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ABSTRACT
We numerically study by lattice Boltzmann simulations the rheological properties of an active 
emulsion made of a suspension of an active polar gel embedded in an isotropic passive back
ground. We find that the hexatic equilibrium configuration of polar droplets is highly sensitive to 
both active injection and external forcing and may either lead to asymmetric unidirectional states 
which break top-bottom symmetry or symmetric ones. In this latter case, for large enough activity, 
the system develops a shear thickening regime at low shear rates. Importantly, for larger external 
forcing a regime with stable negative effective viscosity is found. Moreover, at intermediate activity 
a region of multistability is encountered and we show that a maximum entropy production 
principle holds in selecting the most favorable state.
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Introduction

Active fluids are a fascinating class of soft materials which 
inherently evolve out of equilibrium due to the ability of 
their fundamental constituents to convert internal energy 
into motion.[1,2] This leads to the occurrence of a plethora 
of unexpected behaviors which are unobserved in their 
equilibrium counterpart, such as spontaneous flow, [3–6] 

motility induced phase separation, [7–9] active 
turbulence[10–13] and many others .[14–19]

Apart from the important theoretical interest due 
to their intrinsic non-equilibrium behavior, active 
gels have gathered much attention in the scientific 
community because of their possible implementation 
in the design of novel smart materials and micro- 
devices. These include, for instance, biological-based 
labs-on-a-chip[20] – integrated devices of microscopic 
size which are able to perform analysis tasks through 
microfluidic measurements – and micromotors[21] – 
microscopic motors which may exploit the energy 
provided at small scales by active swimmers to pro
duce autonomous and controllable movement of 
a larger apparatus. Among potential applications, 
these devices may have a revolutionary role in non
invasive clinic investigation and specific drug- 
delivery, paving the way toward the development of 
a new generation of therapies for cancer and cardiac 
diseases.

To this aim, it is fundamental to understand the 
response of active systems to an external forcing and its 
effects on the rheological properties of the 
suspension.[22–24] Recent research in this field has unveiled 
a number of unexpected behaviors which are strongly 
related to the complex interaction between the external 
forcing, which can be experimentally controlled, and the 
active one generated by the swimmers. An active particle in 
a fluidic environment can be broadly classified either as 
extensile or contractile, in accordance to its swimming 
mechanism. The former pushes the fluid at its ends, 
which is expelled along the long axis of the swimmer and 
drawn inward toward the center. The resulting far-flow 
field is dipolar and analogous to the one produced by an 
out-warding stresslet.[25] Conversely, contractile swimmers 
behave as pullers and the mechanism is basically reversed.

Importantly, both experiments on active suspensions 
and theoretical investigations on active gel theory have 
proved that the swimming mechanism of the active 
constituents plays a very relevant role on the rheological 
properties of the system .[26–28] Indeed, extensile swim
mers are able to strengthen the externally imposed flow, 
thus inducing the lowering of the effective viscosity, 
while contractile swimmers develops transverse coun
teracting flows with the final effect that the viscosity of 
the suspension increases .[29]

Interestingly, viscosity reduction has been observed 
by López et al.[30] to give rise to intermittent superfluidic 
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regimes in the case of dense bacterial suspensions of 
E. Coli sheared in a Couette rheometer, showing that 
the activity of pusher swimmers coupled to the external 
forcing is able to fully overcome viscous effects. Further 
evidence of the emergence of such an odd rheological 
behavior has been more recently reported even for the 
case of a thin bacterial film under simple planar shear by 
Guo et al. .[31] In this case, the stress in the system is 
found to develop heterogeneous states which may even
tually lead to a superfluidic regime.

The occurrence of states flowing at null effective 
viscosity was first theoretically speculated by Cates et 
al.[32] in a study on active gels where the development 
of inviscid flows was proposed as a possible solution to 
the appearance of a non-monotonic region in the 
stress-strain (σ � _γ) characteristic, theoretically 
obtained. This would lead to a fluid flowing with nega
tive viscosity, discarded as nonphysical, being intrinsi
cally unstable. Interestingly enough, intermittent 
regimes with negative viscosity were later observed in 
the experiment of López et al., as a transient response 
to switching off the Couette rheometer.

This challenging topic was recently considered by 
Loisy et al.[33] in a numerical study that showed that 
negative effective viscosity is due to a non-monotonic 
local velocity profile, in a quasi-1d system using 
a minimal model for active liquid crystals. Later on, 
the authors of this paper have addressed the shear thin
ning mechanism in a comprehensive bidimensional 
model for polar active emulsions, finding an intermit
tent multistable dynamics with the appearance of both 
inviscid and negative viscosity regimes.

However, in order to implement active systems for 
the design of novel devices, it is fundamental to control 
and trigger the onset of each rheological state. In this 
article, we will show that it is actually possible to select 
and stabilize a particular rheological regime by oppor
tunely setting parameters which are experimentally 
controllable. In particular, we shall here consider 
a system of multiple active polar droplets emulsified 
in a passive isotropic background sheared between two 
moving walls. The system that we consider[34–38] has 
the property that a tunable amount of active material 
can be homogeneously dispersed in an emulsion. 
Importantly, the two components have the same nom
inal viscosity, so that the observed rheological beha
viors uniquely result from the complexity introduced 
by the mutual effect of interfaces, liquid crystalline 
phase and activity. Therefore, in absence of 
a Newtonian background, one would obtain an uni
form liquid crystalline suspension whose rheological 
properties are well known in literature, both for passive 
and active preparations .[39–41]

In the following section we will present the dynamical 
model and the numerical approach, while in Section 3 
the observed rheological regimes will be discussed and 
classified. In particular, by systematically varying both 
the rate of active injection and the external forcing, we 
will show that a series of morphological and rheological 
transitions takes place, resulting in the development of 
both negative effective viscosity states and inviscid 
regimes, as well as shear thickening. In the following 
sections, each of the aforementioned regimes will be 
considered in detail. Section 4 will be devoted to the 
analysis of the onset of the activity-induced instability 
which leads to symmetry breaking and to the conse
quent intermittent dynamics and we will furnish 
a mechanistic explanation in terms of the dynamics of 
the polar liquid crystal. Finally, in Section 5 we will 
discuss how the combined effects of shear and large 
activity may give rise either to shear thickening or to 
an effective negative viscosity.

The Model

We consider a system comprising an emulsion of active 
material suspended in a Newtonian fluid with mass 
density ρ. To describe the physics of the system we 
make use of an extension of the well-established active 
gel theory.[1–3,14,42] In this context, we will consider the 
density ρ and the fluid velocity v as hydrodynamic vari
ables. Moreover, we introduce the concentration ϕ of 
active material and the polarization field P which defines 
the local average orientation of the active constituents. 
The temporal evolution of the system is ruled by the 
following set of partial differential equations: 

ρ
@

@t
þ v � Ñ

� �

v ¼ Ñ � ~σtot ; (1) 

@ϕ
@t
þ Ñ � ϕvð Þ ¼ MÑ2μ; (2) 

@P
@t
þ v � Ñð ÞP ¼ � ~Ω � Pþ �~D � P �

1
Γ

h: (3) 

The first is the incompressible Navier-Stokes equation, 
where ~σtot is the total stress tensor.[43] This can be 
divided into an equilibrium/passive and a non- 
equilibrium/active part: 

~σtot ¼ ~σpass þ ~σact: (4) 

The passive contribution ~σpass takes into account the 
viscous dissipation as well as the elastic response of the 
liquid crystal and the binary fluid. The passive term is in 
turn the sum of four contributions: 

SOFT MATERIALS 335



~σpass ¼ ~σhydro þ ~σvisc þ ~σpol þ ~σbm : (5) 

The first term is the hydrodynamic pressure contribu
tion given by σhydro

αβ ¼ � pδαβ. The incompressible 
expression for the viscous stress is given by 
σvisc

αβ ¼ η0ð@αvβ þ @βvαÞ, where η0 is the nominal viscos
ity of the fluid. The polar elastic stress is analogous to the 
one used in nematic liquid crystals[43]: 

σpol
αβ ¼

1
2
ðPαhβ � PβhαÞ �

�

2
ðPαhβ þ PβhαÞ

� kP@αPγ@βPγ; (6) 

where � is a constant controlling the aspect ratio of 
active particles (positive for rod-like particles and nega
tive for disk-like ones), kP is the liquid crystal elastic 
constant and h ¼ δF=δP is the molecular field with F
a suitable free energy to be defined in the following. The 
magnitude of � also determines the response of the 
liquid crystal to an external shear flow: For j�j> 1 parti
cles align to the imposed flow (flow aligning regime), 
while for j�j< 1 the resulting dynamics is never station
ary and the polarization field rotates in the direction 
defined by the imposed shear flow (flow tumbling 
regime). The last term on the right-hand side of Eq. (5) 
accounts for interfacial stress: 

σbm
αβ ¼ f � ϕ

δF
δϕ

� �

δαβ �
δF

@ @βϕ
� � @αϕ; (7) 

where f denotes the free energy density. Finally, the 
active stress tensor has a phenomenological origin and 
does not stem from the free energy. Its expression in 
terms of the order parameters is 

σact
αβ ¼ � ζϕ PαPβ �

1
3
jPj2δαβ

� �

(8) 

and can be obtained by coarse-graining over an ensam
ble of force dipoles.[5] Here ζ is the activity parameter. 
This is positive for extensile systems (pushers) and nega
tive for contractile ones (pullers). The active stress drives 
the system out of equilibrium by injecting energy on the 
typical length-scales of deformation of the polarization 
pattern.

Eqs. (2) and (3), respectively, define the time evolu
tion of the concentration of the active material and of 
the polarization field. In particular the former is 
a convection-diffusion equation, based on the assump
tion that the concentration field is locally conserved. 
Here M is the mobility and μ ¼ δF=δϕ the chemical 
potential. The polarization field follows an advection- 
relaxation equation, Eq. (3), borrowed from polar liquid 
crystal theory. Γ is the rotational viscosity, while ~D ¼

ð ~W þ ~WTÞ=2 and ~Ω ¼ ð ~W � ~WTÞ=2 stand for the sym
metric and the anti-symmetric parts of the velocity gra
dient tensor Wαβ ¼ @βvα.

The equilibrium properties of the system in absence 
of activity are defined by the following free-energy func
tional based on the Brazovskii theory[44–46] for weak 
crystallization, extended for the treatment of a polar 
liquid crystal[34,47]: 

F½ϕ;P� ¼
ð

drf
a

4ϕ4
cr

ϕ2
ðϕ � ϕ0Þ

2
þ

kϕ

2
Ñϕj j

2
þ

c
2
ðÑ2ϕÞ2 

�
α
2
ðϕ � ϕcrÞ

ϕcr
Pj j2 þ

α
4

Pj j4 þ
kP

2
ðÑPÞ2 þ βP � Ñϕg :

(9) 

For a> 0, the concentration field has two minima at 
ϕ ¼ 0;ϕ0. The second and third terms determine the 
surface tension of the system. In particular, by allowing 
kϕ to become negative, formation of interface becomes 
energetically favored while c has to be positive for ther
modynamic stability.[44] The polynomial terms in jPj, 
where α is positive, allow for the segregation of the 
polarization field in those regions where ϕ>ϕcr, being 
ϕcr a reference value which allows us to discriminate 
passive (isotropic) regions (ϕ<ϕcr) from the active/ 
polar ones. The term proportional to the polarization 
gradient pays the energetic cost for liquid crystal defor
mations. Finally, the last term defines the anchoring 
properties of the polarization field at the interface. 
Homeotropic anchoring is achieved by setting β�0. In 
this case, the polarization field either points toward the 
passive phase if β> 0 or the active one otherwise.

For symmetric compositions of the system – where 
the two components are equally represented – 
a transition from the ordered phase toward the lamellar 
phase is found at a ¼ k2

ϕ=4cþ β2=kP, with lamellar 
width given by the Brazovskii length-scale 
λ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c=jkϕj

p
. However, for enough asymmetric 

compositions (ϕcr ,< 0:35 with the bar denoting space 
average) the system sets into an emulsion of polar dro
plets suspended in an isotropic bacgkround and 
arranged in a hexatic pattern[48] (see for instance panel 
(a) of Figure 2).

The other relevant scales of the theory are as follows: 
the coherence length of the polar liquid crystal lP ¼ffiffiffiffiffiffiffiffiffiffi

kP=α
p

which controls how quickly the order parameter 
drops in the neighborhood of a topological defect; and 
the active length-scale la ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kP=jζj

p [49] which defines 
the typical scale of elastic deformations due to active 
injection. In particular the model parameters are chosen 
to have λ� L (L being the system size) and lP,Oð1Þ< λ 
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in order to guarantee enough resolution of the liquid 
crystal pattern. Finally, by varying the activity parameter 
ζ we are able to move the system from a passive state, 
where active injection does not alter significantly the 
dynamics, to a proper active state. These two regimes 
correspond to situations with λ< la and la < λ, respec
tively. In this latter case the liquid crystal undergoes 
activity-induced elastic instabilities. Therefore, the 
model here presented provides an effectful and easy 
way to confine the active material on a well-defined 
scale, thus allowing for the direct control of the typical 
length-scale at which energy is injected in the system.

The adimensional numbers controlling the system 
are the Ericksen number Er ¼ η0 _γ=B, with B ¼
ðβ2=kP þ k2

ϕ=cÞϕ2
0 the compression modulus, [37] that is 

often used in the study of liquid crystals to describe the 
deformation of the orientational order parameter field 
under flow, and the active Ericksen number Eract ¼ ζ=B 
.[49] However, in the following, we will present our 
results in terms of the activity parameter ζ and shear 
rate _γ.

Numerical Method and Parameters

Eqs. (1)-(3) have been solved numerically by means of 
a well validated hybrid lattice Boltzmann (LB) approach 
(in the limit of incompressible flow). More in detail, the 
Navier-Stokes equation was solved through a predictor- 
corrector LB scheme, [50] while the evolution equations 
for the order parameters ϕ and P were integrated 
through a predictor-corrector finite-difference algo
rithm implementing first-order upwind scheme and 
fourth-order accurate stencils for space derivatives. We 
made use of a parallel approach implementing Message 
Passage Interface (MPI) to parallelize the code through 
the ghost-cell approach .[51]

Simulations were performed on a 2d square lattice 
(D2Q9) of size L ¼ 256. The system was initialized in 
a mixed state, with ϕ uniformly distributed between 1:1 
and 0:9 being ϕcr ¼ 1. The concentration ϕ ranges from 
ϕ ¼ 0 (passive phase) to ϕ ’ 2 (active phase). Unless 
otherwise stated, parameter values are a ¼ 4� 10� 3, 
kϕ ¼ � 6� 10� 3, c¼ 10� 2, α¼ 10� 3, kP¼ 10� 2, Γ ¼ 1, 
� ¼ 1:1, ϕ0 ¼ 2, β¼ 10� 2, η0 ¼ 1:67.

The system is confined in a channel with no-slip 
boundary conditions at the bottom and top walls located 
at z ¼ 0 and z ¼ L, respectively (the z-axis is the shear 
direction), implemented by bounce-back boundary con
ditions for the distribution functions[52] in the LB algo
rithm. Periodic boundary conditions were imposed 
along the (flow) y-direction. The shear flow was imposed 
by moving walls in opposite directions, respectively, 

with velocity vw for the top wall and � vw for the bottom 
wall, so that the imposed shear rate is given by _γ ¼ 2vw

L .
Neutral wetting boundary conditions were enforced 

by requiring on the wall sites 

Ñ?μjwalls ¼ 0 ; Ñ?ðÑ
2ϕÞjwalls ¼ 0 ; (10) 

where Ñ? denotes the partial derivative computed nor
mally to the walls and directed toward the bulk of the 
system. Here the first condition ensures density conser
vation and the second determines the wetting to be 
neutral. Moreover, strong tangential anchoring was 
imposed for P on the walls: 

P?jwalls ¼ 0; Ñ?Pkjwalls ¼ 0; (11) 

where P? and Pk denote, respectively, normal and tan
gential components of the polarization field with respect 
to the walls.

Numerical Results

We start by discussing the rheological behaviors 
encountered at varying systematically both the shear 
rate _γ and the activity ζ which will be always considered 
positive in the present study. Figure 1 shows the phase 
diagram in the ζ � _γ plane (panel (a)) and the typical 
velocity profiles at steady-state (normalized by the wall 
velocity vw) across the channel, associated to each rheo
logical regime (panel (b)).

The Passive Limit

Before getting involved into the description of the activ
ity-induced effects, we shall comment on the passive 
limit, corresponding to a situation where activity is 
either null or smaller than a critical value ζcrð _γÞ. This 
threshold depends on the intensity of the shear rate _γ 
and it is chosen by comparing the rheological and mor
phological state with the one of the corresponding refer
ence state at ζ ¼ 0 and same _γ. Therefore, in the passive 
limit the dynamics of the system is not influenced by 
active energy injection – a regime that we shall refer to as 
quiescent. As shown in Figure 1 it results to be ζcr ’

4:0� 10� 3 (Eract ¼ 0:073) for small shear rates while it 
decreases down to ζcr ’ 2:5� 10� 3 (Eract ¼ 0:045) for 
_γ ,> 6� 10� 4 (Er ,> 0:0018). In this case, for high shear 
rates ( _γ ,> 4� 10� 4) the velocity profile is linear (red line 
in the upper inset of Figure 1(b)). However, by reducing 
the intensity of the external forcing, the velocity profiles 
progressively loose their linear features and one or more 
shear bandings develop in the channel (yellow line in the 
upper inset of Figure 1(b)). This behavior is related to 
the presence of topological dislocations in the hexatic 

SOFT MATERIALS 337



arrangement of droplets, as we will discuss in more 
detail in the next section. The transition from the shear 
banding to the linear regime takes place at 
_γ ’ 3:8� 10� 4. In the following, we shall address as 
weak shear rates those values of _γ below such threshold 
and as large shear rates those values beyond it.

Shear Thickening and Negative Viscosity

By increasing activity over the critical threshold ζcr, the 
energy injected in the system by the active component 
drastically influences both the morphological and the 
rheological state and a plethora of unexpected behaviors 
appears, including stable unidirected profiles (gray line in 
the upper inset of Figure 1(b)), inverted profiles denoted 
as NI (green line) and enhanced profiles denoted as PD 
(purple line). The nomenclature that we use to identify 
these regimes refers to the corresponding rheological 
state: The first letter, either P or N, refers to the sign of 
the measured viscosity (either positive or negative) while 
the second letter, either D or I, corresponds to the fact that 
velocity profiles may either be directed or inverted. For 

instance, in the case of enhanced profiles (PD) at large 
activity (ζ > 0:8� 10� 2) the fluid is boosted in the same 
direction as the wall velocity so that the slope of the 
observed profile (purple line in Figure 1(b)) has the 
same sign of the imposed one, but it is steeper. This results 
in the increment of the effective viscosity, since the stress 
in the bulk is larger than the viscous contribution. 
Conversely, inverted profiles (NI, green line) are charac
terized by an opposite behavior. The intensity of the flow 
is drastically reduced in proximity of the walls and even
tually it gets inverted, so that the fluid in the bulk of the 
channel flows in the opposite direction with respect to the 
imposed one. This results from the fact that active pump
ing at the boundaries opposes to the external forcing. 
Moreover, the active shear stress is larger (in modulus) 
than reactive and viscous contributions, resulting in 
a state which flows with effective negative viscosity.

Intermittent Dynamics and Unidirected Motion

Importantly, at intermediate values of activity and 
large shear rate (ζcr < ζ < 7:5� 10� 3 and 

Figure 1. Rheological regimes and velocity profiles. Panel (a) shows the different rheological regimes encountered at varying both 
the activity ζ and the shear rate _γ. Black stars denote the cases shown in panel (b) and in the following figures. Panel (b) shows the 
corresponding velocity profiles across the channel after averaging the component vy along the flow direction. At very low activity 
ζ < ζcr (red and yellow symbols) the system is found in a passive regime where active injection does not sensibly affect the response of 
the system. In this case, the velocity profile is either linear (red line in the upper inset of panel (b)) at large shear rates or exhibits shear 
bandings at low _γ (yellow line in the upper inset of panel (b)). As activity is increased the dynamics is characterized by the breaking of 
the top-bottom symmetry for _γ � 4� 10� 4 (gray symbols). The system now preferentially flows in just one direction (see gray line in 
the upper inset of panel (b)) with the position of the inversion region (hvyi ¼ 0) closer to one of the two walls. In the same range of 
activity and shear rate _γ< 4� 10� 4 an intermittent dynamics is observed (blue symbols) with the system jumping between different 
rheological states in a random fashion (see blue and light blue lines in the lower inset of panel (b)). Finally, as activity is increased over 
ζ > 0:8� 10� 2 two stable regimes possibly occur. For _γ< 1� 10� 4 the system exhibits shear thickening (purple symbols) character
ized by the enhancement of the imposed velocity in a thin layer in proximity of the two walls (see purple line in panel (b)). At larger 
activity, a state flowing at negative effective viscosity is observed (green symbols). In this case, the effect of activity is to produce the 
inversion of the flow in proximity of the two layers, with the velocity profile in the channel bulk flowing with an inverted slope (green 
line in panel (b)). The color code used to plot the velocity profiles in panel (b) matches the color of the corresponding region in the 
phase diagram of panel (a).
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_γ> 4:0� 10� 4) yet another behavior is observed. In 
this case, velocity reduction is observed at one of the 
two layers, while in the rest of the system profiles are 
linear. The resulting state is no more symmetric and 
the system basically flows in just one direction, since 
the inversion region moves from the center of the 
channel toward one of the two walls. Moreover, by 
reducing the intensity of shear rate under _γ< 4:0�
10� 4 in the same range of activity, a region of multi
stability between different rheological states is encoun
tered. In this case, the system undergoes an 
intermittent dynamics characterized by jumps from 
the unidirectional state (blue line in the inset of 
Figure 1(b)) – to a superfluidic state flowing at almost 
null effective viscosity with the velocity profile (light 
blue line in the inset of Figure 1(b)) undergoing 
a drastic reduction at both walls and exhibiting a flat 
region in the bulk.

This concludes the description of the observed rheo
logical behaviors. In the following section we will pro
vide a more detailed description of the linear and 
unidirected regimes in terms of the dynamics of the 
concentration and polarization fields.

Hexatic Order, Symmetry Breaking and 
Intermittent Dynamics

In the limit of weak activity and shear rate, the system 
sets into an emulsion of polar droplets suspended in 
a passive isotropic background (see panel (a) of Figure 
2). The configuration is ordered in a hexatic fashion with 
a few dislocations in the arrangement, as visible in the 
Voronoi tessellation plotted in panel (a) of Figure 2 
(droplets with five neighbors are highlighted in yellow, 
those with 7 in blue, while droplets with 8 neighbors in 
gray). Dislocations have a paramount effect on the 

Figure 2. Low activity regime and unidirectional motion. Panels (a) and (b) show the color plot of the concentration field ϕ (red 
regions correspond to active ones) at ζ ¼ 1� 10� 3 and _γ ¼ 3:5� 10� 4; 4:6� 10� 4, respectively. The former is characterized by the 
hexatic arrangement of the droplets, with a few persistent dislocations which give rise to banded velocity profiles, as can be seen from 
the superimposed Voronoi tessellation in panel (a) (droplets with 5 neighbors are highlighted in yellow, those with 7 in blue, while 
droplets with 8 neighbors in gray). The latter case refers to the linear regime where droplets are deformed under the effect of the 
imposed flow and arrange in a disordered pattern characterized by proliferation of topological defects. Panel (d) shows a typical 
unidirected configuration at ζ ¼ 5� 10� 3 and _γ ¼ 4� 10� 4 with large rotating domains in the bulk and a thick active layer adhering 
on one of the wall. Panel (e) shows a zoom over the region highlighted by the white frame in panel (d) with superimposed polarization 
field. The flow state is shown in panel (f) where the color plot of the velocity field is plotted. Here the black line denotes the inversion 
region where vy becomes null. Notice that active droplets, here characterized by a dipolar structure, rotating in the opposite direction 
with respect to the adjacent fluid. Panel (c) shows the stress profiles averaged along the channel for the three configurations in panels 
(a), (b), (d). The dashed line denotes the extension of the active layer from the bottom wall. The inset in panel (c) shows an enlargement 
of the stress in the unidirected cases in the bottom active layer.
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rheological response of the system since they act as 
a source of stress which eventually determines the occur
rence of permanent shear bandings even in the long- 
term dynamics. By increasing the shear rate and keeping 
the activity fixed, the imposed flow is able to deform the 
droplets which loose their spherical shape. This, in turn, 
leads to the loss of long-ranged hexatic order with the 
configuration characterized by some ordered domains 
interrupted by regions rich of topological defects where 
droplets can easily flow with respect to each other (see 
panel (b) of Figure 2) since they are not caged anymore 
in a periodic lattice. A direct comparison between the 
stress profiles averaged along the channel for the banded 
and linear cases (respectively, yellow and red lines of 
panel (c) of Figure 2) shows that the morphological 
transition from the hexatic (banded) to the disordered 
(linear) configuration is accompanied by a drastic reduc
tion in the intensity of the shear stress. This is also 
confirmed by the behavior of the rheological curves 
ηeff � _γ shown in Figure 3. Shear thinning is observed 
at increasing the shear rate, while the curves monotoni
cally increase with the activity ζ. Interestingly, at very 
low activity (ζ � 10� 3) the system exhibits a Newtonian 
behavior in the linear region of the phase diagram 
( _γ � 3:8� 10� 4), while at larger values of ζ this is only 
achieved for _γ> 7� 10� 4.

Increasing the activity over the critical threshold ζcr 
greatly affects the morphological properties of the 

system. Droplets in the bulk begin to merge with each 
other generating large active domains (see panel (d) of 
Figure 2). Herein, the polarization field, which is home
otropically anchored to the interfaces, develops vortical 
structures which rotate under the fueling effect of active 
injection (see panel (e) of Figure 2). This behavior has 
been previously observed in this system in unconfined 
geometries and is compatible with the bending instabil
ity of extensile polar gels .[3]

A further important feature is represented by the 
development of a thick active layer at the moving 
boundaries to which the polarization field is tangentially 
anchored. Within such layer, the active shear stress 
σact

yz , ζ
2 ϕ0P2 sin 2θ, where θ stands for the orientation 

of polarization with respect to the imposed velocity 
(0 � θ � π). This generates an active force 
f act
k
¼ @?σact

yz , where @? denotes derivative in the direc
tion normal to the walls.[37] The effect on the flowing 
state depends on the orientation of the polarization: On 
one hand, if P is oriented as the velocity at the wall, the 
imposed flow is reinforced (since @? sin 2θ > 0), one the 
other hand, if P is oppositely directed, this leads to 
a reduction of the fluid velocity (since @? sin 2θ< 0).

The features here described are at the base of the 
observed rheological behaviors and are valid for any 
regime where activity is larger than the critical threshold 
ζcr. In particular, we shall now consider the outcome in 
the case of the unidirected regime. Panel (d) of Figure 2 

Figure 3. Rheological curves in the low activity regime. The effective viscosity ηeff is plotted versus the shear rate _γ. Notice that 
shear thinning is observed at varying _γ, while the curves monotonically increase with activity – a behavior commonly addressed as 
active shear thickening. Vertical dotted (red) line and dashed (gray) line denote the values of shear rate _γ at which linear and 
unidirected regimes are first encountered, respectively.
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shows the contour plot of the concentration field ϕ at ζ ¼
5� 10� 3 and _γ ¼ 4� 10� 4 in the gray region of the 
phase diagram in Figure 1(a). This is characterized by 
the breaking of the top bottom symmetry as the layer of 
active material only develops at the bottom wall. 
Importantly, polarization in the layer is oppositely direc
ted with respect to the imposed velocity (see panel (e) of 
Figure 2). This feature is reflected by the stress profile 
plotted in panel (c) (continuous gray line) which attains 
negative values in proximity of the bottom wall. This is 
due to the active contribution that opposes to the external 
forcing and leads to an enlargement of the stress at the 
boundary (see Figure 2(c)), while it largely fluctuates in 
the bulk due to the presence of rotating domains. The 
resulting flow state is therefore asymmetric with the sys
tem mostly flowing rightwards as signaled by the inver
sion region (black line in panel (f) of Figure 2) deep in the 
lower half of the channel.

Interestingly, large shear stress is a fundamental ingre
dient to stabilize the asymmetry. Indeed, at less intense 
values of external forcing ( _γ< 4:0� 10� 4) and activity 
(5� 10� 3 < ζ < 7:5� 10� 3) the asymmetric state is 
unstable and the observed dynamics is intermittent with 
the system jumping from the asymmetric state (see the 
panel (a) of Figure 4) to a superfluidic regime (panel (b)), 
flowing at almost null effective viscosity (ηeff ¼ hσyzi= _γ). 
The former is analogue to the unidirectional state pre
viously analyzed and it is characterized by the formation 
of an active layer at just one of the two walls, where the 
polarization field is oppositely oriented with respect to the 
imposed velocity (see the enlargement in the inset in 
panel (a)). The resulting active force produces 
a consistent slow-down in proximity of the upper wall, 
causing the system to flow mostly leftwards (see panel (d) 
of Figure 4 and dark blue velocity profile in the inset of 
Figure 1(b)).

Figure 4. Intermittent dynamics. Panels (a) and (b) show the color plot of the concentration field ϕ at ζ ¼ 5� 10� 3 and _γ ¼
3:9� 10� 5 for different simulation times. The configuration in (a) (t ¼ 1:2� 107) exhibits unidirectional flow while the one in panel 
(b) is in the superfluidic state (t ¼ 1:35� 10� 7). In both panels, insets show a zoom over the active layers adhering to the walls, where 
the white vectors define the orientation of the polarization field P. Panels (d) and (e) show the color plot of the corresponding velocity 
field (in the flow direction). Panel (c) shows the time evolution of the total shear stress (blue line) and entropy production (yellow line). 
Dashed and dotted black lines respectively represent the time corresponding to the configuration plotted in panels (a-d) and (b-e) 
respectively. Notice that the total shear stress attains approximately null values in the symmetric state while it grows toward larger 
positive values in the unidirectional regime. Conversely the entropy production is larger in correspondence of the superfluidic state. 
Panel (f) shows the pdf related to the total shear stress. Two peaks at σyz ¼ 0:07 and 0:7 are observed corresponding to the two 
horizontal lines in panel (c). The most stable state is the superfluidic one, compatibly with the fact that it is the state which maximizes 
the entropy production (yellow line in panel (c)).
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Importantly, in the limit of weak external forcing, 
activity is able of counteracting the imposed flow. 
Indeed, active features migrate in the channel and 
eventually adhere to the polarization-free wall (the 
bottom one for the case in Figure 4(a)) and even
tually grow forming an active layer thus recovering 
top-bottom symmetry, as shown in panel (b). The 
polarization field aligns in the opposite direction 
with respect to the imposed velocity as shown by 
the two insets at the bottom and top right of the 
panel. This has the important effect of reducing the 
flow intensity at both layers so that the velocity in 
the bulk of the channel is almost uniform and dras
tically lower than the imposed one (see the corre
sponding velocity color plot in Figure 4(e) and the 
related velocity profile plotted in light blue in the 
inset of Figure 1(b)). Such symmetric configuration 
is not stable either, as the layers get easily disrupted 
and eventually vanish, bringing the system back to 
the unidirectional regime. This multistable dynamics 
is unambiguously reflected by the time evolution of 
the shear stress (shown in Figure 4(c)) which jumps 
between positive and approximately null values cor
responding to the asymmetric and symmetric states, 
respectively. Interestingly, the probability distribution 
functions (pdf) of the total shear stress σyz in panel 
(f) suggests that symmetric states with vanishing 
viscosity live longer than the other ones. This beha
vior can be explained in terms of the rate of entropy 
production � which for our system can be written 
as[37] 

� ¼ 2η0
~D : ~Dþ

1
Γ

h � hþMðÑϕÞ2: (12) 

We observe that � is systematically larger in those time 
windows where the system sets in the superfluidic state 
while it drops toward smaller values when the observed 
state is unidirectional. Such behavior was already 
observed in[37] where it was put forward the hypothesis 
that a maximum entropy production principle 
(MaxEPP) may hold in selecting the most stable states 
in multistable active systems.

Large Activity: Shear Thickening and Negative 
Effective Viscosity

As activity is increased over ζ > 0:8� 10� 2 internal for
cing due to the active injection has a stabilizing effect on 
the behavior of the system and asymmetric configura
tions are not observed anymore regardless of the inten
sity of the shear rate (see Figure 1(a)). The resulting 
dynamics gives rise to stable regimes characterized 

either by shear thickening (PD regime) or negative visc
osity states (NI regime).

The former occurs at _γ< 1:0� 10� 4. In this case, the 
bulk of the channel is populated by rotating droplets 
while two active layers adhere to the walls (panel (a) of 
Figure 5). Herein the polarization field is oriented par
allel to the wall velocity (insets of Figure 5(a)) so that the 
resulting active force sustains the external forcing, giving 
rise to enhanced flow profiles (see purple line in Figure 1 
(a) and the color plot of vy in panel (b) of Figure 5). 
However, the region of stability of such regime is limited 
to low values of shear rate. In this case the effective 
viscosity increases with activity as shown in Figure 5 (c).

In the case of larger shear rates the morphology 
remains basically unaltered (panel (d) of Figure 5). 
However, the behavior of the polarization field at the 
boundaries is inverted, i.e. P is oppositely oriented 
with respect to the wall velocity, as it can be appre
ciated looking at the polarization field close to the 
boundaries in the insets of Figure 5(c). 
Mechanistically, the dynamical effect on the flow struc
ture is analogous to the superfluidic regime, with the 
active force opposing to the external one and produ
cing a reduction of the velocity in proximity of the 
walls. However now, the active force is considerably 
stronger and it is able to invert the flow in the thin 
active layer and boost the fluid in the opposite direc
tion rather than along the imposed one (see the color 
plot of vy in Figure 4 (e)). This gives rise to the inverted 
green velocity profile in Figure 1(b). Therefore, the 
effective viscosity measured at late times attains nega
tive values (panel (f) of Figure 5 shows the time evolu
tion of the effective viscosity ηeff for three values of 
activity) due to the counteracting response of the active 
fluid to external forcing.

Importantly, both in the case of PD and of NI 
regimes, the shear stress hσyzi increases (in modulus) 
with ζ, thus leading to a corresponding increment of 
jηeff j as shown in panels (c) and (f) of Figure 5. This 
suggests that activity may either induce shear thickening 
in the PD regime, or shear thinning at large shear rates, 
producing states which flow with effective viscosity that 
attains more and more negative values at larger values 
of ζ.

Conclusions and Discussion

In this paper, we carried out a systematic numerical 
investigation of a confined 2d active polar emulsion. 
We have shown that the mutual effect of external forcing 
and active energy injection allows for selecting and 
stabilizing different rheological regimes.
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In particular, in the weak activity limit, the system sets 
into an emulsion of polar droplets suspended in a passive 
isotropic background. At low shear rates the system is 
hexatically ordered with few dislocations that ultimately 
affect the macroscopic flow which exhibits shear bandings. 
By increasing the shear rate, the imposed flow is able to 
break such ordered structure by deforming the droplets 
and the velocity profiles become linear. Increasing the 
activity over a certain threshold greatly affects the morpho
logical properties of the system. Droplets in the bulk begin 
to merge with each other generating large active domains 
while a thick active layer forms at the moving boundaries 
where the polarization field is tangentially anchored. At 
intermediate values of activity and large shear rate, velocity 
reduction is observed at only one of the two layers and the 
system basically flows in just one direction (unidirected 
motion). In the same range of activity, reducing the inten
sity of shear rate, a region of multistability between differ
ent rheological states is encountered. In this case, the 
system undergoes an intermittent dynamics, jumping 

from an unidirectional state to a superfluidic state flowing 
at almost null effective viscosity. In this case the velocity 
profile shows a drastic reduction at both walls and exhibits 
a flat region in the bulk. We characterized this regime 
looking at the pdf of the shear stress, finding that states 
with lowest shear stress are the most probable and corre
spond to the maximum rate of entropy production. As 
activity is further increased, active injection gives rise to 
stable regimes characterized either by shear thickening (PD 
regime) or negative viscosity states (NI regime) for low and 
high values of external forcing, respectively.
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