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A B S T R A C T   

Background: Predicting the onset and course of mood and anxiety disorders is of clinical importance but remains 
difficult. We compared the predictive performances of traditional logistic regression, basic probabilistic machine 
learning (ML) methods, and automated ML (Auto-sklearn). 
Methods: Data were derived from the Netherlands Study of Depression and Anxiety. We compared how well 
multinomial logistic regression, a naïve Bayes classifier, and Auto-sklearn predicted depression and anxiety di-
agnoses at a 2-, 4-, 6-, and 9-year follow up, operationalized as binary or categorical variables. Predictor sets 
included demographic and self-report data, which can be easily collected in clinical practice at two initial time 
points (baseline and 1-year follow up). 
Results: At baseline, participants were 42.2 years old, 66.5% were women, and 53.6% had a current mood or 
anxiety disorder. The three methods were similarly successful in predicting (mental) health status, with correct 
predictions for up to 79% (95% CI 75–81%). However, Auto-sklearn was superior when assessing a more 
complex dataset with individual item scores. 
Conclusions: Automated ML methods added only limited value, compared to traditional data modelling when 
predicting the onset and course of depression and anxiety. However, they hold potential for automatization and 
may be better suited for complex datasets.   

1. Introduction 

Despite a large body of epidemiological research, the course and 
onset of mood and anxiety disorders remain difficult to predict. 
Improving the ability to predict the onset and course of mood and 
anxiety disorders can be clinically relevant for prevention, early detec-
tion, staging, and personalized treatments (McGorry, 2010). In clinical 
settings, most decision making is based on clinical-care guidelines and 
experience (Ægisdóttir et al., 2006). However, even experienced clini-
cians may ignore relevant information or may put too much emphasis on 
clinically salient cues (Odeh et al., 2006). Information on demographic 
characteristics and clinician-rated and self-reported measures are 

increasingly collected as part of routine outcome monitoring (ROM; 
Carlier et al., 2012), but this information is underused in clinical deci-
sion making. Literature suggests that automated statistical prediction of 
current diagnoses and course may improve clinical decision making 
(Ægisdóttir et al., 2006; Grove et al., 2000), particularly through mod-
ern machine learning (ML) approaches (Johnson et al., 2016). 

ML may be more time efficient, better suited for large and complex 
datasets, and better able to detect complex patterns in the data than 
current data-modelling approaches that rely heavily on human decision 
making (Iniesta et al., 2016; Wang et al., 2018). Most clinical data thus 
far have been analyzed by selecting only specific putative predictors. It 
is possible that more complex (including nonlinear and higher 
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dimensional) patterns exist in the data, which can efficiently be detected 
when analyzing all available data simultaneously using ML (Chekroud 
et al., 2016; Hahn et al., 2016). These approaches are able to examine 
huge numbers of potential predictors in an unbiased manner while 
preventing overfitting (Hastie et al., 2009). 

Thus far, ML studies in the field of psychiatry have been promising. A 
recent meta-analysis, which included 20 studies that predicted the 
therapeutic outcome of depression using ML algorithms, found an 
overall accuracy of .82 (95% confidence interval [CI] .77–.87; Lee et al., 
2018). Another ML study used an extensive set of baseline variables in a 
subset of 805 depressed patients from the Netherlands Study of 
Depression and Anxiety (NESDA) cohort, including biological and psy-
chological variables (e.g., personality traits; Dinga et al., 2018). The 
study achieved an accuracy significantly greater than chance of 66% for 
predicting persistent depression over the course of 2 years. A similar 
study, performed in a subset of the NESDA cohort of 887 anxiety pa-
tients, found an accuracy of predicting anxiety recovery of 62% (p < .05) 
and an accuracy of predicting recovery of all common mental disorders 
of 63% (p < .05; Bokma et al., 2020). Clinical severity measures were the 
most important predictor variables, which is in line with previous re-
ports (Bokma et al., 2020; Dinga et al., 2018; Lee et al., 2018). Although 
these studies seem promising, recently published papers have demon-
strated only limited added value of ML over traditional regression an-
alyses (Christodoulou et al., 2019; van Mens et al., 2020). Additionally, 
other studies found that when predicting suicide, ML did not outperform 
regression analysis and resulted in positive predictive values below 0.01, 
thus limiting the practical utility of these predictions (Belsher et al., 
2019; Kessler et al., 2017). Despite the increasing number of publica-
tions in this field, ML has yet to move towards clinical application (Tran 
et al., 2019). 

Although ML incorporates less human decision making than tradi-
tional methods, most ML methods are still not fully automated. Feature 
selection has been standardized as much as possible, but cut-off values 
that determine which features to include or exclude are somewhat 
arbitrarily selected. One solution would be to fully automate the selec-
tion of features, as is done in the Auto-sklearn system (Waring et al., 
2020). Auto-sklearn is a next generation ML system that automatically 
selects the learning algorithm that best suits the data and automatically 
optimizes the hyperparameter settings of this algorithm. It has proved 
effective when analyzing a diverse range of datasets and is considered to 
be an efficient and robust system for use by both ML novices and experts 
(Feurer et al., 2015; Feurer et al., 2019). 

We aimed to study and to compare the performance of traditional 
multinominal logistic regression, a basic probabilistic ML algorithm 
(naïve Bayesian classifier; Jayant and Safari, 2020) and a more 
advanced automated ML method (Auto-sklearn) to predict DSM-IV-TR 
psychiatric diagnoses at a 2-, 4-, 6-, and 9-year follow up with 
different sets of predictors. We incorporated predictor variables that can 
be easily and inexpensively collected in clinical practice, such as de-
mographic variables, clinician-rated psychiatric diagnoses, and 
self-reported depression and anxiety. Our hypothesis was that 
Auto-sklearn would be better at detecting complex patterns in the data 
and therefore would outdo a naïve Bayesian classifier, which in turn 
would outdo traditional regression analysis techniques in achieved level 
of accuracy. Moreover, we hypothesized that Auto-sklearn would be 
particularly efficient when single items and follow-up measures were 
included. 

2. Methods 

2.1. Study sample and procedures 

For the current study, we included participants from the NESDA 
cohort, which investigated the course and consequences of depressive 
and anxiety disorders. A detailed description of the NESDA design and 
sampling procedures are published elsewhere (Penninx et al., 2008). 

The first wave (baseline) lasted from 2004 to September 2007, and the 
sixth wave of measurement at the 9-year follow up finished in October 
2016. NESDA is a cohort study that recruited from the community (n =
564; 18.9%), general practice (n = 1,610; 54.0%), and secondary mental 
healthcare (n = 807; 27.1%; Penninx et al., 2008) and included patients 
with a current or lifetime depressive or anxiety disorder as well as 
healthy controls (see supplementary Table 1). A limited number of 
exclusion criteria were applied, namely not being fluent in Dutch and 
the presence of other clinically overt psychiatric disorders (e.g., addic-
tion, psychotic, bipolar). With this method, NESDA aimed for a cohort 
that is representative for diverse populations of healthy controls and 
patients with depression and anxiety (Penninx et al., 2008). Due to 
missing outcome data (mainly due to attrition), we included 2,596 
(87.1%) participants to predict 2-year outcomes, 2,402 (80.6%) to 
predict 4-year outcomes, 2,256 (75.7%) to predict 6-year outcomes, and 
2,068 (69.4%) to predict 9-year outcomes. 

2.2. Measures 

2.2.1. Independent variables 
An overview of the independent variables within each predictor set 

can be found in Table 1 in the supplementary material. Independent 
variables comprised baseline demographics, lifetime and baseline DSM- 
IV-TR diagnoses, self-reported depression, and anxiety symptomatology. 
Demographic variables included gender, age, ethnicity (North European 
heritage: yes/no), level of education (1 = elementary or less; 2 = general 
intermediate/secondary education; 3 = college/university), partner 
status (no partner, with partner [not married], married, living apart/no 
partner, divorced/no partner, widowed/no partner), and working status 
(employed/unemployed). The Composite International Diagnostic 
Interview (CIDI WHO, version 2.1) was used to assess the presence of 
mood and anxiety disorders according to the DSM-IV-TR. This included 
current dysthymia, major depressive disorder (MDD), lifetime depres-
sive disorder, social phobia, panic with agoraphobia, panic without 
agoraphobia, agoraphobia without panic, generalized anxiety disorder, 
and lifetime anxiety disorder. Future CIDI-based diagnoses were used as 
outcome variables at 2-, 4-, 6-, and 9-year follow up, and past and cur-
rent CIDI-based diagnoses were used as independent variables. Thus, 
diagnoses at baseline and at Years 2, 4, and 6 were used to predict the 
diagnosis at the 9-year follow up (see Section 2.2.2). 

Anxiety and depressive severity as well as symptoms at baseline and 
1-year follow up were assessed using the Fear Questionnaire (FQ; Marks 
and Mathews, 1979), the Beck’s Anxiety Inventory (BAI; Beck et al., 
1988), and the Inventory of Depressive Symptomatology (IDS-SR; Rush 
et al., 1996). These measures were entered into the models as either sum 
scores only or as a combination of sum scores and individual items. 
Detailed (psychometric) information about the measures can be found in 
the supplementary material. 

2.2.2. Outcome variable: clinical diagnoses 
The CIDI WHO, version 2.1 was used to assess clinical diagnoses 

according to the DSM-IV-TR. The CIDI is a fully standardized diagnostic 
interview with extensively validated psychometric characteristics 
(Penninx et al., 2008; Wittchen, 1994) and may be considered a gold 
standard for psychiatric diagnostic classification (Haro et al., 2006; 
Kessler et al., 2009). 

At the 2-, 4-, 6-, and 9-year follow up, CIDI-based outcomes were 
coded both as a binary variable (psychiatric disorder absent vs. present) 
and as a categorical variable with four categories: healthy, mood dis-
order (i.e., major depression and/or dysthymia), anxiety disorder (i.e., 
general anxiety, social phobia, panic with agoraphobia, panic without 
agoraphobia, and/or agoraphobia without a panic disorder), and co-
morbid mood and anxiety disorders. 
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2.3. Statistical analysis 

A total of 96 models were tested. We compared three methods, over 
four sets of predictor variables, over two outcome sets, and over four 
follow-up waves. The three methods were multinomial logistic regres-
sion (Menard, 2002), naïve Bayes classifier (Jayant and Safari, 2020), 
and Auto-sklearn (Feurer et al., 2015). The four sets of predictor vari-
ables (all including sociodemographic variables and baseline diagnoses) 
were (a) baseline sum scores only; (b) baseline sum scores and 1-year 
follow up sum scores; (c) baseline sum scores, 1-year follow up sum 
scores, and individual items at baseline; and (d) sum scores and indi-
vidual items at baseline and 1-year follow up. For an overview of the 
predictor Sets A–D, see Table 1 in the supplementary material. Missing 
item values (0.54% –13.1%) were replaced by the mean of the available 
cases. The two outcomes were binary (healthy/mood or anxiety disor-
der) and multinomial (healthy [A], mood disorder [B], anxiety [C], or 
comorbid mood- and anxiety disorder [D]). The follow-up waves 
occurred at 2, 4, 6, and 9 years. 

Auto-sklearn is an automated ML system that addresses both the 
problem of choosing which ML algorithm is best suited to analyze a 
specific application scenario (i.e., the model/algorithm selection prob-
lem) and the problem of determining which parameter setting leads to 
high performance (i.e., the hyperparameter optimization problem). 
Auto-sklearn considers a wide range of feature selection methods 
including all classification approaches implemented within the Python 
scikit-learn package, spanning 15 classifiers (e.g., random forests, 
decision tree, gradient boosting, etc.), 14 feature preprocessing methods 
(e.g., feature agglomeration, polynomial, nystroem sampler, etc.), and 
four data preprocessing methods (i.e., one-hot encoding, imputation, 
balancing, and rescaling), giving rise to a structured hypothesis space 
with 110 hyperparameters. Auto-sklearn features preprocessing 
methods that can be mainly categorized into feature selection, kernel 
approximation, matrix decomposition, embeddings, feature clustering, 
polynomial feature expansion, and methods that use a classifier for 
feature selection (for more details see Feurer et al., 2019). Previous 
research shows that the classification performance is often much better 
than using standard selection/hyperparameter optimization methods 
(Feurer et al., 2015), and researchers believe Auto-sklearn to be a 
promising system for use by both ML novices and experts (Feurer et al., 
2019). Auto-sklearn won six out of 10 phases of the first ChaLearn 
AutoML challenge. Furthermore, a comprehensive analysis of over 100 
diverse datasets, while taking into account time and computational 
resource constraints, demonstrated that Auto-sklearn outperformed the 
previous state of the art in AutoML (Feurer et al., 2019). More details 
about Auto-sklearn can be found elsewhere (Feurer et al., 2015; Feurer 
et al., 2019; https://automl.github.io/auto-sklearn/master/api.html, 
accessed at 2019-12-10). 

Naïve Bayes classifier is a basic ML method that can predict class 
membership probabilities, such as the probability that a given MDD 
patient is still depressed after 2 years, with the underlying assumption 
that the effect of an attribute value on a given class is independent of the 
values of the other attributes. It aims to simplify the computation 
involved and, in this sense, is considered naïve (Jayant and Safari, 
2020). For the present study, we used the Gaussian Naïve Bayes Clas-
sifier provided in the scikit-learn package with the var_smoothing 
hyper-parameter. According to the scikit-learn manual, by using 
this implementation a researcher need not choose the probability cut off. 
Several hyper-parameter settings were tried in the preliminary analysis, 
resulting in no significant differences. Therefore, the default 
hyper-parameter setting was used (i.e., setting the value of var_-
smoothing to 1e-9). More details about the scikit-learn can be 
found elsewhere (https://scikit-learn.org/stable/modules/generated/s 
klearn.naive_Bayes.GaussianNB.html#sklearn.naive_Bayes.Gaussi 
anNB, accessed at 2019-12-10). 

Logistic regression is a classification method used for binary or 
multinomial outcome variables. Multinomial logistic regression is a 

classification method that generalizes logistic regression to multiclass 
problems (Menard, 2002). We used the R package nnet (R Foundation 
for Statistical Computing, Vienna, Austria, 2016. https://www.R-pro 
ject.org/; Ripley et al., 2016). 

We computed all models by randomly splitting (50:50) the dataset 
into a training and a test dataset using Scikit-learn data split 
(Pedregosa et al., 2011). The training dataset was used to select the best 
fitting regression model or ML algorithm. For the present study, models 
were optimized for overall accuracy. Auto-sklearn feature selection and 
preprocessing were based on the training data. Auto-sklearn selected 
“multinomial_nb” as its classifier for the binary outcome analysis and 
“random forest” for the multinomial outcome analyses. Subsequently, 
we tested and compared the accuracy of how well these models/algor-
ithms predicted outcomes in the test data with a 95% CI (i.e., percentage 
of correctly predicted individuals). We also tested and compared their 
balanced accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value. For the multinominal outcomes, this was 
computed using a one-versus-all approach. For each model, we tested 
the significance of accuracy related to the no-information rate. The 
no-information rate contains the accuracy if the model were to choose 
the most frequent outcome group: healthy, that is, the proportion of 
correct predictions when all patients are predicted to be healthy. 
Auto-sklearn and naïve Bayes classifier were implemented using the 
Python programming language (Rossum, 1995). For logistic regression, 
R was used (R Foundation for Statistical Computing, Vienna, Austria, 
2016. https://www.R-project.org/; Ripley et al., 2016). 

3. Results 

3.1. Sociodemographic and clinical characteristics at baseline 

Characteristics of the study population are presented in supple-
mentary Table 2. Age at baseline ranged from 18 to 64 years (M = 42.2, 
SD = 13.1), and 1,975 (66.5%) participants were women. At baseline, 
26.8% of the sample suffered from MDD (n = 796), 9.3% of the sample 
from dysthymia (n = 241), and 43.7% from a (comorbid) anxiety dis-
order (n = 1,299), of which social anxiety disorder was the most com-
mon (18.6%; n = 483). Of the participants in our sample, 46.1% did not 
meet DSM-IV-TR criteria for a mood or anxiety diagnosis within the 
preceding 6 months (n = 1,368), of whom 54.2% had never been 
diagnosed with a psychiatric disorder (n = 742). 

3.2. Prediction of health status as binary outcome 

Figs. 1 and 2 and supplementary material Figure 1 and Table 3 
contain the prediction of health status as a binary outcome (i.e., 
mentally healthy vs. any anxiety or mood disorder) at the 2-, 4-, 6-, and 
9-year follow up using either logistic regression, naïve Bayes classifier, 
or Auto-sklearn. Fig. 1 demonstrates the correctly predicted health sta-
tus at the 2-year follow up (true negatives and true positives). With 
optimized overall accuracy, the three methods had different sensitivity 
and specificity levels. As demonstrated in Fig. 2, Auto-sklearn had the 
highest specificity, with values between .84 and .90, but it had poor 
sensitivity values (.54–.75), predicting more disorders at the expense of 
correctly predicting a healthy health status (see also supplementary 
Table 1). The naïve Bayes classifier had specificity values between .76 
and .88 and sensitivity values between .60 and .69. Logistic regression 
models had the lowest specificity values (.35–.59) but performed better 
regarding sensitivity values (.82–.93). Together this resulted in balanced 
accuracy levels ranging from .60–.75, .68–.75, and .63–.74 for Auto- 
sklearn, naïve Bayes classifier, and logistic regression, respectively. 

As further demonstrated in Fig. 2, the accuracy values ranged from 
.75 through .79. Logistic regression, naïve Bayes classifier, and Auto- 
sklearn were all significantly (p < .001) more accurate than the no- 
information rate (level of accuracy when only predicting a healthy sta-
tus). Regarding logistic regression, the level of accuracy was 
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significantly higher when only sum scores, and not individual item 
scores, were included as predictor variables (predictor Set A; acc .79 
[95% CI .76–.81]), compared to logistic regression predictor Set B (acc 
.75 [95% CI .72–.77). The level of accuracy of naïve Bayes classifier and 
Auto-sklearn did not significantly decrease or improve when individual 
items were added as predictor variables. At 4-, 6-, and 9-year follow up, 
accuracy values ranged between .73–.78, .71–.77, and .76–.79 for lo-
gistic regression, naïve Bayes classifier, and Auto-sklearn, respectively. 
Of 16 tests per method (of which eight are presented in Fig. 2 and eight 
in supplementary Table 3), Auto-sklearn had significantly higher accu-
racy levels than the no-information rate for all tests, compared to eight 
out of 16 for naïve Bayes classifier and eight out of 16 for logistic 
regression. Auto-sklearn thus performed adequately within each of the 
different datasets four different datasets. 

3.3. Prediction of health status as categorical outcome 

The results of predicting health status as a categorical outcome (i.e., 
healthy, mood disorder, anxiety disorder, or comorbid mood- and anx-
iety disorder) at the 2-, 4-, 6-, and 9-year follow up using either Auto- 
sklearn, naïve Bayes classifier, or logistic regression are shown in 
Figs. 1, 3, and 4 and in the supplementary material Fig. 1 and Tables 4 
and 5. Fig. 1 demonstrates the correctly predicted health status at 2-year 

follow up (true positives and true negatives). When the models were 
optimized for overall accuracy, their performance for predicting the 
disorder categories were low. When predicting with logistic regression, 
balanced accuracy values were .53 for mood disorders, .62 for anxiety 
disorders, and .61 for comorbidity. When predicting with Auto-sklearn, 
balanced accuracy values were .50 for mood disorders, .60 for anxiety 
disorders, and .61 for comorbidity. Comparatively, these figures were 
.70 and .66 when predicting a healthy health status with logistic 
regression and Auto-sklearn, respectively (see Fig. 3 outcome year 2). 
Mood disorder (n = 91 cases in the test data set) was predicted the least 
often, resulting in sensitivity values ranging from .00–.32 and specificity 
values ranging from .89–1.00. Further inspection of Fig. 1 in the sup-
plementary material demonstrates that both logistic regression and 
Auto-sklearn mostly predicted a healthy health status instead of mood 
disorders (n = 55 and n = 68, respectively). 

As further demonstrated in Figs. 3 and 4, the accuracy values when 
predicting health status at 2-year follow up ranged from .63 to .72. Both 
logistic regression (acc .70 [95% CI .68–.73]; p = .003) and Auto-sklearn 
(acc.72 [95% CI .69–.74]; p < .001) were significantly more accurate 
than the no-information rate, when predicting health status with sum 
scores at 2-year follow-up (see Fig. 3), but only Auto-sklearn was 
significantly more accurate than the no-information rate when also in-
dividual item scores were included (acc .71 [95% CI .69–.74]; p < .001; 

Fig. 1. Percentages of train and test dataset values, as well as those correctly predicted at 2-year follow up, using the three data models. All predictor sets included 
baseline psychiatric diagnoses and demographic variables. Predictor Set A further includes baseline and 1-year follow-up sum scores. Predictor Set B additionally 
includes baseline and 1-year follow-up individual items. 
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see Fig. 4). Again, the level of accuracy of logistic regression was 
significantly lower when individual item scores were included as pre-
dictor variables (predictor Set B; acc .63 [95% CI .60–.65]; p = >.99), 
compared to only sum scores (predictor Set A; acc .70 [95% CI .68–.73]; 
p = .003) when predicting health status at 2-year follow up. Auto- 
sklearn achieved demonstrated similar predictive performance when 
using sum scores as well as individual item scores (see Tables 4 and 5 in 
the supplementary material). Naïve Bayes classifier did not achieve 
levels of accuracy above the no-information rate. Achieving significantly 
accurate predictions became more difficult at later follow-ups. None of 
the models achieved accuracy levels that exceeded the no-information 
rate when predicting health status at 4-, 6-, and 9-years follow up. 

4. Discussion 

Our aim was to assess and compare the predictive performances and 
clinical usefulness of Auto-sklearn, naïve Bayes classifier, and logistic 
regression to predict mood and anxiety disorders at follow up. 
Furthermore, we assessed the effects of different sets of predictors. 
Although we hypothesized that Auto-sklearn would outperform the two 
other data models, this could not be concluded unequivocally. In fact, 
only moderate levels of accuracy were found, with correct prediction 
percentages of up to 79% and 75% when using either binary or cate-
gorical outcomes, respectively. Yet, Auto-sklearn outperformed both 
logistic regression and naïve Bayes when predictor sets included indi-
vidual item scores. Categorical outcomes were more difficult to predict 
than binary outcomes, compared to the no-information rate; in 

Fig. 2. Predicting health status (binary outcome) at 2-, 4-, 6-, and 9-year follow up. All predictor sets included baseline psychiatric diagnoses and demographic 
variables. Predictor Set A further includes baseline and 1-year follow-up sum scores. Predictor Set B additionally includes baseline and 1-year follow-up individual 
items. The grey vertical line denotes as the no information rate for year 2-, 4-, 6-, and 9-year outcomes, respectively. Accuracy values were compared to the no- 
information rate by using a one way ANOVA test of which the p values are as follows: 
* p value < .05 
** p value < .01 
*** p value < .001 
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Fig. 3. Predicting health status (multinominal outcome) at 2-, 4-, 6-, and 9-year follow up with baseline and 1-year sum scores (predictor Set A). All predictor sets 
included baseline psychiatric diagnoses and demographic variables. Predictor Set A further includes baseline and 1-year follow-up sum scores. Predictor Set B 
additionally includes baseline and 1-year follow-up individual items. PPV denotes as positive predictive value. NPV denotes as negative predictive value. The grey 
vertical line denotes as the no information for year 2-, 4-, 6-, and 9-year outcome, respectively. Accuracy values were compared to the no-information rate by using a 
one way ANOVA test of which the p values are as follows: 
** p value < .01 
*** p value < .001 
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Fig. 4. Predicting health status (multinominal outcome) at 2-, 4-, 6-, and 9-year follow up with baseline and 1-year sum scores and individual item-scores (predictor 
Set B). All predictor sets included baseline psychiatric diagnoses and demographic variables. Predictor Set B further includes baseline and 1-year follow-up sum scores 
and individual items. PPV denotes as positive predictive value. NPV denotes as negative predictive value. The grey vertical line denotes as the no information rate for 
year 2-, 4-, 6-, and 9-year outcome, respectively. Accuracy values were compared to the no-information rate by using a one way ANOVA test of which the p values are 
as follows: 
*** p value < .001 
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particular, mood disorders could not be distinguished well. 
Our results support those of previous ML studies that reported 60% 

to 82% of correctly predicted mood and anxiety diagnoses when using a 
broad spectrum of predictor variables (Bokma et al., 2020; Chekroud 
et al., 2016; Dinga et al., 2018; Kessler et al., 2016; Lee et al., 2018; Nie 
et al., 2018). One of these studies used a subset of the NESDA dataset 
that included patients with a depression at baseline and a more exten-
sive set of clinical, behavioral, and biological baseline-only variables in 
order to predict the course of depression, resulting in accuracy levels of 
62–66% (Dinga et al., 2018). A similar study, within a subset of anxiety 
patients in NESDA (again using an extensive set of predictors) found an 
accuracy for predicting anxiety recovery of 62% and a accuracy of 
predicting recovery of all common mental disorders of 63% (Bokma 
et al., 2020). In contrast to these prior studies, we only used data that 
could be easily collected in clinical practice, including 1-year follow-up 
data as predictor variables. Despite our dataset not being as rich and 
diverse, we achieved a higher overall accuracy which was significantly 
higher than the no-information rate (Bokma et al., 2020; Dinga et al., 
2018). However, these results cannot be compared easily. Our often 
higher accuracy values were likely in part due to our inclusion of healthy 
participants. The predictive performance when predicting the disorder 
value were similar and the large proportion of the healthy health status 
outcomes resulted in unbalanced sensitivity and specificity values when 
models were optimized to maximum overall accuracy. Prior studies 
lacked thorough comparisons to (logistic) regression models, and 
thereby failed to address the additional value of ML methods over 
“traditional” data-modelling methods. 

Previous ML studies in the field of psychiatry used a wide variety of 
ML methods, ranging from regression trees to gradient boosting 
machines—methods that were included in Auto-sklearn (Chekroud 
et al., 2016; Kessler et al., 2016). In line with an earlier study, we found 
that depending on the predictor set, more complex ML methods do not 
necessarily result in higher similar levels of accuracy when predicting 
future outcomes of mood disorders (Nie et al., 2018). Two previous 
studies found that when optimized on overall level of accuracy, ML 
methods were about 1–6% more accurate compared to regression 
analysis and needed fewer predictor variables when predicting the 
persistence of mood disorders at a 12-week follow up (Chekroud et al., 
2016; Kessler et al., 2016). Although level of accuracy was higher for 
ML, this difference was not found to be significant in either study 
(Chekroud et al., 2016; Kessler et al., 2016). Several studies found that 
ML was of only limited added value in research (Belsher et al., 2019; 
Christodoulou et al., 2019; van Mens et al., 2020) and clinical usefulness 
(Tran et al., 2019). Although we did not find any published reviews 
within the field of psychiatry, within other fields the added value of ML 
has been notably criticized (e.g., Christodoulou et al., 2019; Desai et al., 
2020; Frizzell et al., 2017). However, it is possible that ML does 
outperform traditional methods when more complex (large) datasets are 
used (Iniesta et al., 2016; Wang et al., 2018). More advanced ML 
methods have the capability to distinguish which variables in large 
datasets are relevant or irrelevant for prediction, whereas traditional 
(regression) models rely on the researcher or clinician to select variables 
of interest to a particular analysis. ML therefore requires less human 
input. Although regression models sequentially analyze the relationship 
between variables, ML approaches can iteratively and contemporane-
ously analyze multiple interacting associations between variables or 
variable sets. Indeed, ML approaches may potentially be better suited to 
complex datasets with a large amount of predictors, while limiting the 
risk of overfitting (Lee et al., 2018). These advantages were confirmed 
by our findings. Auto-sklearn outperformed the other two models when 
our predictor sets included more variables, that is, they were more 
complex. 

ML, especially when automated, has the potential for use in mental 
healthcare. Deciding what information to collect from patients and 
making predictions on the micro and macro level based on that infor-
mation are important aspects of a clinician’s skill set. This includes 

predictions regarding suicide risk, violence, the efficacy of treatment 
options, and the prognoses on the course of disorders (Ægisdóttir et al., 
2006). The accuracy of these predictions is of vital importance for in-
dividual patients. Two major approaches to predict clinical outcomes 
can be identified: the clinical and the statistical method. The clinical 
approach refers to an informal and intuitive process in which the 
clinician combines and integrates patient data. A clinician’s experience, 
interpersonal sensitivity, and theoretical perspective combined with a 
patient’s characteristics and circumstances determine how that clinician 
recalls, synthesizes, and interprets all these bits of information 
(Ægisdóttir et al., 2006). With a statistical approach, statistical methods 
are applied on objectively measured variables in order to make pre-
dictions and prognoses based on probabilities (Ægisdóttir et al., 2006). 
Two meta-analyses demonstrated that statistical approaches were more 
accurate than clinical methods (Ægisdóttir et al., 2006; Grove et al., 
2000). Our study found that moderate levels of accuracy can be 
accomplished based on data that can be easily collected in clinical 
practice, confirming that integrating statistical methods into clinical 
decision making could provide added benefits. Current mental health-
care is already partly digitalized, and the development of automated 
digital tools to assist clinicians should be attainable, providing clinicians 
fast and cheap support in decision making. Automated ML can be 
developed into such a tool because its automated techniques can match 
or improve upon expert human performance in certain ML tasks—often 
in a shorter amount of time (Waring et al., 2020). Moreover, 
Auto-sklearn demonstrated that it can perform even under rigid time 
and computational resource constraints (Feurer et al., 2015). Automated 
ML is already demonstrating its usefulness in healthcare practice 
(Waring et al., 2020). 

There are several study limitations that need to be discussed. First, 
despite the marginal differences between DSM-IV-TR and DSM-5 criteria 
for mood and anxiety disorders, the diagnostic classifications used in 
this study were slightly outdated but were chosen to be kept constant 
during the follow-up waves (Regier et al., 2013). Despite our relatively 
large sample size, our analyses could not be carried out for each diag-
nosis separately (e.g., dysthymia, panic disorder, etc.) because the 
samples would have become too small. Second, in contrast with other 
studies, we did not replicate our findings with an independent dataset 
(Chekroud et al., 2016; Nie et al., 2018). Although we made use of a 
training and testing dataset, it is possible that the results from the ML 
methods and regression analyses differed in generalizability to other 
datasets, which could not be assessed with our current study design. 
Third, NESDA is an observational cohort study, and different types of 
pharmacological and psychotherapeutic treatment were not taken into 
account as predictor variables. Fourth, we included both healthy par-
ticipants and patients, testing concomitantly the prediction of the course 
and onset of depression and anxiety. The proportion of healthy controls 
may have influenced the predictive models because their homeostatic 
responses to internal or external stimuli do not represent that of psy-
chopathologic disorders (Regier et al., 1998). The large proportion of 
the healthy health status outcomes resulted in unbalanced sensitivity 
and specificity values when models were optimized to maximum overall 
accuracy. Fifth, differentiating depression, anxiety, and comorbid dis-
orders as multinomial variables was especially poor and may have been 
unrealistic because anxiety disorders and depression have overlapping 
risk factors and high levels of (subclinical) comorbidity (Jacobson and 
Newman, 2017; Shorter and Tyrer, 2003). Sixth, ML may have more 
added value when the dataset is more complex, such as imaging or ge-
netic data (Iniesta et al., 2016; Lee et al., 2018; Wang et al., 2018). 
Although our data was easy to collect in clinical practice, it may have 
lacked the complexity that is needed for ML methods to excel. Finally, 
because of its automated features, Auto-sklearn acts like a black box, 
which made it difficult for us to examine which individual features were 
most predictive. Nevertheless, significant levels of accuracy were ach-
ieved when predictor sets included sociodemographic, baseline di-
agnoses, and self-reported sum scores, which did not significantly 
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improve when variables were added, suggesting that these were the 
most important predictor variables. 

In conclusion, we found that moderately high levels of accuracy 
could be achieved when predicting dichotomous outcomes with easy-to- 
collect data. Auto-sklearn did not achieve the highest level of accuracy 
in every set of predictors, compared to traditional logistic regression and 
a naïve Bayes classifier. However, it was most consistent regardless of 
the set of predictor variables, and it outperformed the other models 
when the predictor sets were more complex (i.e., individual item scores). 
In time, clinical practice may benefit from integrating next generation 
automated ML methods into clinical decision making. 
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