresponding optimal FP model.

Further, we divided the data set into three age-groups

corresponding to early (3–29 years), middle (30–59 years) and late life

(60–90 years). Within each age-group, we calculated Pearson's correla-

tion coefficient between age and regional cortical thickness. Finally, we

used the cocor package in R to obtain P-values for the differences in cor-

relation coefficients between males and females in each age-group.

2.4 | Interindividual variation in cortical thickness

The residuals of the FP regression models for each cortical region

were normally distributed. Using one-way analysis of variance we

extracted the residual variance around the optimal fitted FP regres-

sion model so as to identify age-group differences in interindividual

variation for each cortical region. Separately for each age-group (t),

we calculated the mean age-related variance of each cortical region

using
P ffiffiffiffi

e2
i

p
nt

� �
where e2 denotes the squared residual variance of

that region around the best fitting FP regression line for each individ-

ual (i) of that age-group, and n the number of observations in that

age-group. Because the square root of the squared residuals was posi-

tively skewed, we applied a natural logarithm transformation to the

calculated variance. To account for multiple comparisons (68 regions

assessed in three age-groups), a Bonferroni adjusted p-value of

0.0007 as chosen as a cut-off for a significant F-test. To confirm that

the scanner effect did not drive the interindividual variability analyses,

we also conducted a meta-analysis of the SD of the regional cortical

thickness in each age-group, following previously validated methodol-

ogy (Senior, et al., 2016). To test whether interindividual variability is

a function of surface area (and possibly measurement error by

FreeSurfer) we plotted the SD values of each region against their

corresponding average surface area.

2.5 | Centile values of cortical thickness

We calculated the centiles (0.4, 1, 2.5, 5, 10, 25, 50, 75, 90, 95, 97.5,

99, 99.6) for each regional cortical thickness measure by sex and

hemisphere as normalized growth centiles using parametric Lambda

(λ), Mu (μ), Sigma (σ) (LMS) method (Cole and Green, 1992) in the Gen-

eralized Additive Models for Location, Scale and Shape (GAMLSS)

package in R (http://cran.r-project.org/web/packages/gamlss/index.

html) (Rigby & Stasinopoulos, 2005; Stasinopoulos & Rigby, 2007).

LMS is considered a powerful method for estimating centile curves

based on the distribution of a response variable at each covariate

value (in this case age). GAMLSS uses a penalized maximum likelihood

function to estimate parameters of smoothness (effective degrees of

freedom) which are then used to estimate the λ, μ, and σ parameters.

The goodness of fit for these parameters in the GAMLSS algorithm is

established by minimizing the Generalized Akaike Information Crite-

rion (GAIC) index.

3 | RESULTS

3.1 | Association of age with cortical thickness

Figure 2 shows the shape of the association of age with cortical

thickness in each lobe, while the corresponding information on all

cortical regions is provided in File S1. For most regions, the highest

value for cortical thickness was observed in childhood; age and cor-

tical thickness showed a negative linear correlation, with the slope

being steep until the third decade of life (Table S2). By contrast, the

entorhinal and temporopolar cortices showed an inverse U-shaped

relation with age bilaterally while in the anterior cingulate cortex

(ACC) showed an attenuated U-shape. In general, age and its FP
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combinations explained up to 59% of the variance in mean cortical

thickness (Table S2). Age explained the smallest proportion of the

variance for entorhinal (1–2%) and temporopolar (2–3%) cortices

but the largest proportion of variance for the superior frontal and

precuneus gyri (50–52%).

We observed significant sex differences in the slopes of age-

related mean cortical thickness reduction in the middle-life group

(30–59 years) which were steeper for males (r = −.39 to −.38) than

for females (r = −.27). In the early-life group (3–29 years), the age-

related slopes for mean cortical thickness were not different between

males (r = −.59) and females (r = −.56). Similarly, in the late-life group

(61–90 years) there were no meaningful sex differences (male: r-

range = −.30 to −.29; female: r-range= = − .33 to −.31).

Further, sex differences were also noted at the regional level in

the early- and middle-life groups. In the early-life group, the slope of

the association between age and cortical thickness was steeper in

males than in females in the bilateral cuneus, lateral occipital, lingual,

superior parietal, postcentral, and paracentral, precuneus, and per-

icalcarine gyri (all p < .0007). In middle-life age-group, the slope was

steeper in males than in females in the bilateral pars orbitalis and pars

triangularis as well as left isthmus of the cingulate, pars opercularis,

precuneus, rostral middle frontal, and supramarginal, and right fusi-

form, inferior temporal, inferior parietal, lateral occipital, lateral

orbitofrontal, rostral anterior cingulate, superior frontal, supramarginal

regions, and the insula (all p < .0002) (Figures 3 and S1, Table S3).

3.2 | Interindividual variation in cortical thickness

Across age-groups (early, middle, and late life), interindividual variabil-

ity in regional cortical thickness, as measured by pooled SD, was

between 0.1 and 0.2 mm. Details are provided in Table S4, Figures 4

and S2. High interindividual variation was mainly confined bilaterally

in the entorhinal, parahippocampal, transverse temporal, tempo-

ropolar, frontopolar, anterior cingulate and isthmus, and pars orbitalis

regions. We confirmed the replicability of these findings in each age-

group by conducting meta-analysis following the procedures set-out

by Senior et al. (2016).

Finally, we observed a nonlinear association between regional

cortical surface area and interindividual variability with variability

F IGURE 2 Illustrative Fractional Polynomial Plots for the association of age and cortical thickness. We present exemplars from each lobe as
derived from fractional polynomial analyses of the entire data set. Details regarding the association of age and thickness for all cortical regions
(for the entire data set and separately for males and females) are given in the supplementary material

442 FRANGOU ET AL.



being typically higher in regions with smaller surface areas

(Figure S3).

3.3 | Centile curves of cortical thickness

Representative centiles curves for each lobe are presented in Figure 5.

Centile values for the thickness of each cortical region, stratified by sex

and hemisphere, are provided in Tables S5 to S7 and File S2.

4 | DISCUSSION

In the present study, we provide the most comprehensive characteri-

zation of the association between age and regional cortical thickness

across the human lifespan based on multiple analytic methods (i.e., FP

analysis, meta-analysis and centile calculations) and the largest data

set of cortical thickness measures available from healthy individuals

aged 3 to 90 years. In addition to sample size, the study benefited

from the standardized and validated protocols for data extraction and

quality control that are shared by all ENIGMA sites and have

supported all published ENIGMA structural MRI studies (Thompson

et al., 2020).

Most regional cortical thickness measures reached their maximum

value between 3 and 10 years of age, showed a steep decrease during

the second and third decades of life and an attenuated or plateaued

slope thereafter. This pattern was independent of the hemisphere and

sex. A recent review (Walhovd, Fjell, Giedd, Dale, & Brown, 2017) has

highlighted contradictions between studies that report an increase in

cortical thickness during early childhood and studies that report a

decrease in cortical thickness during the same period. The results from

the current study help reconcile previous findings as they show that

the median age at maximum thickness for most cortical regions is in

the lower bound of the age-range examined here. However, these

findings must be considered in the context to the fewer data points

available for those below the age of 10 years.

The general pattern of greater cortical thinning with advancing

age was similar in both sexes. When participants were divided in

early-, middle- and late-life groups, sex differences in the slope

between age and cortical thickness was noted primarily for the mid-

life group. In this age-group, which included individuals aged

30–59 years, the slope was steeper in males than in females. This sex-

difference has not been reported in other studies (Fjell et al., 2015;

Raz et al., 2005; Raz et al., 2010; Storsve et al., 2014) which generally

had smaller samples (<2000), shorter observation periods or examined

age-related trajectories of cortical thickness after the effect of sex

was regressed-out (e.g., Fjell et al., 2009). Although the sex-

differences reported here may be incidental, they resonate with find-

ings of generally higher cognitive reserve in women as they enter

later-life (Mauvais-Jarvis et al., 2020).

In the entorhinal and temporopolar cortex there were minimal

age-related changes until the seventh to eighth decades of life; there-

after both regions showed age-related decrease in cortical thickness.

Although the FreeSurfer estimation of cortical thickness in these

regions is often considered suboptimal (compared with the rest of the

brain), we note that our findings are consistent with a prior multicen-

ter study of 1,660 healthy individuals (Hasan et al., 2016). Further, the

current study supports results from the National Institutes of Health

MRI study of 384 individuals that found no significant change in the

bilateral entorhinal and medial temporopolar cortex between the ages

of 4–22 years (Ducharme et al., 2016). A further study of 207 healthy

adults aged 23–87 years also showed no significant cortical thinning

in the entorhinal cortex until the sixth decade of life (Storsve

et al., 2014). These observations suggest that the cortex of the ento-

rhinal and temporopolar regions is largely preserved across the

lifespan in healthy individuals. Both these regions contribute to epi-

sodic memory while the temporopolar region is also involved in

semantic memory (Rolls, 2018). Degenerative changes of the tempo-

ropolar cortex have been reliably associated with semantic dementia,

which is characterized by loss of conceptual knowledge about real-

world items (Hodges & Patterson, 2007). The integrity and resting

metabolic rate of the temporopolar cortex decrease with age (Allen,

F IGURE 3 Correlation between age and cortical thickness across age-groups. Left panel: early life age-group (3–29 years); Middle panel:
middle life age-group (30–59 years); Right panel: late life age-group (60–90 years). Blue hues = negative correlations; Red hues = positive
correlations
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Bruss, Brown, & Damasio, 2005; Eberling et al., 1995; Fjell

et al., 2009), and lower perfusion rates in this region correlate with

cognitive impairment in patients with Alzheimer's disease

(AD) (Alegret et al., 2010). Entorhinal cortical thickness is a reliable

marker of episodic memory performance (Schultz, Sommer, &

Peters, 2012) and entorhinal cortex volume and metabolism are

reduced in patients with AD and mild cognitive impairment (Dickerson

et al., 2009; Zhou, Zhang, Zhao, Qian, & Dong, 2016). We therefore infer

that “accelerated” entorhinal and temporopolar cortical thinning may be

a marker of age-related cognitive decline; as they grow older, individuals

at risk of cognitive decline may show a gradual leftward shift in the distri-

bution of the cortical thickness of these regions which coincides with the

exponential age-related increase in the incidence of AD in the later

decades of life (Reitz & Mayeux, 2014).

F IGURE 4 Interindividual
variability in cortical thickness across
the lifespan. The plot presents the
pooled SD in regional cortical
thickness values om the early, middle
and late life age-groups
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The thickness of the ACC showed an attenuated U-shaped asso-

ciation with age. This observation replicates an earlier finding in

178 healthy individuals aged 7–87 years (Sowell, et al., 2007). The U-

shaped age trajectory of ACC thickness might explain divergent find-

ings in previous studies that have reported age-related increases (Abe

et al., 2008; Salat et al., 2004), age-related reductions or no change

(Brickman, Habeck, Zarahn, Flynn, & Stern, 2007; Ducharme

et al., 2016; Good et al., 2001; Vaidya, Paradiso, Boles Ponto, McCor-

mick, & Robinson, 2007).

A consistently higher degree of interindividual variation was

observed in the most rostral frontal regions (frontopolar cortex and

pars orbitalis), in the ACC and in several temporal regions (entorhinal,

parahippocampal, temporopolar, and transverse temporal cortex). To

some degree, greater variability in several of these regions may reflect

measurement challenges associated with their small size (Figure S3).

Nevertheless, the pattern observed suggests that greater inter-

individual variability may be a feature of proisocortical and per-

iallocortical regions (in the cingulate and temporal cortices) that are

anatomically connected to prefrontal isocortical regions, and particu-

larly the frontopolar cortex. This prefrontal isocortical region is con-

sidered evolutionarily important based on its connectivity and

function in humans and nonhuman primates (Ongür, Ferry, &

Price, 2003; Semendeferi et al., 2011). The frontopolar region has sev-

eral microstructural characteristics, such as a higher number and

greater width of minicolumns and greater interneuron space, which

are conducive to facilitating neuronal connectivity (Semendeferi

et al., 2011). According to the popular “gateway” hypothesis, the lat-

eral frontopolar cortex implements processing of external information

(“stimulus-oriented” processing) while the medial frontopolar cortex

attends to self-generated or maintained representations (“stimulus-

independent” processing) (Burgess, Dumontheil, & Gilbert, 2007).

Stimulus-oriented processing in the frontopolar cortex is focused on

multitasking and goal-directed planning while stimulus-independent

processing involves mainly metalizing and social cognition (Gilbert,

Gonen-Yaacovi, Benoit, Volle, & Burgess, 2010). The other regions

(entorhinal, parahippocampal, cingulate, and temporopolar) with high

interindividual variation in cortical thickness are periallocortical and

proisocortical regions that are functionally connected to the medial

frontopolar cortex (Gilbert et al., 2010; Moayedi, Salomons, Dunlop,

Downar, & Davis, 2015). Notably, the periallocortex and proisocortex

are considered transitional zones between the phylogenetically older

allocortex and the more evolved isocortex. Specifically, the entorhinal

F IGURE 5 Illustrative normative centile curves of cortical thickness. We present exemplar sets of centile curves for each lobe as derived from
LMS of the entire data set. Normative centile curves for all cortical regions (for the entire data set and separately for males and females) are given
in the supplementary material
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cortex is perialiocortical (Insausti, Muñoz-López, Insausti, & Artacho-

Pérula, 2017), the cingulate and parahippocampal cortices are

proisocortical and the cortex of the temporopolar region is mixed

(Blaizot et al., 2010; Petrides, Tomaiuolo, Yeterian, & Pandya, 2012).

Considered together, these regions are core nodes of the default

mode network (DMN; Raichle et al., 2001). At present, it is unclear

whether this higher interindividual variation in the cortical thickness

of the DMN nodes is associated with functional variation, but this is

an important question for future studies.

The results presented here are based on the largest available

brain MRI data set worldwide covering the human lifespan. However,

none of the pooled samples in the current study was longitudinal. We

fully appreciate that longitudinal studies are considered preferable to

cross-sectional designs when aiming to define age-related brain mor-

phometric trajectories. However, a longitudinal study of this size over

nine decades of life is not feasible. In addition to problems with partic-

ipant recruitment and retention, such a lengthy study would have

involved changes in scanner types, magnetic field strengths, and

acquisition protocols in line with necessary upgrades and technologi-

cal advances. Nevertheless, it is possible to test the alignment

between the results presented here and data from longitudinal

cohorts, many of which are also available through the ENIGMA con-

sortium. We consider this an important direction for follow-up stud-

ies. We took several steps to mitigate against site effects. First, we

ensured that we used age-overlapping data sets throughout. Second,

standardized analyses and quality control protocols were used to

extract cortical thickness measures at all participating institutions.

Third, we estimated and controlled for the contribution of site and

scanner using ComBat prior to conducting our analysis. The validity of

the findings reported here is reinforced by their alignment with the

results from short-term longitudinal studies of cortical thickness

(Shaw et al., 2008; Storsve et al., 2014; Tamnes et al., 2010;

Thambisetty et al., 2010; Wierenga et al., 2014). The generalizability

of our findings for the older age-group is qualified by our selection of

individuals who appear to be aging successfully in terms of cognitive

function and absence of significant medical morbidity. Nevertheless,

despite the efforts to include only healthy older individuals, the

observed pattern of brain aging may still be influenced by subclinical

mental or medical conditions. For example, vascular risk factors

(e.g., hypertension) are prevalent in older individuals and have been

associated with decline in the age-sensitive regions identified here

(Raz et al., 2005). Thus, we cannot conclusively exclude the possibility

that such factors may have contributed to our results. In addition, a

wide range of factors have been associated with cortical morphology

throughout the lifespan. Key among them are genetic factors

(Grasby, 2020; Teeuw et al., 2019) and indices of socioeconomic sta-

tus (Chan et al., 2018; Modabbernia et al., 2020; Ziegler et al., 2020)

and possibly race (Zahodne et al., 2015). These factors were not

modeled here as the relevant information was not collected in a sys-

tematic and harmonized fashion across contributing cohorts. It is

therefore unclear to what extent they might have influenced the gen-

eral pattern of age-related associations with cortical thickness

reported in the current study; qualifying their possible effects is a

priority for future investigations. Cellular studies show that the num-

ber of neurons, the extent of dendritic arborization, and amount of

glial support explain most of the variability in cortical thickness

(la Fougère et al., 2011; Pelvig, Pakkenberg, Stark, &

Pakkenberg, 2008; Terry, DeTeresa, & Hansen, 1987). MRI lacks the

resolution to assess microstructural tissue properties but provides an

estimate of cortical thickness based on the MR signal. Nevertheless,

there is remarkable similarity between MRI-derived thickness maps

and postmortem data (Fischl & Dale, 2000). Finally, we present the

centile curves to stimulate further research in developing normative

reference values for neuroimaging phenotypes which should include

investigation of measurement errors and reproducibility. In this con-

text, the centile curves should not be used clinically or to make infer-

ences about single individuals.

The findings of the current study suggest several avenues of fur-

ther research. MRI-derived measures of cortical thickness do not pro-

vide information on the mechanisms that underlie the observed age-

related associations. However, the results provided here could be

used to study further factors that may lead to deviations in cortical

thickness way from the expected age-appropriate range. Additionally,

the results of the current study provide a new avenue for investigat-

ing the functional correlates, either cognitive or behavioral, of age-

related changes and interindividual variation in regional cortical

thickness.

In summary, using existing cross-sectional data from 17,075 indi-

viduals we performed a large-scale analysis to investigate the age-

related changes in cortical thickness. The size and age-coverage of the

analysis sample has the potential to inform about developmental and

aging changes in cortical morphology and provide a foundation the

study of factors that may lead to deviations from normative patterns.
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