
Information measures and design issues in the study
of mortality deceleration: findings for the gamma-
Gompertz model
Bohnstedt, M.; Gampe, J.; Putter, H.

Citation
Bohnstedt, M., Gampe, J., & Putter, H. (2021). Information measures
and design issues in the study of mortality deceleration: findings for
the gamma-Gompertz model. Lifetime Data Analysis, 27, 333-356.
doi:10.1007/s10985-021-09518-4
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3277347
 
Note: To cite this publication please use the final published version
(if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3277347


Lifetime Data Analysis (2021) 27:333–356
https://doi.org/10.1007/s10985-021-09518-4

Information measures and design issues in the study of
mortality deceleration: findings for the gamma-Gompertz
model

Marie Böhnstedt1,2 · Jutta Gampe1 · Hein Putter2

Received: 27 July 2020 / Accepted: 5 February 2021 / Published online: 25 February 2021
© The Author(s) 2021

Abstract
Mortality deceleration, or the slowing down of death rates at old ages, has been repeat-
edly investigated, but empirical studies of this phenomenon have produced mixed
results. The scarcity of observations at the oldest ages complicates the statistical assess-
ment of mortality deceleration, even in the parsimonious parametric framework of the
gamma-Gompertz model considered here. The need for thorough verification of the
ages at death can further limit the available data. As logistical constraints may only
allow to validate survivors beyond a certain (high) age, samples may be restricted to a
certain age range. If we can quantify the effects of the sample size and the age range
on the assessment of mortality deceleration, we can make recommendations for study
design. For that purpose, we propose applying the concept of the Fisher information
and ideas from the theory of optimal design.We compute the Fisher informationmatrix
in the gamma-Gompertz model, and derive information measures for comparing the
performance of different study designs. We then discuss interpretations of these mea-
sures. The special case in which the frailty variance takes the value of zero and lies
on the boundary of the parameter space is given particular attention. The changes in
information related to varying sample sizes or age ranges are investigated for specific
scenarios. The Fisher information also allows us to study the power of a likelihood ratio
test to detect mortality deceleration depending on the study design. We illustrate these
methods with a study of mortality among late nineteenth-century French-Canadian
birth cohorts.
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1 Introduction

Accurately describing, understanding, and, finally, projecting the trajectory of human
mortality over age is crucial for assessing the future of human longevity, but it is
also important in actuarial sciences, population forecasting and health care planning.
The scientific modeling of human mortality over age has a long tradition. Around
two centuries ago, Benjamin Gompertz published his finding that the death rates of
humans increase exponentially frommid-life ages onwards (Gompertz 1825), and this
regularity has since been confirmed time and time again in many populations, epochs,
and circumstances. Recently, however, improved and more accurate vital registration
has revealed that the increase in death rates slowsdownat higher ages (see, for example,
Thatcher et al. 1998; Thatcher 1999). This decrease in the increase of death rates at
older ages is termed mortality deceleration.

An explanation for this initially perplexing observation was provided early on by
Beard (1959) via the so-called heterogeneity hypothesis. If the individuals in a birth
cohort are subjected to non-identicalmortality risks, then thosewith higher risks tend to
die earlier, resulting in an increasingly selected group of survivors with lowermortality
risks. Hence, even if the individual hazards increase exponentially, the population
hazard will increase more slowly (Vaupel et al. 1979).

Although this explanation is plausible, empirical investigations have repeatedly
produced mixed results (Bebbington et al. 2014). While some studies have found
evidence of a downward deviation from the exponential hazard at the oldest ages
(Feehan 2018), others have suggested that exponential growth continues even through
advanced ages (Gavrilov and Gavrilova 2019).

The empirical study of mortality deceleration is complicated by several issues. It is
a phenomenon that manifests in the tail of the life span distribution where observations
necessarily become sparse, even for sizable cohorts. Whether we are able to detect
mortality deceleration will depend on the actual strength of the effect and the size of
the sample.

The Gompertz model originated as an actuarial device, but its ability to capture the
age-trajectory of adult mortality in a multitude of circumstances prompted numerous
attempts to find underlying mechanisms that would produce exponentially increasing
hazards. Most attempts come from reliability theory (Gavrilov and Gavrilova 2001)
and the biology of aging (see Kirkwood 2015, and references therein). Whether and
which of the mechanisms will eventually apply is still an open question, however, the
repeatedly confirmed exponential increase of mortality over much of the adult life
span established the Gompertz model in demography, biology, and epidemiology.

When examining mortality deceleration, we have to decide over what age range
death rates should be analyzed in order to uncover potential deviations from a Gom-
pertz hazard. On the one hand, using a rather wide age range—that is, starting from
relatively young ages—may run the risk that the observations at younger ages dom-
inate the analysis, and thus mask the deceleration that is based on relatively fewer
observations at older ages. This line of thought suggests that observations of higher
ages at death might be more informative about a potential deceleration than observa-
tions of younger ages at death. On the other hand, using awider age rangemight enable
us to detect deviations from the exponential increase of the hazard early. Moreover,
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Information measures and design issues in the study… 335

using a wider age range yields a larger sample size, and can increase the precision
of the parameter estimates, particularly of the parameters describing the exponential
increase. This might enable us to detect more easily deviations from it at higher ages.
How the trade-off between these two opposing effects would play out is not clear.

Another important aspect in all studies involving old-age mortality is data quality.
In particular, age misreporting is known to induce a downward bias of mortality at
advanced ages (Preston et al. 1999). Therefore, scientific age validation is indispens-
able in studies involving individuals of very high ages (Jeune and Vaupel 1999). In
practice, performing such individual checks is costly and time-consuming, and logis-
tics can limit the number of cases that can be verified. In the application presented in
Sect. 6, the ages at death could bevalidated for individualmembers of French-Canadian
birth cohorts (born 1880–1896) who survived to age 90 or older. Since extending the
age range by another, say, five years, to ages 85 and above, would imply a drastic
increase in the number of cases to be validated, a practically relevant question is how
much the extra effort would expand the information about mortality deceleration in
the resulting larger dataset.

All of the considerations discussed above are questions related to optimal design.
While the theory of optimal design is applied in various research fields (see Berger and
Wong 2009, and the references therein), applications are less numerous in the area of
survival analysis.Hwang andBrookmeyer (2003) attempted tofind the optimal spacing
between consecutive waves of a panel study. Becker et al. (1989) and Konstantinou
et al. (2015) discussed optimal covariate settings in proportional hazards models, and
McGree and Eccleston (2010) investigated the design aspects of covariates and sample
size in accelerated failure-time models. Here, we will study the effects of the sample
size and the age range covered by a dataset on the assessment ofmortality deceleration;
specifically, on the downward deviation from a Gompertz hazard.

The most commonly used approaches for describing individually heterogeneous
death risks are proportional hazards frailty models (Vaupel et al. 1979; Duchateau
and Janssen 2008; Balan and Putter 2020). In this paper, we focus on one specific
model from this class, the gamma-Gompertz model. The individuals share an expo-
nentially increasingGompertz baseline hazard, but amultiplicative gamma-distributed
random effect (the frailty) introduces heterogeneity of the individual mortality risks.
The amount of heterogeneity is determined by the frailty variance. If the frailty vari-
ance is zero the population hazard will follow the exponential Gompertz trajectory,
while a positive frailty variance implies that the population hazard decelerates at older
ages. Consequently, the statistical assessment of mortality deceleration in the gamma-
Gompertz model is reduced to inference about the frailty variance. In particular, the
likelihood ratio test for a zero frailty variance is a commonly used approach to assess
this phenomenon. However, zero is a boundary point of the parameter space for the
variance parameter which violates the usual regularity assumptions. Consequently,
standard asymptotic results are not directly applicable.

In this paper, we propose using the concepts of the Fisher information and of opti-
mal design to address issues that arise in planning and evaluating studies that assess
mortality deceleration in the setting of the gamma-Gompertz model. Within the like-
lihood framework, the Fisher information measures the amount of information about
the model parameters that is contained in the data (Lehmann 1999). Therefore, the
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Fisher information can serve as a basis for identifying optimal designs that maximize
the information about the model parameters.

The paper is organized as follows. Section 2 lays out the framework for our study
by formally introducing the gamma-Gompertz model, as well as the general concepts
of the Fisher information and of optimal designs. In Sect. 3, we present the Fisher
information and a specific information measure for the gamma-Gompertz model, and
relate them to the power of the likelihood ratio test to detect mortality deceleration. In
Sect. 4, we discuss in detail the design issues that arise in studies of mortality deceler-
ation. In Sect. 5, we assess the effects of different design choices on the information
measure, and on the power of the test for specific scenarios. In Sect. 6, we apply the
proposed concepts and methods to a French-Canadian mortality dataset. In Sect. 7,
we conclude with a discussion of our findings.

2 Framework: gamma-Gompertz model, Fisher information and
study design

2.1 Gamma-Gompertz model

Weconsider a continuous randomvariable X that describes adult lifespans (above some
young adult age, such as 30). Its distribution is determined by the hazard function

h(x) = lim
�x↘0

P(x < X ≤ x + �x | X > x)

�x
.

The heterogeneity hypothesis can be formalized in frailty proportional hazards mod-
els of the form h(x | Z = z) = z · h0(x). The unobserved heterogeneity of the
individuals is modeled via the positive random effect Z that affects a common base-
line hazard h0(x) in a multiplicative way. Individuals with higher values z have a
higher risk at any age x , as specified by the conditional hazard h(x | Z = z); thus, Z
is called the frailty.

A popular choice for the distribution of frailties is the gamma distribution. It leads
to closed-form expressions for marginal survival and hazard functions. Furthermore,
for the gamma distribution the frailty among survivors at any age x > 0 again is
gamma distributed, only with different parameters (Vaupel et al. 1979; Hougaard
1984; Economou and Caroni 2008). Moreover, Abbring and van den Berg (2007)
showed that even if the frailty at x = 0 is not gamma distributed the frailty among
survivors converges with increasing x to a gamma distribution for many proportional
hazards frailty models.

As the name suggests, in the gamma-Gompertz model the baseline hazard has an
exponentially increasing Gompertz form, h0(x) = aebx . Here the parameter a > 0
represents the initial level of mortality for x = 0 and b > 0 is the rate of ageing. The
frailty is gammadistributed,with ameanof one and a variance ofσ 2. The heterogeneity
in frailty, and, hence, in mortality risks, is measured by the variance parameter σ 2.
In a heterogeneous population with σ 2 > 0, there is a tendency of individuals with
higher frailty values to die at younger ages, such that the population of survivors to
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higher ages consists mainly of individuals with lower mortality risks. Therefore, the
marginal hazard,

h(x) = aebx

1 + σ 2 a
b (ebx − 1)

, (1)

shows a downward deviation from the exponential increase at higher ages. In a homo-
geneous population with σ 2 = 0, there is no such selection effect, and the marginal
hazard is again of the Gompertz form, h(x) = aebx . Thus, the presence or the absence
of mortality deceleration is determined by the parameter σ 2 and can, for instance, be
assessed by a likelihood ratio test for H0 : σ 2 = 0 against H1 : σ 2 > 0.

While the parameter σ 2 describes the heterogeneity in frailty and mortality risks at
the starting age of the model—that is, at x = 0—the increasingly selected population
of survivors to higher ages will be less heterogeneous in terms of their frailty and
mortality risks. For example, the heterogeneity in mortality risks will be lower in the
subset of survivors to ages 90 and above than among the survivors to ages 80 and above.
Consequently, the age range covered by a dataset will affect the ability to assess the
frailty variance, and, hence, mortality deceleration.

It is important to note that the frailty variance σ 2 takes a value on the boundary of
its parameter space if there is no heterogeneity (σ 2 = 0). As this violates common reg-
ularity assumptions, some standard asymptotic results for likelihood inference might
not hold, which will also affect the interpretation of the information measures in the
following.

2.2 The Fisher information

We briefly recap the concept of the Fisher information, and refer to Chapter 7 in
Lehmann (1999) for further details. For a random variable X with density fX (·; θ)

and parameter vector θ = (θ1, θ2, . . . , θK )T , the Fisher information matrix I(θ) is
defined as

I(θ) = E

[(
∂

∂θ
ln fX (X; θ)

) (
∂

∂θ
ln fX (X; θ)

)T
]

, (2)

where the expectation E is with respect to the distribution of X . Under mild regu-
larity conditions, expression (2) can be rewritten in terms of the second-order partial
derivatives of the log-density of X ,

I(θ) = −E

[
∂2

∂θ∂θT
ln fX (X; θ)

]
. (3)

The Fisher information I(θ) is often interpreted as the amount of information a single
observation of X contains about the model parameters θ . The information In(θ) of
an iid sample X1, X2, . . . , Xn of size n from the distribution of X is then n-times
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as large, In(θ) = n I(θ). In many cases, the Fisher information (3) cannot be com-
puted directly because it depends on the true unknown parameter value, or because
the expectation is not analytically tractable. Thus, we often use the observed Fisher
information matrix, which for an iid sample of size n is given by the negative second-
order partial derivatives of the log-likelihood, evaluated at the maximum likelihood
estimate (MLE) θ̂n,

J (θ̂n) = − ∂2

∂θ∂θT

n∑
i=1

ln fX (Xi ; θ)

∣∣∣
θ=θ̂n

. (4)

The interpretation of I(θ) as a measure of information is based on two differ-

ent arguments. Analytically, the partial derivatives ∂
∂θ

ln fX (x; θ) = ∂
∂θ

fX (x;θ)

fX (x;θ)
in (2)

describe the relative change of the density fX (·; θ) with respect to θ at the point x . If
this change is large for one θ0, this parameter value can be better identified from a range
of possible values θ . Similarly, the second-order partial derivatives ∂2

∂θ∂θT
ln fX (X; θ)

in (3) describe the curvature of the log-density ln fX (·; θ) with respect to θ , and, thus,
the curvature of the contributions to the log-likelihood function. A sample for which
the log-likelihood shows a clearer peak at some θ0, and for which this value is, there-
fore, more clearly distinguished from other values θ , is viewed as more informative
about the parameter than samples with a flatter log-likelihood.

A second justification for the notion of information rests on the following result for

asymptotically normal estimators. If an estimator δn of θk satisfies
√
n(δn − θk)

d−→
N (0, v(θ)), then its variance is bounded below by [I(θ)]−1

kk , which denotes the kth
diagonal element of the inverse of the information matrix I(θ) (see Lehmann and
Casella 1998, p. 462). In particular, theMLE θ̂n attains this lower bound under suitable
regularity conditions (cf. Lehmann and Casella 1998, p. 463),

√
n(θ̂n − θ)

d−→ N (0, [I(θ)]−1), (5)

such that each θ̂nk is asymptotically efficient,
√
n(θ̂nk − θk)

d−→ N (0, [I(θ)]−1
kk ). In

this sense, a sample is more informative if the parameters can be estimated with higher
precision.

In summary, following the exposition above, the Fisher information serves as a suit-
able measure of the information contained in a sample about the unknown parameter
in likelihood-based inference.

2.3 Optimal design

The Fisher information can be instrumental for determining optimal designs. The aim
is to find a design that maximizes some scalar function of the information matrix, and
that therefore maximizes the information, in a suitably defined way, about all or some
particular model parameters.
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Different criteria for defining and assessing the optimality of a design have been
suggested (see Silvey 1980, for an early monograph, and Atkinson 1988, for an early
review). If all elements of the parameter vector θ are of interest, two popular scalar
measures of information are D- and A-optimality. A design is called D-optimal if
the design maximizes the determinant of the information matrix, det(I(θ)). Alter-
natively, the criterion of A-optimality refers to the trace of the inverse information
matrix [I(θ)]−1 and states that a design is optimal if the design attains the maximum
possible value for the inverse of this trace, that is, for 1/tr([I(θ)]−1).

Both of these information measures are functions of the eigenvalues of the infor-
mation matrix. The determinant equals the product and the trace equals the sum of
the eigenvalues of a matrix, respectively; and the eigenvalues of [I(θ)]−1 are the
reciprocals of the eigenvalues of I(θ). These eigenvalues of the information matrix
are related to estimator precision. For an estimator θ̂n that is asymptotically normal
with the covariance matrix given by the inverse Fisher information matrix [I(θ)]−1 as
in (5), a confidence region for the parameter vector θ takes the form of an ellipsoid.
The axes of the ellipsoid are characterized by the eigenvalues and the eigenvectors
of the matrix [I(θ)]−1. More precisely, the eigenvectors determine the direction of
the axes of the ellipsoid, and the eigenvalues are proportional to the squared lengths
of the axes. Therefore, the size of the confidence ellipsoid and the precision of the
estimator largely depend on the eigenvalues of [I(θ)]−1. In particular, the volume of
the confidence ellipsoid is proportional to the product of the eigenvalues of [I(θ)]−1.
As a consequence, maximizing the information in terms of D-optimality corresponds
to minimizing the volume of the confidence ellipsoid.

The criteria of D- and A-optimality weigh all dimensions of the problem equally. In
contrast, the criterion of E-optimality seeks to maximize only the smallest eigenvalue
of the information matrix. This is equivalent to minimizing the largest eigenvalue of
[I(θ)]−1, which measures the uncertainty about the parameters in the direction of the
largest axis of the confidence ellipsoid. Because the parameters are estimated with
least precision in this direction, an E-optimal design maximizes the precision in the
estimation of the least well-estimated parameter combinations.

If one particular linear combination of the parameters is of specific interest, the
criterion of DA-optimality is applied. If Aθ denotes the linear combination of the
parameters, where A is a p × K matrix of rank p < K , then, by analogy with
D-optimality, one maximizes the determinant of the inverse of A[I(θ)]−1AT . The
criterion of DA-optimality also allows us to focus on only one parameter θk . For
that purpose, a matrix A of dimension 1 × K is defined with entry 1 for the
kth element, and with zeros otherwise. The information measure then simplifies to
(A[I(θ)]−1AT )−1 = 1/[I(θ)]−1

kk . In a regular setting with an asymptotically nor-
mal estimator θ̂k that satisfies (5), maximizing the information measure 1/[I(θ)]−1

kk is
equivalent tominimizing the asymptotic variance of θ̂k , or, in other words, maximizing
its precision.

If the information matrix I(θ) and the derived information measures depend on
the unknown parameter vector θ , these designs are said to be only locally optimal
designs for the given values of the parameter(s). However, we can still evaluate the
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informationmeasures over a rangeof possible parameter values to assess the robustness
of the optimality of the design against changes in the parameter values.

3 Informationmeasures in the gamma-Gompertz model

In this section, we develop the concepts of Sects. 2.2 and 2.3 specifically for the
gamma-Gompertz model. After providing details on the computation of the Fisher
informationmatrix, we specify an informationmeasure for DA-optimality, and discuss
its interpretation. In Sect. 3.4, we show that this measure also plays a role in the
calculation of the power of the likelihood ratio test to detect mortality deceleration.

3.1 Fisher information in the gamma-Gompertz model

The aim is to derive the Fisher information matrix according to (3) specifically for
an observation from the gamma-Gompertz model (1). For this model, the parameter
vector consists of three components: the Gompertz baseline parameters a and b and
the frailty variance σ 2, so that θ = (a, b, σ 2)T . The density of lifespan X is given by

fX (x; a, b, σ 2) = a ebx
[
1 + σ 2 a

b
(ebx − 1)

]−
(
1+ 1

σ2

)
.

(The value x = 0 here marks the age from which the exponentially increasing Gom-
pertz hazard has been established as a good model for human mortality, commonly a
mid-adult age such as 30 or 40.)

As is common in the analysis of time-to-event data, the observations are often
subject to censoring or truncation. Left truncation occurs in our context if the data
are limited to individuals who have survived beyond a certain age x̆ , as discussed in
Sect. 1. In our case, this left-truncation age is identical for all individuals (x̆ = 90).
Censoring occurs if some individuals are still alive at the end of follow-up. In our
study, we only analyze birth cohorts who are already extinct—that is, all members
have already died—and we will not consider right censoring. (For the calculation
of the Fisher information with censoring and truncation for a class of location-scale
distributions, see Escobar and Meeker 1998.)

For left-truncated observations, the Fisher information needs to be calculated for
the truncated (X | X > x̆)with density fX |X>x̆ (·; θ) = fX (·; θ)/SX (x̆; θ) on (x̆,∞),
where SX (x; θ) = P(X > x; θ) denotes the survival function of X . Consequently,
formula (3) for the information matrix is adapted as

I(θ) = −E

[
∂2

∂θ∂θT
ln fX |X>x̆ (X; θ) | X > x̆

]
(3′)

= −
∫ (

∂2

∂θ∂θT
ln fX |X>x̆ (u; θ)

)
fX |X>x̆ (u; θ) du.
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Computing the Fisher information matrix in the gamma-Gompertz model requires
the second-order partial derivatives of the log-density of the gamma-Gompertz
model X for complete data, or of (X | X > x̆) for left-truncated data with respect
to the parameters. The formulas are given in Section S.1 of the supplementary mate-
rial. Based on these, we obtain explicit formulas for the observed Fisher information
matrix J (θ̂n), defined in (4), for a given sample with corresponding MLE θ̂n.

In contrast, the exact calculation of the Fisher information matrix I(θ) in (3′)
requires taking the (negative) expectations of the second-order partial derivatives. As
closed-form expressions for these integrals do not exist, we propose approximating
the expectations using numerical integration.

In the absence of an analytical expression for the Fisher information matrix I(θ) in
the gamma-Gompertz model, there is no closed-form function of I(θ) of the param-
eters θ , the sample size n, and the age at left truncation x̆ . However, I(θ) can be
evaluated over a range of relevant values for these quantities in order to get an impres-
sion of how they affect the information matrix. Further computational details are given
in Section S.2 of the supplementary material.

3.2 DA-optimality in the gamma-Gompertz model

In the gamma-Gompertz model, the presence or the absence of mortality deceleration
is determined by the frailty variance, which also to a large extent controls how strongly
the hazard decelerates. Thus, for the assessment of mortality deceleration, our main
interest lies in the parameter σ 2, while the Gompertz parameters a and b are treated
as nuisance. Hence, we will evaluate designs primarily according to the criterion of
DA-optimality, and define the matrix A from Sect. 2.3 as A = (0, 0, 1). The resulting
information measure is then 1/[I(θ)]−1

33 ; in the following, we will denote [I(θ)]−1
33 as

κ2. It is important to note that κ2 still depends on the true parameter value θ , but also
on the observation scheme (such as left-truncation age x̆), although this is suppressed
in the notation. A design will be preferred over another if it has a smaller κ2.

3.3 Interpretation of informationmeasures in a non-standard setting

As we noted in Sect. 2.2, the use of the Fisher information for study design can be
motivated by the result that the asymptotic covariance matrix of the MLEs is given by
the inverse Fisher information; see (5). This result holds under standard conditions,
which are, however, violated in the present framework of the gamma-Gompertzmodel,
because the frailty variance takes a value on the boundary of the parameter space if
there is no mortality deceleration (σ 2 = 0). The asymptotic distribution of the MLE
in the gamma-Gompertz model was derived in Böhnstedt and Gampe (2019). For
sufficiently large σ 2 > 0, the MLE θ̂ = (â, b̂, σ̂ 2)T is still asymptotically normal
with covariance matrix [In(θ)]−1 as in (5); but for σ 2 = 0, the MLE has a two-
component mixture distribution. As a result, minimizing the element κ2 of the inverse
Fisher information in order to find an optimal design corresponds to minimizing the
asymptotic variance of the parameter estimate σ̂ 2 only if the true σ 2 > 0 is sufficiently
large. If σ 2 = 0, the quantity n−1κ2 does not correspond to the variance of σ̂ 2.
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Nonetheless, the element κ2 can be used for the evaluation of certain design
choices—for example, for comparing different alternatives for the age range cov-
ered by a sample. In a simulation study (for details about the scenarios see Sect. 5),
we found that the relative changes in n−1κ2 were very close to the relative changes in
the variance of σ̂ 2 even if σ 2 = 0 (see bottom panels of Figure S.1 in the supplemen-
tary material). This finding suggests that comparative statements about the amount
of information or the variance of σ̂ 2 for subsets of a sample that cover different age
ranges can still be based on ratios of the corresponding κ2. Unfortunately, this does
not apply for comparisons across different scenarios defined by different θ .

Consequently, the quantity κ−2 should only be related to estimator variance in cases
in which this is known to be appropriate. Otherwise, we should stick to the notion of
a measure of information; e.g., in the sense of local curvature of the log-likelihood.

3.4 Power of the likelihood ratio test

A common approach for assessing mortality deceleration in the framework of the
gamma-Gompertz model is a likelihood ratio test for H0 : σ 2 = 0 against H1 : σ 2 > 0.
Under the null hypothesis, the value of the variance parameter lies on the boundary
of the parameter space so that the likelihood ratio test statistic is not asymptotically
chi-squared distributed with one degree of freedom. Instead, one can adopt the results
of Self and Liang (1987) to show that, if H0 holds, the test statistic asymptotically
follows a 50:50 mixture of a chi-squared distribution with one degree of freedom and
a point mass at zero. Incorrectly assuming a chi-squared distribution with one degree
of freedom for the test statistic implies a larger critical value, hence fewer rejections
of H0, and ultimately lower power to detect a positive σ 2 > 0.

An explicit formula for the asymptotic power of the likelihood ratio test based
on a sample from a gamma-Gompertz model with frailty variance σ 2 was derived
by Böhnstedt and Gampe (2019). According to their Lemma 6, the power βn of the
likelihood ratio test at level α and sample size n can be approximated by

βn(σ
2) ≈ 1 − 


(

−1(1 − α) −

√
nσ 2

κ

)
, (6)

where 
(·) is the standard normal distribution function and κ is the square root of
the element of the inverse Fisher information, as defined above. (The proof can be
found in the online supplementary material of Böhnstedt and Gampe 2019.) Thus,
through κ , the power of the likelihood ratio test depends on the true parameter θ ,
but also on possible left truncation; that is, on the age range of the data. Based on
our computation of the Fisher information matrix and the resulting κ2, we can now
also determine the power of the likelihood ratio test theoretically, without performing
extensive simulation studies. Moreover, with regard to study design, we see from
formula (6) that designs that minimize κ2 simultaneously maximize the power of the
likelihood ratio test to detect mortality deceleration.
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4 Design considerations in assessingmortality deceleration

The precision of parameter estimates and the power of statistical tests to detect mor-
tality deceleration depend on the characteristics of the dataset under study. We want
to quantify the effects that the size of the sample as well as the age range that it covers
have on the information contained in the data about the phenomenon. For that pur-
pose, we denote by I a scalar measure of information that is derived from the Fisher
information matrix I(θ), such as I = det(I(θ)) or I = κ−2.

In the first part of this section, we will discuss how we can assess the effect of the
age range that is covered by the data. The age range of a dataset is usually restricted
because accurate age validation is required, but it is often not feasible to perform the
validation for an extensive part of a birth cohort. As mortality deceleration occurs at
the tail of the survival distribution, studies that examine this phenomenon focus on
the older ages, and, therefore, usually collect information only on survivors beyond
a certain age x . On the one hand, the observation of a death at older ages might
be expected to carry more information about mortality deceleration than a death at
younger ages. On the other hand, the continuing selection of more robust individuals
with lower frailty values leads to a decrease in the variance of frailty among survivors
to higher ages (Vaupel et al. 1979; Hougaard 1984; Economou and Caroni 2008).
Therefore it could become more difficult to assess mortality deceleration for higher
left-truncation ages. Moreover, observations of deaths at younger ages can provide
indirect information about the parameter σ 2, because they lead to increased precision
in the estimation of the Gompertz parameters a and b.

To see how these effects trade off, we look at Ix+, the information measure for
an observation left-truncated at age x for a given θ . The pattern of the absolute mea-
sure Ix+ across different x tells us which age range is most informative. In addition,
ratios like I80+/I90+ quantify the change in information if observations are left-
truncated at an earlier age; here, at x = 80, rather than at a later age, like x = 90.

The Fisher information matrix I(θ) and derived measures such as I = κ−2 corre-
spond to a single observation. If we want to compare the amount of information that
is available in a situation in which all survivors to ages x = 80 and above (80+) can
be studied to a situation in which only survivors to ages 90+ can be studied, we should
also take into account that the 80+ dataset will include more individuals than the 90+
dataset, because for studies on mortality deceleration, all members of a cohort who
survive beyond a certain age will usually be included in the sample. For that purpose,
we scale the information measure Ix+ by the probability of obtaining an observation
of a death at some age x+, and define the scaled measure as I(s)

x+ = Ix+ · P(X > x).
For scenarios with sufficiently large σ 2, the variance of σ̂ 2 can be approximated

by n−1κ2. Thus, we can also draw conclusions about the precision of the estimate of
the frailty variance based on I = κ−2. In this case, the inverse of the ratio I(s)

80+/I(s)
90+

describes the relative change in the variance of σ̂ 2 when data on all deaths between
ages 80 and 89 could be added to a dataset that currently contains information only
on all survivors to ages 90+. On the basis of such numbers, practitioners could decide
whether it is worthwhile to extend an existing dataset to also include information on
deaths at earlier ages.
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Second, let us turn to some sample size considerations. Mortality studies are gen-
erally based on populations or a specific subset thereof, such as all survivors of a
birth cohort beyond a certain age. Thus, the sample size is not actively chosen, but
simply results from the size of the population under study. Nonetheless, sample size
calculations are useful either for judging a priori whether a dataset provides enough
information to produce meaningful results, or for adequately interpreting the results in
comparative studies across different countries. Let us assume that some countries or
regions are expected to have similar mortality patterns, and that mortality deceleration
has been detected in one of them from an 80+ sample. The information contained in
that sample is known to be n80+I80+. Then, if for a second country or region only 90+
data are available, we might ask whether these data still contain enough information
to detect mortality deceleration. To get an idea of the sample size that is required to
draw reliable conclusions under the given mortality pattern θ , we could determine
the sample size n90+ of the subset of survivors to ages 90 and above, which satisfies
n80+I80+ = n90+I90+.

Alternatively, sample size considerations could concern the precision of the esti-
mate σ̂ 2, which is given by n−1

x+κ2
x+, if for the (assumed) mortality regime θ , the frailty

variance σ 2 is sufficiently large to make κ2 the correct variance term (see Sect. 3.3).
For a given value of κ2

x+, we can either get an initial idea of the precision of σ̂ 2 if
the size nx+ of the x+ data of the country is known, or we can determine the mini-
mum sample size nx+ that is needed for a desired precision, and see whether potential
datasets would fulfill this requirement.

Finally, both the age range of a dataset and its sample size affect the power of the
likelihood ratio test to detect mortality deceleration. For a given mortality regime θ ,
formula (6) allows us to assess what level of power the test will achieve if inference
is based on all survivors to ages 90+, or on all survivors to ages 80+.

As all of the above quantities for evaluating the design aspects of the age range
and the sample size depend on the true unknown parameter θ , we will present some
empirical results for specific scenarios in the next section.

5 Empirical results

In this section, we will study the effects of different designs on the information
contained in a dataset for some specific scenarios.We assume that X follows a gamma-
Gompertz distribution and describes lifespan after age 60; that is, x = 0 corresponds
to age 60. We choose three scenarios for θ , all with the same Gompertz parameters,
a = 0.015 and b = 0.085, but with different values for the frailty variance. Sce-
nario S1 with σ 2 = 0.043 corresponds to the gamma-Gompertz model estimated
from the female sample in Sect. 6. For Scenario S2 with σ 2 = 0.021, the frailty
variance is roughly halved, representing a less heterogeneous population for which
mortality deceleration is less pronounced. In Scenario S3 with σ 2 = 0, there is no
mortality deceleration. In Section S.3.3 of the supplementary material, we present
results for additional Scenarios S4 to S6 with the same three values for the frailty vari-
ance as above, but different values for the Gompertz parameters. In particular, we set
a = 0.021 and b = 0.082 equal to the estimates obtained from a gamma-Gompertz fit
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to the male sample in Sect. 6. With regard to the age range, we assess the information
measures for complete observations of X (that is, ages 60 and above, 60+), as well
as for left-truncated observations corresponding to survivors to ages 80 and above
(80+), 85+, and 90+. The effect of the sample size will be examined by considering
different sizes of the subset of survivors to ages 90+; namely, n90+ = 10,000 (small),
n90+ = 20,000 (medium), or n90+ = 105,000 (large). The small and medium sizes
are close to the sizes of the male and female samples in Sect. 6. All computations are
run in R (R Core Team 2019), and the numerical integration to calculate the Fisher
information I(θ) is performed using function integrate().

In a preliminary analysis, we assessed the performance of our approach of using
numerical integration to calculate I(θ). For that purpose, we generated 1,000 samples
for each of the scenarios S1 to S3, in which three initial sample sizes at age 60 were
determined to yield the desired n90+ given above. For each sample, we estimated
the parameters of the gamma-Gompertz model based on the full sample (60+), and
based on the subsets of survivors to ages 80+, 85+, and 90+, by maximizing the
log-likelihoods numerically using function nlm(). We then calculated the averages
of the observed Fisher information matrices evaluated at the MLEs across the 1,000
samples of each fixed setting, J̄ = 1

1000

∑1000
r=1 J (θ̂

(r)
n ). Finally, these averages were

compared to the Fisher information matrices I(θ), that were scaled by the theoretical
size n·+ of a sample from the respective setting. The results are reported in Table S.1
in the supplementary material. As expected, mean relative differences decrease with
sample size, width of age range and size of the frailty variance. For ages 60+ and
80+ differences are negligible throughout, and for 85+ surpass 0.02 only in the no-
frailty scenario (n90+ = 10,000: 0.03389; n90+ = 20,000: 0.02114). For ages 90+ and
smallest sample size n90+ = 10,000 the values are S1: 0.05487, S2: 0.06592 and S3:
0.12065.

5.1 Effect of the age at left truncation

In the following, we quantify how different restrictions of the age range covered by a
dataset affect the amount of information that is provided by the data. We mainly focus
on the criterion for DA-optimality (see Sect. 3.2), that is, I = κ−2.

The left panel of Fig. 1 shows the values of I and its scaled version I(s) for
Scenario S1 when the observations are complete (60+) or left-truncated at higher ages
(80+, 85+, or 90+).We find that the amount of information contained in an observation
decreases as the age of left truncation increases. This effect is even more pronounced
for the scaledmeasure of information I(s), because the probability of observing deaths
decreases at the higher ages. Hence, in terms of κ−2, a situation inwhich only survivors
to ages 90+ can be studied indeed provides less information than a situation in which
survivors to ages 80+ can be studied, indicating that mortality deceleration is more
difficult to assess for higher ages of left truncation. The right panel of Fig. 1 displays
the ratios Ix+/I80+ and I(s)

x+/I(s)
80+ for x = 80, 85, 90 in Scenario S1. We see that if

only data on survivors to ages 90+ are available, more than half of the information is
lost compared to the situation in which data on survivors to ages 80+ are available.
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Fig. 1 Information measure I = κ−2 (black-solid line, circles) and scaled measure I(s) (red-dashed line,
crosses) under Scenario S1 depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+).
Left: absolute values of (scaled) I, right: (scaled) ratios Ix+/I80+ for x = 80, 85, 90 (connection of the
values by lines is only for ease of visual inspection) (Color figure online)

Taking into account the smaller size of the subset of survivors to ages 90+, the loss even
amounts to around 87%. The results for Scenarios S2 and S3 are similar (cf. Fig. 2).

We have already briefly discussed in Sect. 3.3 the relationship between the infor-
mation measure κ−2 and the asymptotic variance of the estimator σ̂ 2. In settings
with sufficiently large σ 2, the variance of σ̂ 2 is approximately equal to κ2 scaled by
the inverse of the sample size. The top-left panel of Figure S.1 verifies this for the
medium-sized Scenario S1 with different observation schemes (60+, 80+, 85+, and
90+) by comparing the empirical variance of σ̂ 2 across the 1,000 replications with
the scaled κ2. In contrast, if σ 2 = 0, the asymptotic variance of σ̂ 2 is not given
by the scaled κ2, as shown in the bottom-left panel of Figure S.1 for the medium-
sized Scenario S3. However, the relative changes in the scaled κ2

x+ across different
age ranges x+ are in line with the relative changes in the empirical variances for
both Scenario S1 (top-right panel of Figure S.1) and Scenario S3 (bottom-right panel
of Figure S.1). Consequently, ratios I(s)

x+/I(s)
y+ can be readily interpreted in terms of

information gain or variance reduction when considering different age ranges x+ and
y+, even if σ 2 = 0. For example, in Scenario S3, about 82% of the information in the
full sample 60+ is lost if only survivors to ages 80+ can be studied.

While the importance of the variance parameter σ 2 for the assessment of mor-
tality deceleration suggested that we should use the criterion of DA-optimality, we
also looked into the performance of the other information measures introduced in
Sect. 2.3. The results for Scenarios S1 and S3 are presented in Figures S.2 and S.3
in the supplementary material. The absolute values of the information measures and
their patterns across the different age ranges for A- and E-optimality are very close
to the ones we observed for DA-optimality with I = κ−2. This can be explained
by the fact that the information measure for A-optimality, that is, the inverse of the
sum of the eigenvalues of [I(θ)]−1, is dominated by one eigenvalue of relatively large
magnitude in the current setting. As this largest eigenvalue of the inverse information
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Fig. 2 Information measure I = κ−2 (black-solid line, circles) and scaled measure I(s) (red-dashed line,
crosses) under Scenarios S2 (top) and S3 (bottom) depending on the age range of the data (left to right: 60+,
80+, 85+, or 90+). Left: absolute values of (scaled) I, right: (scaled) ratios Ix+/I80+ for x = 80, 85, 90
(Color figure online)

matrix is at the same time the target of the criterion for E-optimality and in this case
also closely related to the measure κ2 for DA-optimality, the three criteria yield very
similar results. In contrast, the criterion of D-optimality suggests somewhat larger
relative losses in information when restricting the age range. This is a consequence
of directly accounting for the increased uncertainty in all directions of the parameter
space, as the eigenvalues of I(θ) are multiplied in the measure det(I(θ)).

The quantity κ−2, considered for DA-optimality, measures the information con-
tained in an observation about the parameter σ 2, and takes into account the correlation
between σ̂ 2 and the estimates of the Gompertz parameters â and b̂. Alternatively, we
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Fig. 3 Information measure I = [I(θ)]33 (black-solid line, circles) and scaled measure I(s) (red-dashed
line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+) under Scenarios S1
(left) and S3 (right) (Color figure online)

could study the information measure [I(θ)]33 given by

[I(θ)]33 = −E

[
∂2

∂
(
σ 2

)2 ln fX (X; θ)

]
.

This element of the Fisher information matrix describes the average curvature of the
log-density of the gamma-Gompertz model with respect to σ 2 for fixed Gompertz
parameters a and b. Figure 3 shows that in terms of this measure, the information
increaseswith the increasing ageof left truncation inScenarios S1 and S3. This supports
the idea that observations of later ages at death carry more information about the
potential deceleration, as measured by σ 2. However, looking at the scaled measure
reveals that, in practice, this effect is compensated for by the decreasing number of
survivors to higher ages.

The above findings regarding the effect of the age at left truncation on the different
information measures generally hold also for the Scenarios S4 and S6 with modified
Gompertz parameters (see Figures S.4 to S.7 in the supplementary material). Increases
in the age at left truncation result in considerable information loss according to all the
criteria, with the exception of I = [I(θ)]33, for which the information loss is only
revealed if the smaller size of the subset of survivors to higher ages is taken into account.
Compared to Scenarios S1 and S3, the higher initial level of mortality a in Scenarios S4
and S6 leads to smaller absolute values of the information measures and slightly larger
information losses when restricting the age range. This is expected because the higher
initial mortality leads to stronger selection effects and thus, a stronger decrease in the
variance of frailty among survivors to higher ages, as well as to lower probabilities of
surviving to these ages.

Finally, the information measures computed in this subsection refer to single obser-
vations, such that the derived conclusions about the effects of the age at left truncation

123



Information measures and design issues in the study… 349

should be valid for samples of any reasonable size under the different scenarios. Further
aspects regarding the size of datasets under study are discussed in the following.

5.2 Sample size considerations

Let us suppose that old-age mortality is studied in countries that experience the same
or very similar mortality patterns. It is clear that the different population sizes affect
the assessment of mortality deceleration in the different countries. If the data for the
different countries also cover different age ranges, then we want to know, for example,
what size n90+ a subset of survivors to ages 90+ would have to be to carry as much
information as a subset of survivors to ages 80+ from a different country; that is,
n80+I80+ = n90+I90+. In Scenarios S1 to S3, the ratios I80+/I90+ for I = κ−2 are
2.194, 2.156, and 2.120, respectively. Thus, a sample of survivors to ages 90+ needs
to be more than twice as large as a sample of survivors to ages 80+ in order to provide
the same amount of information. Moreover, the ratios are increasing in the level of
heterogeneity σ 2. For Scenarios S4 to S6, we obtain the slightly larger ratios 2.322,
2.278, and 2.237, reflecting the stronger selection effects in these settings.

If the underlying σ 2 is sufficiently large, we can use the measure κ2 to draw conclu-
sions about the precision of σ̂ 2 for specific sample sizes. In Scenario S1, if the sample
of survivors to ages 90+ consists of about n90+ = 20,000 individuals, this would yield
a precision of the estimated frailty variance of about var(σ̂ 2) ≈ n−1

90+κ2
90+ = 0.00165.

5.3 Power of the likelihood ratio test

We now evaluate how the age range and the sample size of a dataset affect the
performance of the likelihood ratio test for assessing mortality deceleration in the
gamma-Gompertz model. The power of the test to detect a positive σ 2 in Scenarios S1
and S2 based on different subsets and sample sizes is calculated from (6) at a level of
α = 0.05, and is reported in Table 1. As expected, we find that the power of the test
increases if the sample size increases, if the age at left truncation decreases, and if the
frailty variance is larger. In both scenarios, the power to detect mortality deceleration
decreases by more than two-thirds if inference is based only on survivors to ages 90+,
rather than on all survivors to ages 80+ for samples of medium size.

The performance of the likelihood ratio test under the Scenarios S4 and S5, with
modifiedGompertz parameters, is documented inTable S.2 in the supplementarymate-
rial and leads to the same conclusions as above. In addition, we see that in Scenario S4
the test has lower power to detect the positive σ 2 based on the survivors to ages 85+
or 90+ than in the corresponding Scenario S1. This is due to the higher initial level of
mortality a in S4 which reduces the heterogeneity in the mortality risks at the higher
ages. The power of the test based on survivors to ages 60+ and 80+ in Scenarios S4
and S5 is not directly comparable to the power in the corresponding Scenarios S1 and
S2, because of the different sizes of the subsets 60+ and 80+ under the two settings
for the Gompertz parameters.

Apart fromcalculating power values for givenparameter configurations, formula (6)
provides a tool for determining what age range a dataset should cover to ensure that
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Table 1 Power β of the likelihood ratio test, performed at the 5% level, according to formula (6), under
Scenarios S1 (σ 2 = 0.043) and S2 (σ 2 = 0.021) for three sample size settings (s—small, m—medium,
l—large) and varying age range

Scen. n Survivors to ages

60+ 80+ 85+ 90+
n60+ β60+ n80+ β80+ n85+ β85+ n90+ β90+

S1 s 73,558 0.999 33,841 0.653 20,740 0.377 10,000 0.185

m 147,116 1.000 67,681 0.892 41,480 0.593 20,000 0.278

l 772,361 1.000 355,327 1.000 217,771 0.996 105,000 0.782

S2 s 76,853 0.801 35,123 0.278 21,290 0.169 10,000 0.104

m 153,706 0.970 70,245 0.440 42,581 0.251 20,000 0.135

l 806,956 1.000 368,788 0.962 223,548 0.721 105,000 0.344

the likelihood ratio test will achieve a certain level of power. From Table 1, we see
that for the medium-sized Scenario S1, the likelihood ratio test will detect mortality
deceleration in about 89.2% of cases based on the sample of survivors to ages 80+.
As for any left-truncation age x , the size of the sample x+ can be calculated based
on the given (or estimated) gamma-Gompertz parameters and a known subset size
(e.g., here, n90+ = 20,000), we can determine the left-truncation age x such that the
power is increased to 95%. For the medium-sized Scenario S1, we need to include all
survivors to ages 78 and above for the test to reach a power of 95%.

The above power calculations are based on relatively large sample sizes asmotivated
by real cohort data. We have seen that the assessment of mortality deceleration can
be demanding even based on datasets of such size especially in case of restricted age
ranges. Smaller sample sizes will lower the power of the test to detect a positive frailty
variance also for the subsets of survivors to ages 60+ or 80+. A larger underlying
frailty variance leads to stronger deceleration in the hazard rate and will generally
be favorable for detecting the phenomenon. However, smaller sample sizes and thus
increased uncertainty about the parameters can counteract this effect, as can be seen
from formula (6). While the formula provides only a large-sample approximation to
the power of the likelihood ratio test, the sample sizes in human mortality studies are
expected to be generally large enough for the approximation to yield valid results.

6 A study on old-agemortality among French-Canadians

In this section,we apply the proposedmethods for evaluating study design and deriving
design recommendations to a study on old-age mortality among Catholic French-
Canadians born at the end of the nineteenth century.

The dataset contains information on 20,917 females and 10,878 males who were
born in the Province of Quebec between 1880 and 1896, and who died in Quebec at
ages 90 and above between 1970 and 2009. To validate the individual exact survival
times, birth registration documents and death certificates fromQuebec’s parish register
archives were linked. Further details on the data and the validation procedure can be
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Fig. 4 Death rates of French-Canadian females (left) and males (right): empirical death rates (solid line,
circles) with 95%-confidence intervals (gray), gamma-Gompertz fit (dashed) and Gompertz fit (dotted)
(Color figure online)

found in Ouellette and Bourbeau (2014) and Ouellette (2016), who studied earlier
versions of this dataset that covered only the centenarians, that is, survivors to ages
100 and above.

The analysis of the French-Canadian mortality data based on the gamma-Gompertz
model is conducted separately for the female and the male sample. The starting age of
the model is assumed to be 60, and the likelihood is adapted for the left truncation at
age 90. We obtain estimates of the frailty variance of σ̂ 2 = 0.043 for the females and
σ̂ 2 = 0.037 for the males. The likelihood ratio test for H0 : σ 2 = 0 leads to p-values
of 0.121 for the females and 0.283 for the males, indicating that the data do not provide
much evidence against the null hypothesis of nomortality deceleration. These findings
are in contrast to those for the fitted hazards and the empirical death rates, which are
displayed in Fig. 4, and suggest a deceleration, at least for the females. Indeed, it
turns out that the likelihood ratio test has relatively low power to detect mortality
deceleration in the given settings. According to formula (6) with the estimated values
of the parameters, the power of the likelihood ratio test at the 5% level based on a 90+
sample of the given size is 28.7% in the female setting and 14.2% in the male setting,
respectively. Therefore, we want to investigate how a further extension of the dataset
that would include deaths at earlier ages—say, between ages 85 and 89, or between
80 and 89—could impact the assessment of mortality deceleration.

First, we examine the behavior of the information measure I = κ−2 for observa-
tions from a gamma-Gompertz model with parameter values equal to the estimates
obtained from the female or the male sample, respectively. Figure 5 depicts the
ratios Ix+/I90+ for left truncation at the ages x = 80, 85, 90, as well as the ratios
of the scaled measure I(s). In both the female and the male setting, an observation
left-truncated at age 80 would be more than twice as informative as an observation
left-truncated at age 90. Taking into account the increasing number of observations
when younger ages at death are included by looking at I(s), observations left-truncated
at age 85 are already more than twice as informative as observations left-truncated
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Fig. 5 Ratios Ix+/I90+ (black-solid line, circles) or I(s)
x+/I(s)

90+ (red-dashed line, crosses) for the infor-

mation measure I = κ−2 depending on the age of left truncation x = 80, 85, 90, under the parameter
settings estimated from the samples of French-Canadian females (left) and males (right)

Table 2 Power β of the likelihood ratio test, performed at the 5% level, according to formula (6), under
the parameter settings estimated from the French-Canadian data for different age ranges x+ and resulting
sample sizes nx+
Scenario Survivors to ages

80+ 85+ 90+
n80+ β80+ n85+ β85+ n90+ β90+

Females 70,085 0.901 43,126 0.609 20,917 0.287

Males 54,577 0.627 28,369 0.316 10,878 0.142

at age 90. In other words, the extended dataset that includes all survivors to ages 85
and above would contain more than twice as much information as the current dataset
of survivors to ages 90 and above. Indeed, compared to the 90+ sample, the female
85+ sample would provide about three times as much information, and the male 85+
sample would provide about four times as much information.

Second, Table 2 summarizes the effects of expanding the age range of the current
dataset on the power of the likelihood ratio test which is performed at a level of 5%.
The calculations are again based on formula (6), with the estimates obtained from
the female and the male samples, respectively, inserted for the parameter values. The
sizes of the expanded 85+ and 80+ datasets are computed from the known size of the
population of survivors to ages 90+ and the fitted gamma-Gompertz model. For both
the female and the male data, we find that expanding the dataset to deaths between
ages 85 and 89 would more than double the power of the likelihood ratio test. For the
female setting, the power of the test based on the 85+ sample is around 60.9%. In line
with the considerations in Sect. 5.3, the age of left truncation that is required in this
setting to achieve the desired power level of 80% is found to be age 82.
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In conclusion, our results show that the failure of the likelihood ratio test to reject
the hypothesis of no mortality deceleration in the female 90+ sample can be explained
to some extent by the low power of the test in the specific setting. Both the pro-
posed information measure κ−2 and the power calculations for the likelihood ratio
test demonstrate that an expansion of the existing dataset on French-Canadian mortal-
ity could greatly improve the assessment of mortality deceleration in this population.
In practice, these potential improvements have to be weighed against the costs of
collecting—and validating—the additional data.

7 Discussion

We have investigated the use of Fisher information-based criteria for planning and
evaluating studies that assess mortality deceleration in the framework of the gamma-
Gompertz model. Our aim was to derive recommendations for settings in which the
parameters of interest could be reliably estimated, and a deceleration in the death rates
could be detected with a high probability. As validation of the ages at death is often
required in old-age mortality studies, these settings are characterized by the age range
covered by the data and the sample size.

The essential component of the proposed methods is the computation of the
Fisher information matrix for potentially left-truncated observations from a gamma-
Gompertz model. Due to a lack of closed-form expressions, the information matrix
is obtained using numerical integration of analytically determined second-order par-
tial derivatives of the log-density. Different criteria for evaluating study designs can
be derived from the Fisher information. Given the importance of the frailty variance
parameter in assessing mortality deceleration in the gamma-Gompertz model, we
focus primarily on a criterion of DA-optimality, whereby the Gompertz parameters
are treated as nuisance. The resulting measure of information is the reciprocal of the
element of the inverse Fisher information that corresponds to σ 2. It allows us to quan-
tify the effects of the sample size and the age range covered by a dataset on the amount
of information that this dataset contains about σ 2. Based on the computation of the
Fisher information matrix, we are also able to calculate the power of the likelihood
ratio test to detect mortality deceleration in specific scenarios. As a result, recommen-
dations can be given about what age range a dataset needs to cover for the likelihood
ratio test to achieve a certain power. In the illustrationwith a study on French-Canadian
mortality, the information measures and the power calculations clearly demonstrate
that the assessment of mortality deceleration could be greatly improved if the current
dataset, which includes only survivors to ages 90 and above, was extended to also
include deaths at the earlier ages 85–89.

Here, we only consider changes in the age at left truncation (the age range covered
by the data) that apply to all survivors in a cohort, which is the most common setting in
demographic studies.We could, however, extend these considerations tomore complex
design questions for which actually random samples could be drawn from the observed
survivors to particular ages. In such situations, the quantification of information in
particular observations would be even more crucial for attaining an optimal design.
However, addressing such questions is beyond the scope of the current research.
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The present work has some limitations. As our focus is on the assessment of mortal-
ity deceleration—the deviation from the log-linear hazard trajectory of the Gompertz
model at high ages—, we have stayed within the framework of the gamma-Gompertz
model here. However, as the concepts of the Fisher information and of optimal design
are defined for any parametric model, the proposed methods should be applicable in
a wider context.

When the age range can be extended to appreciably lower ages the exponential
increase of senescent mortality may no longer hold and questions of model choice for
the baseline hazard arise. Established model selection techniques can help here (see
Burnham and Anderson 2002). In such cases most problems discussed in this paper
would be obsolete though. It should be noted, however, that also commonly used
model choice criteria, such as Akaike’s Information Criterion (AIC), are affected by
non-standard conditions induced by a boundary parameter (see Böhnstedt and Gampe
2019).

Although the approach of using numerical integration to compute the Fisher infor-
mation matrix in the gamma-Gompertz model seems to perform well, it prevents us
from deriving general analytical formulas that describe the effects of the sample size
and the age range of a dataset. Nonetheless, empirical studies for specific parameter
settings and design choices as presented here can serve as a basis for formulating
recommendations.

In this context, we have to bear in mind that the gamma-Gompertz model provides a
non-standard setting, and, hence, that the informationmeasures are not directly related
to estimator variability in the boundary case (σ 2 = 0). We have, however, shown that
comparative statements on information gain or variance reduction are still meaningful
when designs covering different age ranges are compared.

Finally, as the assessment of the performance of different study designs for the
gamma-Gompertz model based on the Fisher information depends on the true under-
lying parameter values, it is valid only locally. Still, the robustness of the design’s
performance can be checked by evaluating the information measures using a range of
possible parameter values.
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