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Background: Checkpoint inhibitors provided sustained clinical benefit to metastatic lung
cancer patients. Nonetheless, prognostic markers in metastatic settings are still under
research. Imaging offers distinctive advantages, providing whole-body information non-
invasively, while routinely available in most clinics. We hypothesized that more prognostic
information can be extracted by employing artificial intelligence (AI) for treatment
monitoring, superior to 2D tumor growth criteria.

Methods: A cohort of 152 stage-IV non-small-cell lung cancer patients (NSCLC) (73
discovery, 79 test, 903CTs), who received nivolumab were retrospectively collected. We
trained a neural network to identify morphological changes on chest CT acquired during
patients’ follow-ups. A classifier was employed to link imaging features learned by the
network with overall survival.

Results: Our results showed significant performance in the independent test set to
predict 1-year overall survival from the date of image acquisition, with an average area
under the curve (AUC) of 0.69 (p < 0.01), up to AUC 0.75 (p < 0.01) in the first 3 to 5
months of treatment, and 0.67 AUC (p = 0.01) for durable clinical benefit (6 months
progression-free survival). We found the AI-derived survival score to be independent of
clinical, radiological, PDL1, and histopathological factors. Visual analysis of AI-generated
prognostic heatmaps revealed relative prognostic importance of morphological nodal
changes in the mediastinum, supraclavicular, and hilar regions, lung and bone
metastases, as well as pleural effusions, atelectasis, and consolidations.
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Conclusions: Our results demonstrate that deep learning can quantify tumor- and non–
tumor-related morphological changes important for prognostication on serial imaging.
Further investigation should focus on the implementation of this technique beyond
thoracic imaging.
Keywords: artificial intelligence, immunotherapy, checkpoint inhibitors, non small cell lung cancer,
treatment monitoring
INTRODUCTION

Recent advancements in the understanding of the tumor-
immune cell interactions (1, 2) have enabled the development
of novel drugs for the treatment of advanced-stage lung cancer.
Immune checkpoint inhibitors, in particular, have been shown to
provide sustained clinical benefit to patients, especially in the
metastatic setting (3–5).

Metastatic markers that can be used for patient selection (i.e.,
before the start of treatment), as well as for treatment monitoring
(i.e., during treatment), are still under research (6–8). In the
context of oncological research, most predictive/prognostic
markers are derived from tissue samples, routinely-extracted
blood (9), or non-invasive radiological imaging (surrogate
imaging markers). Tissue samples derived from biopsies
(usually taken from anatomically accessible locations) often fail
to account for inter- and intra-lesion heterogeneity, and response
assessed during evaluation of tissue samples of only a few lesions
does not necessarily mean that all lesions have responded in the
same way. Furthermore, serial biopsies during longitudinal
follow-up are cumbersome for the patient but also impractical.
Regardless of biomarker source, monitoring of response to
therapy remains challenging. As such, they are not part of the
routine clinical workflow of patients.

Standard clinical imaging provides a non-invasive overview of
the entire tumor burden and has the potential to more accurately
evaluate the overall response of the patient to the treatment. Yet,
imaging evaluation is currently limited to 2-dimensional
“subjective” measurements of tumor size changes (10), time-
consuming ROI delineation (11, 12), and/or to values
approximating metabolic activity (i.e., SUV values in PET) (6).
By limiting the use of imaging for response evaluation to only
these approaches, many (potentially prognostic) imaging
characteristics are ignored. For example, as the disease evolves
in multiple distal sites, traditional imaging assessment methods
would not account for the microenvironment of each lesion,
despite the fact that several potential prognostic factors (e.g.,
angiogenesis, inflammation, and lymphocytic infiltration) likely
depend on that environment (13). Since immunotherapy is a
systematic treatment modality, changes indicating response are
not limited to one location but can occur all over the body. This
is particularly relevant in patients treated with anti PD-1
blockade where lymphadenopathy (14, 15), parenchymal
inflammations, edema (16, 17), and compression atelectasis
(18), can be observed. Ideally, during image response
evaluation these conditions, together with tumor growth,
2

should be monitored and quantified as they might hold
valuable prognostic information.

Using artificial intelligence (AI), treatment monitoring
tools can be built, capable of rapidly assessing gross
morphological changes between two (or more) follow-up
images of the same patient (19), in a fully-automatic manner,
completely independent of human input. In this context, image
registration can be used as the basis for such a method. At its
core, image-to-image registration is the process of establishing a
voxel-wise match between two radiological images. By
establishing a match, we can measure voxel-level differences
between corresponding objects represented in the images
quantitatively. While conventional registration techniques are
very limited for this application, deep learning-based methods
have shown promise in image-to-image registration (20). There
are three main advantages to using deep learning-based image
registration as the core technique. The first advantage is that
registration networks are trained to match a pair of images,
voxel-wise. This creates a network that is explicitly trained to
quantify differences between two images. By leveraging its
internal features, we can effectively obtain feature vectors that
represent these voxel-wise changes. These vectors can be used for
classification purposes. The second advantage of using image
registration is that it can be trained on large unlabeled datasets
(i.e., lacking any kind of manual annotation, such as
segmentations or RECIST-like measurements), while not
compromising its ability to model voxel-wise details, that are
likely lost in a classical unsupervised autoencoder approach. The
third advantage of using image-to-image registration is that,
unlike standard RECIST, such a method could be fully automatic
and not require any manual input (e.g., two-dimensional
diameter measurements), and not be limited to changes in the
tumor size, but it would also account for global morphological
changes, whether tumor-associated or not, throughout the body.
Applying an image-registration-based AI algorithm in
oncological follow-up imaging enables us to develop a novel
method that can accurately measure gross morphological
changes during treatment. Quantitative measurements of these
changes can then be used for prognostication.

This study aims to investigate the potential prognostic
value of AI-mediated monitoring on CT scans in non-small
cell lung cancer (NSCLC) patients receiving anti-PD-1 immune
checkpoint blockade. Relying on existing technical research on
image-to-image registration, we hypothesize the existence of
quantitative imaging features describing a set of gross
morphological changes during treatment that hold prognostic
March 2021 | Volume 11 | Article 609054
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value. To test this hypothesis, we developed a deep learning
network for thoracic image-to-image registration and studied the
prognostic value of features learned by the network in NSCLC
patients being treated with PD-1 blockade.
1Github: github.com/nki-radiology/PAM
MATERIALS AND METHODS

Study Cohort
For this study, we retrospectively included patients with stage IV
NSCLC treated with anti-PD1 monotherapy within The
Netherlands Cancer Institute-Antoni van Leeuwenhoek
Hospital (NKI-AVL; Amsterdam, The Netherlands) between
2014 and 2016. All patients underwent standardized, imaging-
based tumor response assessment with contrast-enhanced
computed tomography (CT), with follow-up (FU) intervals of
8 to 12 weeks (Supplement 1). We retrieved all available FU
scans within the first two years of treatment, together with a
baseline scan (BL) performed 8 weeks before and up to 1 week
after start of treatment. To encode pre-treatment tumor spread, a
pre-baseline scan (PBL), defined as the first available scan before
BL, was also retrieved when available. The exact dates of each
scan were recorded with respect to the start of treatment (in
days). Patients with only one scan available throughout the entire
treatment regimen, or whose scan would not fully cover the
thorax, were excluded from the analysis. The cohort was divided
into a discovery and independent test set based on the patient
identifier: patients with even ID numbers were assigned to the
discovery set, patients with odd ID numbers were assigned to the
independent test set. The study was carried out at the NKI-AVL
with the approval of the local Institutional Review Board
(IRBd19-083). This cohort is a longitudinal expansion of a
previously described NSCLC cohort (11).

Image Acquisition
The CT scans were performed by either covering the chest or
covering the chest and abdomen using multi-slice CT equipment
(Toshiba Aquilion CX, Minato, Tokyo, Japan; Siemens Somatom
Sensation Open, Erlangen, Germany) with a tube voltage of 120
kVp, slice thickness of 1 mm, and in-plane resolution of 0.75 x
0.75 mm. The bolus injection was performed at 3 ml/s
(Omnipaque 300, GE Healthcare, Chicago, Illinois, US) not
pre-warmed, with a total amount based on the patient weight +
40 cc (minimum of 90 cc and maximum of 130 cc) followed by a
saline flush of 30 cc. The chest CT examinations were performed
40 s after contrast injection, whereas the chest and abdomen
examinations were performed at 70 s.

Data Curation
Radiological datasets are often heterogeneous. To mitigate
differences in radiological image acquisition, all CT scans were
cropped between the liver and the lower neck region using the
method proposed by Zhang et al. (21), and linearly resampled to
2 mm isotropic voxel size. Hounsfield units were clipped between
−120 (fat) and 300 (cancellous bone) and rescaled between 0 and
Frontiers in Oncology | www.frontiersin.org
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1. CT scans were further cropped to 192 x 192 x 160 voxels from
the center point in order to provide the network with regular
image shapes during training.

AI-mediated Quantitative Treatment
Monitoring
To harness AI for quantitative treatment monitoring, we
developed a 3-dimensional convolutional neural network to
perform image-to-image registration between subsequent
follow-ups of the same patient (architecture shown in Figure
1), based on the research of Balakrishnan et al. (22) and Zaho et
al. (23). The network comprised of two subsequent parts: the first
performing affine registration aimed to provide alignment of the
scans (i.e., to correct for different patient positions), the second
section performing deformable registration and aimed to identify
morphological changes during the course of the treatment (i.e.,
longitudinal tracking).

Architecture-wise, the first part of the network consisted of a
VGG-like network comprised of a series of five convolutional
blocks, and two fully-connected layers, regressing the 12
parameters of the affine transform. The output transform of
the network was applied to the moving image, concatenated
to the fixed image, and fed into the second part of the network.
The second part of the network followed a U-Net architecture
(24), and it aimed to quantify non-linear anatomical differences
between the input scans. This consisted of an encoding
section, comprising 4 convolutional blocks downsampling
the images by half the size via striding, a convolutional latent
space with stride of 1, and four deconvolutional blocks each
upsampling the inputs by double the size via striding. Skip
connections were implemented between encoding and
decoding layers following the implementation in the original
paper. The network was trained to minimize the correlation
coefficient loss (23). Unlike standard measurements of classical
registration procedures, this loss is easy to compute in the
continuous case. Three penalties were also employed to
mitigate for unlikely morphological deformations, each
weighted 1/10 in the final loss. Adam optimizer was used
during training, with an initial learning rate of 8 × 10−5. A
curriculum learning scheme was implemented during training,
such that the loss would be computed on a smoothed version of
the images. The smoothing was implemented via average
pooling, starting with a kernel size of 9, and reduced by 3 at
epochs 100, 150, and 175. Batch size was set to 2. To mitigate
negative effects resulting from the small batch size, group
normalization was employed instead of batch normalization.
Figure 1 shows a detailed overview of the model loss used. The
network was trained on a publicly available dataset of 1010
patients of the lung image database consortium (25–27) with
10% hold out during training to control for overfitting (i.e.,
patients whose ID were multipliers of 10 were held out). Our
code can be found online

1.
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Prognostication Through Quantitative
Monitoring
To explore the prognostic value of AI-mediated treatment
monitoring, we trained a random forest classifier (28) (RFC),
with wrapper feature selection, to predict survival based on
network imaging features extracted from pairs of subsequent
follow-up scans. More specifically, the RFC was trained
longitudinally, on pairs of subsequent scans, to predict whether
the patient would survive 1 year from the date of the latest of the
two scans (see Figure 2). The input of the RFC consisted of 96
feature maps from the latent space of the decoder that
represented the morphological changes between the prior and
the subsequent scan. These are the deepest features found in the
middle layer of the second section of the network—the one
handling deformable registration. These features come in tensor
shape, hence the name feature maps. For classification purposes,
it is standard to transform the feature maps of the network to a
feature vector, to be fed into a classifier. Global average pooling is
the technique commonly used to create a feature vector out of a
Frontiers in Oncology | www.frontiersin.org 4
set of feature maps: each entry of the feature vector is the average
value of the corresponding feature map. Alongside the global
average pooling, we also included standard deviation, skewness
and kurtosis, as we deemed the feature maps too large to be
represented just by the mean activation—1,000 values per feature
map, compared to 49 of a classical ResNet architecture.

To correct for temporal discrepancies (e.g., differences in time
between follow-ups), the amount of days elapsed between the
two scans, and the days elapsed since the start of treatment were
also fed to the RFC. Furthermore, morphological changes should
be order invariant: the differences estimated between image A
and B should be the same as the differences between image B and
A. To provide order invariance, we applied element-wise
multiplication of the feature maps generated by swapping the
input scans. More specifically, we computed the feature maps for
the scan pair prior-to-subsequent, and the feature maps for the
pair subsequent-to-prior. Then we multiplied them together,
element-wise. The multiplication preserved only those changes
that were detected in both directions, therefore providing order
FIGURE 1 | Detailed representation of the registration network used in the prognostic AI-monitoring framework.
March 2021 | Volume 11 | Article 609054
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invariance to our model. The discovery set was used for training,
while testing was performed on the independent validation set.
Both the registration network and the random forest classifier
were trained on the partitioned data, at once, with their
respective default parameters—no cross-validation or model
selection was performed.

Prognostic Heatmaps
Occlusion sensitivity was employed to visualize the parts of the
image that were deemed prognostic of the outcome (29). The
main idea of the occlusion algorithm is based on the assumption
that removing a predictive section/region from the original image
will change the algorithm prediction substantially. In contrast, by
removing a non-predictive section/region from the original
image, the algorithm prediction will stay unchanged. We
occluded a section (or patch) of the input image presented to
the RFC. The prognostic value of that patch is then computed as
the difference of the RFC survival score produced by the
occluded image vs the original unoccluded one. The resulting
prognostic map is the result of the algorithm scrolling the ROI
through the image, and repeating the procedure. This was filtered
with the gross morphological changes map to produce a
prognostic map of the gross morphological changes used for
visual interpretation. Details of the algorithm reported in
Supplement 1. Visual assessment of the resulting prognostic
maps was carried out by an expert reader (T.N.B., board-certified
radiologist, 2 years experience in thoracic imaging at a tertiary
oncologic center), blinded to all clinical parameters, including
survival. All scan pairs were assessed with the prognostic maps
overlaid on top. The reader was tasked to identify the areas of
activation (i.e., hot spots) in the scan pair, and report them
categorized as tumor-related areas, secondary comorbidities, and
general anatomical areas. Tumor-related areas and secondary
Frontiers in Oncology | www.frontiersin.org 5
comorbidities, which were not highlighted in the prognostic
map, were recorded separately.

Independence From Known Prognostic
Factors
To test the independence of our AI model, we ran a multivariate
analysis against known prognostic factors. Age and pathological
cancer subtypes were extracted directly from the anonymized
patient records. Changes in tumoral burden were computed
based on the available manual segmentations of the total
tumor—i.e., all visible and segmentable lesions in the body,
except for bone and brain. To ensure comparability with 2D
measurements from standard RECIST criteria, volumes were
converted to pseudo-diameters via d = ffi

3
p (6V=p), where V is the

total tumoral burden. This computes the diameter of the sphere
equi-volumetric to the total tumor burden. Tumor PD-L1
expression scoring was performed according to the instruction
manual of the qualitative immunohistochemical assay developed
as a complementary diagnostic tool for nivolumab (PD-L1 IHC
22C3 pharmDx, Dako, Carpinteria, CA). PD-L1 expression
levels were determined by observing complete circumferential
or partial linear expression (at any intensity) of PD-L1 on the
plasma cell membrane of viable tumor cells. In parallel, the
pattern of staining in CD4 stained slides, which also stain CD4+

lymphocytes and macrophages, was evaluated and compared to
PD-L1 stained slides in order to avoid false positive assessment
due to PD-L1 expressing macrophages in between tumor cells.
Assessment of expression levels was performed in sections that
included at least 100 tumor cells that could be evaluated.

Statistical Analysis
To assess prognostic performance, the area under the receiver
operating curve (ROC-AUC) was used. Confidence intervals
FIGURE 2 | Schematic representation of the evaluation of prognostic values through quantitative monitoring. Radiological examinations are shown as pre-baseline
(PBL), baseline (BL) and follow-up (FU), with respect to the start of treatment (SoT). Prediction of survival is made based on the time of death (D). For each pair of
subsequent scans, we label the earlier one as prior and the subsequent as subsequent (Subs).
March 2021 | Volume 11 | Article 609054
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were estimated via bootstrapping performed using repeated
sampling with replacement (10000 times). Statistical
significance was assessed via Mann-Whitney-U test. Kaplan
Meier models were employed for survival analysis. Statistical
significance of survival metrics was assessed via log-rank test.
Prognostic (treatment monitoring) performance was quantified
in terms of overall survival from the date of the scan. Biomarker
performance was quantified in terms of overall survival and
durable clinical benefit (complete or partial response, or stable
disease, for at least 6 months) from the start of treatment. Cox-
Hazards models were used for comparison of known
prognostic factors.
RESULTS

Study Cohort
A total of 152 patients, 903 CT scans, and 611 scan matched pairs
of subsequent CT scans were included in this study (see Figure
3A). The discovery set consisted of 73 patients (and 276 scan
Frontiers in Oncology | www.frontiersin.org 6
pairs), while the independent validation set had 79 patients (and
335 scan pairs). The median age of the entire cohort was 64.4
(IQR 57.8–68.9), with a higher prevalence of males (57.9%).
Adenocarcinoma was the most common subtype, reported in
61% of the cohort. No differences in clinical characteristics were
encountered between discovery and validation set, except for
survival. In comparison to the discovery set, the independent
validation set had 180 days longer overall survival, and 101 days
longer progression-free survival. Imaging-wise, we collected 129
pre-baselines (PBL; 14.3%), 149 baselines (BL; 16.5%), 135 first
follow-ups (FU1; 15.0%), and 103 second follow-ups (FU2;
11.4%). Subsequent follow-ups (FU3+) constituted the
remaining 42.9% of the dataset (N = 387). Time-wise, BL scans
were acquired on average 26 days before the start of treatment
(IQR, 37–14), while the first FU scan, 68 days after (IQR, 46–77).
Subsequent follow-ups were made on average every 77 days
(IQR, 55–95). Acquisition of non-contrast-enhanced PET-CT
instead of contrast-enhanced CT was the main reason for the
lack of imaging during follow-up. Further patient characteristics
in Table 1.
*** *

*** **
*

p = 0.02

AI-RFC ScoreHI 

AI-RFC ScoreLO 

p = 0.16

BLLO - FULO

BLHI - FUHI

BLHI - FULO  + BLLO - FUHI 
p 

= 
0.

01
5

p 
= 

0.
00

3

p 
= 

0.
98

7

** ***

*
*

*

Assessed (n=171)

Excluded (n=19)
 -  < 2 CT scans (n=6)
 -  No chest CT (n=13)

Included (n=152)

AI-RFC ScoreHI 

AI-RFC ScoreLO 

AA BB DD

EE FF GG

II

HH

CC

FIGURE 3 | (A) CONSORT diagram. (B) 1-year survival classification performance on the independent validation set, with respect to the clinical follow-up routine
(highlighted in green the ROC-AUC of the scan pairs used for the 2-years survival analysis) and (C) corrected by time. (D) 2-years Kaplan-Meier curves of the RFC
survival score of BL-FU1 and (E) PBL-BL. (F) Combination of the PBL-BL and BL-FU1 RFC survival scores with (G) enrichment of each of the four quadrants (F, H)
survival of each of the four quadrants. (I) Example of the occlusion sensitivity method used for AI explainability and visualization. * indicates p < 0.05, **p < 0.01,
***p < 0.001.
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Image Registration Performance
We evaluated the performance of the registration algorithm
merely to identify the cases where the registration algorithm
failed. The evaluation of a registration algorithm is usually
performed by evaluating the distance between two known
corresponding landmarks in the registered image. This can be
done automatically, in a circular fashion. Namely, by selecting N
random points in an image, we can transform them to their new
coordinates in the target image, and back, using the registration
functions TAB to represent the transformation from source to
target, and TBA as the transformation from target to source.
Ideally, these should be the inverse of one another. Practically
however there is a registration error propagating from source to
target and back. We estimate this error to be proportional to the
euclidean distance between N and TBA(TAB(N)). It is not exactly
the registration error, as this depends on two subsequent
dependent registration steps. However, as registration is merely
the auxiliary task in our model, a full evaluation of the
registration procedure—also in terms of architecture and
network components—is beyond the scope of this study. The
purpose of this analysis is to analyze the worst cases, i.e., the
failures of the algorithm.

We ran the evaluation for all scan pairs, with 100 randomly
generated points that were transformed from prior to
subsequent, and back to prior. The resulting error was
1.67 cm, on average (CI: 0.87–3.18). We selected for visual
inspection the three worst cases, with error 4.54, 3.76 and
3.75 cm, respectively (see figure in Supplement 2). These can
be considered the closest case of failure of the algorithm. In each
of these cases, we can notice the presence of unlikely
deformation, like in the heart or the thoracic wall. Although a
penalty was set to deter this behavior, we would refrain from
increasing it, as it might limit the ability of the network to model
other deformations. The strength of the algorithm is represented
by the classifier able to distinguish informative deformations
from non-informative ones. Overall, in other locations of the
Frontiers in Oncology | www.frontiersin.org 7
image, the registration was still successful in matching
anatomical structures properly.

Prognostic Performance
We fed pairs of subsequent follow-up scans to our network
trained for (CT chest) image-to-image registration, and trained a
random forest classifier (RFC) on its feature maps to investigate
the prognostic value of the imaging features learned by the
network. Overall results of the RFC survival score on the
independent validation set show an AUC of 0.68 (N = 335, CI:
0.62–0.74, p < 0.001) to predict 1-year overall survival from the
date of the later scan of the scan pair (see Figure 3B). The highest
prognostic value can be found for the scan pair BL-FU1, reaching
an AUC of 0.74 (N = 61, CI: 0.61–0.86, p < 0.001), and for the
scan pair FU1-FU2, reaching an AUC of 0.75 (N = 42, CI: 0.58–
0.89, p = 0.002). A decrease in performance is observed during
follow-ups, with a 0.71 AUC (N = 42, CI: 0.50–0.89, p = 0.02) for
the pair FU2-FU3. None of these differences however reached
statistical significance. Interestingly, RFC survival scores on the
pair PBL-BL also showed prognostic value (0.69 AUC, N = 51,
CI: 0.54–0.83, p = 0.01). After the fourth follow-up image, the
prognostic performance of the model dropped (0.57 AUC, N =
131, CI: 0.47–0.67, p = 0.11). This trend becomes evident when
looking at the performance with respect to the days between the
later scan in the scan pair, and the start of the treatment (see
Figure 3C). In this respect, we divided the exam pairs in five
groups, based on the time between the day of the later scan, and
the day of start of treatment (i.e., before start of treatment, 0–90
days from start, 90–180 days and >365 days), and tested the
performance in each group individually. Exam pairs performed
before start of treatment showed an AUC of 0.72 (N = 48, CI:
0.57–0.86, p = 0.006), between start and 90 days after start of
treatment showed an AUC of 0.73 (N = 64, CI: 0.59–0.84, p <
0.001), between 90 and 180 days showed an AUC of 0.68 (N = 59,
CI: 0.51–0.83, p = 0.01), between 180 and 365 days an AUC of
0.66 (N = 89, CI: 0.51–0.79, p = 0.01). Exam pairs performed in
TABLE 1 | Patient and imaging data characteristics.

Entire Dataset Discovery Set Validation Set

Patient Characteristics
N 152 73 79
Age [median, IQR] 64.4 (57.8–68.9) 64.5 (58.3–69.2) 64.2 (56.2–68.2)
Gender [N, %] 88 Males (57.9%) 44 Males (60.3%) 44 Males (55.7%)
Survival [median days] 341 269 449
Adenocarcinoma [N, %] 92 (60.5%) 46 (63.0%) 19 (26.0%)
Squamous [N, %] 35 (23.0%) 46 (58.2%) 16 (20.3%)
Radiological Follow-up
All scan pairs 611 276 335
— PB-BL to BL [N, %] 93 (15.2%) 42 (15.2%) 51 (15.2%)
— BL to FU1 [N, %] 116 (19.0%) 55 (19.9%) 61 (18.2%)
— FU1 to FU2 [N, %] 100 (16.4%) 50 (18.1%) 50 (14.9%)
Days b/w scans in any scan pairs [median, IQR] 77.0 (55.0–95.0) 77.0 (50.0–97.2) 77.0 (56.0–94.0)
— Pre-baseline to baseline [median, IQR] 76.0 (55.0–113.0) 75.0 (47.0–114.8) 76.0 (61.0–98.0)
— Baseline to follow-up 1 [median, IQR] 85.5 (69.0–105.0) 86.0 (68.5–107.0) 85.0 (70.0–104.0)
— Follow-up 1 to follow-up 2 [median, IQR] 57.0 (44.0–78.2) 53.5 (43.0–75.0) 72.0 (47.5–83.5)
Days b/w treatment start and BL [median, IQR] −26.0 (−37.0 to −14.0) −25.0 (−34.8 to −12.2) −27.0 (−37.0 to −14.0)
Days b/w treatment start and FU1 [median, IQR] 68.0 (46.0–77.2) 67.0 (46.5–73.0) 68.0 (46.0–78.0)
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the second year of treatment showed an AUC of 0.63 (N = 75, CI:
0.50–0.75, p = 0.04). Results summary in Table 2.

Biomarker Performance
To investigate the prognostic value of AI-monitoring as a
biomarker we ran a survival analysis on the scan pairs closest
to the date of treatment start, i.e., PBL-BL and BL-FU1. High and
low-risk groups were defined for each scan pair by splitting the
RFC survival scores on the median value. The scan pair BL-FU1
offered the highest prognostic performance (p = 0.02), with a
median survival difference of 357 days (637 vs 280 days median
survival respectively, p = 0.02, see Figure 3D). A similar trend
was observed for the PBL-BL pair, with a median survival
difference of 239 days (467 vs 228 days median survival,
respectively, see Figure 3E). This, however, did not reach
statistical significance (p = 0.16). For durable clinical benefit (6
months progression-free survival from start of treatment), we
ran a classification analysis on the same scan pairs. This yielded a
significant performance of 0.67 AUC (CI: 0.52–0.80, p = 0.01) for
the BL-FU1 pair, and a similar trend for the PBL-BL pair (0.61
AUC, CI: 0.44–0.77, p = 0.10).

Combination of Multiple Time-points
To investigate the prognostic value of AI-monitoring across
multiple time points, we combined the prognostic scores of
PBL-BL monitoring, and BL-FU1 monitoring (see Figures 3F, G).
For this particular analysis, we chose the start of treatment as
reference, as differences in follow-up schemas might magnify
when combining multiple time-points. Across the subset of
patients analyzed (with PBL, BL and FU1 scans available, N =
43), 53% survived 1 year after start of treatment (N = 23).
Patients with high expression of prognostic features during the
monitoring of both PBL-BL and BL-FU1 (N = 15) showed the
highest increase in survival, with enrichment from the baseline of
27% (80% survived 1 year after start of treatment). On the
contrary, patients with low prognostic features on both PBL-
BL and BL-FU1 (N = 14) showed a diminution from baseline of
24% (29% survived 1-year after start of treatment). A point of
interest is to be made for patients showing conflicting prognostic
scores between PBL-BL and BL-FU1 (positive-negative and
Frontiers in Oncology | www.frontiersin.org
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negative-positive, N = 7, respectively). While these groups do not
seem to show any deviation from the baseline (50% survived 1-
year after start of treatment), further analysis on OS showed
comparable results to the negative-negative group (p = 0.99) over
a longer time span (2 year, see Figure 3H). The positive-positive
group, on the other hand, kept showing significantly higher OS
compared to both negative-negative (p = 0.01) and negative-
positive (p = 0.003) groups.

Comparison With Known Prognostic Factors
To compare the prognostic value of AI-monitoring against other
known clinical prognostic factors, we ran a multivariate cox-
hazards survival analysis. Specifically, we compared the RFC
prognostic scores to age, cancer subtype, volumetric changes in
total tumor burden between BL and FU1, and PDL1 expression
at baseline. To mitigate collinearity, we reduced PBL-BL/BL-FU1
scores to a single score by principal component analysis.
Complete data was available for 22 patients in the independent
validation set. Results showed our RFC survival score preserved
statistical significance (0.35 HR, CI: 0.12–0.97, p = 0.04) against
age (2.69 HR, CI: 1.20–6.05, p = 0.02), volumetric change of total
tumor burden (2.36 HR, CI: 0.67–8.22, p = 0.18), >1% PDL-1
expression (0.26 HR, CI: 0.03–2.22, p = 0.22), adenocarcinoma
(0.34 HR, CI: 0.03–4.43, p = 0.41) and squamous subtype (0.14
HR, CI: 0.01–3.01, p = 0.21).

Visual Inspection of Prognostic Maps
The main idea behind predictive maps was to evaluate the
predictive value of different regions of the image by removing
those regions, one at a time, and estimating the difference in
predicted survival. Figure 3I shows an example. The input scans
are displayed in the first column. The second column shows the
prognostic map generated by the occlusion algorithm (Supplement
1). The patchy look of the overlay is the result of the cubic ROI,
being scrolled around the image. Its intensity values are
proportional to the change in predicted survival resulting from
occluding that region. The third column is the deformation map,
where hotspots correspond to regions of gross morphological
changes (i.e., pleural effusion). The fourth column was the
visualization presented to the reader. It is the result of the fusion
between the prognostic map and the deformation map, and
highlights the prognostic changes identified by the algorithm.

At visual inspection, lymph node metastases and lung lesions
were common hotspots in the prognostic maps. Nodal
metastases were present in 58% of scan pairs (N = 57), and
highlighted as prognostic in 81% of the cases (N = 46). The
mediastinum contained the most nodal hotspots, being
highlighted in 80% of cases, followed by supraclavicular and
hilar nodal metastases, highlighted in 67% and 57% of cases
respectively. Axillary and pericardial nodal metastases were
hotspots in 75% and 50% of cases, but found only in 4 and 2
scan pairs respectively. Large lung masses were found in 45% of
scan pairs (N = 39), and highlighted as prognostic in 85% of
cases. The same rate was observed for small lung nodules, while
being less frequent, found in 30% of the scan pairs (N = 26). Bone
metastases were found in 20% of scan pairs (N = 17).
Nonetheless, they were deemed prognostic by the algorithm in
TABLE 2 | Performance of the AI model in predicting 1 year survival after the
date of the CT scan.

N - N + p-value Area under the ROC curve

All 128 207 <0.001 0.68 (CI: 0.62–0.74)
PBL-BL 27 24 0.010 0.69 (CI: 0.54–0.83)
BL-FU1 30 31 <0.001 0.74 (CI: 0.61–0.86)
FU1-FU2 18 32 0.002 0.75 (CI: 0.58–0.89)
FU2-FU3 14 28 0.015 0.71 (CI: 0.50–0.89)
FU3 + 39 92 0.112 0.57 (CI: 0.47–0.67)
With respect to days from start of
treatment
< 0 25 23 0.0057 0.72 (CI: 0.56–0.86)
0–90 33 31 <0.001 0.73 (CI: 0.60–0.84)
90–180 19 40 0.013 0.68 (CI: 0.51–0.83)
180–365 26 63 0.011 0.66 (CI: 0.51–0.79)
365 + 25 50 0.037 0.63 (CI: 0.50–0.75)
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82% of cases. Pleural masses, liver metastases and subcutaneous
lesions, while being almost exclusively hotspots in the prognostic
maps, accounted together for only 13 scan pairs. Among
secondary comorbidities, pleural effusion, consolidations and
atelectasis were the most common, accounting for 31%, 28%
and 20% of scans pairs (N = 27, 24, and 17, respectively).
Hotspots were found in 94% cases of atelectasis (N = 16), 93%
cases of pleural effusions (N = 25), and 83% cases of non-specific
consolidation (N = 20). Pericardial effusions were hotspots in
75% of the times, but found only in 8 cases. Only one case of
ascites was reported, which the algorithm also highlighted as
prognostic. Hotspots in anatomical regions included the spine in
56% of cases, the thoracic wall in 55% of cases, and various
regions in the upper thorax, including periscapular (51%),
shoulders (49%), neck (48%), and supraclavicular (45%), with
the exception of the axilla, highlighted only in 13% of scan pairs.
Normal lung parenchyma was highlighted in 28% of cases. The
remaining hotspots include the great vessels (9%) and the breast
(4%). Detailed summary reported in Table 3.
DISCUSSION

Advanced treatment monitoring through more detailed
quantitative descriptors of the overall status of the patient, as
Frontiers in Oncology | www.frontiersin.org 9
visualized on routine imaging scans, could provide valuable
prognostic information. Our aim was to investigate the
potential prognostic value gained by AI-based treatment
monitoring on imaging in NSCLC patients treated by PD-1
checkpoint inhibitors. To test this, we implemented a
convolutional neural network for image-to-image registration,
and trained it on a large public dataset of chest CT scans. The
trained network was then used to longitudinally model gross
morphological changes between subsequent scans of NSCLC
patients receiving PD1 checkpoint inhibitors. Morphological
changes identified by the network were then used to train a
classifier to predict 1-year OS from the date of the latest scan.

Our results showed significant performance in the
independent test set for the prediction of 1-year OS from the
date of image acquisition, with an average AUC of 0.69, and up
to 0.75 AUC for the first 3 to 5 months after start of treatment,
and 0.67 AUC for durable clinical benefits, suggesting the
presence of (AI-quantified) gross morphological changes
encoding prognostic value. These results are comparable to
state-of-the-art methods, which currently employs laborious
and time-consuming segmentation procedures (11, 12).
While the field of research has been focusing on single-lesion
analysis—leveraging different known factors in cancer growth,
including vascularity (30), oxygenation (31), and metabolic
activity (32)—our approach offers a novel fully automatic
procedure which completely eradicates the need of time-
consuming segmentations, and simultaneously offers a way to
provide a full picture of the patient status as seen on chest
imaging. While this does not preclude the usefulness of the
single-lesion approach, it proposes a way for future multi-scale
solutions that leverage both single lesion imaging biomarkers as
well as whole image approaches that provide general quantitative
information about the status of the patient receiving treatment.
Research efforts, however, have to be made in order to overcome
the bottleneck of manual ROI delineation procedures, either in
the form of automatic segmenters (33), or with implicit AI
representations of the total tumor burden.

In addition to the statistical analysis of the performance, we
investigated the choices the AI made by means of sensitivity
occlusion (29). This resulted in a set of prognostic heatmaps,
highlighting regions of morphological changes that the AI
deemed prognostic relevance. Gross morphological changes in
nodal and lung lesions held the highest prognostic value,
especially nodal lesions in the mediastinum, hilum, and
supraclavicular region. Further results suggested additional
prognostic value for morphological changes affecting the lungs,
either in the form of compression from the thoracic wall (due to
pleural effusion or pleural masses), non-specific consolidations, or
atelectasis. These results also seemed to extend to other regions,
with ascites and pericardial effusions also being highlighted as
prognostic, despite their rare occurrence. The AI seemed to pay
particular attention to the skeleton, with the spine being the
anatomical region most commonly highlighted by the AI in the
prognostic maps, and bone metastases deemed prognostic in most
cases where those were present. As common imaging follow-up
schemas, such as RECIST (29, 34), do not account for tumor
TABLE 3 | Highlighted areas in the AI-generated prognostic maps.

ALL PBL-BL BL-FU1

Tumor Related
Lymph Nodes 46/57 (80.70%) 21/27 (77.78%) 25/30 (83.33%)
— Pericardial 1/2 (50.00%) 1/1 (100.00%) 0/1 (0.00%)
— Mediastinal 42/53 (79.25%) 18/25 (72.00%) 24/28 (85.71%)
— Hilar 16/28 (57.14%) 7/12 (58.33%) 9/16 (56.25%)
— Supraclavicular 16/24 (66.67%) 5/10 (50.00%) 11/14 (78.57%)
— Axillary 3/4 (75.00%) 1/2 (50.00%) 2/2 (100.00%)
Large Lung Masses 33/39 (84.62%) 16/20 (80.00%) 17/19 (89.47%)
Small Lung Nodules 22/26 (84.62%) 8/11 (72.73%) 14/15 (93.33%)
Bone Metastases 14/17 (82.35%) 7/7 (100.00%) 7/10 (70.00%)
Pleural Masses 6/6 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Liver Metastases 5/6 (83.33%) 2/3 (66.67%) 3/3 (100.00%)
Subcutaneous Lesions 1/1 (100.00%) — 1/1 (100.00%)
Secondary Comorbidities
Pleural Effusion 25/27 (92.59%) 12/12 (100.00%) 13/15 (86.67%)
Consolidation 20/24 (83.33%) 10/12 (83.33%) 10/12 (83.33%)
— Post-radiation 3/3 (100.00%) 2/2 (100.00%) 1/1 (100.00%)
Atelectasis 16/17 (94.12%) 9/9 (100.00%) 7/8 (87.50%)
— Post-obstructive 7/8 (87.50%) 4/4 (100.00%) 3/4 (75.00%)
Pericardial Effusion 6/8 (75.00%) 2/3 (66.67%) 4/5 (80.00%)
Ascites 1/1 (100.00%) — 1/1 (100.00%)
General Anatomical Areas
Spine 48/86 (55.81%) 26/43 (60.47%) 22/43 (51.16%)
Thoracic Wall 47/86 (54.65%) 25/43 (58.14%) 22/43 (51.16%)
Periscapular 44/86 (51.16%) 20/43 (46.51%) 24/43 (55.81%)
Shoulder 42/86 (48.84%) 23/43 (53.49%) 19/43 (44.19%)
Neck 41/86 (47.67%) 20/43 (46.51%) 21/43 (48.84%)
Periclavicular 39/86 (45.35%) 19/43 (44.19%) 20/43 (46.51%)
Lung Parenchyma 24/86 (27.91%) 13/43 (30.23%) 11/43 (25.58%)
Axilla 11/86 (12.79%) 6/43 (13.95%) 5/43 (11.63%)
Great Vessels 8/86 (9.30%) 5/43 (11.63%) 3/43 (6.98%)
Breast 3/86 (3.49%) 1/43 (2.33%) 2/43 (4.65%)
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burden in the bones, our findings suggest that, on the contrary,
such phenomena should not be ignored. Further investigations
should lead to novel guidelines, which can provide valuable
contribution from the imaging beyond diametrical measurements.

Particular attention should also be paid to nodal metastases
and nodal growths during treatment. Imaging features of nodal
metastases were found already to be correlated with disease
progression for NSCLC, melanoma, and head and neck cancer
(11, 35), though no distinction was made between the location of
the lymph nodes. However, both our findings and the current
literature suggest that this information may be of value. This
would be especially interesting in the light of regional (tumor-
draining) lymph nodes which play a critical role in terms of anti-
tumor immunity and priming (36), increased expression of
cytokines and checkpoint markers (37), and changes in the
immune compartments resulting in a tumor favorable
microenvironment (38). A major hurdle that remains in the
analysis of lymph nodes is represented by the radiological
assessment, often in contrast with the pathological one. Most
radiomics studies so far focused on the detection of positive
nodal metastases rather than their prognostic values (39–44).

The analysis of lung lesions is far more common. Imaging
features from lung lesions have been reported to hold prognostic
value for patients receiving immunotherapy in several studies
(11, 32, 45–48). Indeed our findings confirm the association
between lung lesions and treatment outcome, with about 85%
percent of them being hotspots in the AI-generated prognostic
maps, independent of size. Most of the studies published so far
focus on the analysis of the tumor region and/or the peritumoral
boundary, which may hold valuable information regarding
tumor vascularization and inflammatory environment. In this
study, the proposed AI model monitors the whole image
including both the healthy tissue as well as the tumor(s). As
the growth of a cancer lesion does not uniquely depend on the
genetic makeup, but rather a complex interaction of
microenvironmental features and favorable location for seeding,
it would not be surprising to establish a link between a
comprehensive modeling tool of cancer growth and its biological
features. Even in this case however, further research is needed to
establish any link between imaging features and tumor biology.

Following our results, we observed an increase in the
prognostic performance of the AI resulting from the
combination of multiple time points, namely pre-baseline,
baseline and first follow-up. This analysis showed good OS for
patients with higher AI-survival scores (AI-RFChi) in both pre-
baseline to baseline scan pair, and baseline to first follow-up—
and worse OS for the opposite case (AI-RFClo). Interestingly,
patients with contradicting scores (AI-RFChi for pre-baseline to
baseline scan pair, and AI-RFClo for the baseline to follow-up,
and vice versa) showed worse survival, similar to the double
negative group. These results suggest the existence of a
prognostic combination of pretreatment and early-treatment
characteristics, both of which should be accounted for during
patient stratification. Further insights could be achieved by more
advanced AI methods that would account for larger time spans,
or even the entirety of patients’ treatment history.
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The combined score was demonstrated to be an independent
prognostic parameter even when corrected for other known
prognostic parameters. This is of particular interest when we
consider the possible role of such a tool, for example as an
additional input to the tumor board during treatment decision
making. Further research is required to study its implementation
in the clinical settings.

Limitations and Future Outlook
Our study aimed to monitor AI-measured gross morphological
changes between imaging follow-up for survival prediction in
NSCLC patients receiving PD1 checkpoint antibodies. In this
study, we pre-trained a neural network on a large dataset of chest
CT scans, and fine-tuned it for survival on our smaller local
immunotherapy data set. Under the current settings, we limited
the analysis to chest imaging which, in addition to the chest,
frequently included the lower neck and the upper abdomen.
While this limitation could hold for lung malignancy, an
extension to other cancer types would require this technique to
be extended to include the whole body—i.e., the abdomen and,
when available, the brain. Moreover, due to the limited amount of
data, it was not possible to explore more complex machine
learning algorithms for the prediction of survival, nor for more
precise visualization of the prognostic maps. Expansion of the
dataset, both in terms of patients and in terms of time points,
would certainly allow for an increase in performance and better
explainability of the AI algorithm. Specifically, an extension of the
field of view of the algorithm to the whole body, as well as the
usage of parameters other than imaging, could potentially
improve the performance of the algorithm to be usable in the
clinics. Further clinical validation of the method is also needed.
While this study presented a comparison of this method with
response evaluation criteria (e.g., changes in total tumor burden)
and biomarkers (e.g., PD-L1 expression), the primary objective for
future studies should be a comparison with the clinical standard,
namely the RECIST criteria. It remains to be investigated whether
this method would be complementary to the current radiological
response evaluation (i.e., RECIST). Furthermore, additional
investigations are required to link biological features to tumor
growth and gross morphological changes. Further analysis should
also study the effects of different machine acquisition parameters,
and the sensitivity of the method to imaging acquisition
parameter variability. Looking into the future, we envision that
an AI solution could be set up as a clinical decision support system
capable of providing information to the treating physician
complementary to traditional clinical and pathological input data.
CONCLUSIONS

In this study, we aimed to investigate the potential prognostic
value of AI-mediated monitoring in NSCLC patients receiving
PD-1 blockade. We hypothesized the existence of quantitative
imaging features describing a set of gross morphological changes
happening during treatment that hold prognostic information.
Our results demonstrate the existence of such factors (as
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described by the AI on imaging), that are tumor-related, such as
nodal, lung and bone lesions, as well as non-tumor related, such
as pleural effusions, atelectasis and non-specific consolidations.
Further investigation should focus on the development of more
flexible models that can extend beyond thoracic imaging, as well
as on external validations.
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