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Learning Adaptive Differential Evolution Algorithm
From Optimization Experiences by Policy Gradient

Jianyong Sun , Senior Member, IEEE, Xin Liu , Thomas Bäck , Senior Member, IEEE, and Zongben Xu

Abstract—Differential evolution is one of the most prestigious
population-based stochastic optimization algorithm for black-box
problems. The performance of a differential evolution algorithm
depends highly on its mutation and crossover strategy and asso-
ciated control parameters. However, the determination process
for the most suitable parameter setting is troublesome and time
consuming. Adaptive control parameter methods that can adapt
to problem landscape and optimization environment are more
preferable than fixed parameter settings. This article proposes
a novel adaptive parameter control approach based on learning
from the optimization experiences over a set of problems. In the
approach, the parameter control is modeled as a finite-horizon
Markov decision process. A reinforcement learning algorithm,
named policy gradient, is applied to learn an agent (i.e., param-
eter controller) that can provide the control parameters of a
proposed differential evolution adaptively during the search pro-
cedure. The differential evolution algorithm based on the learned
agent is compared against nine well-known evolutionary algo-
rithms on the CEC’13 and CEC’17 test suites. Experimental
results show that the proposed algorithm performs competitively
against these compared algorithms on the test suites.

Index Terms—Adaptive differential evolution, deep learn-
ing, global optimization, policy gradient (PG), reinforcement
learning (RL).

I. INTRODUCTION

AMONG many evolutionary algorithm (EA) variants, dif-
ferential evolution (DE) [1], [2] is one of the most

prestigious due to its exclusive advantages, such as automatic
adaptation, easy implementation, and very few control param-
eters [3], [4]. The DE variants have been successfully applied
to a variety of real-world optimization problems [3], [5] and
have been considered very competitive in the evolutionary
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computation community according to their performances on
various competitions [6]–[9].

However, DE has also some drawbacks, such as stagna-
tion, premature convergence, sensitivity/insensitivity to control
parameters, and others [5]. Although various factors, such as
dimensionality of the decision space and the characteristics of
the optimization problems, can result in these drawbacks, the
bad choice of control parameters (namely, the scale factor F,
the crossover rate CR, and the population size N) is one of
the key problems [10], [11].

It is well acknowledged that control parameters can signifi-
cantly influence the performance of an EA [10], and this also
holds for the control parameters of DE. In the early days of
research in DE, the control parameters are usually set by trial
and error [12]–[14] according to the optimization experiences
gained from applying them to a set of test problems. Once
the control parameters are set, they are fixed along the search
procedure (this parameter determination approach is usually
referred to as “parameter tuning”). For example, in [15], F and
CR are suggested to be in the range of [0.4, 1] and [0.5, 0.7],
respectively, while N is suggested to be [2− 40]n where n is
the problem dimension [13]. The trial-and-error approach is
usually time consuming, not reliable and inefficient [16].

Along with the study of the exploration–exploitation rela-
tion in EA, it is found that the optimal control parameter
setting for a DE algorithm is problem specific, dependent on
the state of the evolutionary search procedure, and on the dif-
ferent requirements of problems [17]. Furthermore, different
control parameters impose different influences on the algo-
rithmic performance in terms of effectiveness, efficiency, and
robustness [18]. Therefore, it is generally a very difficult task
to properly determine the optimal control parameters for a bal-
anced algorithmic performance due to various factors, such as
problem characteristics and correlations among them.

Some researchers claim that F and CR both affect the
convergence and robustness, but F is more related to con-
vergence [19], CR is more sensitive to the problem character-
istics [20], and their optimal values correlate with N [21]. N
could cause stagnation if it is too small, and slow convergence
if it is too big [17]. Its setting strongly depends on problem
characteristics (e.g., separability, multimodality, and others).

It is also observed that the control parameters should be
differently set at different generations simply due to changing
requirements (i.e., exploration versus exploitation) in different
phases of the optimization run. For example, researchers gen-
erally believe that F should be set larger at the beginning of
the search to encourage exploration and smaller in the end to

1089-778X c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on February 23,2022 at 10:07:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9188-1856
https://orcid.org/0000-0003-4710-2103
https://orcid.org/0000-0001-6768-1478


SUN et al.: LEARNING ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FROM OPTIMIZATION EXPERIENCES BY POLICY GRADIENT 667

ensure convergence [22]. In light of this observation, param-
eter control methods, i.e., methods for changing the control
parameter values dynamically during the run, have become
one of the main streams in DE studies [23]. These methods
are referred to as “parameter control.”

In [24], the parameter control methods are classified as
deterministic, adaptive, and self-adaptive, while a hybrid con-
trol is included in [23]. In this article, we propose to classify
the parameter control methods based on how they are set
according to online information collected during the evolution-
ary search. Our classification differentiates whether parameters
are learned during search or not, and is provided next.

1) Parameter Control Without Learning: In this category,
online information of any form is not reflected in the con-
trol of the parameters. Rather, a simple rule is applied
deterministically or probabilistically along the search process.

The simple rule is constructed usually in three ways. First,
no information is used at all. For example, in [25] and [26],
F is sampled uniformly at random from a prefixed range at
each generation for each individual. In [27], a combination of
F and CR is randomly picked from three predefined pairs of
F and CR at each generation for each individual.

Second, the simple rule is time varying depending on the
generation. For example, in [25], F decreases linearly, while
in [28], F and CR are determined based on a sinusoidal func-
tion of the generation index. In [6], the population size N
is linearly decreased with respect to the number of fitness
evaluations used.

Third, information collected in the current generation, such
as the range of the fitness values, the diversity of the popula-
tion, the distribution of individuals, and the rank of individuals,
is used to specify the simple rule. For example, in [29], the
minimum and maximum fitness values at current population
are used to determine the value of F at each generation.
In [30], F and CR are sampled based on the diversity of
the objective values of the current population, while the aver-
age of the current population in the objective space is used
in [31]. The individual’s rank is used to determine F and
CR for each individual in [32]. It is used to compute the
mean values of the normal distributions associated with F
and CR in [33] from which F and CR are sampled for each
individual.

2) Parameter Control With Learning From the Search
Process: In this category, collectable information during the
search process is processed for updating the control param-
eters. The information used in these methods is mainly the
successful trials obtained by using previous F and CR values.

There are mainly three ways. First, a trial F and CR is
decided by an ε-greedy strategy, as initially developed in [34].
That is, if a uniformly sampled value is less than a hyperpa-
rameter ε, a random number in [0, 1] is uniformly sampled as
the trial F (resp. CR); otherwise, previous F (resp. CR) is used.
If the trial by using the F and CR is successful, the sampled F
and CR will be passed to the next generation; otherwise, the
previous F and CR will be kept. The sampled F value is taken
as a perturbation in [35]. The hyperparameter ε is adaptively
determined either by the current population diversity [30] or
by fitness values [31].

Second, successful control parameters are stored in memory
(or pool) during the optimization process which are then used
to create the next parameters [36], [37]. For example, the
median (or mean) value of the memory values is used as
the mean of the control parameter distribution for sampling
new control parameters [36]. The distribution is assumed to
be normal [36] or Cauchy [38]. To make the sampling adapt
to the search state, hyperparameters are proposed in the dis-
tribution [14], [38] while the hyperparameters are updated
at each generation according to the success of previous
distributions.

Third, some authors proposed to update the mean of the
control parameter’s distribution through a convex linear com-
bination between the arithmetic [37] or Lehmer [6], [39] mean
of the stored pool of successful and the current control param-
eters. In [40], an ensemble of two sinusoidal waves is added to
adapt F based on successful performance of previous genera-
tions. In [41], a semiparameter adaptation approach based on
randomization and adaptation is developed to effectively adapt
F values. In [42], the control parameters are also modified
based on the ratio of the current number of function evalua-
tions to the maximum allowed number of function evaluations.
A grouping strategy with an adaptation scheme is proposed
in [43] and [44] to tackle the improper updating method of
CR. In [45] and [46], a memory update mechanism is further
developed, while new control parameters are assumed to fol-
low normal and Cauchy distribution, respectively. In [47], the
control parameters are updated according to the formulas of
particle swarm optimization, in which the control parameters
are considered as particles and evolved along the evolution
process.

In this article, we propose a novel approach to adaptively
control F and CR. In our approach, the control parameters at
each generation are the output of a nonlinear function which
is modeled by a deep neural network (DNN). The DNN works
as the parameter controller. The parameters of the network are
learned from the experiences of optimizing a set of training
functions by a proposed DE. The learning is based on the
formalization of the evolutionary procedure as a finite-horizon
Markov decision process (MDP). One of the reinforcement
learning (RL) algorithms, policy gradient (PG) [48], is applied
to optimize for the optimal parameters of the DNN.

This method can be considered as an automatic alternative
to the trial-and-error approach in the early days of DE study.
Note that the trial-and-error approach can only provide possi-
ble values or ranges of the control parameters. For a new test
problem, these values need to be further adjusted which could
result in spending a large amount of computational resources.
Our approach does not need such extra adjustment for a new
test problem. It can provide control parameter settings not only
adaptively to the search procedure but also to test problems.

In the remainder of this article, we first introduce deep
learning and RL which are the preliminaries for our approach
in Section II. Section III presents the proposed learning
method. Experimental results are presented in Sections IV
and V including the comparison with several well-known DEs
and a state-of-the-art EA. The related work is presented in
Section VI. Section VII concludes this article.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on February 23,2022 at 10:07:54 UTC from IEEE Xplore.  Restrictions apply. 



668 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 25, NO. 4, AUGUST 2021

II. PARAMETERIZED KNOWLEDGE REPRESENTATION BY

DEEP AND REINFORCEMENT LEARNING

A. Deep Learning

Deep learning is a class of machine learning algorithms
for learning data representation [49]. It consists of multiple
layers of nonlinear processing units for extraction of mean-
ingful features. The deep learning architecture can be seen
as a parameterized model for knowledge representation and
a tool for knowledge extraction. It can also be seen as an
efficient expert system. That is, given the current state of a
system, through the DNN, a proper decision can be made if
the deep network is optimally trained. The DNN has a high
order of modeling freedom due to its large number of param-
eters, which make it able to make accurate predictions. Deep
learning has had remarkable success in recent years in image
processing, natural language processing and other application
domains [49].

B. Reinforcement Learning

RL deals with the situation that an agent interacts with its
surrounding environment. The aim of learning is to find an
optimal policy for the agent that can respond to the environ-
ment for a maximized cumulative reward. RL can be modeled
as a 4-tuple (s, a, r, and pa) MDP, where s (resp. a, r,
and pa) represents the state (resp. action, reward, and transition
probability).

Formally, at each time step t, a state st and reward rt are
associated to it. A policy π is a conditional probability distri-
bution, i.e., π = p(At|St; θ) with parameter θ , where At (resp.
St) represents the random variable for action (resp. state).
Given the current state st, the agent takes an action at by
sampling from π . Given this action, the environment responds
with a new state st+1 and a reward rt+1. The expectation of
total rewards U(θ) = Eτ∼q(τ )(

∑T
t=0 γtrt), where γt denotes

the time-step-dependent weighting factor, is to be maximized
for an optimal policy π∗ where the expectation is taken over
trajectory τ = {s0, a0, s1, a1, . . . , aT−1, sT , . . .} with the joint
probability distribution q(τ ).

To train an RL agent for the optimal parameter, various RL
algorithms, such as temporal difference, Q-learning, SARSA,
PG, and others have been widely used for different scenarios
(e.g., discrete or continuous action and state space) [48]. If the
policy is represented by a DNN, it leads to the so-called deep
RL, which has gained incredible success on playing games,
such as AlphaGo [50].

III. ADAPTIVE PARAMETER CONTROL

VIA POLICY GRADIENT

In this section, we show how to learn to control the adaptive
settings of a typical DE. Before presenting the algorithm, the
notations used in this article are listed in Table I.

A. Typical DE

In the proposed DE, the current-to-pbest/1 mutation operator
and the binomial crossover are employed. In the current-to-
pbest/1 mutation operator [37], at the t-th generation, for

TABLE I
NOTATIONS

each individual xt
i, a mutated individual vt

i is generated in the
following manner:

vt
i = xt

i + Ft
i ·

(
xt

pbest − xt
i

)
+ Ft

i ·
(
xt

r1
− xt

r2

)
(1)

where xt
pbest is an individual randomly selected from the best

N × p (p ∈ (0, 1]) individuals at generation t. The indices r1
and r2 are randomly selected from [1, N] such that they differ
from each other and i.

The binomial crossover operator works on the target indi-
vidual xt

i = (xt
i,1, . . . , xt

i,n) and the corresponding mutated
individual vt

i = (vt
i,1, . . . , vt

i,n) to obtain a trial individual
x̃t

i = (̃xt
i,1, . . . , x̃t

i,n) element by element as follows:

x̃t
i,j =

{
vt

i,j, if rand[0, 1] ≤ CRt
i or j = jrand

xt
i,j, otherwise

(2)

where rand[0, 1] denotes a uniformly sampled number from
[0, 1] and jrand is an integer randomly chosen from [1, n].

Given the trial individuals, the next generation is selected
individual by individual. For each individual, if f (̃xt

i) ≤ f (xt
i),

then xt+1
i = x̃t

i; otherwise, xt+1
i = xt

i.
It is clear that the control parameters of the proposed DE

include N and {Ft
i, CRt

i, 1 ≤ i ≤ N} at each generation. In
the following, we will show how {Ft

i, CRt
i, 1 ≤ i ≤ N} can be

learned from optimization experiences.

B. Embed Recurrent Neural Network Within the Typical DE

The evolution procedure of the proposed DE can be for-
malized as follows. At generation t, a mutation population
V t = {vt

1, . . . , vt
N} is first generated by applying the muta-

tion operator (denoted as M) on the current population P t;
a trial population P̃ t = {̃xt

1, . . . , x̃t
N} is further obtained

by applying the binomial crossover (denoted as CR) oper-
ator. The new population is then formed by applying the
selection (denoted as S) operation. In the sequel, we denote
�t

F = {Ft
i, 1 ≤ i ≤ N} and �t

CR = {CRt
i, 1 ≤ i ≤ N}.

Formally, the evolution procedure can be written as follows:

V t = M
(P t;�t

F

)

P̃ t = CR
(V t,P t;�t

CR

)

F̃ t = f
(P̃ t)

P t+1,F t+1 = S
(F t, F̃ t,P t, P̃ t). (3)
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Fig. 1. Flowchart of a typical DE at the tth generation. In the figure, the
mutation operator (resp. crossover and selection operator) is denoted as M
(resp. CR and S).

Fig. 2. Proposed DE with embedded neural network (denoted as N) at the
tth generation.

Due to the stochastic nature of the mutation and crossover
operators, the evolution procedure can be considered as a
stochastic time series. The creation of solutions at generation
t depends on information collected from previous generations
from 1 to t − 1. Fig. 1 shows the flowchart of the procedure
at the tth generation.

As discussed in the introduction, recent studies focused on
controlling F and CR by learning from online information.
Various kinds of information are derived and used to update
the control parameters for the current population. Generally
speaking, the updated control parameters can be considered as
output of a nonlinear function with the collected information as
input. Since an artificial neural network (ANN) is a universal
function approximator [51], this motivates us to take an ANN
to approximate the nonlinear function.

The neural network can be embedded in the evolution pro-
cedure as a parameter controller. Fig. 2 shows the flowchart
of the proposed DE with embedded neural network at the tth
generation. As illustrated in the figure, the neural network
(N in the figure) outputs �t

F and �t
CR. �t

F is used as the
input to the mutation operator, while �t

CR is the input to the
crossover operator. The mutated population (i.e., V t) and trial
population (i.e., P̃ t) are then generated, respectively. V t and
P t are the input to CR; and P̃t and P t are the input to S for
selecting the new population P t+1.

Existing research only utilizes the information collected
from the current and/or previous generations for the parameter
control. However, all the information until the current gener-
ation should have certain influences, although with different
importances. The closer to the current generation, the more
influential.

To accommodate the time-dependence feature, we take the
neural network to be a long short-term memory (LSTM) [52].
LSTM is a kind of recurrent neural network. As its name sug-
gests, LSTM is capable of capturing long-term dependencies
among input signals. There are a variety of LSTM variants.

Fig. 3. Flowchart of the LSTM.

Its simplest form is formulated as follows:

ft = σ
(
Wf ·

[
ht−1, xt

]+ bf
)

it = σ
(
Wi ·

[
ht−1, xt

]+ bi
)

C̃t = tanh
(
Wc ·

[
ht−1, xt

]+ bc
)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t

ot = σ
(
Wo ·

[
ht−1, xt

]+ bo
)

ht = ot ⊗ tanh(Ct)

where xt is the input at step t, [ht−1, xt] means the catenation
of ht−1 and xt, ⊗ means the Hadamard product, and σ and
tanh are the sigmoid activation function and tanh function,
respectively

σ(z) = 1

1+ e−z
; tanh(z) = ez − e−z

ez + e−z
.

The parameters of the LSTM include Wf , Wi, Wc, and Wo

which are matrices and bf , bi, bc, and bo which are biases.
Fig. 3 shows the flowchart of the LSTM.

Omitting the intermediate variables, the LSTM can be
formally written as

Ct, ht = LSTM(xt, ht−1, Ct−1;W) (4)

where W = [Wf , Wi, Wc, Wo, bf , bi, bc, bo] denotes its
parameter.

In our context, we consider the input to the LSTM as the
catenation of F t and U t which is some statistics derived from
F t, and denote At = [F t,U t].1 In addition, we use Ht and Ct

to represent the short- and long-term memory. Formally, the
parameter controller can be written as follows:

Ct,Ht = LSTM
(
At,Ht−1, Ct−1;WL

)

�t
F = FullConnect

(Ht;WF, bF
)

�t
CR = FullConnect

(Ht;WC, bC
)

(5)

where WL is the parameter of LSTM, and
FullConnect(·;W, b) represents a fully connected neural
network with weight matrix W and bias b. Here

�t
F = σ

(
Ht�WF + bF

)

�t
CR = σ

(
Ht�WC + bC

)
. (6)

1Here, [F t,U t] also means to catenate the two vectors F t and U t into one
single vector.
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In the sequel, we denote �t = [�t
F,�t

CR] and use the
following concise formula to represent (5):

�t, Ct,Ht = LSTM
(
At,Ht−1, Ct−1;W

)
(7)

where W = [WL, WF, bF, WC, bC].

C. Model the Evolution Search Procedure as MDP

To learn the parameters of the LSTM, i.e., the agent or the
controller, embedded in the DE, we first model the evolution
procedure of the proposed DE as an MDP with the following
definitions of environment, state, action, policy, reward, and
transition.

1) Environment: For parameter control, an optimal con-
troller is expected to be learned from optimization experiences
obtained when optimizing a set of optimization problems.
Therefore, the environment consists of a set of optimization
problems (called training functions). They are used to eval-
uate the performance of the controller when learning. Note
that these training functions should have some common char-
acteristics for which can be learned for a good parameter
controller.

2) State (St): We take the fitness F t, the statistics U t, and
the memories Ht as the state St.

Particularly, U t includes the histogram2 of the normalized
F t (denoted as ht) and the moving average of the histogram
vectors over the past g generations (denoted as h̄t). Formally

f̄i = fi −min
{F t

}

max{F t} −min{F t}
ht = histogram

({
f̄i
}
, b

)

h̄t = 1

g

t−1∑

i=t−g

hi (8)

where b is the number of bins. The lower (resp. upper) range
of the bins is defined as min{Ft} (resp. max{Ft}). That is,
to derive U t, the fitness values of the current population are
first normalized. Its histogram is then computed and taken as
the input to LSTM. This is to represent the information of
the current population. Furthermore, the statistics represented
by h̄t is computed as the information from previous search
history.

It should be noted that the statistics U t is computed at each
generation with respect to (w.r.t.) the current population, not
to each individual.

3) Action (At) and Policy (π ): In the MDP, given state St,
the agent can choose (sample) an action from policy π defined
as a probability distribution p(At|St; θ), where θ represents the
parameters of the policy. Here, we define At as the control
parameters, i.e., At = {Ft

i, CRt
i, 1 ≤ i ≤ N} ∈ R

2N .
Since the control parameters take continuous values, we

assume the policy is normal. That is

2A histogram is constructed by dividing the entire range of values into a
series of intervals (i.e., bins), and count how many values fall into each bin.

π(At|St) = N
(

At|LSTM(St), σ
2
)

= 1
(
2πσ 2

)N exp

{

− 1

2σ 2 (At − LSTM(St;W))2
}

.

(9)

It is seen that the policy is uniquely determined by the LSTM
parameter W.

4) Reward (rt+1): The environment responds with a reward
rt+1 after the action. In our case, the reward rt+1 is defined
as the relative improvement of the best fitness

rt+1 = max
{F t+1

}−max
{F t

}

max{F t} (10)

where max{F t} denotes the best fitness obtained at genera-
tion t. That is, after determining the control parameters, the
mutation, crossover, and selection operations are performed to
obtain the next generation. The relative improvement is consid-
ered as the outcome of the application of the sampled control
parameters.

A higher reward (improvement) indicates that the deter-
mined control parameters have a more positive impact on the
search for global optimum.

5) Transition: The transition is also a probability
p(St+1|At = at, St = st). In our case, the probability distri-
bution is not available. It will be seen in the following that
the transition distribution does not affect the learning.

D. Learn the Control Parameter by Policy Gradient

A variant of the RL algorithm, PG, is able to deal with
the scenario when the transition probability is not known.
PG works by updating the policy parameters via stochastic
gradient ascent on the expectation of the reward

θt+1 = θt + αt∇θ U(θt) (11)

where αt denotes the learning rate and ∇θ U(θ) is the gradient
of the cumulative reward U(θ).

An evolutionary search procedure with a finite number of
generations (denoted as T) can be considered as a finite-
horizon MDP. For such an MDP, given previously defined state
and action, a trajectory τ is {S0, A0, r1, . . . , ST−1, AT−1, rT}.
The joint probability of the trajectory can be written as

q(τ ; θ) = p(S0)

T−1∏

t=0

π(At|St; θ)p(St+1|At, St). (12)

Furthermore, ∇θU(θ) can be derived as follows:

∇θU(θ) =
∑

τ

r(τ )∇θ q(τ ; θ) =
∑

τ

r(τ )
∇θq(τ ; θ)

q(τ ; θ)
q(τ ; θ)

=
∑

τ

r(τ )q(τ ; θ)∇θ

[
log q(τ ; θ)

]

=
∑

τ

r(τ )q(τ ; θ)

[
T−1∑

t=0

∇θ log π(At|St; θ)

]

(13)

where r(τ ) is the cumulative reward of the trajectory τ .
The expectation of (13) can be calculated by sampling L
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Algorithm 1 Learning to Control the Parameters of the DE
Require: the LSTM parameter W, the number of epochs Q, the number of training functions M, the population size N, the

number of trajectories L, the trajectory length T and the learning rate α

1: Initialize W uniformly at random;
2: for epoch = 1→ Q do
3: ÂăInitialize P0 = [x0

1, · · · , x0
N] uniformly at random;

4: for k = 1→ M do
5: Set P0

k = P0;
6: Evaluate F0

k = {fk(x0
i ), 1 ≤ i ≤ N};

7: � trajectory sampling;
8: for l = 1→ L do
9: Set t← 0, H0

k = 0 and C0
k = 0;

10: repeat
11: Compute U t

k = [ht, h̄t] by Eq. 8;
12: Set At

k = [U t
k,F t

k];

13: Apply LSTM: �t
k, Ct+1

k ,Ht+1
k ← LSTM(At

k,Ht
k, Ct

k;W);
14: Create the trial population: P̃ t

k = [̃xt
1, · · · , x̃t

N]← CR ◦M(P t
k;�t

k);
15: Evaluate the trial population: F̃ t

k ←
{
f (̃xt

i), 1 ≤ i ≤ N
}
;

16: Form the new population: P t+1
k ,F t+1

k ← S(F t
k, F̃ t

k,P t
k, P̃ t

k);
17: Calculate rt+1

k using Eq. (10); and set t← t + 1;
18: until t ≥ T
19: end for
20: end for
21: � policy parameter updating;
22: Update W using Eq. (14) and Eq. (11);
23: end for
24: return W;

trajectories τ 1, . . . , τL

∇Uθ (θ) ≈ 1

L

L∑

i=1

r
(
τ i)

T−1∑

t=0

∇θ ln π
(

A(i)
t = a(i)

t |S(i)
t = s(i)

t ; θ
)

(14)

where a(i)
t (resp. s(i)

t ) denotes action (resp. state) value at time
t in the ith trajectory.

A detailed description on how to update W is given in
Algorithm 1. In the algorithm, to obtain the optimal W, the
optimization experience of a set of M training functions is
used. For each function, first a set of L trajectories is sampled
by applying the proposed DE (lines 8–19) for T generations.
The control parameters of the proposed DE are obtained by
forward computation of the LSTM given the present W at
each generation. With the sampled trajectories, the reward at
each generation for each optimization function is computed,
and used for updating W (line 22).

Note that in the learning, a set of optimization functions
are used. For each optimization function, the proposed DE is
applied for T generations to sample the trajectories. Each tra-
jectory can be considered as an optimization experience for a
particular training function. For each function, there are L tra-
jectories sampled. M functions can provide L×M optimization
experiences. Learning from these experiences could thus be
able to lead to a good parameter controller.

E. Embed the Learned Controller Within the DE

After training, it is assumed that we have secured the
required knowledge for generating control parameters through

the learning from optimization experiences. Given a new test
problem, the proposed DE with the learned parameter con-
troller can be applied directly. The detailed algorithm, named
as the learned DE (LDE), is summarized in Algorithm 2.

In Algorithm 2, the evolution procedure is the same as a
typical DE except that the control parameters are the samples
of the output of the controller (lines 8–10). One of the inputs
of the LSTM, the statistics U t is computed at each generation
(line 6), and the hidden information Ht and Ct are initialized
(line 3) and maintained during the evolution.

Note that in the LDE, the controller contains knowledge
learned from optimization experiences which can be consid-
ered as extraneous/offline information, while the use of U t,
Ht and Ct represent the information learned during the search
procedure which is intraneous/online information. The time
complexity for one generation of LDE is O(H2+N ·H+N ·n),
where H denotes the number of neurons used in the hidden
layer.

IV. EXPERIMENTAL STUDY

In this section, we first present the implementation details
of both Algorithms 1 and 2. The training details and the com-
parison results against some known DEs and a state-of-the-art
EA are presented afterward.

Some or all functions in CEC’13 [53]3 are used as the train-
ing functions. In the comparison study, functions that have

3https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2013/CEC2013.
htm
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Algorithm 2 LDE
Require: the trained agent with parameter W

1: Initialize population P0 uniformly at random;
2: Evaluate F0 = f (P0);
3: Set g← 0, Hg = 0 and Cg = 0;
4: while the termination criteria have not been met do
5: Compute Ug = [hg, h̄g] by Eq. 8;
6: Set Ag = [Ug,Fg];
7: g← g+ 1;
8: �g−1, Cg,Hg ← LSTM(Ag−1,Hg−1, Cg−1;W);
9: �̃g−1 ∼ N (�g−1, σ 2);

10: Pg,Fg ← DE(Pg−1,Fg−1; �̃g−1);
11: end while
12: return x∗ = arg max f (Pg)

not been used for training from CEC’13 or CEC’17 [54]4 are
tested. The CEC’13 test suite consists of five unimodal func-
tions f1–f5, 15 basic multimodal functions f6–f20, and eight
composition functions f21–f28. The CEC’17 test suite includes
two unimodal functions F1 and F2, seven simple multimodal
functions F3–F9, ten hybrid functions F10–F19, and ten more
complex composition functions F20–F29.

When training, the following settings were used, including
the number of epochs Q = 150, the population size N = 50
when n = 10 and N = 100 when n = 30 for the mutation
strategy, the number of bins b = 5, the number of previous
generations g = 5, the trajectory length T = 50, the number
of trajectories L = 20, and the learning rate α = 0.005.

For the experimental comparison, the same criteria as
explained in [53] and [54] are used. Each algorithm is executed
51 runs for each function. The algorithm terminates if the max-
imum number of objective function evaluations (MAXNFE)
exceeds n× 104 or the difference between the function values
of the found best solution and the optimal solution (also called
the function error value) is smaller than 10−8.

The compared algorithms include the following.
DE [12]: The original DE algorithm with DE/rand/1/bin

mutation and binomial crossover.
JADE [37]: The classical adaptive DE method in which

the DE/current-to-pbest/1 mutation strategy was first proposed.
JADE has two versions. One is with an external archive. The
external archive is to aid the generation of offspring when
mutation. The other is without the archive. In JADE, each F
(resp. CR) is generated for each individual by sampling from a
Cauchy (resp. normal) distribution and the location parameter
of the distribution is updated by the Lehmer (resp. arithmetic)
mean of the successful F’s (resp. CR’s).

jSO [55]5: Which ranked second and the best DE-based
algorithm in the CEC’17 competition. As an elaborate vari-
ation of JADE, two scale factors are associated with the
mutation strategy. They are different from each other and
limited within various bounds along the evolution.

4https://github.com/P-N-Suganthan/CEC2017-BoundContrained
5The code is available at https://github.com/P-N-Suganthan/CEC2017.

CoBiDE [56]6: In which the F (resp. CR) values are gen-
erated from a bimodal distribution consisting of two Cauchy
distributions. Trial vectors are formed in the Eigen coordinate
system built by the eigenvectors of the covariance matrix of
the top individuals.

cDE [14]7: In which both F and CR are selected from a
predefined pool. The selection probability is proportional to the
corresponding number of the successful individuals obtained
from previous generations.

CoBiDE-PCM [24]8 and cDE-PCM [24]9: That were
proposed in [24] for studying the effect of parameter control
management. These two algorithms are largely consistent with
CoBiDE and cDE, but are equipped with different mutation
and crossover operators. They are ranked first or second on
the BBOB benchmark in [24].

HSES [57]10: The winner of the bound constraint com-
petition of CEC’18.11 HSES is a three-phase algorithm. A
modified univariate sampling is employed in the first stage for
good initial points, while CMA-ES [58] is used in the sec-
ond stage, followed by another univariate sampling, for local
refinement.

The parameters and hyperparameters of these methods are
kept the same as the settings in the original references in
our experiments. Table II shows the detailed variation opera-
tors used and the parameter (hyperparameter) settings for the
compared algorithms.

It should be noted that JADE, cDE, and CoBiDE are not
tested on the CEC’13 or CEC’17 test suites in the original
references, but on 20 basic functions, six basic functions, and
CEC’05 [59], respectively. The parameters of these algorithms
are tuned manually by grid search based on the mean fit-
ness values found over a number of independent runs for each
function. It is expected that the parameter tuning procedures
of these algorithms are time consuming and computationally
intensive. However, we should be frank that there is a possi-
bility that these algorithms’ performances could be improved
if their parameters are tuned on the CEC’13 or CEC’17 test
suites.

A. Comparison Results on the CEC’13 Test Suite

In this experiment, we use the first 20 functions f1–f20
in CEC’13 as the training functions. The remaining eight
functions f21–f28 are used for comparison. As in [54], the
function error value is used as the metric, and recorded for
each run. The mean and standard deviation of the error values
obtained for each function over 51 runs are used for compari-
son. In the following, the experimental results are summarized
in tables, in which the means, standard deviations, and the
Wilcoxon rank-sum hypothesis test results are included. The
best (minimum) mean values are typeset in bold.

6The code is available at https://sites.google.com/view/pcmde/.
7The code is available in the extended CD version of the original article at

https://www1.osu.cz/∼tvrdik/wp-content/uploads/men05_CD.pdf.
8The code is available at https://sites.google.com/view/pcmde/.
9The code is available at https://sites.google.com/view/pcmde/.
10The code is available at https://github.com/P-N-Suganthan/CEC2018.
11The test functions in CEC’18 are the same as those in CEC’17 except

the function F2 in CEC’17 is removed.
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TABLE II
DETAILED REPRODUCTION OPERATORS USED AND PARAMETER AND HYPERPARAMETER SETTINGS OF THE COMPARED ALGORITHMS

TABLE III
MEANS AND STANDARD DEVIATIONS OF FUNCTION ERROR VALUES FOR COMPARISON OF LDE ON THE CEC’13 BENCHMARK

SUITE FOR n = 10 AT GENERATION T = 50

TABLE IV
MEANS AND STANDARD DEVIATIONS OF FUNCTION ERROR VALUES FOR COMPARISON OF LDE ON THE CEC’13 BENCHMARK

SUITE FOR n = 10 WHEN MAXNFE HAS BEEN REACHED

The Wilcoxon rank-sum hypothesis test is performed to test
the significant differences between LDE and the compared
algorithms. The test results are shown by using symbols +, −,
and ≈ in the tables. The symbol + (resp. − and ≈) indicates
that LDE performs significantly worse than (resp. better than
and similar to) the compared algorithms at a significance level
of 0.05. The results are summarized in the “WR” column of
the tables.

Tables IV and V summarize the experimental results when
terminating at MAXNFE, while Table III shows the results
when the algorithms terminate at the maximum number of
generations T = 50 which is the number of generations used
for training the agent.

From Table III, we can see that LDE does not perform
satisfactorily. It is worse than the compared algorithms when
the algorithm terminates at generation T = 50. However, it
performs better as the process of evolution continues up to

MAXNFE. Note that in the training, the optimization proce-
dure does not terminate at MAXNFE. The poor performance
of LDE implies that the agent trained in T = 50 generations is
not good enough. However, the experimental results show that
the knowledge learned in T = 50 generations can be beneficial
for the evolutionary search in further generations.

Tables IV and V show that when MAXNFE has been
reached, LDE exhibits superior overall performance as com-
pared with DE/rand/1/bin and JADE with archive and shows
similar performance as compared with JADE without archive.
However, LDE is outperformed by jSO in five and six out of
eight 10-D and 30-D test functions, respectively.

Specifically, on the eight 10-D complex composition
functions, LDE performs better than DE on six functions
f21, f22, f23, f24, f26, and f28 and surpasses JADE with archive
on three functions f21, f25, and f27 and that without archive on
two functions f21 and f22. However, LDE performs statistically
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TABLE V
MEANS AND STANDARD DEVIATIONS OF FUNCTION ERROR VALUES FOR COMPARISON OF LDE ON THE CEC’13 BENCHMARK

SUITE FOR n = 30 WHEN MAXNFE HAS BEEN REACHED

TABLE VI
AVERAGE RANKS OF THE COMPARED ALGORITHMS ACCORDING TO

THEIR APS VALUES ON THE LAST EIGHT FUNCTIONS IN THE CEC’13
TEST SUITE

better than jSO on only three functions f21, f24, and f28 out of
the eight test functions. For 30-D test problems, LDE yields
better performance than DE on five functions f22, f23, f26, f27,
and f28. LDE shows the same advantage over JADE with and
without archive on f25, f26, and f27 on the CEC’13 benchmarks
with 30-D. Again, LDE performs worse than jSO on six test
functions f22–f27 with 30-D.

To see the overall performances, we rank the compared
algorithms by using the average performance score (APS) [60].
The APS is defined based on the error values obtained by
the compared algorithms for the test functions. Suppose there
are m algorithms A1, . . . , Am to compare on a set of M func-
tions. For each i, j ∈ [1, m], if Aj performs better than Ai on
the kth function Fk, k ∈ [1, M] with statistical significance
(i.e., p < 0.05), then set δij = 1; otherwise, δij = 0. The
performance score of Ai on Fk is computed as follows:

Pk(Ai) =
∑

j∈[1,n]\{i}
δij. (15)

The AP value of Ai is the average of the performance score
values of Ai over the test functions. A smaller APS value
indicates a better performance. Table VI summarizes the ranks
of the compared algorithms in terms of their APS values. It can
be seen that jSO is superior to LDE. LDE ranks the second,
which is better than the other algorithms. This shows that the
proposed method is quite promising.

Fig. 4 shows the evolution of the control parameters during
the optimization obtained by the learned controller and jSO
when optimizing f21. In the figure, we show the mean values
of F and CR at each generation by clustering F t into three
groups. The upper plot shows the mean F values, while the
lower plot shows the mean CR values associated with the indi-
viduals in the groups. From the upper plot of Fig. 4(a) for the
learned controller, it is seen that high-quality individuals gen-
erally have a smaller F value than the low-quality individuals,
while the middle-quality individuals have higher CR values.

Fig. 4. Evolution of F and CR along optimization for f21 obtained by the
learned controller. The upper (resp. lower) plot shows the F (resp. CR) values.
The population’s fitness is grouped into three clusters at each generation. The
associated F and CR values are averaged. (a) LDE. (b) jSO.

From Fig. 4(b) for jSO, it is seen that along evolution, the F
and CR values become scattered.

The better performance of LDE when running more gen-
erations indicates that the learned controller is promising for
adaptive parameter control.

B. Comparison Results on the CEC’17 Test Suite

In this section, all 28 test problems in the CEC’13 test suite
are used as the training functions. LDE is then compared with
the other algorithms on the 29 functions of the CEC’17 test
suite. Tables VII and VIII summarize the means and stan-
dard deviations of the function error values obtained by all
the compared methods over 51 times on the CEC’17 test suite
for 10-D and 30-D, respectively.
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TABLE VII
MEANS AND STANDARD DEVIATIONS OF THE ERROR VALUES OBTAINED BY LDE AND THE COMPARED ALGORITHMS ON THE CEC’17 BENCHMARK

SUITE FOR n = 10 WHEN MAXNFE HAS BEEN REACHED OR FUNCTION ERROR IS LESS THAN 10−8

For 10-D test functions, LDE exhibits superiority over
HSES and most of the conventional and classical DE-based
algorithms, except for CoBiDE and cDE-PCM. It performs
similar to jSO.

Particularly, LDE performs better than the classical DE and
JADE with archive on 16 functions, CoBiDE-PCM on 24
functions, cDE on 16 functions, and HSES on 14 functions.
LDE performs worse than CoBiDE on 12 functions, jSO on
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TABLE VIII
MEANS AND STANDARD DEVIATIONS OF THE ERROR VALUES OBTAINED BY LDE AND THE COMPARED ALGORITHMS ON THE CEC’17 BENCHMARK

SUITE FOR n = 30 WHEN MAXNFE HAS BEEN REACHED OR FUNCTION ERROR IS LESS THAN 10−8

seven functions, and cDE-PCM on six functions. LDE per-
forms similar to CoBiDE and jSO on 16 and 15 functions,
respectively.

For 30-D test problems, it is seen that jSO and HSES per-
form better than LDE on most of the test functions. However,
LDE performs better than the rest of the algorithms in general.
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TABLE IX
AVERAGE RANKING OF THE COMPARED ALGORITHMS ACCORDING TO THEIR APS VALUES ON THE CEC’17 BENCHMARK FUNCTIONS

TABLE X
RESULTS OF LAST EIGHT PROBLEMS OF CEC’13 WITH DIFFERENT CELL SIZES FOR n = 10 AT TERMINATION

TABLE XI
RESULTS OF LAST EIGHT PROBLEMS OF CEC’13 WITH DIFFERENT POPULATION SIZES AND CELL SIZES FOR n = 30 AT TERMINATION

Particularly, LDE performs better than classical DE and the
other adaptive DEs on more functions than that it performs
worse than these algorithms. The performance of LDE is sim-
ilar to CoBiDE in the sense that the numbers of functions that
LDE outperforms CoBiDE and CoBiDE outperforms LDE are
the same.

The ranking result of all algorithms is shown in Table IX.
It is seen that LDE ranks the third on the CEC’17 bench-
mark suite. Note that first the agent is learned from CEC’13.
Its performance on CEC’17 implies that indeed some useful
knowledge which is helpful for parameter control is effec-
tively learned. Second, once the controller has been learned,
it is applied to solve new test functions without requiring any
tuning of the algorithmic parameters. This can greatly reduce
possibly large amount of computational efforts.

V. SENSITIVITY ANALYSIS

One of the main parameters that greatly influence the
performance of LDE is the number of neurons (i.e., the sizes
of Ht and Ct) used in the hidden layers. A higher number can
increase the representation ability of the LSTM but may cause
over-fitting. Here, we investigate the effect of different neuron
sizes to the performance of LDE on the last eight functions
f21–f28 of CEC’13 for 10-D and 30-D.

Six agents with different number of neurons are learned on
10-D functions. A set of neuron sizes, from 500 to 3000 with
an interval of 500, is studied when the population size is fixed
as 50. The obtained results are summarized in Table X.

From Table X, we see that: 1) the performance of LDE
differs w.r.t. the size of neurons; 2) for different functions,
the best result is obtained by taking different neuron size; and
3) a higher number of neurons does not always mean better
performance.

Generally speaking, the population size ought to be
increased for problems with larger dimensions. To see the
effect of population size, we carry out experiments to learn five
controllers that are with different population and neuron sizes
on the same CEC’13 training functions (i.e., f1–f20 with 30-D).
The performance of the learned controller is again tested on
f21–f28 with 30-D.

Table XI lists the comparison results of the five designed
controllers. From the table, it is observed that the neuron size
takes the same effects as those in 10-D case. Furthermore,
it can be seen that the population and neuron size together
have a very complex effect on the performance of the learned
controller.

VI. RELATED WORK

In this article, RL is used as the main technique to learn
on how to adaptively control the algorithmic parameters from
optimization experiences. To the best of our knowledge, there
is no related work on controlling the DE parameters by learn-
ing from optimization experiences. However, we found some
works on controlling the parameters of genetic algorithms
(GAs). These works relate to our approach but with significant
differences.
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In [61], four control parameters (including crossover rate,
mutation rate, tournament proportion, and population size) of
a GA are dynamically regulated with the help of the RL.
The learning algorithm is a mix of Q-learning and SARSA
which involves maintaining a discrete table of state–action
pairs. In [61], information along the GA’s search procedure
is extracted as the state. Two RL algorithms switch in a
predefined frequency to find a new action (i.e., control param-
eter value). The work shows that the RL-enhanced GA outper-
forms a steady-state GA in terms of fitness and success rate.

In [62], the Q-learning algorithm is applied to choose a
suitable reproduction operator which can generate a promising
individual in a short time. The authors propose a new reward
function incorporating GA’s multipoint search feature and
the time complexity of recombination operators. Furthermore,
the action-value function is updated after generating all indi-
viduals. Similarly, in [63], the Q-learning is also used to
adaptively select reproduction operators. But the chosen oper-
ator is applied to the whole population. This method is shown
empirically that it tends to avoid obstructive operators and thus
solve the problems more efficiently than random selection.

In [64], a universal controller by using RL is found to be
able to adapt to any existing EA and to adjust any parameter
involved. In their method, a set of observables (considered
as states) is fed to a binary decision tree consisting of only
one root node for representing a universal state. SARSA [48]
is carried out to update the state–action value. It is shown
that the RL-enhanced controller exhibits superiority over two
benchmark controllers on most common complex problems.

Here, we would like to point out the significant differences
between the proposed approach and the aforementioned RL-
based approaches. First, the RL methods, such as Q-learning
or SARSA used in existing approaches are developed for MDP
with the discrete state and action. Second, existing parameter
controllers are not learnt from optimization experiences, but
are updated based on the online information obtained from
the search procedure during a single run for a single test
problem. The main idea behind the existing study is the same
as in the DE parameter control methods reviewed in the intro-
duction. They all try to use information obtained online to
update the control parameters. Third, different from RL which
aims to learn an agent with a converged optimal policy, the
policy derived from the state–action pairs in existing study
is not necessarily convergent or even stable. However, the
proposed approach in this article can learn from the extraneous
information for a stable policy.

The only work that applies an idea similar to our approach
is the DE-DDQN [65], in which a set of mutation operators
is adaptively selected based on the learning from optimization
experiences over a set of training functions. In DE-DDQN,
double deep Q learning is applied for the selection. Various
features are defined as states and taken as input to the DNN
at each generation.

VII. CONCLUSION

This article proposed a new adaptive parameter controller by
learning from the optimization experiences of a set of training

functions. The adaptive parameter control problem was mod-
eled as an MDP. A recurrent neural network, called LSTM,
was employed as the parameter controller. The RL algorithm,
PG, was used to learn the parameters of the LSTM. The
learned controller was embedded within a DE for new test
problem optimization. In the experiments, functions in the
CEC’13 test suite were used in training. After training, the
trained agent was studied on the CEC’13 and CEC’17 test
suites in comparison with some well-known DE algorithms
and a state-of-the-art EA. The experimental results showed
that the LDE was very competitive to the compared algorithms
which indicated the effectiveness of the proposed controller.

From our experimental study, we find that training the
parameter controller for 30-D problems is rather difficult
in terms of the computational resources. Particularly, the
CPU/GPU time used in the training process is considerable.
Furthermore, as the number of dimension increases, it is
expected that there will be an increasing need for training
time and powerful computing devices. It is also hard to choose
the training functions to make the training stable. Moreover,
there has no theoretical foundation or practical principles
on deciding the cell size in the employed neural network.
Another disadvantage of the learned algorithm is that its time
complexity is greater than the compared algorithms.

Note that the training and test functions share similar fea-
tures since they are all constructed by using the same basic
functions. As a result, its performance over unrelated func-
tions is not predictable, may be limited on totally different set
of functions, such as real-world problems. A possible way to
improve the applicability of LDE maybe is to use new learning
techniques or incorporate existing DE techniques in the LDE.

In the future, we plan to improve the performance of the
LDE in a number of ways, such as using different statistics U t,
adopting different neural networks, considering different out-
put of the neural network, and others. Furthermore, we intend
to apply the LDE on some real-world optimization and engi-
neering problems. We also intend to study on the use of RL
for adaptive mutation/crossover strategy, on the learning for
hyperparameters of state-of-the-art EAs, and on the learning
for metaheuristics for combinatorial optimization problems.
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