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Abstract 

Climate change is with us. As professionals who place value on evidence-based practice, 

climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-

CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public 

health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, 

is an insidious global health crisis needing at least as much attention. Many neurological diseases are 

complex chronic conditions influenced at many levels by changes in the environment. This review aims 

to collate and evaluate reports from clinical and basic science about the relationship between climate 

change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, 

thermoregulation, biorhythm, gene, circadian rhythm, heat and weather were used to search the 

published evidence. A number of climatic variables are associated with increased seizure frequency in 

people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress 

and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne 

infections may trigger or exacerbate seizures, lead to deterioration of seizure control and affect 

neurological, cerebrovascular or cardiovascular comorbidities and risk of sudden unexpected death in 

epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and 

temperature-dependent channel function, to housing quality and global supply chains. According to 

the results of the limited number of experimental studies with animal models of seizures or epilepsy, 

different seizure types appear to have distinct susceptibility to seasonal influences. Increased body 

temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-

related brain damage. Links between climate change and epilepsy are likely to be multifactorial, 

complex and often indirect, which makes predictions difficult. We need more data on possible climate-

driven altered risks for seizures, epilepsy and epileptogenesis, to identify underlying mechanisms at 

systems, cellular and molecular levels for better understanding of the impact of climate change on 

epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more 

to protect people with epilepsy from the effects of climate change.  

 

Keywords: Global warming, emergency, seizure, temperature, extreme weather events, public health  
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1. Introduction 

Climate change will affect many aspects of life for everyone on Earth. The SARS-CoV-2 pandemic has 

illustrated how vulnerable human health is to unprecedented global challenges. The SARS-CoV-2 

pandemic has been acute, and the global response has had to be dramatic and swift, showing that 

deep changes at societal level are possible – and incidentally have been associated with minor 

reductions in carbon emissions [1-2]. Like the SARS-CoV-2 pandemic, climate change is global in its 

reach and likely consequences; in contrast, climate change is more chronic and insidious. Climate 

change causes multiple health impacts through many routes, leading to calls for action on climate 

change and public health by the World Health Organisation (WHO) [3]. Low and middle-income 

countries will be most affected, as noted by the International Monetary Fund [4-5], including in the 

health domain, as recognised by the UN Secretary General [6]. Health services are inevitably 

embedded within a global system built around fossil fuels and unsurprisingly themselves contribute 

significantly to climate change.; For example in the UK, the National Health Service is one of the most 

significant contributors to climate change from the public sector): it was the first national health 

system in the world to develop and publish its  carbon reduction strategy and commitment  

(7), with reductions made since 2007 equivalent to the annual emissions of a small country 

such as Cyprus (REF). Notably, many organizations are taking action to reduce their environmental 

footprints [8-10]. The interplay between climate change and health is therefore bidirectional and 

significant in magnitude.  

The term “global warming” refers to the average long-term change in global surface 

temperatures since the pre-industrial period, forced by increasing anthropogenic greenhouse gas 

emissions into the atmosphere. ‘Forcing’ refers to physical processes- of affecting the climate through 

a number of forcing factors which drive the climate to change. Warming during the period 1986–2005 

has been estimated to have ranged between 0.55°-0.80°C [11]. The increases are unequally distributed 

across the world, with different regions experiencing different trends [12], some regions experiencing 

more extreme winter events [13]. Importantly, in tropical regions with relatively small historical 

climate variability, a perceptible local warming signal may already be emerging [14]. The term “climate 

change” refers to the wider range of local, regional and global changes in average weather patterns, 

primarily driven, over the last 100 years, by anthropogenic activities [15]. Overall, the change in mean 

temperature modulates temperature extremes, leading to a weakening of cold extremes but a 

strengthening of hot extremes [16]. 

Projections of future global climate are derived from physically-based climate models, 

principally general circulation models (GCMs) which are driven by different scenarios of future 

emissions of greenhouse gases. Climate projections are therefore sensitive to the selection of 
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scenarios and uncertainties arise from the model structure (e.g. resolution), and parameterisation 

within individual models and model simulations. Consequently, there are significant uncertainties 

associated with regional and local climate responses to greenhouse gas forcing. Nonetheless, climate 

modelling indicates the potential for more heatwave days in a warmer world, with substantial tracts 

of Africa, Central and South America and South East Asia projected to experience more than 30 extra 

seasonal heatwave days per °C of global warming [17]. Climate change also has consequences for the 

hydrological cycle, with the intensification of heavy rainfall [18] and drought [19] in Europe. These 

physical changes in climate clearly have potential to directly affect health (e.g. [20]), but they also 

have a range of context-specific effects on regional and local environmental and social systems which 

could indirectly impact health, through effects on food security (e.g. [21]), water security (e.g. [22]), 

and livelihood systems (e.g. [23-24]). 

We previously raised general concerns that climate change might also affect epilepsy [25]. 

Here, we review published evidence around potential consequences of climate change for people with 

epilepsy. The potential direct consequences, increase in seizure development or deterioration of 

seizure control by enhancement of seizure precipitants or disruption of drug delivery and the potential 

indirect consequences, co-morbidities or Sudden Unexpected Death in Epilepsy (SUDEP) related to 

climate change were evaluated with the current literature in widely variable quality. Epilepsy can have 

profound and pervasive effects on people with epilepsy and their caregivers such as psychologic 

comorbidities, behavioral, cognitive, and social problems, all diminishing quality of life for patients, 

families and caregivers. The associatedeconomic consequences are huge [26-27], amounting to 0.5% 

of the overall global burden of disease [27-28], disproportionately greater amongst the ~30% of 

people with treatment-resistant epilepsy [26, 29-32]. Since there are associated direct financial 

burdens, it is reasonable to infer that those with fewer financial resources may experience greater 

adverse outcomes related to disease burden; reported quality of life is much lower amongst those 

with poor seizure control and socioeconomic disadvantage [33]. Personal resilience to a variety of 

situational changes in terms of quality of life is multifactorial [34-35], but seizures [36] and economic 

disadvantage [37], for example through less-well thermoregulating housing, can have negative 

influences. Most studies addressing these issues have been undertaken in countries with healthcare 

systems, or those with higher levels of healthcare funding [31, 34-37], whereas burdens are often 

unquantified in low- and middle-income countries, but seem likely to be at least of the same, if not 

greater, magnitude [27]. Here, we seek to collate information available in the field.  

 

2. Climate change and epilepsy: insights from population and clinical studies 
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Interactions of intrinsic factors, such as the cause of epilepsy or individual physiology, and 

extrinsic factors such as ambient temperature, humidity or sunlight exposure can play important roles 

in seizure occurrence [38-44]. Temperatures considered unusually low for the study region (e.g. below 

17 °C in Taiwan), or low atmospheric pressure or high humidity, may trigger seizures [38-40]. The 

effects on epilepsy of changing outdoor and indoor temperatures and humidity, and their diurnal 

variation, as a result of new patterns of climate extremes, are likely to prove more complex, and 

additionally, the occurrence of many seizure precipitants is expected to increase with climate change. 

Precipitants may act directly, affecting human physiology, or indirectly, such as socioeconomic 

disruption acting through stress, fatigue and sleep deprivation [41], which are common seizure 

triggers [43]. In addition to risks for aggravation of pre-existing epilepsy, climate change may increase 

the incidence of acquired epilepsy due to spread of vector-borne diseases, other infections and central 

nervous system (CNS) trauma. 

2. 1 Climate change and seizure or epilepsy precipitants 

2.1.1 Stress and sleep deprivation   

Although specific studies on the correlation between climate change, stress and epilepsy are 

still needed, climate-related stress will very likely pose a serious challenge to seizure control. 

Emotional stress triggers seizures in over 80% of people with epilepsy [41, 43]. People prone to stress-

induced seizures experience a distinct brain response to stress hormones, in which cortisol levels are 

positively correlated with interictal discharges and negatively correlated with global functional 

connectivity on EEG [44]. Fatigue and sleep deprivation are also very common seizure precipitants [43] 

and all these factors can be affected by weather variations, compounding their consequences. The 

climate change-related rise in average and extreme temperatures, and their distribution across day 

and night [45] will affect sleep patterns. A large-scale US survey indicated that a +1°C deviation in 

night-time temperature was associated with an increase of three nights of self-reported insufficient 

sleep per 100 people per month [46]. The urban heat island effect has a bigger effect on night-time 

temperatures than day-time ones and the elevation of night-time temperature may have a negative 

compounding effect, as poor sleepers exposed to high air temperature suffer even more fatigue 

compared to those sleeping at a lower temperature [47]. Extreme weather events, change in 

precipitation, floods, droughts and wildfires may all disrupt sleep because of augmented stress levels, 

food insecurity, displacement from home, rising water-borne infections, and increased sleep-related 

breathing disorders [48]. Studies performed after hurricanes in the United States [49-51], after floods 

in Australia [52] and China [53], and after wildfires in Greece [54] have highlighted a high prevalence 

of sleep disturbances, often comorbid with mood and post-traumatic stress disorders. Therefore, 

climate change may synergistically induce stress, fatigue and sleep deprivation, potentially putting 
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many people with epilepsy at risk of deterioration of seizure control, as well as possible consequences 

on associated comorbidities and non-seizure aspects of the epilepsies. The combined action of these 

triggers may also overlap with potentially epileptogenic traumatic brain injuries after rapid-onset 

natural hazards or as a consequence of climate-related conflicts. The kinetic energy released by 

hurricanes, typhoons, tornadoes, and landslides provokes traumatic brain injuries through 

compression fractures as well as penetrating and crushing wounds [55], which can result in acute 

symptomatic seizures or chronic post-traumatic epilepsy. Climate change is also a potential cause of 

increased armed confrontations, including ‘water wars’, leading to such injuries, as people are 

displaced and deprived of basic necessities. Extremes of rainfall and higher temperatures significantly 

increase risk of military conflicts due to a mixture of causes, especially in low and middle-income 

countries whose economies rely heavily on agriculture [56-58]. Global warming up to 2°C beyond pre-

industrial levels (i.e. the stated limit of the Paris Climate Agreement) is predicted to increase globally 

by 13% the risk of conflict within countries. This figure has been estimated for current societies, 

assuming current levels of socioeconomic development, population, and government capacity [59]. 

2.1.2 Tropical causes of epilepsy and microbiology aspects  

A number of vector-borne infections are associated with a higher incidence of acquired 

epilepsy in low-income countries [60-61]. Previous studies have suggested complexities in the exact 

relationship between climate change and infectious disease, and the sequelae of epilepsy secondary 

to infection. These effects need to be urgently characterised. 

Malaria 

Malaria is already a major public health problem, with an estimated 228 million cases in 2018 

[62]. WHO estimates that if global temperatures rise by 2-3°C, the population at risk of malaria will 

increase by 3-5% [63], due to an increase in the range and intensity of transmission, and may include 

previously naïve populations. The malaria parasite is thought to be highly sensitive to changing 

environmental conditions [64-67]. Whilst malaria is affected by seasonal differences, including 

humidity [68], increased temperature can reduce the typical seasonality of malaria epidemics 

regardless of rainfall patterns [69]. Cerebral malaria is the leading cause of acute encephalopathy with 

febrile and acute seizures in endemic regions [70] and is associated with the occurrence of epilepsy 

particularly in regions of sub-Saharan Africa [71-73]. Hence, increased temperature and humidity as a 

consequence of climate change are very likely to have implications for the incidence and prevalence 

of cerebral malaria-related epilepsy.  

Neurocysticercosis 

Neurocysticercosis is the result of Taenia solium infection of the CNS [74] due to unintentional 

ingestion of Taenia solium eggs, mainly from food contaminated by people with taeniasis. It is a major 
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risk factor for acquired epilepsy in African, Asian and Latin American countries, and is the main cause 

of epilepsy in about 1% of the population in endemic countries [74], but may cause up to 30-50% of 

epilepsy cases, depending on geographic region [75-76]. Although there have been no direct studies 

on the effects of increased temperature and humidity on incidence of cysticercosis, warmer 

environments, as well as worsening socioeconomic conditions leading to inadequate sanitation, may 

facilitate the spread of the disease [77]. 

Arboviruses and other Tick-borne infections 

Climate change is likely to facilitate territorial expansion of arboviruses and their diseases, 

such as West Nile virus, dengue fever, and tick-borne encephalitis [78]. Although not directly 

associated with the development of epilepsy per se, all of these infections may increase the risk of 

fever-induced seizures, posing a serious risk for people with pre-existing epilepsy [76]. African 

countries may experience a worsening of tuberculosis epidemics as a consequence of climate change, 

although further evidence is required [79]and CNS tuberculosis is strongly associated with epilepsy 

and seizures [76]. 

2.1.3 Human genetic variants that influence temperature sensitivity  

Climate change, and, in particular, global warming and an increased occurrence of sustained 

high temperatures and temperature peaks [80], could affect some people with epilepsy through their 

individual genetics, for example mediated through genetic variants that modulate physiological 

responses to temperature. Human thermoregulatory capacity is not insuperable; heat stress and heat 

stroke are recognized clinical disorders [81], exacerbated by elevated humidity [82-83], and can be 

aggravated especially in the very old and very young, and by particular built environments. Exertional 

heat stress is another cause of hyperthermia, the increase in body core temperature following an 

imbalance between body heat gain and heat loss [82]. In adults, only limited retrospective data exist 

on the incidence of seizure after heat stroke, with presentations including acute status epilepticus, 

altered mental status, and post-cooling convulsions [84]. The fact that 3% of children have febrile 

seizures, and that seizures in some genetic epilepsy syndromes clearly show fever-sensitivity, 

demonstrates that body temperature can influence the likelihood of the occurrence of seizures. We 

note that body temperature alone may not be the only cause of fever-related seizures; for example, 

associated systemic inflammation is also likely to contribute in the context of infection-related fever. 

On the other hand, temperature alone may also have an effect, independent of fever or infection. In 

most children, the peak of body temperature plays a more important role in the pathogenesis of a 

febrile seizure than the rapidity of the temperature rise [85]. There is a polygenic, common variant-

determined, genetic susceptibility for febrile seizures including variants in a gene knockout of in rats 

influences the proportion of heat-sensitive neurons in the thermoregulating anterior hypothalamic 



9 
 

nucleus and hippocampal neuronal excitability [86]. Low atmospheric pressure, a small amount of 

precipitation, and low relative air humidity may increase the risk of febrile seizures [87], but these 

findings need replication and may be influenced by both local clinical practice and population genetics. 

There is a  heritability of the epilepsies due to common genetic variation (single nucleotide 

polymorphisms in particular), such that we should not ignore potentially widespread vulnerability due 

to genetic constitution: this cannot be altered, but its understanding may also help us understand 

people for whom additional care may be needed given their inherent, unmodifiable vulnerability.    

,. Moreover, an increasing number of  genetic causes of large effect are being identified in the 

epilepsies. Though individually rare, collectively they account for an important part of the burden of 

the epilepsies. For example, most cases with Dravet syndrome, in which frequent, often prolonged, 

febrile seizures occur at the onset of epilepsy, are associated with pathogenic variants in the gene 

SCN1A,  which encodes a temperature-sensitive ion channel (NaV1.1) [88], with seizures that can be 

precipitated by even mild increases in body temperature via fever, ambient warmth, cold-warm shifts, 

warm baths or physical exercise [89] – extreme climate events may be additionally important in this 

context There are other genes involved in epilepsies with an increased risk of seizures triggered by 

fever, including SCN1B, GABRG2, GABRD, CHD2, STX1B, PCDH10, HCN2 and ZNT3 [92-93, 95-96, 98].. 

Variants in genes causing the mainly rare, severe, fever-sensitive epilepsies can also be found in the 

more common epilepsies [99-100].  

The major human temperature sensors consist of a family of ion channels, the temperature-

sensitive transient receptor potential (TRP) cation channels, which are activated in response to 

changes within specific temperature ranges [101]. The cold-sensitive channels TRPM8 and TRPA1 and 

the heat-sensitive channel TRPV1 are activated at 15°C, 17°C and 40°C, respectively [102]. High 

encoding-gene variability among the TRP vanilloid subgroup (TRPV family) members has been 

reported [103]. Whether such variation can link global warming and altered seizure frequency in 

people carrying such variants is yet to be determined, but the existence of temperature-sensitive 

epilepsies, in general, attests to the possibility. Human genetic variation, which has evolved over a 

long period of relative temperature stability and particular temperature ranges and variation, may 

therefore affect physiological response to temperatures, whilst being less capable of rapidly adapting 

to brisk but sustained global warming. The greater incidence of extremes of variation within a 

changing climate therefore poses real risks in epilepsy, whether these are rare genetic epilepsies with 

known temperature sensitivity, or more common epilepsies, if thermoregulation becomes 

compromised.  

2.2 Climate change, epilepsy comorbidities and mortality 
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People with epilepsy have a six-fold increase in the prevalence of both neurocognitive and 

cerebrovascular disorders [104]. The frail equilibrium of people with neurocognitive disorders may be 

easily unsettled by extreme weather events such as heat waves as well as by wide temperature 

fluctuations day-to-day, even more so when seizures are comorbid. The morbidity of cerebrovascular 

disorders may similarly be affected by climate change, as persistent colder temperatures, heatwaves 

and large day-to-day temperature variations are associated with stroke incidence [105-106]. Abrupt 

weather changes may increase blood viscosity, blood pressure and platelet reactivity [107-108]. Stroke 

is the major cause of acquired epilepsy in older adults, accounting for up to 50% of newly-diagnosed 

epilepsy in those over 60 years of age [109]. The majority of weather-related excess mortality is 

attributable to cardiovascular and respiratory disorders [110], which are common epilepsy 

comorbidities (respectively 2.5 and 2.9-fold increased risk for people with epilepsy) [111-112]. Climate 

change could also heighten the risk of Sudden Unexpected Death in Epilepsy (SUDEP). Although a 

study from the United Kingdom found no correlation between SUDEP and outdoor temperature 

variation over the year, and a slight excess of SUDEP occurred on days with a mean temperature lower 

than the 10th percentile [113], rising temperatures could increase seizure frequency, and therefore 

SUDEP risk, especially in some fever-sensitive epilepsies, such as Dravet syndrome [114], conditions 

already associated with a particularly high risk of SUDEP under current temperature conditions [115-

116]. The displacement of people due to climate change will be associated with reduced health care 

provision, as epilepsy is amongst the most common neurological conditions in refugee camps [117]. 

Displacement and supply chain disruption can interrupt medication provision sincenon-adherence 

(here enforced) increases seizure risk [118], and thus increases SUDEP risk [119].  

2.3 Climate change and antiseizure medications 

Few studies have been published on whether antiseizure medications (ASMs) may work 

differently in distinct climatic conditions or whether their stability is affected by temperature and/or 

humidity or whether their pharmacokinetics could change with circadian rhythms. Some studies have 

suggested a seasonal variation in ASM effectiveness. One possible reason is that an increase in 

ambient temperature, with the resulting increase in body sweat, may have an impact on serum levels 

of some ASMs. Parnas et al. [120] found that, in a small sample of eight people with epilepsy receiving 

chronic ASM treatment, phenytoin sweat concentration was independent of sweat flow, while 

phenobarbitone sweat concentration increased with increasing sweat flow. Data are also available 

from a sample of 10 people on diphenylhydantoin [121], with a decrease in serum levels at the end of 

summer due to an increase of perspiration. A study from Russia among 107 people with epilepsy, who 

received either valproic acid or carbamazepine, found that the serum levels of carbamazepine and 
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valproate were significantly lower in spring compared to autumn [122]. No reason was given for this 

result.  

Sunlight has been suggested as possible palliative treatment in epilepsy. In a UK study over 

363 days looking at 1715 seizures in an inpatient facility for people with epilepsy, epileptic seizures, 

especially focal impaired awareness seizures, were less likely to occur on bright sunny days than on 

dull days [123]. Endogenous circadian rhythms may contribute to seizure patterns, with ASM 

chronotherapy suggested as a method to optimize seizure control in selected people with epilepsy 

[124]. Circadian patterns of epileptiform activity vary by seizure-onset zone, with a peak during sleep, 

that itself may be affected by climate change as discussed above [125]. These rhythms were best 

described by a dual oscillator (circadian and ultradian (i.e. short term)) model, which could be subject-

specific. Some authors have suggested that while longer-term circadian rhythms are adaptations to 

predictable changes in the environment, episodic ultradian events could contribute to adaptation by 

preparing organisms and biological functions for unpredictability [126]; genetic variation may 

contribute to both types of adaptability. Ultradian rhythms are more likely to be affected by climate 

change than infradian rhythms. As climate change will likely affect many physiological variables, many 

endogenous rhythms may be disrupted, with consequences for seizure control. On the other hand, 

these findings could provide mitigation through insights and pharmacological targets to address 

seizure worsening due to environmental stressors aggravated by climate change.  

Storage conditions for ASMs may determine product shelf-life. This may be particularly 

important in formulations which are sensitive to humidity, temperature and sunlight, such as certain 

blister pack preparations, injections and syrups. Storing carbamazepine and phenytoin formulations 

in hot, humid conditions impaired the stability of pharmaceutical forms and reduced bioavailability by 

up to 50% [127]. Valproate is particularly hygroscopic; its stability may change when enteric-coated 

tablets are removed from their original packaging and repackaged into dosette boxes (or dose 

administration aids). In hot, humid environments, valproate in a dosette should be stored in a 

refrigerator [128]. While the summary of product characteristics of phenobarbital states that it should 

be stored below 25°C and in a dry place [129], no such recommendations are found for other ASMs.  

The SARS-CoV-2 pandemic has highlighted the vulnerability of current supply chains [130-131]. 

Disruption of ASM supply chains due to weather events as a result of climate change, including floods 

and fires, may compromise seizure control in people with epilepsy. We can infer this from recent non-

climatic natural hazards,  such as the 2011 Great East Japan earthquake and subsequent devastating 

tsunami [132].  

 

3. Climate change and epilepsy: insights from basic science studies  
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Brain (cortex) and core body temperatures closely follow each other [133]. Typically, an 

elevated body temperature is caused by fever due to infection. During fever induced in adult rodents 

by intraperitoneal injection of IL-1beta, or hyperthermia induced by handling stress, the thermal 

curves measured in the peritoneum (core) and in the cortex were similar, independent of the thermal 

state [133]. Core (skin) and brain temperatures measured in normothermic immature rats were on 

average 2.8°C higher in the brain than the core [134]. Thermoregulatory disturbances have been 

reported in various clinical epilepsy syndromes and seizures may affect neuronal circuitries involved 

in thermoregulation. The effect of temperature on neuronal function and excitability is well 

established, and an increase in core and brain temperature can precipitate seizures in susceptible 

people with epilepsy and in animal models [135]. Dysregulation of body temperature has been 

reported in Dravet syndrome [136]; the human reflex epilepsy "hot-water epilepsy” is characterised 

by seizures triggered by bathing with hot water, or pouring hot water on the head during bathing, as 

typically occurs in certain cultures [137]. Reproducing this phenomenon in adult rats, raising the core 

temperature to 40±2°C for 3-5 minutes, resulted in an increase in blood pressure and blood-brain 

barrier breakdown [138]. Hyperthermia may occur as the result of exposure to extremely hot and 

humid environmental conditions, or exertional heatstroke, pharmacological interventions, or other 

pathological conditions. In adult rodents, hyperthermia aggravates both seizures and hippocampal 

damage provoked by either neurotoxic or non-neurotoxic doses of kainic acid following the elevation 

of core body temperature to 42°C [139]. Similarly, brain damage, expressed as neuronal necrosis in 

neocortex, globus pallidus, hippocampus or substantia nigra pars reticulata, was worsened in 

hyperthermic adult rats (41°C) exposed to fluorothyl-induced seizures for 10 minutes compared to 

animals with lower (39°C, 40°C) core body temperatures following a 20-minute period of fluorothyl-

induced status epilepticus [140]. Thirty minutes of hyperthermia (39°C core and brain temperature) 

in postnatal day 10 rats increased the epileptogenicity of status epilepticus and its neuropathological 

sequelae compared to body temperature at 35°C [141]. These results demonstrate that increased 

body temperature may play an important "second hit" role in the control of epileptic seizures and 

seizure-related brain damage. Experimental models have identified factors by which fever or 

hyperthermia can cause seizures and may result in epilepsy and cognitive dysfunction. These factors 

include (Table 1): genetic susceptibility (see above); increased brain temperature affecting 

permeability and function of native ion channels, such as TRPV channels [142] or L-type Ca2+ channels 

[143] influencing both excitatory and inhibitory neurons; activation of the innate immune system 

during both fever and hyperthermia, contributing to seizure precipitation if pro-inflammatory 

cytokines, such as IL-1β and TNF, overshoot their homeostatic threshold [144]; and hyperventilation-
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induced alkalosis, which, when occurring during hyperthermia, may promote neuronal excitability and 

seizures [145-146].  

The maximal electroshock seizure (MES) model recapitulates aspects of generalized tonic-

clonic seizures and has been widely used as a model for drug therapy screening [147]. Changes in 

ambient temperature alter seizure threshold in the MES model. Changes in body temperature (20-

45°C) affect seizure threshold, duration and post-seizure recovery in the MES model in the rat [148]. 

In particular, higher body temperature has been correlated to a higher seizure threshold and lower 

seizure duration as compared to lower body temperatures. The time of recovery following an MES 

was longer when the body temperature was maintained at 30°C and shorter for higher body 

temperatures (40-42°C) [148]. Even in very well-controlled environmental conditions, seasonal 

changes in seizure threshold have been observed, which might be related, but not limited to, 

fluctuations in temperature and/or humidity throughout the year. Notably, myoclonic and clonic 

seizures in the pentylenetetrazole (PTZ) model show seasonality, but tonic seizures in the MES do not 

[149]. This observation suggests that different seizure types, invoking different networks, show 

differing susceptibility to seasonal influences. As climate change alters weather patterns, there may 

be unpredictable effects on seizure susceptibility, both in experimental and human settings.   

Kindling is an animal model for focal epilepsy induced by repeated application of subthreshold 

electrical stimuli to the limbic system, or administration of chemical stimuli such as PTZ, and is a model 

of chronically decreased seizure threshold [150-151]. Seizure threshold in electrically-induced 

kindling, the most widely used model for focal epilepsy, did not change between different calendar 

months [152]. Neither the threshold of kindling nor the response to the antiseizure effect of phenytoin 

correlated with the seasons or atmospheric pressure in the amygdala kindling of rats [153]. In 

electrical- or PTZ-induced kindling model, seizure stages were aggravated in both of the kindling 

models with application of an agonist to the temperature-sensitive TRPV1 channel [154]. In mouse 

models of generalized seizures, phenobarbital, carbamazepine, and valproate had their lowest efficacy 

and potency in March and April, i.e. in early spring in Europe [155]. Changes in the metabolism of 

phenobarbital and carbamazepine led to reduced brain levels in March and April, while for valproate 

this was due to changes in pharmacodynamic activity [155]. Further influences of temperature, 

humidity and sunlight on these models have been little studied. 

Experimental animal models of non-convulsive generalized absence seizures defined by EEG, 

behavioural or pharmacological characteristics are classified as either pharmacological/chemical or 

genetic [156], and include the genetic rat model, genetic absence epilepsy rats from Strasbourg 

(GAERS), a well-validated rodent model of childhood absence epilepsy, with spontaneous absence 

seizures and spike‐and‐wave discharges on cortical electroencephalography accompanied by 
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behavioural arrest [157]. Despite derivation from one original colony in Strasbourg and the same 

genetic mutation in the Cacna1h gene in all rats, there are variations in the spike‐and‐wave discharges, 

seizure phenotypes and behavioural characteristics among the main GAERS colonies present in 

institutes in Melbourne, Strasbourg, Istanbul and Grenoble [158]; the seizure frequency in the rat 

colony of Grenoble was four times higher than the GAERS colony in Melbourne. These findings are 

currently unexplained, but they may reflect the impact of environmental conditions on the severity of 

absence seizures.  

Other models and in vitro studies 

The zebrafish model is efficient for high-throughput drug therapy screening, especially for 

genetic epilepsies [159]. Temperature can regulate susceptibility in zebrafish to a PTZ-induced seizure 

[160]. More specifically, when the water temperature was increased from the standard (26°C) to 30°C, 

the latency to a PTZ-induced seizure decreased and, conversely, when it was lowered to 22°C, 

significantly increased. A mechanistic explanation might be attributed to glutamatergic 

neurotransmission since the application of the NMDA channel blocker MK-801 mitigated the 

hyperthermia-induced seizure susceptibility. In larval zebrafish, hyperthermia-induced seizures were 

dependent on thermosensitive channels such as those coupled to the TRPV4 channel and 

pharmacological blockade of these channels resulted in seizure reduction, whilst GABA re-uptake 

inhibitors, or TRPV1 antagonists, failed to modulate electrographic seizures [142]. Overall, 

experimental evidence from a commonly-used vertebrate model organism suggests that changes in 

temperature are sufficient to trigger electrographic and behavioural seizures, providing additional 

experimental evidence that temperature can affect seizure susceptibility in both the mature and 

developing brain. Electrophysiological recordings from mutated flies that model GEFS+ suggest 

decreased GABAergic inhibition as a potential mechanism for the temperature-sensitive seizure 

phenotype [161]. Another temperature-sensitive seizure mutant in Drosophila melanogaster 

implicated the phosphoglycerate kinase enzyme, which is involved in ATP generation, linking changes 

in ATP levels with abnormal seizure activity and structural synaptic defects [162]. Epileptiform activity 

induced by hyperthermia has been shown using in vitro and in vivo studies in different brain regions 

such as the cortex and the hippocampus [163-165].  

These data from model systems show temperature changes evidently have complex effects in 

seizure models, especially when thermoregulation is compromised. It is not always clear what the 

implications from such studies might be for human epilepsies, but as more extreme heat events occur 

through a changing climate, it seems unlikely that such phenomena will be irrelevant to human 

epilepsies, especially those well reproduced in model systems.  

 



15 
 

4. Discussion 

The effects of climate change on epilepsy have not yet been directly studied systematically, 

but published data suggests it is unlikely that there will be no impact of climate change on epilepsy. 

On the contrary, the risks are multiple, may act synergistically, and may affect most those least 

resilient to the challenges ahead. The data suggest there is an urgent need to understand the possible 

effects of climate change on epilepsy.   

There are key areas which need to be addressed in order to accurately understand and predict 

such effects. The impact of climate change on seizure precipitants needs evaluation. Elevated body 

temperature is a key seizure precipitant (but may not be the only contributor) in well recognised 

febrile seizure-related epilepsy syndromes, and other known seizure precipitants, such as stress, 

fatigue and sleep disturbance, associated with many common epilepsies, are all likely to be more 

prevalent with climate change. Climate change can be expected to increase seizure severity and 

frequency in many epilepsies, potentially putting many people with epilepsy at higher risk of seizures 

and their adverse outcomes, such as SUDEP, as well as exacerbating associated neurological and 

systemic comorbidities of the epilepsies.  

Although significant uncertainties remain in projections of regional and local responses of 

climate to increased greenhouse gas forcing, the Intergovernmental Panel on Climate Change report 

highlighted the serious risk that climate change poses for the spread of vector-borne infections [166]. 

Tackling the health threat of vector-borne infections will require a collective approach including 

population screening, further experimental models to study mechanisms of epileptogenesis after 

brain infections, and changes to policies which might encompass further development and distribution 

of vaccines, vector control and the development of therapeutics for at-risk populations. The SARS-

CoV-2 pandemic has demonstrated that such work raises challenges in many domains of relevance to 

epilepsy, from molecular genetic to global political levels. 

Work on human genetics and fever-sensitive epilepsies shows that there are genetic 

polymorphisms which could potentially be associated with seizure susceptibility. Climate change has 

been considered to have an impact on changes in tolerance to higher temperature [167], which could 

potentially  affect those with fever-sensitive, or stress-sensitive, epilepsies. There are no systematic 

studies investigating the links between global warming and the polymorphic gene families or their 

functional roles in particular fever-sensitive epilepsies. More work integrating weather observations 

with clinical data for better understanding the relationship between weather or climate and epilepsy 

is needed and will be facilitated by the existence of large datasets of population-specific human 

genetic variation, not all of which will have been subject to negative selection pressure.  
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Basic science studies show the importance of increased body temperature for the control of 

epileptic seizures and seizure-related brain damage. Although seasonal variations have a number of 

effects on the physiology and biochemistry of laboratory animals despite constant environmental 

conditions [168-170], they have been neglected in most experimental studies, including those of 

epilepsy [155]. Experimental models of epilepsy could be of value in investigating the effects of climate 

change and/or changes in indoor and outdoor temperature and humidity on seizures and response to 

ASMs. Recent efforts, spearheaded by the ILAE/AES Translational Task Force [171], that aim to 

harmonize data collection practices in the preclinical setting, might be useful, especially to allow 

comparison of studies from different laboratories or institutions in different countries [172]. 

The evidence that we are facing a climate emergency, with its multiple attendant 

consequences, is amongst the strongest for any scientific observation ever [173]. Detailed projections 

and evaluations also clearly demonstrate the impending sizeable impacts on health and healthcare 

[174]. The impact of climate change on epilepsy is likely to be complex, and not just directly through 

temperature changes, indirect consequences also need consideration, such as effects on increasing 

stress, reducing healthcare availability and medicine supplies. The SARS-CoV-2 pandemic may not yet 

have had a discernible direct effect on epilepsy, beyond access to care and clinical management [175], 

but its global reach and impact show that global challenges happen, need to be anticipated for 

preparedness, analysed when they happen, and responded to effectively. We already know much 

more about climate change than we did about SARS-CoV-2. We need to act now on the warnings 

around us all everyday, and so robustly shown by global scientific efforts, for healthcare in general, 

and for epilepsy.  

There are significant challenges ahead from climate change that cannot be ignored. Climate 

change will not affect populations equally. Both the physical changes in climate and the capacity to 

cope with them will be distributed differently across nations, amplifying existing health resource 

disparities within and between countriessince these multiple disparities will have consequences for 

people with epilepsy. We urgently need multi-level stakeholder collaborative efforts including 

international epilepsy and public health experts for more studies of the effects of climate change. 

Additional basic research data will help support innovative interventions to mitigate public health 

impacts. We need both increased engagement   with people with epilepsy, who may already be 

experiencing the effects of climate change, and with  national and regional legislators, public policy 

makers, engineers, and environmental specialists. This would allow better adaptation of our practices 

and lifestyles, and work to mitigate the effects of climate change for people with epilepsy through 

better adaptations. 
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Table 1. Mechanistic insights determined for the relationship between raised body temperature and 

seizures. 

 

RAISED BODY TEMPERATURE  AND SEIZURES: POSSIBLE MECHANISMS (different 
combinations may be relevant depending on the cause of the raised body temperature)  

Genetic susceptibility  
(channelopathies) 

Voltage-gated Na+ channels (SCN1B, SCN1A) 

GABA-A ligand-gated / receptor-coupled ion channel subunits 

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 

Change in permeability of  
native ion channels 

Temperature-sensitive TRPV channels 

L-type Ca2+ channels (Cav1.2 subunit) 

Activation of the innate  
immune system 

Pro-inflammatory cytokines (IL-1β, TNF) 

Induction of hyperventilation Alkalosis 

 

 

 

 

 


