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Abstract
Over the past decade, network analysis has attracted substantial interest because of its 
potential to solve many real-world problems. This paper lays the conceptual foundation 
for an application in aviation, through focusing on the discovery of patterns in multigraphs 
(graphs in which multiple edges can be present between vertices). Our main contributions 
are twofold. Firstly, we propose a novel subjective interestingness measure for patterns in 
both undirected and directed multigraphs. Though this proposal is inspired by our previous 
related research for simple graphs (having only single edges), the properties of multigraphs 
make this transition challenging. Secondly, we propose a greedy algorithm for subjectively 
interesting pattern mining, and demonstrate its efficacy through several experiments on syn-
thetic and real-world examples. We conclude with a case study in aviation, which demon-
strates how the departure from an analyst’s prior beliefs captured as subjectively interesting 
patterns could help improve an analyst’s understanding of the data and problem at hand.

Keywords  Multigraph · Subjective interestingness · Maximum entropy principle · 
Exploratory data mining

1  Introduction

Over the past decade, researchers have realised that network analysis can be used to address 
many real-world problems. Examples include problems related to computer network infra-
structure, co-authorship (scientific or other), co-actors (e.g., in movies), transport (road, 
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airline, ...), and even tax evasion (Newman 2010). This has led to research on several types 
of networks, typically modelled as simple graphs (graphs having at most one edge between 
any pair of vertices) and weighted graphs (simple graphs but with weights on edges). A 
type of network that, to the best of our knowledge, has not yet been widely considered in 
the data mining literature1 is one that needs to be modelled as a multigraph (graph in which 
multiple edges can be present between any pair of vertices). Motivated by an application in 
aviation, this paper lays the conceptual foundations for the discovery of subjectively inter-
esting multigraphs patterns (SIMPs). SIMPs are defined as those subgraphs that are unex-
pected and/or contradict an analyst’s prior beliefs or background knowledge (van Leeuwen 
et al. 2016). The rationale for the representation of an airline network as a multigraph and 
targeting of SIMPs vis-à-vis alternative approaches are discussed below.

In an airline network, symbolically depicted in Fig. 1, there can be several flights (edges 
in a graph) between a pair of airports (vertices in a graph), which explains as to why this 
network could be modelled as a multigraph.2 Arguably, an airline network could also be 
studied as a multilayer graph, where multiple sets of edges are defined on the same set of 
vertices. In that setting, each set of edges acts as a unique layer, and different layers are 
characterised by different data properties. For instance, between a pair of airports, multi-
ple flights from different airlines might operate, and each airline’s flights may constitute a 
layer, differing from other layers. Notably, multigraphs may constitute building blocks for 
multilayer graphs [so far investigated only through simple graphs (Papalexakis et al. 2013; 
Qi et al. 2012)]. To avoid the added complexity of multilayer graphs, in this stage the mul-
tigraph representation of a network will form the basis for analysis in this paper.

Flight delays have punitive implications for airlines. Intuitively, and based on historical 
evidence, it is often believed that flight congestion between a pair of airports make them 
vulnerable to delays. Yet, delays are a reality, hence, it is critically important to mine the 
network data and facilitate scientifically informed assessment and decision making. Efforts 
in this direction have been made but they are limited in scope and practical relevance. For 
instance, finding objectively dense patterns (where density is defined through k-cores, 
cliques, k-plex, maximum average degree, etc.) is a commonly studied problem (Batagelj 
and Zaversnik 2003; Charikar 2000; Khuller and Saha 2009; McClosky and Hicks 2012; 
Palla et al. 2005; Tsourakakis et al. 2013). However, simple graphs do not suitably model 
an airline network in the first place. This paper attempts to overcome this limitation by 
focusing on multigraphs. Furthermore, it builds on the premise that capturing events (say, 
in terms of delays) which depart from an analyst’s prior beliefs and may be referred as 
unexpectedly dense, relative to what the analyst already knows (van Leeuwen et al. 2016), 

Fig. 1   An airline transportation 
network modelled as directed 
multigraph

1  Note that the term multigraph was used before Papalexakis et al. (2013) and Dong et al. (2012), but those 
works employ an alternative definition; see next section for details.
2  At this formative stage, our endeavour is to analyse ‘static’ multigraphs (for fixed time intervals), though 
the longer-term goal would be to analyse dynamic multigraphs.
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may be more revealing (say, in terms of source of delay), interesting, and practically use-
ful. This justifies our focus on SIMPs dedicatedly in multigraph settings, besides the fact 
that this conceptual foundation could be useful in several other applications, including co-
authorship analysis.

The structure of the paper is as follows. Following a description of related work in 
Sect. 2, our proposed approach is presented in Sect. 3. In particular, we formalise the con-
ceptual contributions on SIMPs in Sect. 3.3, and present a greedy algorithm for the dis-
covery of SIMPs in Sect. 3.5. Section 4 demonstrates the efficacy of the proposed algo-
rithm; discusses the properties of the discovered SIMPs; compares our approach to existing 
methods; and presents a case study in aviation, highlighting how our approach could help 
improve an analyst’s understanding of the problem. The paper concludes with key observa-
tions and future directions in Sect. 5.

2 � Related work

Given that we are not aware of any previous work on mining multigraph patterns, this sec-
tion briefly discusses related work on similar problems, dominantly in the context of sim-
ple graphs. In that, significant effort has been on finding dense patterns based on aver-
age degree  (Charikar 2000; Khuller and Saha 2009), k-cores  (Batagelj and Zaversnik 
2003), cliques  (Palla et  al. 2005), quasi-cliques  (Uno 2010; Tsourakakis et  al. 2013), or 
k-plex  (McClosky and Hicks 2012). For weighted graphs, the notion of average degree 
has been extended in Andersen and Chellapilla (2009). Structural partitioning of simple—
unweighted and weighted—graphs, often based on modularity, has been actively utilised 
for community detection (Papadopoulos et al. 2012; Newman 2006; Girvan and Newman 
2002; Pons and Latapy 2005; Clauset et al. 2004; Leicht and Newman 2008; Blondel et al. 
2008).

Multilayer graphs are widely studied for finding patterns or clusters in the data; dense 
pattern discovery (Dong et al. 2012; Papalexakis et al. 2013); and community detection (Qi 
et al. 2012; Zhou et al. 2009; Xu et al. 2012; Silva et al. 2012; Ruan et al. 2013), by use of 
matrix factorisation, cluster expansion, pattern mining, etc.

Notably, the interestingness of a pattern is often defined as the departure from the 
expectations. In the case when expectations are objectively defined [say, through modu-
larity (Clauset et al. 2004; Newman 2006) or edge surplus (Tsourakakis et al. 2013)], it is 
termed objectively interesting; and if expectations are derived subjectively (say, from the 
prior beliefs of an analyst), it is termed subjectively interesting. Arguably, the most funda-
mental contribution in the context of the latter has been made by De Bie (2011), where a 
generic framework based on maximum entropy principle was proposed to allow modelling 
of prior beliefs, laying the basis for subjective interestingness. Lijffijt et al. (2016) defined 
subjective interestingness for structured n-ary relational patterns. In this, it is assumed that 
the prior belief on the number of entities of a specific type to which a given entity is related 
is known. Drawing a parallel, it can be observed that this type of belief is apt for multilayer 
graphs such that each layer is a simple graph. However, it is different from our claim that a 
layer can also be a multigraph. Most importantly, van Leeuwen et al. (2016) defined subjec-
tively interesting patterns for simple graphs and introduced a heuristic algorithm for min-
ing those. Here, though the expectations were computed using the prior beliefs, the back-
ground distribution was assumed to be the product of independent Bernoulli distributions, 
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given which the generalisation of this work to the multigraph setting is a non-trivial and 
challenging task.

In the context of objective interestingness, it has been noted that the modularity measure 
(Clauset et  al. 2004; Newman 2006), originally proposed for unweighted simple graphs, 
can be trivially extended to weighted simple graphs. Although the resulting expected edge 
calculation is similar to one of our proposed type of beliefs, weighted (simple) graphs are 
inherently different from multigraphs: an edge weight in a weighted graph can be any real 
number, while an edge ‘weight’ in a multigraph is necessarily a natural number. In addi-
tion, the semantics are crucially different, which leads to different formalisations and pos-
sibilities. To demonstrate this we will empirically compare our proposed approach to the 
algorithm by Clauset et al. (2004).

3 � Proposed approach

In this section, we formally introduce multigraphs and subjective interestingness of a mul-
tigraph pattern, based on the maximum entropy (MaxEnt) framework given by De  Bie 
(2011). As in De Bie’s framework, we compute the probability or background distribution, 
P of the data using the maximum entropy principle, treating the prior beliefs of the analyst 
as constraints. This also facilitates an iterative exploratory data mining process, implying 
that the background distribution can be updated upon presentation of subjectively interest-
ing patterns. We will also discuss the method for updating the background distribution. 
Finally, we present an efficient greedy algorithm for mining subjectively interesting multi-
graph patterns.

3.1 � Preliminaries

A multigraph is denoted by G = (V ,E) , where V is a set of n vertices (usually indexed 
using symbol u or v) and E is a multiset of edges, where each edge e ∈ E is an element 
of V × V  . In contrast to the common simple graph setting, there can be multiple edges 
between any pair of vertices. The adjacency matrix for the graph is denoted by � ∈ ℕ

n×n
0

 , 
with au,v ∈ ℕ0 equal to the number of edges between u and v. For example, au,v = 0 means 
that there are no edges between u and v. This undirected definition can be straightforwardly 
extended to a directed multigraph by letting au,v represent the number of edges from u to 
v. For the sake of simplicity, in this paper we focus the exposition on multigraphs without 
self-edges, for which it holds that (u, v) ∈ E ⇒ u ≠ v , but if desired this restriction could 
simply be dropped.

We build on the premise that an analyst knows (or has direct access to) the list of ver-
tices V in the graph, and is interested in improving self’s knowledge and understanding of 
the edges. Thus, the data to be mined is the edge multiset E, and the domain of this data is 
ℕ
n×n
0

 (further constrained by exclusion of self-loops, implying that the diagonal values of � 
have to be 0).

The framework by De  Bie (2011) suggests that prior knowledge (modelled as con-
straints) can be represented as a probability distribution P over the data domain. As the 
constraints typically leave many of such distributions possible, the maximum entropy 
principle is leveraged to argue that the distribution having the largest entropy should be 
used. The framework then quantifies the subjective interestingness of a pattern as the ratio 
of information content to description length, where information content is the negative 
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logarithm of the probability of the pattern given the background distribution, and descrip-
tion length is the code length required to communicate the pattern to the user. In the fol-
lowing, we will build on this framework for multigraph patterns, albeit with a different 
definition of subjective interestingness.

3.2 � Prior beliefs

We here consider and model the following three different types of prior beliefs that an ana-
lyst may have: 

1.	 Total number of edges (Belief-c) The analyst here is assumed to have a prior belief 
concerning (only) the total number of edges in the network, e.g., on the total number of 
flights in case of airline data. This follows: 

 The MaxEnt distribution with constraint Eq.  1 results in a product of independent 
uniform geometric distributions, one for each random variable au,v ∈ ℕ0 [cf. De Bie 
(2011)], where P(�) =

∏
u,v∈V exp(2� ⋅ au,v) ⋅ (1 − exp(2�)) . Here, each distribution 

represented as Pu,v(au,v) has a probability of success equal to [1 − exp(2�)] , where � is 
a Lagrangian multiplier corresponding to the constraint in Eq. 1.

2.	 Number of edges per vertex (Belief-i) In this case, the analyst is assumed to have prior 
beliefs on the row and/or column marginals of the adjacency matrix, denoted by dr

u
 and 

dc
v
 respectively. In the airline case, this corresponds to knowing the total number of 

flights leaving from ( dr
u
 ) or arriving ( dc

v
 ) at each airport. This belief is represented by 

 We observe that the MaxEnt distribution with constraints in Eq.  2 
results in a product of independent geometric distributions given by 
P(�) =

∏
u,v∈V exp((�

r
u
+ �c

v
) ⋅ au,v) ⋅ (1 − exp((�r

u
+ �c

v
)) , for each random variable 

au,v ∈ ℕ0 . This corresponds to the ‘geometric’ case in De Bie (2011), where each dis-
tribution Pu,v(au,v) has a probability of success equal to [1 − exp(�r

u
+ �c

v
)] . Here, �r

u
 and 

�c
v
 are Lagrangian multipliers following the constraints in Eq. 2.

3.	 Number of neighbours per vertex (Belief-m) In the third and final case, the analyst is 
assumed to have a prior belief about the number of unique neighbours of each vertex, 
referred to as mu . In an airline case, this could be considered as the total number of 
unique routes on which an airline operates from any airport. This prior belief is repre-
sented as 

 where 1au,v is the indicator function, which equals 1 if au,v is a non-zero value and 0 
otherwise. This case is a multigraph-specific belief, as in case of a simple graph du 
would be equal to mu , intuitive of the fact that at most one edge can exist between any 
two vertices. Hence, we will use this belief to complement the previous two types of 

(1)
∑

�∈ℕn×n
0

P(�)
∑
u,v∈V

au,v = |E|.

(2)
∑

�∈ℕn×n
0

P(�)
∑
v∈V

au,v = dr
u
, (∀u);

∑
�∈ℕn×n

0

P(�)
∑
u∈V

au,v = dc
v
. (∀v)

(3)
∑

�∈ℕn×n
0

P(�)
∑
v∈V

1au,v = mr
u
, (∀u);

∑
�∈ℕn×n

0

P(�)
∑
u∈V

1au,v = mc
v
, (∀v)
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belief. In this paper, we consider the case where this type of belief is combined with 
Belief-i. The MaxEnt distribution P(�) for the data with constraints in Eqs. 2 and 3 
reduces to a product of independent probability distributions P(�) =

∏
u,v∈V Pu,v(au,v) 

for each random variable au,v ∈ ℕ0 , where 

Pu,v(au,v) =
[1−exp (�ru+�

c
v)]

[1−exp (�ru+�cv)(1−exp (�r
u
+�c

v))]
⋅ exp

(
�r
u
+ �c

v

)au,v
⋅ exp

(
�r
u
+ �c

v

)1au,v≠0 . Here �r
u
 , �c

v
 , �r

u
 and 

�c
v
 are Lagrangian multipliers corresponding to the constraints in Eqs. 2 and 3 respec-

tively. For completeness, a proof of the MaxEnt distribution P(�) for this case is given 
in “Appendix 1”.

The above-mentioned constraints are described for directed multigraphs represented by � , 
however for undirected multigraphs u < v should be added as an additional constraint. In 
this paper, the above three types of prior beliefs or knowledge will be evaluated. However, 
other types of prior beliefs could also be considered, for example, details about different 
airline carrier’s flights arriving or departing from an airport. Though it is beyond the scope 
of this paper, such cases would also lead to a product of independent probability distribu-
tions, which can be used to compute the expected number of edges between any vertex 
pair.

3.3 � Subjective interestingness for multigraph patterns

Given the prior beliefs of the analyst, the background distribution of the data can 
be derived as the MaxEnt distribution (De Bie 2011). We now establish a subjective 
interestingness measure for multigraph patterns given the background distribution and 
the data.

As multigraphs do not have a strict limit on the maximum number of edges that can 
occur between any pair of vertices, existing work on simple graphs by van Leeuwen et al. 
(2016) cannot be directly extended to multigraphs. We, therefore, introduce a new defini-
tion of interestingness based on the expectation matrix E . In this matrix, of size |V| × |V| , 
each entry Eu,v is defined as the number of expected edges—based on the prior beliefs—
between vertices u and v.

The expectation of any geometric distribution of the form (1 − p)x ⋅ p for random varia-
ble x ∈ ℕ0 , where p is the probability of success, is given as E(x) = 1−p

p
 . The probability 

distributions for Belief-c and Belief-i are represented in the natural form of a geometric 
distribution. Thus, we have expectation Eu,v =

exp(2�)

1−exp(2�)
= � and Eu,v =

exp(�r
u
+�c

v
)

1−exp(�r
u
+�c

v
)
 for 

Belief-c and Belief-i, respectively. Here, � is the density3 of a graph.
The probability distribution for Belief-m, however, cannot be represented in the natural 

form of a geometric distribution. Hence, the expected number of edges between vertices u 
and v is computed as

Next, we quantify the interestingness of a vertex-induced subgraph pattern by the differ-
ence between the actual and the expected number of edges. For this, we derive what we call 
the gulf matrix G , which is computed as the difference between the adjacency matrix and 

(4)Eu,v =
exp(�r

u
+ �c

v
) ⋅ exp(�r

u
+ �c

v
)[

1 − exp(�r
u
+ �c

v
)
][
1 − exp(�r

u
+ �c

v
)
(
1 − exp(�r

u
+ �c

v
)
)] .

3  For undirected graphs � =
2∗|E|

|V|⋅(|V|−1) , for directed graphs � =
|E|

|V|⋅(|V|−1).
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expectation matrix, i.e., G = � − E . A value Gu,v is positive if the expected number of edges 
between u and v is lower than the actual number of edges, and negative in the opposite 
case. Without loss of generality, we assume that only positive differences are of interest; 
one could reverse the signs to discover ‘sparse subgraphs’.

For a given pattern, we sum the deviations over all vertex pairs it contains, and define 
this sum as the aggregate deviation of the pattern, as follows.

Definition 1  (Aggregate Deviation) Given multigraph G = (V ,E) and gulf matrix G , the 
aggregate deviation AD of a subgraph H = (W,E�) , where W ⊆ V  and E′ ⊆ E , is given by 
AD(H,G) =

∑
u,v∈W Gu,v.

One might be inclined to mine subgraphs that maximise AD, but in practice, this 
is likely to lead to large subgraphs. This is problematic because large subgraphs may 
not be interesting for and/or comprehensible to the analyst. Similar to existing subjec-
tive interestingness approaches (De  Bie 2011; Lijffijt et  al. 2016; van Leeuwen et  al. 
2016), we, therefore, penalise a pattern’s deviation with its description length, i.e., its 
‘complexity’.

Definition 2  (Description Length) Given multigraph G = (V ,E) , subgraph H = (W,E�) , 
and parameter q, the cost required to describe a subgraph to the analyst—in terms of its 
vertices—is given by description length DL, defined as

where − log(q) is the cost of a vertex included in W and − log(1 − q) is the cost of a vertex 
excluded from W.

Definition 2 uses Shannon-optimal codes to describe the pattern, using a vertex prob-
ability, i.e., parameter q, that is set by the analyst in advance. The smaller the analyst 
believes the size of an interesting pattern to be, the smaller the q and the smaller the exclu-
sion cost of a vertex, and the other way around. Once q is fixed then the description length 
increases with the size of the pattern as for each added vertex in a pattern a cost equal to 
log((1 − q)∕q) is added to the description length. Thus, q can be interpreted as the expected 
probability that a vertex is included in a random pattern and is set by the analyst based on 
expected/desired pattern size. Description length can be used to penalise larger patterns, 
for which it is easier to have a large AD.

Ideally, a pattern is considered to be interesting if it is highly informative (quantified 
in terms of aggregate deviation, AD) and can be encoded with a short code (measured in 
terms of description length, DL). Thus, we next define subjective interestingness of a pat-
tern as the ratio of its aggregate deviation to its description length.

Definition 3  (Subjective Interestingness) Given multigraph G = (V ,E) , subgraph H, and 
gulf matrix G , the subjective interestingness SI of H is given by SI(H,G) =

AD(H,G)

DL(H)
.

DL(H) = −
∑
u∈W

log(q) −
∑

u∉W,u∈V

log(1 − q)

= |W| ⋅ log
(
1 − q

q

)
+ |V| ⋅ log

(
1

1 − q

)
,
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Note that in the previous we considered any vertex-induced subgraph, but this includes 
subgraphs that consist of multiple components, i.e., subgraphs that are not connected. As 
an analyst will expect patterns to be connected, we add the constraint that each subgraph 
has to be connected.4 This leads to the following problem for finding the subjectively most 
interesting multigraph pattern.

Problem  1  (SIMP: Subjectively Interesting Multigraph Pattern) Let G = (V ,E) be a 
multigraph and G a gulf matrix. Find a set of vertices W ⊂ V  and its corresponding ver-
tex-induced subgraph H that maximises SI(H,G) such that H is a (weakly) connected 
component.

3.4 � Updating the background distribution

When a new pattern is found, it is presented to the analyst, which then transforms the 
knowledge of the analyst, who learns from the information contained in the pattern. Hence, 
these newly learned information should be reflected in the background distribution. More 
specifically, in the updated background distribution P�(�) the expectation of the number 
of edges in the pattern should be equal to the actual number of edges found. The ration-
ale behind this is that, by updating the background distribution in this manner, the aggre-
gate deviation of the pattern becomes (almost) zero and hence the pattern is no longer 
interesting.

Let H = (W,E�) be the communicated pattern, then the updated MaxEnt distribution is 
calculated using the following convex optimisation problem, which is the I-projection of 
the preceding background distribution onto the set of distributions that are consistent with 
the communicated pattern (De Bie 2011). Thus, the problem is formulated as

where the constraint in Eq. 6 represents the acquired belief of the analyst on the data. That 
is, the vertex-induced subgraph H, with the set of vertices W, contains |E′| edges. Using 
this updating procedure, we can perform an iterative exploratory data mining process: we 
can mine the subjectively most interesting multigraph pattern from the data, update the 
background distribution, and repeatedly perform these two steps to mine multiple SIMPs.

Theorem  1  Let P(�) be a product of independent probability distributions over data 
� ∈ ℕ

V×V
0

 , then the optimal solution to the problem defined by Eqs. 5–6 is also a product 
of an independent probability distributions P�(�) , such that:

1.	 if P(�) =
∏

u,v∈V (1 − pu,v)
au,v

⋅ pu,v, then P�(�) =
∏

u,v∈V (1 − p�
u,v
)au,v ⋅ p�

u,v
,

2.	 if P(�) = ∏
u,v∈V

1−Ru,v

1−Ru,v(1−Su,v)
⋅ R

au,v
u,v ⋅ S

1au,v
u,v , then d P�(�) =

∏
u,v∈V

1−R�
u,v

1−R�
u,v
(1−Su,v)

⋅ (R�
u,v
)au,v ⋅ S

1au,v
u,v ,

(5)P�(�) = argmin
Q

∑
�

Q(�) log

(
Q(�)

P(�)

)
,

(6)s.t.
∑

�∈ℕn×n
0

Q(�)
∑
u,v∈W

au,v = |E�|; ∑
�∈ℕn×n

0

Q(�) = 1,

4  For directed multigraphs the constraint is relaxed to weakly connected component, i.e., the undirected 
equivalent of the directed graph is a connected graph.
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where

Here �H is a Lagrangian multiplier and a unique real number such that 
(1 − pu,v) ⋅ exp(𝜆H) ∈ (0 1) ⊂ ℝ and Ru,v ∈ (0 1) ⊂ ℝ.

It is observed that background distribution P(�) can be updated using Theorem 1. For 
Belief-c and Belief-i claim 1 is followed, while for Belief-m we follow claim 2, where 
Ru,v = exp(�r

u
+ �c

v
) and Su,v = exp(�r

u
+ �c

v
) . Both claims in Theorem  1 follow the same 

principle, hence for brevity, only the proof of claim 2 is given in “Appendix 2”.
For the computation of aggregate deviation AD, we require to compute the expected 

number of edges between two vertices given the background distribution. It is inefficient 
to update and store all the expectations every time the background distribution is updated. 
It is therefore recommended to only store the �H and compute the expectation whenever 
required. After a series of patterns H = (W,E�) are presented to the user p′

u,v
 is given by 

1 − (1 − pu,v) ⋅ exp
�∑

H∶u,v∈W �H
�
 , and R′

u,v
 is given by Ru,v ⋅ exp

�∑
H∶u,v∈W �H

�
 . 

3.5 � Algorithm

To exhaustively solve Problem 1, we would have to consider all 2|V| possible subsets of V, 
for each subset determine its vertex-induced subgraph, check if it is connected, and com-
pute its interestingness. As there are hardly any possibilities for pruning this would lead to 
very large run-times and we resort to a greedy hill-climber, which was shown to give good 
solutions in little time in the simple graph setting (van Leeuwen et al. 2016).

As input Algorithm  1 takes a multigraph G, seed subgraph H = (W,E�) , gulf matrix 
G , and—for efficiency—corresponding interestingness I (i.e., I = SI(H,G) ). For directed 
multigraphs, each vertex is (virtually) split into two, one having in-degree equal to zero and 
the other having out-degree equal to zero, based on which corresponding concepts Prede-
cessors & OutNode and Successors & InNode, respectively, are defined. Hence, a directed 
(sub-)graph has two lists of vertices one of OutNodes, Wout and the other of InNodes, Win , 
thus, W = Win ∪Wout.

p�
u,v

=

{
1 − (1 − pu,v) exp(�H), if (u, v) ∈ W,

pu,v, otherwise,

R�
u,v

=

{
Ru,v ⋅ exp(�H), if (u, v) ∈ W,

Ru,v, otherwise.
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3.5.1 � Description

Algorithm 1 initially tries to add neighbouring vertices to the current subgraph (Lines 2–3). 
If the addition of any neighbour vertex results in improved interestingness, the addition is 
consolidated and the method recurses (L3). Otherwise, the algorithm eliminates, one by 
one, vertices from the current subgraph and checks whether this improves interestingness 
(L5–6). When no improvement can be made in any iteration, the procedure stops (L7). 

Algorithm 2 and 3 are two subroutines that return the best addition or removal step pos-
sible respectively. Function type(G) determines the type of graph; if the graph is undirected 
then vertices are added (Algorithm 2, L3–6) or removed (Algorithm 3, L3–6) one by one 
without distinguishing the type of neighbour as predecessor or successor, unlike in the 
case of directed graphs (Algorithm 2, 3; L7–13). 
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The proposed hill-climber, which is a greedy heuristic, may experience problems due 
to locally converging to a sub-optimal solution. This largely depends on the choice of seed 
(initial subgraph) provided to the algorithm. To overcome this pitfall, we propose to inde-
pendently run the hill-climber for k different seeds and choose the best solution among the 
k returned patterns. The seeds can be chosen on the basis of different criteria; we consider 
the following three: 

1.	 Degree Select the top-k vertices having the highest degrees in the graph, where each 
individual vertex is used as a seed once.

2.	 Uniform Select k different vertices at random, where each individual vertex is used as 
a seed once.

3.	 Interest Use the k most interesting vertices and use each of those individually as seed. 
The interestingness of a vertex is calculated as the subjective interestingness SI of the 
vertex-induced subgraph of the vertex together with its immediate neighbours.

It is intuitively beneficial but cost-inefficient to evaluate all possible seeds (i.e., to use each 
vertex in a graph as an independent seed). We demonstrate the effectiveness of the above-
described seed selection strategies in Sect. 4.

3.5.2 � Complexity

In a single iteration of the hill-climber, interestingness computation is the most costly part 
of the computation and   has   complexity O(|W|2) , as aggregate deviation computation 
requires to sum elements in the gulf matrix. We can, however, maintain a list of potential 
vertices that can be added to the current subgraph, along with the potential gain in aggre-
gate deviation associated with each candidate vertex. These potential gains are updated 
upon addition or removal of a vertex from the current subgraph, which has complexity 
O(|V|). As the complexity of the search procedure is identical, the resulting overall com-
plexity is O(|V|).

4 � Experiments

In this section, we evaluate our proposed approach and compare it to related methods. To 
distinguish the results obtained using different types of prior beliefs, we denote our pro-
posed approach using the background distribution given by Belief-c as SIMP-c; by Belief-i 
as SIMP-i; and by Belief-m as SIMP-m. For the initial experiments we use both synthetic 
and real multigraphs; later we present a case study on an airline dataset.

4.1 � Datasets

We generate synthetic datasets in two steps. First, a simple, undirected graph is gener-
ated using the preferential attachment method by Barabási and Albert (1999). Second, a 
randomly generated sequence is used to add parallel edges to make it a multigraph. This 
sequence has a length equal to the number of edges in the simple graph, and is a combina-
tion of a Bernoulli (parameterised by the probability of success pb ) and geometric distribu-
tion (parameterised by pg ). The former determines whether parallel edges are added, while 
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the latter determines how many parallel edges are added to the vertex pair indicated by 
the index in the sequence (if any). For the Barabási-Albert model, parameter l is used to 
define the maximum number of vertices to which a newly inserted vertex should be con-
nected. Parameter values and properties of the resulting four synthetic datasets are shown 
in Table 1, where superscripts s and m refer to the initial simple graph and the final multi-
graph, respectively.

From the DBLP5 data, we generate a co-author graph, where authors are represented as 
vertices and co-authored publications as undirected edges. Due to its large size, we have 
created multiple datasets from the data using different queries: (1) all conference publica-
tions of October 2017 (DBLP1) and July 2017 (DBLP2); (2) all publications of the top-206 
conferences of Data Mining, Machine Learning and Artificial Intelligence in 2016–2017 
(DBLP3); and (3) all journal publications of May 2017 (DBLP4). To obtain the IMDB7 
dataset we build a co-actor graph, where actors are represented as vertices and common 
movies as undirected edges. For each dataset, we only consider the largest connected 
component.

4.2 � Evaluation criteria

We characterise the results using several commonly used subgraph properties: the number 
of vertices |V|; the number of edges |E|; density � , given by (2 × |E|)∕(|V| × (|V| − 1)) ; 
average degree � , given by 2 × |E|∕|V| ; and diameter d. Further, to demonstrate the ben-
efits of considering multigraphs over simple graphs, we ‘project’ the multigraph patterns, 
indicated by superscript m, to their simple graph counterparts, indicated by superscript s, 
by removing any ‘parallel’ edges between each vertex pair. We then define a new measure, 
denoted � , to quantify the number of parallel edges in a subgraph relative to the number of 
vertex pairs with at least one edge: (|Em| − |Es|)∕|V|.

Table 1   Properties of the 
multigraph datasets: number of 
vertices (|V|), number of edges 
( |Em| ), number of edges in a 
simple graph projection ( |Es| ), 
probabilities of success for 
generating multigraph sequences 
( pb and pg ), and Barabási-Albert 
model parameter (l)

DS pb pg l |V| |Em| |Es|
SYN1 0.2 0.40 10 200 2628 1900
SYN2 0.2 0.65 10 1000 12,977 9900
SYN3 0.4 0.80 10 10,000 149,729 99,900
SYN4 0.2 0.65 10 50,000 653,821 499,900
DBLP1 – – – 5271 19,888 16,847
DBLP2 – – – 6956 23,879 20,837
DBLP3 – – – 18,466 98,493 78,699
DBLP4 – – – 65,074 230,006 202,642
IMDB – – – 4644 13,416 12,702

6  Source: https​://schol​ar.googl​e.co.in/citat​ions?view_op=top_venue​s&hl=en&vq=eng.
7  Source: https​://www.kaggl​e.com/carol​zhang​dc/imdb-5000-movie​-datas​et.

5  Source: https​://dblp.uni-trier​.de/.

https://scholar.google.co.in/citations?view_op=top_venues&hl=en&vq=eng
https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset
https://dblp.uni-trier.de/
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4.3 � Prior beliefs and interestingness evaluation

The different types of prior belief that we defined reflect different types of knowledge an 
analyst may have. Here we demonstrate the different effects of the proposed types of prior 
beliefs. The expectation on the number of edges between two vertices (or the probabil-
ity distribution) varies with the prior knowledge as quantified using the maximum entropy 
principle (shown earlier).

Belief-c results in a uniform distribution with equal expectation for all pairs of vertices. 
Thus, a subgraph with high average vertex degree would be considered most interesting 
under this type of belief, which is confirmed by the co-occurrence of high values of both 
interestingness (SI-c) and average degree ( � ) in Table 3.

Belief-i and Belief-m represent more extensive forms of prior knowledge than Belief-c. 
Using the toy data set from Fig. 1, the expectation between all pairs of vertices is shown in 
Fig. 2 for both Belief-i and Belief-m. With Belief-i, it can be seen that the highest expecta-
tion on the number of edges is for vertices C and E, as C has the highest number of outgo-
ing edges and E has the maximum number of incoming edges in the graph. As subjective 
interestingness is defined as the positive deviations from the expectation, this type of belief 
usually leads to dense patterns (as can be witnessed from Table 3). Belief-m is more pro-
found than Belief-i, as here the analyst has additional information on the number of unique 
neighbours for each vertex. With the addition of a new constraint, the expectation between 
vertices C & E decreases, as C has only two successors, which is compensated for by an 
increased expectation for the number of edges between vertex pairs C & A and C & B. In 
this particular case, these expectations are much closer to the actual values.

4.4 � Description length and seeding strategy evaluation

In this subsection, we empirically demonstrate the effect of the value of parameter q as 
used in the description length. For most of the datasets, including the larger graphs, a value 
of 0.01 was found to be robust as it results in moderately sized patterns. Note that this cor-
responds to a belief that a pattern is expected to consist of 1% of all vertices in a graph. For 
the DBLP1 dataset, the effect of varying q is shown in Fig. 3. The plots demonstrate how 

Fig. 2   Heatmap showing the expected number of edges between all pairs of vertices ( E ) for the toy example 
(Fig. 1) w.r.t. Belief-i and Belief-m (dark colour represents higher expectations)
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q can be used to influence pattern size as desired by the analyst. For the remainder of the 
paper, we fix q to 0.01.

Next, we perform experiments on datasets SYN1, SYN2, DBLP1 and DBLP2, for dif-
ferent number of independent runs (represented by k) and for each type of seeding strat-
egy. The results, aggregated over the four mentioned datasets, are shown in Table 2 (mean 
interestingness score and sum of the runtimes). We can observe that, in general, the high-
est mean subjective interestingness (SI) was found using the interest-based seed selection 
strategy, followed by the degree based strategy, for all three types of belief. Further, we 
observe that the extra runtime needed for using all individual vertices as seeds is sub-
stantially larger than the improvement in subjective interestingness. The results show that 
k = 10 provides an adequate trade-off, saving substantially on runtime while hardly giv-
ing in on subjective interestingness. Hence, for all remaining experiments, we will use the 
interest-based seeding strategy with k = 10 independent runs.

4.5 � Quantitative evaluation

In this subsection, we demonstrate that (1) our proposed subjective interestingness meas-
ure is different from existing measures designed for simple and multigraphs, and (2) the 

Table 2   Mean subjective interestingness (SI) of the best pattern found using SIMP-c, SIMP-i, and SIMP-m, 
for ‘Interest’, ‘Degree’ and ‘Uniform’ seed selection strategies, with corresponding runtimes (in seconds)

Belief k 1 10 50 All

Seed Type SI Time SI Time SI Time SI Time

SIMP-c Interest 1.799 3.84 1.911 23.03 1.915 108.47 1.919 2758
Degree 1.304 2.02 1.911 19.35 1.916 118.27
Uniform 0.844 2.62 1.453 26.75 1.456 124.69

SIMP-i Interest 1.592 2.26 1.602 3.50 1.602 9.41 1.607 412
Degree 0.781 0.13 1.511 1.03 1.602 6.32
Uniform 0.439 0.33 0.720 1.66 1.156 7.54

SIMP-m Interest 1.015 2.50 1.170 5.27 1.170 13.47 1.173 591
Degree 0.628 0.22 1.150 1.68 1.163 9.98
Uniform 0.449 0.24 0.717 4.80 1.094 13.67

(a) (b) (c)

Fig. 3   Parameter q versus the number of vertices (triangles) versus subjective interestingness (SI, circles), 
for subgraphs found on DBLP1. The vertical dashed line indicates q = 0.01
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Table 3   Properties (see text) of the best pattern found by each method

DS Method |V| |Em| |Es| SI-c SI-i SI-m � � d �

SYN1 SIMP-c 31.66 400.50 205.00 1.51 0.78 0.94 1.441 24.77 2.90 6.34
SIMP-i 5.42 40.46 7.22 1.03 0.94 1.21 5.468 15.31 2.38 6.50
SIMP-m 4.72 35.18 5.98 0.98 0.76 1.26 5.964 15.00 2.08 6.39
SSG-c 10.98 64.23 48.90 0.77 0.21 0.20 1.170 11.69 1.88 1.39
SSG-i 3.70 6.24 4.58 0.68 0.32 0.28 1.290 3.30 1.36 0.46
CNM 30.54 159.83 98.95 0.32 0.43 0.39 0.360 10.34 3.40 2.00

SYN2 SIMP-c 90.74 1123.52 775.00 1.65 0.47 0.48 0.279 24.75 3.02 3.85
SIMP-i 18.84 101.44 39.60 1.31 0.61 0.59 0.752 10.79 3.88 3.41
SIMP-m 23.02 147.16 66.96 1.39 0.54 0.65 0.691 12.51 3.56 3.56
SSG-c 24.92 216.14 167.86 1.40 0.18 0.17 0.730 17.25 2.00 1.93
SSG-i 6.22 11.60 9.00 1.07 0.21 0.22 0.770 3.61 2.30 0.40
CNM 116.19 610.35 371.32 0.37 0.52 0.50 0.095 10.45 4.91 2.06

SYN3 SIMP-c 381.60 5806.46 3626.30 2.09 0.51 0.54 0.080 30.44 3.92 5.72
SIMP-i 175.50 1135.00 546.70 1.45 0.67 0.61 0.075 12.92 5.06 3.35
SIMP-m 161.46 1414.60 735.78 1.41 0.64 0.77 0.111 17.55 4.36 4.21
SSG-c 79.78 956.40 703.62 1.65 0.61 0.43 0.304 23.98 3.00 3.16
SSG-i 30.84 58.72 44.48 1.02 0.36 0.31 0.130 3.79 6.36 0.46
CNM 903.89 4480.05 2589.45 0.38 0.52 0.48 0.010 9.89 6.85 2.09

SYN4 SIMP-c 1052.20 14422.60 9951.30 1.80 0.74 0.68 0.030 27.42 4.00 4.25
SIMP-i 324.30 2864.42 541.68 1.43 0.91 0.88 0.055 17.59 9.11 6.70
SIMP-m 418.45 3918.32 898.45 1.66 0.87 0.99 0.045 18.73 8.12 6.81
SSG-c 280.36 3535.70 2705.70 1.35 0.14 0.17 0.090 25.21 3.02 2.96
SSG-i 164.08 267.60 207.06 1.08 0.15 0.18 0.020 3.28 12.00 0.37
CNM 4303.55 21044.65 12138.40 0.41 0.51 0.42 0.002 9.73 9.45 2.07

DBLP1 SIMP-c 15 524 105 2.98 2.89 1.31 4.990 69.87 1.00 27.93
SIMP-i 15 524 105 2.98 2.89 1.31 4.990 69.87 1.00 27.93
SIMP-m 18 406 125 2.91 2.87 1.38 2.654 45.11 2.00 15.61
SSG-c 20 192 190 0.92 0.89 0.76 1.011 19.20 1.00 0.10
SSG-i 20 190 190 0.91 0.90 0.78 1.000 19.00 1.00 0.00
CNM 532 2010 1696 0.45 0.49 0.42 0.014 7.56 7.00 0.59

DBLP2 SIMP-c 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SIMP-i 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SIMP-m 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SSG-c 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
SSG-i 30 448 435 1.49 1.46 1.42 1.030 29.87 1.00 0.43
CNM 307 998 856 0.42 0.45 0.41 0.021 6.50 12.00 0.58

DBLP3 SIMP-c 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
SIMP-i 142 14780 9843 12.22 9.49 10.30 1.476 208.17 2.00 34.77
SIMP-m 140 14626 9692 12.23 9.48 10.31 1.503 208.94 2.00 35.24
SSG-c 104 8215 5356 8.58 9.40 9.39 1.534 157.98 1.00 27.40
SSG-i 139 14488 9591 12.19 9.45 10.29 1.511 208.46 1.00 35.23
CNM 369 18320 13283 6.72 5.22 5.04 0.270 99.30 5.00 13.68
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hill-climber finds subgraphs with large subjective interestingness scores. We empirically 
compare to (1) the modularity-based approach by Clauset et al. (2004) and (2) subjective 
interestingness for subgraphs (SSG) (van Leeuwen et al. 2016), as those are the closest to 
our approach and representative for the classes of methods they belong to. Note that neither 
is designed for mining patterns from multigraphs; we compare to these methods never-
theless to demonstrate that the task of mining patterns from multigraphs is very different 
from mining patterns from simple (unweighted or weighted) graphs in important ways, and 
therefore deserves the attention it gets in this paper.

Since SSG is designed for simple, unweighted graphs, the datasets are converted to 
simple graph by removing parallel edges. For fair comparison on the task of mining mul-
tigraphs, the evaluation criteria are computed on the original multigraph. For the method 
by Clauset et al. (2004), to which we will also refer as CNM, we use its implementation 
in iGraph,8 which supports weighted graphs. We transform each multigraph to a simple, 
weighted graph by replacing each ‘multi-edge’ with a single edge, with the number of 
edges as weight. Further, to be able to designate a ‘most interesting pattern’ for CNM, the 
pattern giving the highest mean score according to SIMP-c, SIMP-i and SIMP-m is used. 
Note that this comparison is very favourable for CNM’s method, as we consider all pat-
terns that the method generates, versus only the top-1 pattern discovered by SIMP (!). For 
synthetic data, we present averages over the most interesting patterns found on 50 different 
multigraphs, obtained using different seeds for multigraph generation.

Table 3 presents the results. The SI-c, SI-i and SI-m columns show that our proposed 
hill-climber, by optimising our multigraph interestingness measure on the multigraph data, 
was able to find subgraphs with higher scores than SSG and CNM, for all prior beliefs. 
The patterns found by SSG, however, are much smaller and have very few parallel edges, 
as witnessed by low values for � . In general, all three of the proposed method—SIMP-
c, SIMP-i, and SIMP-m—discover patterns with more parallel edges than the two base-
line methods. For DBLP2 and DBLP4; CNM found patterns with the largest � , but those 

For each combination of dataset and property the best value obtained by any method is highlighted in bold

Table 3   (continued)

DS Method |V| |Em| |Es| SI-c SI-i SI-m � � d �

DBLP4 SIMP-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36  1.00 0.18

SIMP-i 71 1663 1653 1.05 1.17 1.13 0.669 46.85 2.00 0.14

SIMP-m 71 1663 1653 1.05 1.17 1.13 0.669 46.85 2.00 0.14

SSG-c 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18

SSG-i 55 1495 1485 1.14 0.94 0.91 1.007 54.36 1.00 0.18

CNM 3905 13455 11255 0.44 0.46 0.43 0.002 6.89 19.00 0.56
IMDB SIMP-c 137 1037 837 1.05 0.46 0.43 0.111 15.14 4.00 1.46

SIMP-i 85 560 425 0.91 0.57 0.53 0.157 13.18 4.00 1.59
SIMP-m 86 543 451 0.91 0.56 0.54 0.149 12.63 3.00 1.07
SSG-c 72 480 410 0.87 0.44 0.43 0.188 13.33 3.00 0.97
SSG-i 11 18 16 0.13 0.13 0.12 0.327 3.27 4.00 0.18
CNM 657 2397 2113 0.42 0.31 0.26 0.011 7.30 7.00 0.43

8  https​://igrap​h.org/.

https://igraph.org/
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patterns are very large and sparse, indicating that these are hardly informative. For some of 
the DBLP and IMDB datasets, the advantage of SIMP is quite large in terms of � . Finally, 
the patterns found by SIMP-c, SIMP-i, and SIMP-m do not typically have a high density 
( � ), which demonstrates that the proposed measure is different from (‘objective’) density.

Overall, it is shown that although SSG and SIMP are built on the same principles, they 
clearly quantify subjective interestingness of patterns differently, which leads to the iden-
tification of different patterns. While SIMP focuses on the occurrence of parallel edges, 
SSG only focuses on patterns with a smaller diameter. CNM provides similar results to 
SIMP-i, yet it yields large pattern as partitioning the dataset does not provide the user with 
an option to control the size of the patterns. Moreover, CNM’s modularity measure nec-
essarily always assign all vertices to a pattern, while SIMP-i can easily find few patterns 
containing only part of the graph.

It is also interesting to compare the results obtained by SIMP-c, SIMP-i, and SIMP-
m. For almost all datasets, SIMP-c finds the pattern with the largest average multigraph 
degree, i.e., � , which is as expected since only a prior belief on the total number of edges in 
the network is assumed; all information on individual vertex degrees is assumed unknown. 
As expected, � is smaller for SIMP-i and SIMP-m results, and on the synthetic data SIMP-i 
and SIMP-m typically finds smaller subgraphs with larger densities and diameters. How-
ever, there is a trade-off among SIMP-c, SIMP-i, and SIMP-m for the measures � , � , d and 
� , which demonstrates the flexibility of our proposed approach, where plugging in different 
prior beliefs lead to different results.

4.6 � Qualitative evaluation

In this subsection, we first demonstrate how iterative pattern mining results different yet 
partially overlapping patterns, and then present an external validation of the patterns found 
on the IMDB dataset.

Table 4   Properties of the top-10 patterns found by SIMP-c, SIMP-i, and SIMP-m, indicating the total com-
putation time, the fraction of the vertices of the multigraph covered by all patterns combined, and the aver-
age Jaccard distance between all pairs of vertex sets

DataSet Time (s) Coverage AvgJaccard

SIMP-c SIMP-i SIMP-m SIMP-c 
(%)

SIMP-i 
(%)

SIMP-m 
(%)

SIMP-c SIMP-i SIMP-m

SYN1 6.93 6.51 7.49 32.77 21.82 24.17 0.95 0.90 0.96
SYN2 312.5 61.3 108.6 27.97 16.01 18.16 0.93 0.95 0.97
SYN3 2674 2394 2462.9 11.34 8.78 9.89 0.97 0.98 0.99
SYN4 8634 8435 8876 8.57 6.54 7.12 0.94 0.97 0.98
DBLP1 871.8 828.8 835.6 3.09 3.23 2.98 0.99 1.00 0.98
DBLP2 1025 1014 1024 3.16 3.08 3.18 1.00 1.00 1.00
DBLP3 7443 7828 7522 2.66 2.53 2.58 0.97 0.94 0.98
DBLP4 12,659 11,765 11,828 1.08 1.04 1.05 1.00 1.00 1.00
IMDB 493.8 215.1 276.5 12.64 6.54 6.98 0.91 0.94 0.90
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4.6.1 � Iterative pattern mining

As discussed in Sect. 3.4, our approach can be naturally utilized for iterative exploratory 
data mining to identify the top-K patterns in a multigraph. Table 4 shows the properties of 
the top-10 patterns found using SIMP-c, SIMP-i and SIMP-m. The patterns are evaluated 
based on total computation time taken to find the ten patterns, coverage (i.e., the percent-
age of all vertices in a multigraph dataset covered by the union of the found 10 patterns), 
and average Jaccard (AvgJaccard) distance among the found patterns. The total computa-
tion time is mainly dependent on the size of the dataset and the expected size of the pat-
tern by the analyst (altered with the supplied parameter ‘q’ used in description length; not 
shown). The results show that the proposed approach can be easily used on moderately 
large datasets, with around two hours of computation time needed to find the top 10 pat-
terns in the most densely connected graph, SYN4. This time includes the initial compu-
tation of the background distribution, searching for the most interesting pattern with ten 
independent runs (seeds) of the hill-climber, and updating the background distribution 
after each iteration. The coverage values indicate that the proposed method finds patterns 
in different regions of the graph; the exact coverage varies depending on the dataset, its 
topology and its size. At the same time, the high AvgJaccard value indicates that overlap is 
largely avoided but small overlaps among vertex sets do occur.

In terms of runtime, updating the background distribution hardly affects the perfor-
mance of the algorithm. The main factor affecting this step is the computation of a Lagran-
gian multiplier corresponding to the found pattern, which is computed using the bisection 
method—in practice this method is very fast compared to the overall runtime of the algo-
rithm. Updating the background distribution in every iteration is essential to the process, as 
we can demonstrate empirically. That is, by updating the background distribution, the code 
length of the data—i.e., the number of bits required to encode the data under the back-
ground distribution—is expected to decrease; this can be regarded to represent the effect of 
learning based on the found patterns.

To investigate this, Fig. 4 depicts the decrease in normalised code length of the IMDB 
dataset, for SIMP-c, SIMP-i, and SIMP-m, after each consecutive update of the background 
distribution. The code length of data � is given by − log2 P(�) , and in the plot, this is nor-
malised by the code length of the data without any update, i.e., the length computed before 
learning but based only on the prior beliefs. We can observe that the negative loglikelihood 
of the data decreases over time, as the background distribution is updated using the found 
patterns. This clearly demonstrates how each consecutive pattern adds new information to 
the set of patterns that is mined. Further, the relative decrease in code length is larger for 
SIMP-c than for SIMP-i and SIMP-m, which is also completely in line with our expecta-
tions as Belief-i and Belief-m represent more elaborate forms of prior knowledge; hence 
there is less to learn from the data.

Fig. 4   Normalised code length 
of the IMDB dataset after each 
performed update, showing how 
each consecutive pattern adds 
new information to the set of pat-
terns that is mined and therefore 
results in a shorter code for the 
data



1687Machine Learning (2020) 109:1669–1696	

1 3

Ta
bl

e 
5  

G
en

re
s t

ha
t a

re
 p

os
iti

ve
ly

 a
nd

 si
gn

ifi
ca

nt
ly

 a
ss

oc
ia

te
d 

w
ith

 th
e 

to
p-

10
 p

at
te

rn
s f

ou
nd

 b
y 

SI
M

P-
i, 

SI
M

P-
m

, S
SG

-i,
 a

nd
 C

N
M

, f
ro

m
 th

e 
IM

D
B

 d
at

as
et

, a
lo

ng
 w

ith
 th

ei
r 

re
sp

ec
tiv

e 
B

on
fe

rr
on

i c
or

re
ct

ed
 p

-v
al

ue
s (

<
 1

e−
4)

 (b
et

w
ee

n 
br

ac
ke

ts
)

SN
SI

M
P-

i
SI

M
P-

m
SS

G
-i

C
N

M

1
D

ra
m

a(
0.

0e
+

0)
, C

rim
e(

5.
4e

−
10

), 
Th

ril
le

r(
6.

2e
−

16
), 

A
ct

io
n(

8.
4e

−
6)

, 
Ro

m
an

ce
(2

.2
e−

6)

A
dv

en
tu

re
(2

.7
e−

12
), 

A
ct

io
n(

1.
1e

−
5)

, 
C

rim
e(

2.
8e

−
8)

A
dv

en
tu

re
(1

.9
e−

7)
A

dv
en

tu
re

(2
.1

e−
7)

, 
D

ra
m

a(
1.

8e
−

14
), 

Th
ril

le
r(

8.
5e

−
8)

2
A

dv
en

tu
re

(0
.0

e+
0)

, W
ar

(1
.1

e−
12

), 
Sc

i-
Fi

(5
.9

e−
49

), 
A

ct
io

n(
1.

1e
−

95
), 

Fa
m

ily
(2

.0
e−

4
5)

, T
hr

ill
er

(0
.0

e+
0)

, H
ist

or
y(

7.
2e

−
10

), 
C

rim
e

(9
.0

e−
73

), 
Ro

m
an

ce
(1

.7
e−

96
), 

Sp
or

t(8
.7

e−
9)

, 
B

io
gr

ap
hy

(2
.7

e−
20

)

Sc
i-F

i(7
.9

e−
12

), 
A

ct
io

n(
2.

2e
−

8)
D

ra
m

a(
1.

9e
−

6)
C

om
ed

y(
1.

3e
−

39
)

3
A

dv
en

tu
re

(3
.5

e−
61

), 
Sp

or
t(6

.3
e−

8)
, S

ci
-

Fi
(3

.8
e−

36
), 

Fa
nt

as
y(

2.
4e

−
37

), 
Fa

m
ily

(3
.6

e−
39

), 
A

ct
io

n(
1.

3e
−

58
), 

C
rim

e(
5.

3e
−

52
), 

 
H

or
ro

r(
1.

5e
−

35
), 

Th
ril

le
r(

1.
8e

−
94

)

A
dv

en
tu

re
(2

.0
e−

5)
, A

ct
io

n(
5.

4e
−

9)
, 

C
rim

e(
1.

2e
−

5)
—

M
us

ic
(6

.1
e−

11
)

4
Ro

m
an

ce
(4

.7
e−

10
), 

C
om

ed
y(

1.
6e

−
11

)
A

dv
en

tu
re

(1
.7

e−
8)

, F
an

ta
sy

(7
.1

e−
9)

, 
Ro

m
an

ce
(2

.0
e−

6)
—

—

5
Th

ril
le

r(
1.

6e
−

22
), 

Fa
m

ily
(1

.4
e−

7)
,  

Fa
nt

as
y(

6.
0e

−
11

), 
Sc

i-F
i(1

.1
e−

11
), 

A
ct

io
n(

2.
4e

−
13

), 
C

rim
e(

7.
3e

−
9)

, 
C

om
ed

y(
1.

4e
−

42
), 

A
dv

en
tu

re
 (4

.2
e−

14
)

A
dv

en
tu

re
(7

.2
e−

5)
, F

an
ta

sy
(2

.0
e−

16
), 

Fa
m

ily
(3

.3
e−

8)
H

or
ro

r(
6.

3e
−

17
)

—

6
A

ct
io

n(
2.

2e
−

11
), 

C
rim

e(
6.

0e
−

21
), 

 
Sp

or
t(3

.8
e−

13
)

Sc
i-F

i(3
.8

e−
15

), 
A

ct
io

n(
1.

0e
−

5)
A

dv
en

tu
re

(2
.2

e−
6)

, A
ct

io
n(

8.
4e

−
5)

—

7
H

ist
or

y(
8.

6e
−

10
), 

C
rim

e(
9.

2e
−

5)
,  

A
ct

io
n(

6.
5e

−
15

), 
Th

ril
le

r(
9.

7e
−

12
)

A
dv

en
tu

re
(1

.1
e−

10
)

A
ct

io
n(

7.
4e

−
13

)
A

ct
io

n(
1.

4e
−

6)

8
M

us
ic

(4
.3

e−
11

), 
D

ra
m

a(
1.

7e
−

8)
Ro

m
an

ce
 (6

.1
e−

9)
D

oc
um

en
ta

ry
 (8

.1
e−

7)
—

9
A

ct
io

n(
4.

3e
−

21
), 

H
or

ro
r(

1.
1e

−
7)

, 
C

om
ed

y(
1.

4e
−

40
)

A
ct

io
n(

5.
3e

−
17

), 
C

rim
e(

7.
4e

−
7)

W
es

te
rn

(5
.8

e−
22

)
—

10
Fa

nt
as

y(
1.

2e
−

15
)

Th
ril

le
r(

4.
0e

−
6)

—
H

ist
or

y(
7.

0e
−

11
), 

A
ct

io
n(

3.
4e

−
12

)



1688	 Machine Learning (2020) 109:1669–1696

1 3

4.6.2 � External validation

In Table 5 we investigate how the found patterns are different and whether they could be 
meaningful to a domain expert. In the IMDB co-actor network, each edge corresponds to 
a movie in which the two actors (represented by the vertex pair) have worked together. 
Clearly, this naturally fits the multigraph setting, as co-actors can work together in multiple 
movies and each movie can be of a different genre. Genre information is not considered 
in the construction of the dataset or the prior belief and we, therefore, use this attribute to 
externally and objectively validate the semantics of the found patterns. For validation, we 
consider 26 different genres and the top-10 patterns found by SIMP-i, SIMP-m, SSG-i, 
and CNM. For each combination of genre and pattern, we conduct a hypergeometric test 
to assess whether a genre is significantly associated with the pattern. We compute the cor-
responding p values and multiply them by the total number of tests per pattern, i.e., 26, as 
Bonferroni correction. All genres that are positively associated, i.e., have a p value smaller 
than the threshold of 1e−4, are shown for the top-10 patterns found by each of the four 
methods.

It is observed, in Table 5, mostly patterns found by SIMP-i and SIMP-m have more than 
one positively associated genre. This is mainly because of the presence of parallel edges 
that correspond to different genres; two actors can work together in numerous movies that 
belong to different genres. The patterns found by SSG-i are mostly associated with one or 
no genre. This is indicative of the fact that SSG, by definition, considers patterns with a 
smaller diameter as more interesting, which is different from the proposed approach for 
multigraphs. CNM, on the other hand, was able to find patterns with more than one sig-
nificantly associated genre, but not every pattern was significantly associated with one or 
more genres. This might be explained by the fact that CNM partitions the entire graph into 

Fig. 5   Visualisation of the top-10 patterns (numbered as per Table 5) found by SIMP-m in the IMDB data-
set: a network representation, with vertices present in more than one pattern shown in black colour (note 
that multiple edges between vertex pairs are depicted as a single edge to avoid cluttering the graph; see the 
other subfigures); b pattern overlap in terms of vertices: for each pair of the top-10 patterns, the heatmap 
shows the number of vertices that are part of both patterns, i.e., |W

1
∩W

2
| for every two mined subgraphs 

H
1
,H

2
 ; and c pattern overlap in terms of edges: for each pair of the top-10 patterns, the heatmap shows the 

number of edges that are part of both patterns, i.e., |E�
1
∩ E�

2
| for every two mined subgraphs H

1
,H

2
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several communities, which results in relatively large patterns that do not correspond to 
certain genres. The results show that the patterns found by each method are different; both 
SIMP variants tend to find patterns that more strongly correspond to genres.

We further investigate the patterns found by SIMP-m by visualising the resulting pat-
terns in Fig. 5. From the figures, we can observe that our approach succeeds in exploit-
ing information about multiple edges between vertices, which results in the discovery of 
distinct yet partially overlapping patterns. From Table 5 we observe that patterns 1 and 3 
are associated with the same set of genres, which might indicate that they are redundant 
or might be merged. Figure  5 shows that these patterns indeed share some vertices and 
edges, but are also different. Inspecting the data in more detail, we find that the actors with 
the highest degree in pattern 1 (but not in pattern 3) include Johnny Depp, Bruce Willis, 
Julia Roberts, and Robert Duvall. Similarly, actors present only in pattern 3 include Tom 
Hanks, John Ratzenberger, Delroy Lindo, and Sylvester Stallone. The overlapping region 
includes actors with very high degrees: Brad Pitt, J.K. Simmons, Morgan Freeman, and 
Kristen Dunst. Considering actor’s Facebook likes, another feature present in the data, we 
find that the actors in pattern 1 (but not in pattern 3) have 8994 likes on average, versus 
2973 on average for the actors in pattern 3 (not in pattern 1). The actors shared by both 
patterns on average have 104,53 likes. Further, we also find that the union of patterns 1 
and 3 would give an SI-m of 0.503, which is clearly less than that of pattern 1, i.e., 0.538. 
All combined, the above analysis provides sufficient evidence to claim that pattern 1 and 3 
indeed represent different, non-redundant ‘actor communities’, and are therefore rightfully 
considered to be two distinct patterns by our approach.

4.7 � Airline case study

We now present a case study to showcase the application of SIMP in the aviation domain. 
More specifically, we use SIMP to analyze airline transport data taken from the Bureau of 
Transportation Statistics.9 As discussed earlier in Sect.  1, such an airline dataset can be 
best represented as a directed multigraph. We focus on finding regions in the network that 
are likely to experience high delay due to heavy traffic, which is categorised in the data as 
NAS (National Aviation System) delay. There could be various factors for NAS delay, but 
heavy traffic is one of the major factors accounting for NAS delays.

We consider 298 commercial airports with 450,017 flights that took place in January 
2017. As a first case, we investigate the most interesting patterns for each day over the 
period of the month of January 2017. For each day, we construct the background distri-
bution based on prior beliefs taken from the flight schedule data; note that this is a very 
realistic scenario, as the schedule informs our expectations and we look for deviations from 
these expectations in the actual flight data. As a second case, we build the background 
distribution from scheduled data for each hour of a specific day, i.e., 22nd of January 2017. 
That is, we consider flights are either arriving or departing from any airport in any time 
block on the day, we have 20 time blocks of 1 h (from 0400 to 2400 h, all converted to 
UTC -7). We exclude cancelled flights from the data, as these would have an infinite delay.

The most interesting patterns per time frame found by SIMP are shown in Fig. 6. Fig-
ure 6a, b show that the patterns found by SIMP have a fairly large number of NAS delayed 
flights in the set of flights present in the found pattern. This shows that the first patterns 

9  Source: https​://www.trans​tats.bts.gov/.

https://www.transtats.bts.gov/
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found by SIMP-i and SIMP-m have a fairly large ‘precision’, indicating that a fair num-
ber of the NAS delays occurs in these patterns. This is corroborated by Fig. 6c, d, which 
indicates that, among all delayed flights present in a pattern, a fair set of flights are catego-
rised as NAS delayed. To verify that these patterns are the major source of NAS delay, we 
computed the ‘recall’ of the patterns in Fig. 6e, f, i.e., the number of NAS delayed flights 
present in the pattern among all NAS delayed flights in the current view of the network. It 
was found that SIMP-c has a fairly large recall, where around 25% of NAS delayed flights 
were present in around 10% of the airports of the network (see Fig. 6g, h). This is because 
of the large size of the patterns. Upon closely inspecting the patterns found by SIMP-i and 
SIMP-m, we found that these patterns all have a similar ratio of ‘recall’ to the percentage 
of airports in pattern, but have high ‘precision’, which supports our hypothesis that NAS 
delay is most likely to occur in the regions identified by SIMP.

Following the observations on the most interesting pattern per time frame, we analyse 
the top-10 patterns shown in Fig. 7. For this analysis the union of all top-10 patterns is 
considered, i.e., all the airports and flights that were present in any found pattern are taken 
together. Analysing the network over a period of a month, Fig. 7e shows that each day the 

Fig. 6   Results of best pattern found by SIMP-c, SIMP-i and SIMP-m for two cases, i.e., (left) the entire 
month and (right) a single day
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top-10 patterns found by SIMP-c, SIMP-i and SIMP-m have a very high presence of NAS 
delayed flights among all the NAS delayed flights in the network on that day. A similar 
observation was made in Fig. 7f, while analysing the airline network, each hour for a sin-
gle day. SIMP-c, SIMP-i and SIMP-m follow almost the same trend to account for NAS 
delayed flights in the top-10 patterns (Figs. 7a–d).

Fig. 7   Results of top 10 patterns found by SIMP-c, SIMP-i and SIMP-m for two cases, i.e., (left) the entire 
month and (right) a single day

Fig. 8   Plots showing the ratio of % of NAS delays present in top-10 SIMP patterns to the % of NAS delays 
present in a baseline pattern having the same number of edges
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To further investigate this, we compute baseline patterns having the top-r airports with 
the highest multigraph degree, such that each such pattern has a number of edges (approxi-
mately) equal to the number of edges covered by the top-10 patterns found by SIMP. We 
then compute the ratio of the number of NAS delayed flights covered by the top-10 SIMP 
patterns to the number of NAS delayed flights covered by their respective baseline pat-
terns, as shown in Fig. 8. This ratio is always close to one for SIMP-c, indicating that with 
this type of belief SIMP finds patterns with high densities, very similar to our constructed 
baseline patterns. SIMP-i and SIMP-m, on the other hand, have fairly high ratios, above 1 
and sometimes close to 2, suggesting that these types of belief help in discovering patterns 
that correspond to NAS delays. These patterns may not always be structurally dense, i.e., 
their diameters may be high, but they encompass a large number of air routes with a larger 
number of flights. This shows the potential of using prior beliefs—such as the ones that 
we propose in this paper—for finding patterns that correspond to high traffic congestion, 
which may lead to NAS delays.

Overall, this exploratory case study shows that NAS delay is likely to occur in regions 
of the network that are subjectively interesting, i.e., relative to Belief-i and Belief-m. These 
patterns might provide strategic information to airliners in the context of flight scheduling.

5 � Conclusions

We proposed a novel subjective interestingness measure for subgraphs in multigraphs, tak-
ing into account both the given multigraph and different types of prior beliefs that the ana-
lyst may have. For the background distributions we used existing ideas based on the maxi-
mum entropy principle, but to quantify interestingness for multigraph patterns we used the 
properties of the background distribution to derive an expected number of edges for each 
pair of vertices. Following this, we proposed an effective hill-climber algorithm for mining 
the most interesting pattern from the data. Our experiments demonstrated that our subjec-
tive interestingness measure for multigraphs is different from existing definitions for other 
types of graphs, highlighting the benefits of taking the specific properties of multigraphs 
into account. Further, our exploratory airline case study showed the potential relevance 
of the patterns and the advantage of being able to plug in background knowledge, such as 
flight schedule data. The proposed algorithm was naturally extended for iterative explora-
tory data mining process. Using this characteristic of the proposed algorithm a number of 
overlapping yet different patterns were shown to be found. Also, the proposed algorithm 
was found to be scalable and accurate in iteratively finding interesting patterns. A future 
direction is to extend our approach to dynamic multigraphs. We also anticipate to explore 
the application possibilities of the proposed algorithm in different domains.

Acknowledgements  This research has been conducted as part of an Indo-Dutch project titled ‘A Systems 
approach towards Data Mining and Predictions in Airline Operation’ (SAPPAO), Grant No.: MIT-861-MID. 
We gratefully acknowledge the project sponsors MeitY (India), NWO (The Netherlands), and GE Aviation 
(India).
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Appendix 1: Proof of probability distribution for belief‑m

The problem of maximizing entropy under the user’s belief about the number of edges per 
vertex and the number of neighbors per vertex is given as

Since this optimization problem is convex, we solve it using convex optimization methods 
(Boyd and Vandenberghe 2004). Let us introduce the Lagrangian multipliers �r

i
 and �c

i
 for 

constraints in Eq. 8, �r
i
 and �c

i
 for constraints in Eq. 9; and � for constraint 10. The Lagran-

gian of the Problems 7–10 is now given by

The optimality conditions are achieved by equating the derivative of Eq. 11 w.r.t. P(�) to 0. 
Hence, we get

where Z(�r,�c,�r,�c) = exp(1 − �) is a partition function. De Bie (2011) suggested that 
the choice of partition function is such to ensure the normalisation constraint 10. Similarly, 
here the partition function is also found to be the product of individual partition function 
represented by unique pair u and v, i.e., Z(�r,�c,�r,�c) =

∏
u,v Z(�

r
u
, �c

v
,�r

u
,�c

v
) . There-

fore, Eq. 12 now becomes

(7)argmax
P(�)

−
∑

�∈ℕn×n
0

P(�) log(P(�)),

(8)s.t.
∑

�∈ℕn×n
0

P(�)
∑
v

au,v = dr
u
;
∑

�∈ℕn×n
0

P(�)
∑
u

au,v = dc
v
,

(9)
∑

�∈ℕn×n
0

P(�)
∑
v

1au,v≠0 = mr
u
;
∑

�∈ℕn×n
0

P(�)
∑
u

1au,v≠0 = mc
v
,

(10)
∑

�∈ℕn×n
0

P(�) = 1.

(11)

L(P(�),�r,�c,�r,�c,�) = −
�
�

P(�) logP(�)

+
�
u

�r
u

⎛⎜⎜⎝
�

�∈ℕn×n
0

P(�)
�
v

au,v − dr
u

⎞⎟⎟⎠

+
�
v

�c
v

⎛⎜⎜⎝
�

�∈ℕn×n
0

P(�)
�
u

au,v − dc
v

⎞⎟⎟⎠
+
�
u

�r
u

⎛⎜⎜⎝
�

�∈ℕn×n
0

P(�)
�
v

1au,v − mr
u

⎞⎟⎟⎠

+
�
v

�c
v

⎛
⎜⎜⎝
�

�∈ℕn×n
0

P(�)
�
u

1au,v − mc
v

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝
�

�∈ℕn×n
0

P(�) − 1

⎞⎟⎟⎠
.

(12)P(�) =
1

Z(�r,�c,�r,�c)
exp

(∑
u,v

au,v(�
r
u
+ �c

v
) +

∑
u,v

1au,v (�
r
u
+ �c

v
)

)
,



1694	 Machine Learning (2020) 109:1669–1696

1 3

This perfectly aligns with the proposition made by De Bie (2011), as here also P(�) comes 
out to be the product of an exponential family distribution. Given the domain of au,v , the 
partition function is calculated as Z(�r

u
, �c

v
,�r

u
,�c

v
) =

∑
au,v∈ℕ0

exp(au,v(�
r
u
+ �c

v
) + 1au,v (�

r
u
+ �c

v
)) 

which results in Z(�r
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v
) =

1−exp(�r
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)

 such that 𝜆r
u
+ 𝜆c

v
< 0 . Finally, 

from Eq. 13 we get

	�  ◻

Appendix 2: Proof of Theorem 1 (Claim 2)

The Lagrangian of Eqs. 5–6 is given as

Thus, upon taking the derivative of L w.r.t. Q, such that P�(�) = Q(�) at �L
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= 0 . Then, we 
get
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second part of Theorem 1, Eq. 15 becomes
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exp (�H)
au,v ,

(16)P�(�) =
1

Z�

∏
u,v∈W

exp (�H)
au,v

⋅

∏
u,v

1 − Ru,v

1 − Ru,v(1 − Su,v)
R
au,v
u,v S

1au,v
u,v .

(17)P�(�) =
∏
u,v∈W

1

Z�

1 − Ru,v

1 − Ru,v(1 − Su,v)
[R�

u,v
]au,vS

1au,v
u,v ⋅

∏
¬u,v∈W

Pu,v(au,v).
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Note The �H can be found using the bi-section method (Boyd and Vandenberghe 2004). 	
� ◻
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