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Abstract
Objectives Data on normal mandibular development in the infant is lacking though essential to understand normal growth
patterns and to discriminate abnormal growth. The aim of this study was to provide normal linear measurements of the mandible
using computed tomography performed in infants from 0 to 2 years of age.
Material and methods 3D voxel software was used to calculate mandibular body length, mandibular ramus length, bicondylar
width, bigonial width and the gonial angle. Intra- and inter-rater reliability was assessed for these measurements. They were
found to be sufficient for all distances; intra-class correlation coefficients were all above 0.9. Regression analysis for growth
modelling was performed.
Results In this multi-centre retrospective study, 109 CT scans were found eligible that were performed for various reasons (e.g.
trauma, craniosynostosis, craniofacial abscesses). Craniosynostosis patients had larger mandibular measurements compared to
non-craniosynostosis patients and were therefore excluded. Fifty-one CT scans were analysed.
Conclusions Analysis showed that the mandible increases more in size vertically (the mandibular ramus) than horizontally (the
mandibular body). Most of the mandibular growth occurs in the first 6 months.
Clinical relevance These growth models provide insight into normal mandibular development in the first 2 years of life. This
reference data facilitates discrimination between normal and abnormal mandibular growth.
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Introduction

The mandible is a common site of congenital abnormality.
Neonatal micrognathia has an incidence of approximately
1:500–1600 births [1–3]. Foetal micrognathia may lead to
severe functional problems shortly after birth. Besides upper
airway problems, also feeding, swallowing and, later in life,
speech problems may necessitate a multidisciplinary ap-
proach. In case of severe upper airway problems, some phy-
sicians rely on a physiologic intrinsic growth of the mandible
in the first 2 years of life and tend to treat the infants non-
surgically whenever possible. Others advocate a more aggres-
sive approach with interventions like mandibular distraction
and advocate to operate on these patients very early in life.

Data on normal mandibular development is essential to
evaluate and to recognize abnormal mandibular size and
growth. However, there are only a few studies documenting
mandibular development in early life, and these show that the
most rapid mandibular growth occurs during the first year of
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life [4, 5]. Several prenatal and postnatal mandibular measure-
ments have been obtained. Prenatally, mandibular hypoplasia
can be objectively diagnosed using the inferior facial angle,
jaw index or antero-posterior diameter with ultrasound exam-
inations or magnetic resonance imaging (MRI) measurements
[1, 6–8]. Postnatally, several techniques can be used to assess
the size and growth of the mandible: measurements from di-
rect anthropometry with the use of callipers, two-dimensional
(2D) cephalometry, stereophotogrammetry, MRI or CT. A
complicating factor in young infants is that they cannot be
expected to sit still.

Indirect measurements of the soft tissues surrounding the
mandible can be obtained using stereophotogrammetry or an-
thropometry. Although these modalities provide less informa-
tion about the bony tissue of the mandible itself, they are more
useful for routine evaluation of the mandibular size of the infant
because they do not involved ionizing radiation and there is no
need for sedation. 3D facial measurements of the normal and
micrognathic infant are available using 3D surface scanners [9,
10]. A recent study showed good correlation between surface
measurements and interior mandibular volume [11].

2D cephalometry or CT can be used to obtain direct infor-
mation on the bony tissues of the face. MRI does not provide
sufficient information on the bony tissue, to give reliable direct
measurements of the mandible, though there are now special
‘bone’ sequences available, which improve the assessment of
the skull base and vault. [12] However, to the best of our
knowledge, there are no papers on mandibular size in infants
using MRI. Another reason that makes routine evaluation with
MRI difficult in this age group is that sedation is needed to
obtain high resolution images of the mandible. Also, measure-
ments of the facial bones have been taken from foetal and
neonatal human cadaver’s specimens [13]. Cephalometric anal-
yses of the mandible using 2D lateral cephalograms from 0 to 2
years of age have been documented [4]. However, 2D cepha-
lometry has shown to be less accurate than three-dimensional
(3D) measurements on CT using 3D landmarking software
[14–18]. CT remains the best imaging modality for measure-
ments of the bony tissue of the face, because of its excellent
contrast between soft tissue and bone and ultrafast scan times
ruling out the need for sedation. However, imaging methods
requiring ionizing radiation, like CT, must be avoided in the
infant because of its potential harmful effects in the long term.
Therefore, CT at this age is normally restricted as a pre-
operative diagnostic and planning tool or for skull trauma.
There are several studies performed using 3D CT datasets to
evaluate the morphological differences of syndromic skulls
compared to normal [19, 20]. To date, to the best of our knowl-
edge, no 3D linear measurements of the mandible in the young
infant on CT has been published.

The aim of this cross-sectional study is to provide more
insight in the size and growth of the normal mandible in in-
fants using 3D CT. The ultimate goal of this study is to

provide growth charts and reference values using linear mea-
surements of 7 landmarks on 3D CT scans in infants aged 0 to
2 years. With this information, a more objective evaluation of
micrognathia in the postnatal period is obtained.

Materials and methods

Subjects

Amulti-centre study was needed to obtain a sufficient number
of CT scans. In 2015 CT scans were obtained from 5 hospi-
tals: Sophia Children’s Hospital, Erasmus Medical Centre,
Rotterdam, The Netherlands; Wilhelmina Children’s
Hospital, Utrecht, The Netherlands; Amsterdam Medical
Centre, The Netherlands; Maastricht University Medical
Centre, The Netherlands and Boston Children’s Hospital,
Boston, USA. We retrospectively assessed all available CT
scans in these hospitals between the age of 0 and 2 years
old. Scans were included if the mandible was fully visible
and when the mandible was not affected by trauma or a dis-
ease that could possibly affect mandibular growth. For exam-
ple, when the patient was scanned for a possible facial trauma,
we did not include patients in which the mandible was in-
volved. Scans were also not included when patients were born
prematurely or developmental defects were present that could
influence mandibular growth, such as Robin sequence. In ad-
dition to trauma, we included patients with isolated craniosyn-
ostosis, abscesses, unknown soft tissue lesions, swelling of the
soft tissues of the face and external ventricular drains. To
assess whether isolated craniosynostosis patients can be con-
sidered having a normal mandibular size, we performed a one-
way ANCOVA analysis with age as a covariate to compare a
difference in mandibular size between isolated craniosynosto-
sis compared to non-craniosynostosis scans.

Landmarks and linear measurements

The scans were landmarked using 3D voxel imaging software
(Robins 3D, 2013; Robin Richards, London, UK) (Fig. 1).
The landmarking process was performed by one person, the
first author. The landmark definitions from an earlier study
were used [20]. Only 7 landmarks which are essential to the
length and angle of the body and ramus of the mandible were
used (Table 1). They were landmarked in a horizontal position
using the Frankfort horizontal plane.

The Hounsfield units (HU) threshold was set to bone win-
dow depending on the ossification of the skull around the
value of 255 HU.

Linear measurements were defined as shown in Table 2.
The linear distances between the three-dimensional Cartesian
coordinates were calculated as the Euclidean distance.
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Euclidean distance between Ax;y;z and Bx;y;z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ax−Bxð Þ2 þ Ay−By

� �2 þ Az−Bzð Þ2
q

The length of the ramus was defined as the distance be-
tween the condylion superioris and the gonion. The length of
the body was defined as the distance between the gonion and
the menthon. The bigonial width was defined as the distance
between the right gonion and the left gonion. The bicondylar
width was defined as the distance between the right condylion
posterioris and the left condylion posterioris. The gonial angle
was defined as the angle between the condylion posterioris-
gonion-menthon, as demonstrated in Fig. 1.

Statistical analysis

To determine the landmark reliability, intra-rater and inter-
rater reliability was measured. For the intra-rater reliability,

20 randomly chosen mandibles were landmarked in 2 differ-
ent sittings by one rater with a minimum of a week between
sittings, and intra-class correlation (ICC) values were calcu-
lated with a two-way mixed effects model for single measure-
ments and absolute agreement definition. For the inter-rater
reliability, 20 randomly chosen mandibles were landmarked
by two independent observers, and intra-class correlation
(ICC) values were calculated with a two-way random effects
model for single measurements and absolute agreement
definition.

Polynomial regression was used to construct growth curves
for length of the ramus, length of the mandibular body,
bicondylar width, bigonial width and gonial angle. Model fit
was assessed graphically by inspection of regression curves
and residuals. Model fit was adequate in all cases so that
confidence bounds could be derived from the models directly
without using quantile regression.

SPSS (IBM Corp. Released 2012. IBM SPSS Statistics for
Windows, Version 21.0. Armonk, NY: IBM Corp.) was used
for all analyses. Statistical analysis was performed by the first
author.

Results

One hundred nine CT scans were included. Initially, in this
cohort of 109 cases, we included also 58 CT scans of isolated
craniosynostosis patients as one of the most frequent indica-
tions for the CT scan. However, ANCOVA showed a signif-
icant difference (p < 0.05) for a larger size of ramus length and
bicondylar width in isolated craniosynostosis patients. A
mean difference of 1.5–1.6 mm (left-right) ramus length and
1.7 mm bicondylar width was found. We therefore excluded
the isolated craniosynostosis scans, and a total of 51 patients
were analysed. The majority of the scans (58.8 %) were made
between 0 and 12 months of age, and 41.2% of the scans were
made between 12 and 24 months of age. A slight majority of
the scans are from male subjects. The main reason for CT

Table 1 Landmarks used for linear measurements of the mandible

Landmark Description

CoP (left) Left condylion posterioris Most posterior aspect of the left condylar head

Co (left) Left condylion superioris Most superior aspect of the left condylar head

Go (left) Left gonion Point on the left mandibular angle, defined by dropping a perpendicular line
from the intersection point of the tangent lines to the posterior margin of
the mandibular vertical ramus and inferior margin of the mandibular body

Me Menthon The most inferior point of the mandibular symphysis

CoP (right) Right condylion posterioris Most posterior aspect of the right condylar head

Co (right) Right condylion superioris Most superior aspect of the right condylar head

Go (right) Right gonion Point on the right mandibular angle, defined by dropping a perpendicular line
from the intersection point of the tangent lines to the posterior margin of the
mandibular vertical ramus and inferior margin of the mandibular body

Fig. 1 Landmarking in 3D voxel imaging software Robin 3D, the gonial
angle inserted as an example
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evaluation in 51.0% of the patients was possible skull trauma.
Table 3 shows the patient characteristics by age, sex, and
reason for CT scan.

Intra-rater and inter-rater reliability were calculated as
shown in Table 4. The ICC of the intra-rater reliability was
for all distances and angles above 0.9. The ICC of the inter-
rater reliability was for all distances above 0.9 and for the
gonial angle above 0.8.

Growth charts were modelled as shown in Figs. 2, 3, 4, 5
and 6. Regression lines and individual prediction intervals
were calculated, so that the 2.5th and 97.5th percentiles were
produced. Ramal height shows a quadratic regression line.
There is a decline in the last part of the regression line of the
ramal height. The mandibular body length shows a cubic re-
gression line. The bicondylar width and bigonial width show
quadratic regression lines. The overall mandibular length (the
distance between the condyle and menthon) shows a cubic
growth pattern. Figures 2, 3, 4 and 6 show that the slope of
the regression lines is steepest in the first 6 months and that the
slope decreases in the months thereafter. The gonial angle

shows a quadratic regression line. Additional regression re-
sults are provided as supplementary table. Descriptive statis-
tics of the Euclidean distances between the landmarks were
calculated as shown in Table 5.

The mandible increases more in size vertically (the man-
dibular ramus) than horizontally (the mandibular body).

Discussion

In this study on modelling mandibular growth curves for the
first 2 years of life, we found the mandible showed the greatest
increase in size in the first 6 months and growth rates de-
creased thereafter. These growth models provide insight into
normal mandibular development in the first 2 years of life. In
the graphs, a few outliers can be seen, but the landmarking
process showed good reliability. Although the dataset
consisted not of truly normal patients as it is not ethical to
perform CT scans of healthy young infants, we included pa-
tients with various reasons for the scan and excluded scans of
patients of which mandibular growth could have been possi-
bly affected. We also excluded isolated craniosynostosis pa-
tients, since we found significant differences in ramus length
and bicondylar width compared to the other reasons for CT
scanning.

Table 2 Linear distances and gonial angle

Linear distance Description

CoGo (ramus) Euclidean distance between condylion superioris (Co) and gonion (Go)

GoMn (corpus) Euclidean distance between gonion (Go) and menthon (Mn)

CoPCoP (bicondylar width) Euclidean distance between condylion posterioris (CoP) left and condylion posterioris (CoP) right

GoGo (bigonial width) Euclidean distance between gonion (Go) left and gonion (Go) right

CoMn Euclidean distance between condylion superioris (Co) and menthon (Mn)

Gonial angle cos−1 CoGo2þGoMn2−CoMn2
2�CoGo�GoMn

� �

Table 3 Patient characteristics

Frequency Percentage

Age

0–6 months 15 29,4%

6–12 months 15 29,4%

12–18 months 10 19,6%

18–24 months 11 21,6%

Sex

Male 29 56,9%

Female 22 43,1%

Reason for CT

Trauma* 26 51,0%

Choanal atresia 5 9,8%

Other reason* 20 39,2%

Total

51 100%

*Without mandibular involvement or pathology

Table 4 Intra- and inter-rater reliability

Linear measurement Intra-rater ICC Inter-rater ICC

Left ramus 0.977 0.977

Left corpus 0.958 0.964

Right ramus 0.979 0.967

Right corpus 0.912 0.978

Bicondylar width 0.974 0.945

Bigonial width 0.991 0.971

Co-Mn L 0.997 0.994

Co-Mn R 0.991 0.996

Gonion angle R 0.958 0.945

Gonion angle L 0.955 0.891
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Liu et al. showed, using seven longitudinal 2D
cephalograms of 48 individuals between birth and 5 years of
age, that the greatest growth changes occur in the first 6

months and that growth velocity decreases progressively later
in life. Their results demonstrated that overall mandibular
length showed the greatest growth changes, followed by

Fig. 2 Length of the left and right ramus of the mandible (quadratic growth pattern, length in mm’s, age in days)
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ramus height (vertical growth) and then corpus length (hori-
zontal growth). The gonial angle decreased 2.8° and 2° in
males and females, respectively. Our findings correspondwith
their results [4]. Hutchinson et al. performed two studies on
cadaveric mandibles of unknown age; standard techniques for
age estimation were used. In the first study, they found that the
average mandibular body length was 37 mm at 0–11 months
(n=41) and 47 mm at 12–24 months (n=8); the average max-
imum body length (our Co-Mn measurement) was 48 mm at
0–11 months (n=41) and 67 mm at 12–24 months (n=8). Our

measurements were approximately 10 mm higher than this
cadaveric study. In the second study, Hutchinson and col-
leagues found that the average mandibular body length was
42 mm at 0–12 months (n=56) and 52 mm at 12.5–36 months
(n=17); the average maximum length of the mandible was
56 mm at 0–12 months (n=56) and 72 mm at 12.5–36 months
(n=17); and the average bicondylar width was 62 mm at 0–12
months (n=56) and 74 mm at 12.5–36 months (n=17). Our
measurements were approximately 5 mm higher when com-
pared to this study. Both studies used comparable definitions

Fig. 3 Length of the left and right body of the mandible (cubic growth pattern, length in mm’s, age in days)
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of the several lengths. As their cohorts consisted of both ca-
daveric and skeletonized specimens, we think it is possible
that shrinkage of the specimens can partially explain why their
measurements are smaller than our results [21].

Roelfsema et al. measured the mandibular body length on
3D prenatal ultrasound. They found a mean of 29.8 mm at 34
weeks of pregnancy [22]. Our first postnatal measurements
showed values in the range of 35–45 mm. A study of foetuses
found a ramus length of 20 mm and a gonial angle of 139° at

39 weeks, which is also comparable to our first postnatal mea-
surements [23].

An earlier study showed that mandibular size is limited in
syndromic craniosynostosis. They found that the mandible
had a shorter body length, larger ramus height to body length
ratio and an obtuse gonial angle compared to age- and sex-
matched controls. They found a certain ramus height measure-
ment (Ar-Go) to be larger in size compared to normal, al-
though another measurement of the ramus height we used

Fig. 4 Bicondylar and bigonial width of the mandible (quadratic growth pattern, length in mm’s, age in days)
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(Co-Go) was not significantly different. They also found a
larger protrusion/retrusion angle, suggesting a protruded man-
dible [24]. For isolated craniosynostosis to the best of our
knowledge, there are no indications that mandibular growth
is affected. Although we did not expect that isolated cranio-
synostosis influenced the results, we performed an ANCOVA
analysis to rule this out. Ramus height and bicondylar width
showed a significantly larger size. This is an interesting find-
ing as this previous study in syndromic craniosynostosis also

found ramus height to be larger [24]. As this was not the
primary aim of this study, we cannot draw any conclusions
from these results. Further research has to be done to evaluate
if mandibular growth is affected in isolated craniosynostosis.

There are a few limitations in our study. We found a de-
clining regression line of the ramus length, bicondylar width
and bigonial width in the last part of the second year of life. As
we can assume that there is no decrease in size, this could be
explained by the fact that there is not a sufficient number of

Fig. 5 Left and right gonial angle (quadratic growth pattern, angle in degrees, age in days)
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scans in the last part of the second life year as seen in Table 3.
We do not expect this last part of the regression line to be a
true representation of growth, as growth could possibly slow
down but size will not decline in the first 2 years of life. The
gonial angle shows great variability between the age of 0 and
2 years, which is an indication that the mandibular shape
varies greatly in our cohort. We do not believe this quadratic
regression line is an indication that the gonial angle decreases
and later increases in life, but that it rather decreases slightly in

the first 2 years. Because there were no longitudinal CT data
available, this data is cross-sectional and does not provide
growth information on an individual level. Although we did
a multi-centre study and searched all available CT scans in the
several hospitals, the power of this study is still low due to the
few useable CT scans. Because of the paucity of scans, we
have not been able to make separate analyses based on patient
characteristics (e.g. race or gender), although it has been
shown that these factors may influence the size and growth

Fig. 6 Left and right overall mandibular growth, distance between the condyle and menthon (cubic pattern, length in mm’s, age in days)
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of the mandible [4, 25]. Although we have evaluated the clin-
ical information to exclude pathology that could influence the
size of the mandible, patients underwent CT scans for reasons
as skull trauma or choanal atresia. This is not a ‘normal’ pop-
ulation, although we believe that these reasons for the scan do
not influence the results. Despite these limitations, we were
able to model mandibular growth curves which provide in-
sight into mandibular growth patterns in the first 2 years of
life.

We analysed the data as to whether quantile regression
should be preferred over linear regression. As the plotted fig-
ures showed that our data was normally distributed, linear
regression was chosen as analysis for the growth curve
analysis.

More studies gathering and analysing scans, preferably
longitudinally, from patients with these anomalies at young
age are needed to understand the growth pattern of the hy-
poplastic mandible in syndromic patients. Mandibular hy-
poplasia is seen in several anomalies, such as isolated and
syndromal Robin sequence, craniofacial microsomia,
Treacher Collins and Nager syndrome [26]. In a recent re-
view, it was shown that the scientific evidence for the con-
cept of catch-up growth, as often quoted in the literature on
Robin sequence, is weak [27].

As stated, CT scans need to be avoided for routine diag-
nostics in healthy children because of ionizing radiation.
When a CT scan is performed in children with severe man-
dibular developmental abnormalities, our models could assist
in quantifying the deviation from normal mandibular growth.
When longitudinal scans would be available, our models
could also provide insight whether growth is normalizing.

In summary, our modelled growth models of the mandible
from 0 to 2 years of age demonstrate that it increased more in
size vertically (the mandibular ramus) than horizontally (the
mandibular body). Most of the mandibular growth occurs in
the first 6 months and growth rates decreased thereafter.

Future studies are mandatory to provide information on post-
natal normal and congenitally hypoplastic mandibular devel-
opment. Ideally, methods should be developed that do not use
ionizing radiation, such as three-dimensional surface
stereophotogrammetry.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00784-021-03937-1.
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