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A B S T R A C T   

In this paper we analyse the classification of zoological illustrations. Historically, zoological illustrations were 
the modus operandi for the documentation of new species, an Currently, they serve as crucial sources for long- 
term ecological and biodiversity research. By employing computational methods for classification, the illustra
tions can be made amenable to research. Automated species identification is challenging due to the long-tailed 
nature of the data, and the millions of possible classes in the species taxonomy. Success commonly depends on 
large training sets with many examples per class, but images from only a subset of classes are digitally available, 
and many images are unlabelled, since labelling requires domain expertise. We explore zero-shot learning to 
address the problem, where features are learned from classes with medium to large samples, which are then 
transferred to recognise classes with few or no training samples. We specifically explore how distributed, 
multimodal background knowledge from data providers, such as the Global Biodiversity Information Facility 
(GBIF), iNaturalist, and the Biodiversity Heritage Library (BHL), can be used to share knowledge between classes 
for zero-shot learning. We train a prototypical network for zero-shot classification, and introduce fused pro
totypes (FP) and hierarchical prototype loss (HPL) to optimise the model. Finally, we analyse the performance of 
the model for use in real-world applications. The experimental results are encouraging, indicating potential for 
use of such models in an expert support system, but also express the difficulty of our task, showing a necessity for 
research into computer vision methods that are able to learn from small samples.   

1. Introduction 

Zero-shot learning (ZSL) aims to recognise objects whose instances 
have not yet been seen during training, based on semantic knowledge, e. 
g., attributes (Ferrari and Zisserman, 2007; Lampert et al., 2014), shared 
among seen and unseen classes. Datasets have been set up to facilitate 
progress in the field and demonstrate the possibilities and advantages of 
zero-shot learning (Lampert et al., 2014; Patterson and Hays, 2012; Wah 
et al., 2011). 

We argue there is a need for research that analyses the performance 
of zero-shot learning models on complex real-world data, collected to 
fulfill a need within a certain domain, e.g., (Sumbul et al., 2018; Van 
Horn et al., 2018). Specifically data from domains where the solution 
space is large and complex, and obtaining labels for training is costly or 

simply not feasible. When algorithms are evaluated on highly imbal
anced large-scale datasets, results are often poor. Xian et al. show that 
experiments of state-of-the-art zero-shot learning algorithms achieve 
only ~1.3% top-1 per-class accuracy on the 5000 least populated classes 
in ImageNet, and only ~0.4% top-1 accuracy for generalised zero-shot 
learning (GZSL) (Xian et al., 2019), where the classifier must choose 
the correct class from both seen and unseen classes. 

In this paper we introduce and analyse an imbalanced, sparsely 
populated and hierarchical large-scale dataset for zero-shot learning. 
The dataset comes from the natural history domain, consists of 14,502 
zoological illustrations of 7973 species from the animal kingdom, and is 
formed by consolidating data used and managed by the biodiversity 
research community. Automated species identification is a much 
researched problem within the computer vision and pattern recognition 
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domain, but, to the best of our knowledge, no approaches have been 
described to deal with the wealth of detailed zoological illustrations 
(example shown in Fig. 1). Reasons could be that samples are small due 
to the nature of the data - many rare species have been depicted in small 
quantities - and because numerous institutions have yet to start with the 
digitisation of their collections (Drew et al., 2017). Ultimately, auto
mated methods can assist biodiversity experts in the formation of a 
global picture of historical and current biodiversity, something that is 
crucial given the current biodiversity crisis (Hedrick et al., 2020). 

1.1. Zoological illustrations 

Historically, the habitus illustration - a scientific illustration of a 
species’ physical appearance - was the most important medium to 
convey a species’ characterising traits to other scientists. In illustrations, 
scientists are capable of delineating and highlighting minuscule details, 
often more so than photographs. Habitus illustrations were routinely 
and abundantly created and commonly served as examples for the 
description of newly discovered species, so-called holotypes. Addition
ally, they sometimes recorded the habitat or behaviour of an organism. 
Over the last 250 years, a large number of zoological species have been 
observed and documented this way, by means of expeditions to bio- 
diverse areas worldwide. 

Research into these scientific illustrations is complicated by several 
challenges. First, most illustrations are stored in museum repositories 
and archives that are not disclosed for generic use. Digitisation projects 
are currently ongoing worldwide to address this challenge, but as of 
now, most collections remain offline (Hedrick et al., 2020). Second, il
lustrations published as online digital collections can be used for 
research, but are often published with limited or no identifications 
(unique labels), which are required to study the illustrations. Most do 
contain captions with handwritten historical names, as is demonstrated in 
Fig. 1, but these are mostly unpublished or obsolete within today’s 
taxonomy. Finally, the identification of an organism from a photograph 
or illustration, using the system of biological classification, is a complex 
and delicate task, even for domain experts (Austen et al., 2016). 

Automated methods can significantly reduce the time and effort 
required by scholars to identify and classify the images. Easy access to 
taxonomic classifications of illustrations facilitates research into the 
historical abundance, range and variation of species. The current 

biodiversity crisis increases the importance of such historical studies as 
these provide a longer-term view of changes to biodiversity. In this 
study, we investigate: to what extent can zero-shot learning support the 
classification of zoological illustrations? 

1.2. Automated classification 

Photographs and illustrations of species are quite distinct. In illus
trations, the background (natural habitat) is often omitted and species 
are depicted in the form of collages of multiple (smaller) depictions of 
their external and internal anatomy (e.g., bones, organs, limbs). These 
appear in a combination of various views (e.g., frontal, dorsal, lateral). 
Moreover, illustrations exist as rough pencil sketches and/or detailed 
colour drawings and commonly contain handwritten captions. To 
illustrate the differences between photographic and illustration data, 
three depictions and two photographs of the species Lepas (Anatifa) 
anserifera Linnaeus, 1767 can be observed in Figs. 2 and 3. 

The dissimilarity of the two modes demands training or fine-tuning a 
(pre-trained) classifier on the illustrations. However, this is a non-trivial 
task. For classifying zoological illustrations, only small samples from a 
subset of species described in modern taxonomy are available for 
training, and these samples are smaller for rarer species. Therefore, 
standard supervised classification models overfit the training data, and 
do not capture the totality of the problem. 

Moreover, testing the model on a test-set does not guarantee its 
value’in the wild’. Due to various factors, there is always a divergence 
that affects performance: a change in distribution or differences in 
feature space (Wang and Deng, 2018). Illustrations, for instance, vary in 
use of materials, drawing style and method, and can portray zoological 
species unknown to the model. 

1.3. Approach 

Below we formulate a research approach that copes with the afore
mentioned challenges. To address the first challenge of handling long- 
tailed data with small or no samples, our approach uses a non- 
standard learning strategy called zero-shot learning (ZSL). With ZSL, it 
is possible to exploit data from auxiliary data sources to form semantic 
descriptions of classes, which can help to classify images from unseen 
classes: classes that are not observed by the classifier during training, 

Fig. 1. Zoological illustrations from Iconographia Zoologica online https://bijzonderecollecties.uva.nl/gedeelde-content/beeldbanken/iconographia.html (best 
viewed in colour). Images free of known restrictions under copyright law (Public Domain Mark 1.0). 
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and hereby to push the boundaries of automated recognition for a spe
cific problem. Such a classifier is also more flexible to deal with new 
definitions of classes, and therefore better formulates real world con
ditions. This is especially useful for biological taxonomy, where the 
solution space is large, new class definitions can be introduced, and old 
ones can be revisited. To avoid overfitting, our approach additionally 
exploits image representations learned from another task - the recog
nition of zoological photographs - to extract meaningful features for our 
task (Oquab et al., 2014). Moreover, we use a biological taxonomy as a 
label hierarchy for training, and hereby have access to a larger number 
of labelled examples for groups higher up the label hierarchy. We 
evaluate our approach on the Zoological Illustration and Class Embed
ding (ZICE) dataset, that we introduce in this paper. 

To address the second challenge, we evaluate the trained model’in 
the wild’, on a dataset collected under different conditions. To this end, 
our approach uses a second independent collection of illustrations 
without annotations, to analyse the final species embedding model. 

Our contribution is threefold:  

1. We introduce the Zoological Illustration and Class Embedding 
dataset (ZICE) constructed from real-world data. It consists of: (i) 
14,502 biological illustrations of 7973 species from the animal 
kingdom, with labels organised hierarchically, and (ii) class 

embeddings from 3 different sources - a hierarchy (taxonomy), his
torical texts and photographs.  

2. We introduce and evaluate a zero-shot learning (ZSL) approach for 
fine-grained hierarchical classification. We use the prototypical 
networks introduced by Snell et al. in (Snell et al., 2017) and intro
duce: fused prototypes (FP), and hierarchical prototype loss (HPL). Our 
approach is evaluated on the ZICE dataset.  

3. We provide a qualitative analysis of the performance of our ZSL 
approach in a real-world scenario on an independent verification-set: 
a collection of 1088 unlabelled zoological illustrations, collected 
during a historical biodiversity expedition (Weber, 2020). 

The rest of this paper is organised as follows. In Section 2 we discuss 
related work on automated species classification and zero-shot learning. 
We discuss the data in Section 3, the methodology in Section 4, the 
experimental setting in Section 5 and the experiments in Section 6. We 
close the paper with an analysis and discussion of the results in Section 
7, and our conclusions in Section 8. 

2. Related work 

Below, we discuss datasets related to computer vision and biodi
versity, where we briefly mention recent work that leverages contextual 

Fig. 2. Scientific illustrations from the Iconographia Zoologica 0 of Lepas (Anatifa) anserifera Linnaeus, 1767, with handwritten (historical) name Anatifa laevis 
Bruguière, 1789 (best viewed in colour). (a) species within shell, (b) shell of species, (c) species without shell. Images free of known restrictions under copyright law 
(Public Domain Mark 1.0). 

Fig. 3. Photographs of the species Lepas (Anatifa) anserifera Linnaeus, 1767 (Goose Barnacle), taken from iNaturalist. https://www.inaturalist.org/ (best viewed in 
colour). (a) Observation © David R. https://www.inaturalist.org/observations/25983495 (b) Observation © mervyngreening. https://www.inaturalist.org/obs 
ervations/34793791 Images are licensed under CC BY-NC 4.0. 
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information for fine-grained classification, and provide a short survey of 
the field of zero-shot learning. 

2.1. Computer vision and biodiversity 

Recognising and identifying species in images is a well researched 
problem within the computer vision field. Most popular datasets contain 
classes of animals, (often birds), or plants (Beery et al., 2020b; Berg 
et al., 2014; Kumar et al., 2012; Lampert et al., 2009; Nilsback and 
Zisserman, 2006; Van Horn et al., 2015; Van Horn et al., 2018). A citizen 
science project called iNaturalist,1 allows users to upload photographs of 
organism encounters in the wild. Since 2017, a new dataset has been 
published every year as part of the iNaturalist Competition FGVC6 for 
fine-grained image classification.2 Computer vision models trained on 
such datasets are much better prepared for the automatic identification 
of species in the wild. Nevertheless, much variation still exists among 
data captured for various tasks, such as between observation data from 
iNaturalist, and data collected from motion-triggered camera traps.3 

Recent datasets therefore combine data captured for distinct tasks to 
model the variation that exists among photographs of species observa
tions (Beery et al., 2020b). 

To improve automated classification of species in images, recent 
work has demonstrated the usefulness of leveraging contextual data for 
the improvement of classification models, for instance the use of spatio- 
temporal data often accompanying observations to aid fine-grained 
classification (Beery et al., 2020a; Chu et al., 2019; Mac Aodha et al., 
2019). Moreover, zero-shot learning methodologies allow researchers to 
leverage contextual information from multimodal sources to calculate 
measures of similarity between classes (Akata et al., 2015a; Sumbul 
et al., 2018). Such contextual information can greatly aid a model to 
distinguish between visually similar classes where small samples are 
available for training. 

In addition to photographs of species, there are examples of models 
trained for the automated classification of plants in herbaria (Belhumeur 
et al., 2008). While a great deal of work is spent capturing often unclear 
images of species in the wild, a wealth of detailed zoological illustrations 
are under-utilised. Reasons could be that samples are small, many 
classes are under-represented, and numerous institutions have yet to 
start with the digitisation of their collections (Drew et al., 2017). 

2.2. Zero-shot learning 

While standard supervised image classification methods learn to 
recognise classes by observing examples of those classes during training, 
zero-shot learning (ZSL) aims to recognise classes for which no examples 
were observed during training, y ∈ Y ts, from examples of classes 
observed during training, y ∈ Y tr, using between-class feature transfer. 
With a training set T = {(x1y1),…, (xNyN)} ∈ Y tr, and embedding 
functions φ : Y →Ỹ and θ : X →X̃ , the task is to learn a compatability 
function f : X̃ →Ỹ . At test time, the function is used to classify test 
images from the set of unseen classes Y ts. 

With θ, every image xi ∈ ℝD from Y tr, is embedded in visual feature 
space, θ(xi) ∈ ℝM, called an image embedding. Most commonly, θ is a 
Convolutional Neural Network (CNN). After training the CNN, the top of 
the network - often just the softmax layer - is removed and an image 
embedding function remains. 

With φ, every class yi ∈ {1,…,K} is mapped to a vector in semantic 
embedding space, φ(yi) ∈ ℝM, called a class embedding. The semantic 
embedding space is either (i) created manually, through class annota
tions or attributes (Ferrari and Zisserman, 2007; Lampert et al., 2014), 

or (ii) learned from auxiliary information such as taxonomies (Barz and 
Denzler, 2019; Tsochantaridis et al., 2005) or texts (Harris, 1954; 
Mikolov et al., 2013a; Pennington et al., 2014). Attribute embeddings 
encode whether a certain attribute - from a set of predefined attributes - 
is present for a specific class. Attribute embeddings can be either binary 
or continuous, e.g., {wing: 0.1, red: 0.4, tail: 0.7} and fall within the 
interval [0,1]. Learned embeddings are continuous and represent simi
larities between classes more abstractly. Class embeddings from various 
sources can be used to complement one another; combining them often 
results in a higher accuracy (Akata et al., 2015a; Akata et al., 2015b; 
Sumbul et al., 2018). Combining class embeddings can be done in 
different ways, for instance by concatenating the class embeddings or 
combining compatibility scores (Akata et al., 2015a). We refer to (Akata 
et al., 2015a) for an extensive evaluation of class embeddings. 

Most common ZSL methods learn either a linear (Akata et al., 2015a; 
Akata et al., 2015b; Frome et al., 2013; Romera-Paredes and Torr, 2017) 
or a non-linear (Socher et al., 2013; Xian et al., 2016) compatibility 
function between the two feature spaces. Prototypical networks (Snell 
et al., 2017) belong to the latter group. They learn deep visual-semantic 
models, such as DeViSe (Frome et al., 2013) and Cross-modal transfer 
(CMT) (Socher et al., 2013), in which the visual object recognition 
network is trained to predict the class embedding vector in semantic 
embedding space, which is learned from auxiliary data. While all 
methods achieve impressive results on small- and medium-scale data
sets, the more realistic variant generalised zero-shot learning (GZSL), that 
aims to classify both seen and unseen classes, performs poorly for unseen 
classes (Socher et al., 2013): the model overfits to seen classes and 
therefore favours seen over unseen classes at test time. Hence, zero-shot 
learning models embedded in real world applications should include a 
method for dealing with this issue. For an extensive comparison of state- 
of-the-art of zero-shot learning and generalised zero-shot learning 
methods, we point to the work of Xian et al. (Xian et al., 2019). In our 
work we use prototypical networks for zero-shot learning because they 
are state-of-the-art models within the few- and zero-shot learning 
domain (Snell et al., 2017). 

3. The data 

In this section, we discuss the Zoological Illustration and Class 
Embedding (ZICE) dataset (see Subsection 3.1), used for training, vali
dating and testing our zero-shot learning approach, and an independent 
verification-set (in Subsection 3.2) used to analyse the zero-shot 
learning results in a real-world scenario (in Section 7). Both datasets 
are published online.4 

3.1. The ZICE dataset 

The Zoological Illustration and Class Embedding (ZICE) dataset 
contains illustrations, from the Iconographia Zoologica online collec
tion,1 and class embeddings corresponding to the classes represented in 
the illustrations. 

3.1.1. Illustrations 
The Iconographia Zoologica is a 19th century collection of biological 

illustrations from the Artis Library of the University of Amsterdam. The 
collection was formed by three collectors: the well-known collector and 
naturalist Th. G. van Lidth de Jeude, the zoologist R.T. Maitland and the 
curator of the shell collection at the Amsterdam Zoo, Abraham Oltman, 
together with the Amsterdam society Natura Artis Magistra. In the 21st 
century, the collection was digitised and labelled with either complete 
binomial species names (genus and specific epithet) or corresponding 
genera. The full online collection contains over 26,500 pages of 
zoological illustrations. 

1 https://www.inaturalist.org/  
2 https://www.kaggle.com/c/inaturalist-2019-fgvc6  
3 https://github.com/microsoft/CameraTraps 4 https://github.com/lisestork/ZICE-dataset 
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We have cross-referenced the illustration labels with the June 2018 
backbone taxonomy (GBIF Secretariat, 2018) of the Global Biodiversity 
Information Facility (GBIF),5 a central repository for biodiversity 
occurrence data. For 14,502 illustrations of 7973 species, labels could be 
cross-referenced directly with GBIF without extra domain expert cura
tion. Matches were only accepted when the names had the status 
“accepted” in the GBIF taxonomy, as using labels with the status “un
accepted” or “synonym” to train a ZSL model could prove problematic. 
Some synonyms, for example, refer to both a plant and an animal. As a 
result, visual features would map to incorrect semantic representations. 
By the automated matching process, all classes in the ZICE dataset are 
organised according to a taxonomy. Fig. 4 shows twelve example 
illustrations. 

3.1.2. Notation 
A biological taxonomy can be seen as a tree datastructure, in which 

species are represented as leaf nodes, and parent classes represent their 
higher classifications based on features shared with other species. In the 
rest of this paper, we refer to the biological taxonomy by the term label 
hierarchy, and we refer to the various ranks (depths of the tree) by levels. 
The hierarchy consists of seven levels: kingdom, phylum, class, order, 
family, genus, species (genus + specific epithet). We use D =

{(x1, y1, t1),…, (xN, yN, tN)} to refer to the ZICE dataset, where each xi ∈

ℝD represents a D-dimensional feature vector of an image, each yi ∈ {1, 
…,K} represents its species label, where K thus indicates the number of 
leaf nodes of the label hierarchy, and ti = [t1,...tL] represents its full path 
of labels, one from each level and ordered from fine-grained to course- 
grained such that ti[1] = yi, and where L indicates the number of levels 
in the label hierarchy. 

3.1.3. Class embeddings 
To train our zero-shot learning model, we have generated class em

beddings whose classes match those from the illustrations. They come 
from three different sources: (i) the GBIF backbone taxonomy (GBIF 
Secretariat, 2018), (ii) literature from the Biodiversity Heritage Library 
(BHL) (Gwinn and Rinaldo, 2009) and (iii) photographs from the iNa
turalist 2018 challenge dataset (Van Horn et al., 2018). Information on 
how these embeddings are produced is given in Section 4. 

3.2. The verification-set 

The Committee for Natural History of the Netherlands Indies 
(1820–1850) was founded by King William I of the United Kingdom of 
the Netherlands. Their primary task was the collection of information on 
natural resources in the Dutch Indies. In addition, they were deployed to 
observe and describe the local flora and fauna (Weber, 2020). As a 
result, many specimens, biological illustrations and observation de
scriptions were brought back to the Netherlands for closer investigation, 
with the aim to publish results on the natural diversity of the Dutch 
Indies (Weber, 2020). Currently, the physical collection is stored at the 
Naturalis Biodiversity Center in Leiden. In 2008 the archival part of the 
collection was digitised (scanned), but due to a lack of annotation, it still 
remained inaccessible to biodiversity researchers. Currently, the 
collection serves as a use-case for the Making Sense of Illustrated 
Handwritten Archives Project6 of which this work is part. We use 1088 
illustrations from the collection to evaluate the model in a realistic 
setting. Example illustrations are presented in Fig. 5. 

4. Methodology 

In this section, we describe the mathematical formulation of our 
approach: the zero-shot learning model (ZSL) (in Subsection 4.1), image 

embeddings (in Subsection 4.2), class embeddings (in Subsection 4.3), 
our method for (i) combining class embeddings: fused prototypes (FP) (in 
Subsection 4.4), and (ii) for calculating hierarchical prototype loss (HPL) 
based on the label hierarchy (in Subsection 4.5). 

4.1. Zero-shot learning model 

Prototypical networks for few-shot learning, as described in (Snell 
et al., 2017), compute M-dimensional class representations ck ∈ ℝM 

called class prototypes. They do so by embedding Ns support points 
{(x1, y1),…, (xN, yN)} ∈ S from Nc classes with an embedding function 
fϕ : ℝD → ℝM, and taking the per-class average of the resulting embedded 
support points, see Eq. (1). In Eq. (1), S k refers to the set of support 
points for class k, and ck refers to its calculated prototype. We further 
refer to the space ℝM by the term prototype space. 

ck =
1

|S k|

∑

(xi yi)∈S k

fϕ(xi) (1) 

To train the network, prototypical network loss (PNL) is calculated 
by mapping a set of Nq query points: {(x1, y1),…, (xN, yN)} ∈ Q from the 
same Nc classes to prototype space. In prototype space, distances from 
the query points to the class prototypes are computed so that, based on a 
softmax over these distances, a distribution over classes is obtained. 
Parameters ϕ are learned by minimising the negative log-probability of 
the true class k via Stochastic Gradient Descent. The network is trained 
with mini-batches. Each mini-batch consists of Nc classes, Nq query 
points and Ns support points, and is called an episode. 

For zero-shot learning, Snell et al. (Snell et al., 2017) mention that 
rather than embedding support points in prototype space, prototypes 
can be constructed by embedding auxiliary information, e.g., class em
beddings in the form of attribute annotations, in prototype space. In 
their paper they use binary attribute vectors from the CUB-200-2011 
dataset (Wah et al., 2011). They extract features from different crops 
of the images using a pre-trained model and map them to prototype 
space using a linear model with one layer. Similarly, they use a single- 
layer linear model to map the attributes to prototype space and proto
typical training proceeds as in the few-shot setting. Rather than relying 
on one source (such as attributes), we rely on a combination of class 
embeddings from three distinct sources. 

4.2. Image Embeddings 

We embed images x ∈ X of zoological illustrations in a lower 
dimensional feature space using a deep Convolutional Neural Network 
(CNN) θ(x) : X →X̃ . We will use θ to refer to the image embeddings. To 
make sure we don’t learn features specific to our dataset (such as an 
illustrator’s mark or a label). We transfer image representations learned 
from photographs (the source dataset) to illustrations (the target dataset) 
(Oquab et al., 2014). We use the inception V3 model (Szegedy et al., 
2016), and import weights learned on the iNaturalist 2018 competition 
dataset.7 For zero-shot learning, image embeddings are often generated 
using CNNs pre-trained on a source task (e.g., the ImageNet task (Deng 
et al., 2009)). The choice of model is crucial as the quality of the image 
embeddings has a big impact on the performance of the ZSL model. 
Therefore, we have chosen to use a model that was trained on a task 
more similar to ours. Xian et al. (Xian et al., 2019) mention that class 
overlap between classes from the source and target dataset leads to an 
unwanted positively biased result. However, our goal is not to compare 
between various state-of-the-art zero-shot learning methods, but rather 
to provide insights for training a model that is able to generalise to new 
data within the target domain. 

5 https://www.gbif.org/  
6 www.makingsenseproject.org 7 https://github.com/macaodha/inat_comp_2018 
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4.3. Class embeddings 

Below we describe details concerning the embedding functions that 
map classes yi ∈ Y , the set of leaf nodes from the label hierarchy, to 
vectors φ(yi) ∈ ℝM in M-dimensional semantic embedding space: 
φ : Y →Ỹ . As each embedding comes from a different domain, all 
embeddings are l2-normalised. For brevity, we use φk

i to refer to the class 
embeddings of source i for class k. 

4.3.1. A hierarchy (φh) 
Through the GBIF backbone taxonomy, we had access to the ground 

truth list of higher taxon labels for nearly all classes (see Table 1 for class 

statistics). For 53 classes, no (or an incomplete) higher classification was 
available. Using the deterministic algorithm from Barz et al. (Barz and 
Denzler, 2019), we have projected all 7920 classes onto a unit sphere of 
dimensionality N - where N is the number of classes. The negated dot 
product between classes on the sphere represents their semantic simi
larity. This similarity is based on the ratio of overlap between their 
ground truth list of higher taxon labels - nodes in the hierarchy. Part of 
the label hierarchy is given in Fig. 6. 

4.3.2. Texts (φt) 
To facilitate semantic search over large textual biodiversity archives, 

Nguyen et al. have constructed an inventory of name variants and syn
onyms from a large textual biodiversity corpus (BHL) (Nguyen et al., 

Fig. 4. Cropped example illustrations from the ZICE train-set (best viewed in colour). Image (f), depicts the skull of a Rhinosceros unicornis and image (j) the tail of a 
Squilla hoevenii. Images free of known restrictions under copyright law (Public Domain Mark 1.0). 
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2017). For this task, they have computed word embeddings from multi- 
word terms -” chipping sparrows” becomes” chipping_sparrows” - 
mentioned in the corpus. They compared multiple methods for 
computing word embeddings: continuous-bag-of-words (CBOW) (Mikolov 
et al., 2013b), count-based (Turney and Pantel, 2010) and Global Vectors 
(GloVe) (Pennington et al., 2014). From these three, we rely on the 300 
dimensional multi-word GloVe embeddings. 

4.3.3. Photographs (φp) 
Features in photographs are quite distinct from those in illustrations, 

but their features capture the semantic similarity of the different classes 
they represent in a similar way. Hence, we have extracted 2048 

dimensional features from the iNaturalist 2018 dataset photographs, 
using the inception V3 model trained on the corresponding dataset 
(previously mentioned in Section 4.2). 

4.4. Combining class Embeddings 

Below we describe two methods for generating singular class pro
totypes for prototypical learning (see Section 4.1) from three distinct 
embeddings, each with a different dimensionality. 

4.4.1. Concatenated embeddings (CE) 
One method that is often employed to combine the different 

Fig. 5. Cropped example illustrations from the verification-set (best viewed in colour). Labels are unknown. Images free of known restrictions under copyright law 
(Public Domain Mark 1.0). 
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embeddings is concatenation, in which the dimensions of each class 
embedding (from distinct sources) are concatenated together. This re
sults in one sparse matrix with a large dimensionality. Similarly to Snell 
et al. (Snell et al., 2017), we learn a one-layer linear model on top of the 
concatenated class embeddings φ and on top of the the image embed
dings θ, mapping both to prototype space. 

4.4.2. Fused prototypes (FP) 
We implement fused prototypes, see Fig. 7. Essentially, fused pro

totypes fuse prototypes from a variable number of multimodal sources 
into a single prototype per class. We derive our implementation from the 
prototypical few-shot learning approach. Instead of using support points 
s ∈ S , we use φi ∈ Φ, the set of class embeddings from distinct sources 
{φ1,…,φN}. A simple one-layer linear model is learned on top of the 
feature space of each of the distinct φi’s as well as the image embeddings 
θ, mapping both to prototype space. In prototype space, the embedded 
φi’s are fused together, similarly to the way support points are fused to 
form class prototypes for few-shot learning, see Eq. (2). 

ck =
1
|Φ|

∑

(φi
kyk)∈Φ

fϕi
(
φi

k

)
(2) 

In that equation, ck refers to the class prototype for class k, and fϕi 

refers to the linear model that maps the individual class embeddings 
from φi to prototype space. We hypothesise that fused prototypes will 
perform better than concatenated embeddings, as the latter introduce 
one large sparse input space whereas fused prototypes are optimised 
from multiple dense input spaces. 

4.5. Hierarchical prototype loss 

Hierarchical prototype loss (HPL) extends prototypical network loss 
(PNL), and is defined as the sum of the losses for each level of the label 
hierarchy (see Fig. 6). The loss for a specific level l is calculated by first 
computing temporary parent-class prototypes pk ∈ ℝM for that level from 
the set of class prototypes C = {(c1y1, t1),…, (cNyN, tN)}, see Fig. 7 and 
Eq. (3). In the Equation, C k refers to the subset of C containing all 
prototypes (ci,yi,ti) where ti[l] = k. As described in Section 4.1, 
distances of the query points to the temporary parent-class prototypes 
are then computed and the loss is calculated over these distances. The 

HPL is calculated by summing the losses for all L levels. 

pk =
1

|C k|

∑

(ciyi ,ti)∈C k

ci (3) 

By implementing HPL, we take a multi-granularity approach: we 
enforce a clearer separation of classes not only for the finest grain, but 
also for coarser taxonomic groups. As more labels are available for each 
level higher up in the label hierarchy, this intuitively supports the dis
covery of more robust features for the classification of coarser classes. 

5. Experimental setting 

In this section we discuss details regarding the settings of the 
experiment: the dataset splits (in Subsection 5.1), data augmentation (in 
Subsection 5.2), and evaluation criteria (in Subsection 5.3). 

5.1. Dataset splits 

As recommended by (Xian et al., 2019), we split the classes Y for 
training and evaluation based on the number of instances each of them 
contain. Since our dataset contains so few instances per class, (nk ∈

[1,283], μ: 1.79, σ: 3.93). We have used all classes with n ≥ 2 per class 
for the training set Y tr. Two examples per class is not sufficient to learn 
a good class representation, but the features of these illustrations are 
useful for between super-class feature sharing. Moreover, we exploit 
them for learning representations of classes on a higher taxonomic level, 
since a larger number of instances are available higher up the label hi
erarchy. All remaining classes with n = 1 were equally distributed over 
the validation set Y v, and the test set Y ts. Table 1 shows dataset sta
tistics per super-class. Since not all of the classes were represented in 
each source (GBIF, BHL and iNaturalist), each embedding (φh, φt, and φp 

respectively) represents a subset of Y . However, together they span the 
totality of classes Y . The super-class Animalia is used for classes that are 
not assigned to a phylum. 

5.2. Data augmentation 

For training, we used image embeddings extracted from augmented 
versions of all images, in order to increase the ability of the classifier to 
generalise the classification with respect to the data. Before cropping all 

Table 1 
Dataset statistics per super-class (phylum) total number of leaf node classes Y and instances N, the number of leaf node classes per split Y s, s ∈ {tr,v, ts}, the number of 
instances per split Ns, and the number of leaf node classes per embedding Y ϕe

, e ∈ {h, t,p}.  

Super-class (phylum) Y tot  Ntot 
Y tr  Y v  

Y ts  Ntr Nv Nts 
Y ϕh  

Y ϕt  
Y ϕp  

Arthropoda 2977 3740 620 1106 1251 1383 1112 1245 2977 218 14 
Chordata 2903 7358 1281 870 752 5736 878 744 2901 2050 475 
Mollusca 1423 2384 488 464 471 1449 464 471 1385 475 40 
Cnidaria 179 299 58 47 74 178 48 73 179 88 5 
Echinodermata 111 180 36 33 42 105 33 42 111 62 10 
Annelida 109 171 32 44 33 94 44 33 106 61 3 
Porifera 59 79 17 17 25 37 17 25 59 11 – 
Platyhelminthes 56 75 9 38 9 28 38 9 55 9 – 
Bryozoa 45 67 10 12 23 32 12 23 45 23 – 
Brachiopoda 37 38 1 23 13 2 23 13 37 2 – 
Nematoda 18 24 4 9 5 10 9 5 18 8 – 
Rotifera 17 20 2 7 8 5 7 8 17 12 – 
Ctenophora 14 33 5 2 7 24 3 6 14 6 – 
Nemertea 6 8 2 3 1 4 3 1 4 4 – 
Sipuncula 5 6 1 3 1 2 3 1 5 – – 
Acanthocephala 4 5 1 1 2 2 1 2 4 2 – 
Nematomorpha 2 6 1 1 – 5 1 – 2 1 – 
Onychophora 2 2 – 2 – – 2 – 0 2 – 
Cephalorhyncha 1 1 – 1 – – 1 – 0 1 – 
Chaetognatha 1 2 1 – – 2 – – 1 1 – 
Entoprocta 1 1 – 1 – – 1 – 0 1 – 
Animalia 3 3 – 2 1 – 2 1 0 3 – 
Total 7973 14,502 2569 2684 2717 9098 2702 2702 7920 3040 547  
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images, the largest side of each image was first resized to 300. During 
resizing, we kept the aspect ratio identical to the original image. 2048- 
dimensional features were extracted by applying the pre-trained 
Inception V3 model to crops (middle, upper left, upper right, lower 
left and lower right) of each resized original illustration and its hori
zontally flipped version. Crops containing only white space or text were 
manually discarded. 

5.3. Evaluation criteria 

In our experimental ZSL results (Subsection 6.2) we report two ac
curacy metrics: top-k accuracy and hierarchical accuracy@k. 

5.3.1. Top-k accuracy 
Flat top-1 accuracy does not always sufficiently portray the classi

fier’s capabilities. When the solution space is large, it is valuable for 
domain experts to obtain top-k predictions, as exemplified later in Fig. 9. 
We therefore report top-k accuracy, k ∈ {1,2,5,10}. This metric is 
computed by the percentage of images for which the correct label is 
among the top k predictions. 

5.3.2. Hierarchical accuracy@k 
For our task, classifying an illustration of a Boiga nigriceps as a Boiga 

dendrophila - both tree snakes - is less problematic than classifying it as a 

Procyon lotor, a common raccoon. In the former case, the classifier has 
learnt important coarse features specific to tree snakes, and has provided 
researchers with a partially incorrect, but valuable classification none
theless. For each illustration, we would therefore like to shed light on the 
accuracy of the entire label path from the label hierarchy. Hence, we 
additionally report hierarchical accuracy. Hierarchical @k precision is 
sometimes used as a metric for hierarchical datasets (Frome et al., 
2013). We report a new metric that we deem more informative in our 
context: average per-level accuracy, or hierarchical accuracy. It is 
computed by calculating the accuracy for each level in the label hier
archy and averaging over these, see formula 4. In formula 4, L refers to 
the number of levels for which we have labels and l to a specific level l. 

Hierarchical acc =
∑L

l=1

n correct preds in l
n samples in l

(4) 

Additionally, we report accuracies for labels k levels up the label 
hierarchy, where k ∈ {1,2,3}, thus referring to the accuracy for labels 
one, two and three levels up the label hierarchy respectively. 

6. Experimental results 

The following section is divided as follows: first we evaluate the 
image embeddings (Task 1) in a supervised classification setting (Sub
section 6.1), after which we evaluate each of the elements of our zero- 

Fig. 6. A subset of Y from the ZICE dataset, covering the phylum Anthropoda, with the corresponding label hierarchy (from left to right: phylum to species). Bold 
names indicate classes from Y tr, and numbers indicate number of instances within that class. 
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shot learning approach (Subsection 6.2): the class embeddings (Task 2), 
combining class embeddings (Task 3), hierarchical prototypical loss 
(Task 4), and an analysis of the final network, which incorporates re
sults from Task 2–4 (Task 5). 

6.1. Supervised classification and visualisation 

For Task 1, we selected image embeddings from the set of species 
that is disjoint from the set of species represented in the iNaturalist 2018 
dataset (on which the embedding function was trained), so as to obtain a 
deeper insight into the ability of the embedding function to find generic 
features. From this selection, we again selected a subset for classification 
and visualisation purposes: the 12 most populated classes from the 
family level (two levels up the label hierarchy). 

We show per-class, micro, macro and weighted average precision 

and recall results for a Support Vector Machine (SVM) trained on the 
subset, see Table 2. Additional to family labels (Table 2, 2 column), we 
show higher-taxon labels from the class level (Table 2, 1 column). The 
weighted average alters the macro metric to account for label imbal
ance. The support column indicates the number of actual occurrences of 
that class in the given subset. 

The SVM was trained using a stratified 80%–20% split for the train 
and test-set, respectively. Note that the classification results serve to 
provide an insight into the quality of the features rather than the diffi
culty of our task. For visualisation, we show a t-Distributed Stochastic 
Neighbor Embedding (t-SNE) (Maaten and Hinton, 2008) visualisation 
of the subset with family labels (see Fig. 8(b)). Also here, we present 
higher-taxon labels from the class level (see Fig. 8(a)). 

Looking at Fig. 8, we see that same-class image embeddings are 
visibly clustered. However, classes within certain taxon groups overlap, 
for instance, families within the class Mammalia, see the classes of Fig. 8 
(b) that are colored brown in Fig. 8(a). This effect is reflected in Table 2 
(see bold text): the image embeddings from only one of four families 
subsumed under the class Mammalia can be classified correctly (Canidae, 
with 100% recall). From the classifications and the precision value 
(48%) we find that image embeddings from other classes subsumed 
under the class Mammalia are also classified as Canidae, and thus a large 
part of the brown cluster from Fig. 8 is classified as the family Canidae 
(dog-like carnivores). 

The results of Task 1 show us that the features learned from the 
iNaturalist 2018 task are not sufficiently specific to properly classify all 
fine-grained classes in our task well. Therefore, further improving the 
image embeddings would improve zero-shot learning results, although 
the inter-class variation of species within certain taxon groups can be 
quite small. Some species within the order Coleoptera (beatles), for 
instance, can only be accurately identified after a close inspection of 
their genitalia (Choate, 1999). Visualisation of the features can give an 
indication up to which grain the features within specific taxon groups 
are sufficiently informative for proper classification. 

Table 2 
Classification precision, recall and f1 results for Task 1 in % (rounded off to 
whole integers) for a Support Vector Machine (SVM) trained on the image em
beddings belonging to 12 families (also visualised in Fig. 8(b)). Support indicates 
the number of actual occurrences of that class in the given subset. The top-1 per- 
class average accuracy is 43.58%.  

Class Family Precision Recall f1 Support 

Mammalia Bovidae 0 0 0 19 
Mammalia Canidae 48 100 65 33 
Insecta Carabidae 44 74 56 27 
Insecta Cerambycidae 56 85 68 26 
Mammalia Cercopithecidae 0 0 0 9 
Gastropoda Conidae 87 98 92 41 
Insecta Curculionidae 0 0 0 14 
Mammalia Equidae 0 0 0 12 
Insecta Melolonthinae 100 22 36 9 
Gastropoda Muricidae 67 55 60 11 
Insecta Staphylinidae 0 0 0 10 
Bivalvia Veneridae 82 90 86 10 

micro avg 60 60 60 221 
macro avg 40 44 38 221 
weighted avg 46 60 50 221  

Fig. 7. Fused prototypes (FP) (best viewed in colour). Figure derived from (Snell et al., 2017). Features from φi (here i is replaced by: a hierarchy (h), texts (t), and 
photographs (p)) are mapped into prototype space using separate one-layer linear models fϕi , and fused into one prototype per class ck. To illustrate hierarchical 
prototype loss (HPL), example temporary parent-class prototypes pk are depicted in transparent grey. 
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6.2. Fine-grained zero-shot learning 

All prototypical networks were trained using the Adam optimisation 
algorithm from pytorch.8 Episodes for training were comprised of Nc =

50, Nq = 1 and Ns = 0, similar to a balanced mini-batch of size 50. The 
validation loss was monitored during training and if, for 10 iterations, 
the loss did not decrease, the learning rate was decreased with a factor of 
0.5. We tuned hyper-parameters using hyper-parameter optimisation - 
tree-structured parzen estimators - and ended up with a learning rate of 
10− 4 and a weight decay of 10− 5. Early stopping on the validation loss 
was used to determine the optimal number of epochs for training. For 
each model, five different networks were trained. As a statistical test for 
comparing classifiers we used the McNemar test (Dietterich, 1998) for 
each classifier pair for all predictions of 5 runs accumulated. It is a test 
that works well for testing statistical significance when dealing with 
paired nominal data for comparing classifiers trained, validated and 
tested multiple times on the same splits of a dataset. Bold numbers 
indicate statistical superiority over other values within that column and 

cell (which separates tasks). A final model was trained, again 5 times, 
with the configuration that we found to work best. The last row of 
Table 3 indicates accuracy values for the majority guess, where the 
model simply always predicts the majority class. 

6.3. Evaluation (Task 2, 3 and 4) 

First, Table 3 presents results for Task 2, which show the perfor
mance of the networks trained, validated and tested with embeddings 
from each unique source separately, and additionally each combination 
of the three distinct embeddings . In order for the results to be compa
rable between all combinations, we used the totality of Y to train, 
validate and test the networks, despite the fact that each φi spans a 
subset of classes from Y (see the last row of Table 1). In case a class k 
was not represented in φi, the dimensions for φk

i were set to zero. In this 
context, the results inform us, first and foremost, about the contribution 
of each embedding to the overall accuracy (Table 3, Task 2, last row). 
We discuss each embedding separately. 

φh is the most complete and informative embedding. φt spans many 
classes (3040 out of 7973), but appears less informative. The prototyp
ical network trained with φt performs better than the majority guess for 

Fig. 8. t-SNE plots showing image embeddings of images from the ZICE dataset (should be viewed in colour). Plot (a) shows class level labels and (b) family level 
labels. Family labels come from a selection of 12 families of which the binomial name was not present in the iNaturalist 2018 dataset. The t-SNE algorithm was run 
for 5000 iterations with perplexity 20. 

Table 3 
Zero-shot learning (ZSL) classification results in % for Task 2, 3, 4 and 5. The 50-way classification accuracy for the final model was 35.53%, calculated by averaging 
results over 6000 randomly drawn episodes.  

Task Method φh φt φp Top-k acc Y ts  Hierarchical acc@k Y ts  

1 2 5 10 1 2 3 avg 

Task 2 N/A ✓ ⨯ ⨯ 2.29 4.12 8.9 15.34 5.93 13.23 43.74 36.38 
⨯ ✓ ⨯ 0.41 0.66 1.14 1.72 0.72 1.22 7.33 12.53 
⨯ ⨯ ✓ 0.55 0.85 1.47 2.15 1.03 2.81 15.29 18.26 

FP ✓ ✓ ⨯ 2.13 3.89 8.79 15.11 5.51 13.56 43.21 35.96 
✓ ⨯ ✓ 2.50 4.26 8.91 15.26 6.05 14.24 45.69 36.85 
⨯ ✓ ✓ 0.53 0.84 1.45 2.06 1.04 2.02 9.41 13.50 
✓ ✓ ✓ 2.42 4.29 9.10 15.37 5.98 14.22 45.09 36.70 

Task 3 CE (baseline) ✓ ✓ ✓ 2.09 4.05 8.96 15.54 5.45 13.42 44.76 36.41 
FP ✓ ✓ ✓ 2.42 4.29 9.10 15.37 5.98 14.23 45.09 36.70 

Task 4 FP + PNL ✓ ✓ ✓ 2.42 4.29 9.10 15.37 5.98 14.23 45.09 36.70 
FP + HPL ✓ ✓ ✓ 2.12 3.88 8.88 15.03 6.23 15.71 51.10 39.35 

Task 5 Final model ✓ ⨯ ✓ 2.77 4.74 9.64 16.02 6.94 16.65 50.71 39.67 
Majority guess – – – 0.04 0.07 0.19 0.37 2.85 3.26 21.87 18.66  

8 https://pytorch.org/docs/stable/optim.html 
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the top-k acc metric, but φt seems to harm the learning ability of the 
network when used in combination with other embeddings. This could 
be due to a myriad of factors. We believe the two most likely factors are 
that (i) the embedding is better suited for finding synonyms between 
taxon terms - as similar species are described similarly, and, (ii) that 
some names in the Biodiversity Heritage Library (Gwinn and Rinaldo, 
2009) are ambiguous: referring to one species in the historical texts, 
while they refer to another in modern taxonomy. Particularly, any his
torical unpublished name could have been published today as a different 
species. Matching them with sources from a modern taxonomy could 
therefore be problematic. Finally, the network trained with φp shows 
improvement over the majority guess, and φp complements φh, as the 
network trained with {φh,φp} improves over the accuracy of the model 
trained with just {φh (see Table 3, Task 2, row 1 and 5), specifically the 
hierarchical acc@2 (13.23% to 14.24%) and @3 (43.74% to 45.69%). 
We hypothesise that if we increase the number of instances and fine- 
grained classes used to generate φp, results could be improved further. 

Second, Table 3 presents results for Task 3: combining class em
beddings. CE represents the baseline model: it is comparable to the 
method used by Snell et al. (Snell et al., 2017) for zero-shot learning. 
Results for Task 3 show us that by using our fused prototypes (FP) 
formulation, we can increase the top-1 accuracy from 2.09% to 2.42% 
(see Table 3, Task 3). Such an increase is non-trivial. As the test-set 
contains an instance per class, with a total of 2702 classes (on the 
finest grain), an increase of 0.33% for the top-1 accuracy equals the 
capability of the classifier to correctly classify illustrations from an 
additional 9 unseen classes from different parts of the biological taxon
omy. Fused prototypes also induce a higher hierarchical accuracy @1 
and @2 (from 5.45% to 5.98% and 13.42% to 14.23%, respectively). 
When class embeddings from additional (informative) sources are used, 
we anticipate that this effect which we discuss in Section 4.4 will 
become more evident: the value of using fused prototypes over concat
enated embeddings will increase. 

Third, Table 3 gives results for Task 4, which show that using hier
archical prototype loss (HPL) improves the average hierarchical accu
racy significantly - from 36.70% to 39.35%. However, a decrease is 
measured for the top-1 and top-2 accuracy: from 2.42% to 2.12% and 
4.29% to 3.88% respectively. This effect demonstrates intra super-class 
variation of taxon groups, as it appears that learning better coarser 
features slightly complicates the classification of some fine-grained 
taxon groups. 

6.4. Final results (Task 5) 

A final model was trained 5 times using the best configuration - 
{φt,φp}, FP and HPL. Although implementing HPL decreases the top-1 
and top-2 accuracy, a substantial increase of the average hierarchical 
accuracy was measured. We therefore chose to implement it in the final 
model. 

Table 3 (Task 5) shows per-network averaged results for the final 
model on the test-set, and Table 4 gives results for the final model’s best 
network, detailed per super-class. Table 4 serves to provide a deeper 
insight into the trained network. Evidently, illustrations from some 
super-classes were not recognised at all due to their limited contribution 
to the training of the network - visible from the column avg. Nts - as most 
feature sharing occurs within super-classes. For reason of comparison we 
add the results of the leaf node level (species). 

On top of these results, Table 5 details results for generalised zero- 
shot learning (GZSL). The top-k accuracies for GZSL are poor: during 
classification, a network trained for ZSL tends to favour seen classes over 
unseen classes (Socher et al., 2013). Logically, GZSL does not affect the 
average hierarchical accuracy by much, as seen and unseen classes share 
parent-classes (see Fig. 9). 

Finally, we present and discuss four example images from the test-set 
with their top-5 predictions (and corresponding confidence values), see 
Fig. 9. 

Image (a) and (b) have good top-5 predictions: the top-1 prediction 
of image (a) is incorrect (the classifier is most confident about the label 
Brachirus macrolepis, while the correct label is Brachirus panoides), but 
the top-1 prediction is correct up to the fine-grained genus level: Bra
chirus. Moreover, the top-3 predictions are all correct up to the genus 
level. For image (b), the top-1 prediction is correct, and the remaining 
predictions are from the same correct order. 

The third image (c) has poor predictions, as (i) the correct label is not 
among the top 5 predictions, and (ii) almost all predictions are from a 
different phylum. Interestingly, however, the top-2 predictions (the 
Bittium reticulatum and Cyclura cornuta) have something in common with 

Table 4 
Zero-shot learning (ZSL) classification results in % for Task 5 on the test-set per super-class (phylum).   

Top-k acc Y ts  Hierarchical acc@k Y ts  

Super-class (phylum) Ntr Nts 1 2 5 10 1 2 3 avg 

Chordata 5736 744 4.7 7.39 14.65 24.06 14.65 53.36 81.05 50.22 
Mollusca 1449 471 3.4 6.16 11.89 20.59 29.3 47.56 73.25 47.77 
Arthropoda 1383 1245 1.61 2.97 6.59 10.6 15.74 60.88 80.0 50.1 
Cnidaria 178 73 8.22 9.59 16.44 30.14 19.18 31.51 41.1 29.86 
Echinodermata 105 42 4.76 7.14 9.52 21.43 9.52 11.9 33.33 19.05 
Annelida 94 33 0.0 0.0 0.0 0.0 0.0 0.0 3.03 1.21 
Porifera 37 25 0.0 8.0 8.0 16.0 4.0 8.0 44.0 20.0 
Bryozoa 32 23 0.0 0.0 0.0 8.7 0.0 4.35 4.35 3.48 
Platyhelminthes 28 9 0.0 0.0 0.0 0.0 0.0 0.0 11.11 4.44 
Ctenophora 24 6 0.0 0.0 33.33 33.33 0.0 0.0 0.0 3.33 
Nematoda 10 5 20.0 20.0 40.0 40.0 20.0 40.0 40.0 32.0 
Rotifera 5 8 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 
Nemertea 4 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sipuncula 2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Brachiopoda 2 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Acanthocephala 2 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Animalia 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Per super-class average 534.76 158.94 2.51 3.6 8.26 12.79 6.61 15.15 24.19 15.38 
Per leaf node (species) 9098 2702 2.96 4.96 9.96 16.65 7.11 17.10 52.26 40.05  

Table 5 
Generalised zero-shot learning (GZSL) classification results in % for final model.  

Method top-k acc Y ts  Hier. acc@k Y ts  

1 2 5 10 1 2 avg 

GZSL 0.04 0.21 1.24 3.25 4.47 16.03 38.19 
M. guess 0.01 0.03 0.06 0.13 2.85 3.26 18.66  
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the correct species (Cribrinopsis crassa): they share its most salient 
feature - their skin is covered with small tubercles. 

Lastly, for the fourth image (d) the correct label (Elephantulus intufi) 
belongs to the order Macroscelidea (Elephant shrew), and the other 
predictions belong to the orders (from top to bottom): Rodentia 

(Rodents) and Carnivora (Carnivores). The two predictions from the 
Rodentia order are two different mice species (Dipus sagitta and Holochilus 
brasiliensis. Elephant shrew visually resemble mice. Interestingly, the 
most salient feature that would allow a classifier to distinguish between 
a mouse and an elephant shrew, is cut off from the illustration: its long 

Fig. 9. Top 5 predicted classes (on the species level) and their confidence values for four example test images (best viewed in colour). Labels are organised hier
archically (K: kingdom to S: species) to show the diversity of predictions and how close - in the label hierarchy - the classifier is to the real label. Image (c) shows six 
predictions, as the correct label was not among the top 5 predictions. A dark green path, label and confidence bar denotes the correct label. Orange confidence bars 
indicate incorrect predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. A t-SNE plot showing all prototypes (closed circles) and instances (open triangles), from the 12 most populated phyla, embedded by the final prototypical 
network (should be viewed in colour). Instances from the verification set (bottom cluster) are indicated by the label ‘unknown’. Note that t-SNE does not accurately 
preserve distances between clusters. The t-SNE algorithm was run for 5000 iterations with perplexity 100. 
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trunk-like nose, which resembles an elephant’s trunk. It is therefore 
good to consider that cropping the image at its center in a standardised 
way can cause the loss of information that is vital for proper 
classification. 

7. Analysis and discussion 

Standard supervised classification offers limited solutions to deal 
with the full scope of the problem presented above. ZSL models are 
better suited to deal with limited data (small samples for only a subset of 
classes from the domain). For instance, Table 5 shows that 20 Anthropod 
species could be correctly classified without any training examples, from 
their similarity to 620 other seen Anthropod species. We note that this 
shows an important gain: the labelling of these illustrations by domain 
experts is costly, and does not necessarily guarantee high-quality an
notations, due to the complex nature of species classification (Austen 
et al., 2016). Especially prototypes optimised according to the label 
hierarchy can be exploited in an expert support system to guide experts 
in the identification process. 

In practice, it can be a real challenge to transfer results to real-world 
scenarios. We provide two telling examples. First, Table 5 shows us that 
with GZSL, seen classes are favoured over unseen classes during classi
fication. In real-world applications, methods are required that deal with 
this issue. If not, a classifier will often prefer classes from Y tr over Y ts 

for classification. Second, using a trained network in real-world appli
cations can prove problematic due to a domain shift between datasets. 
Our verification-set, that we have presented in Section 3.2, serves to 
illustrate this issue. When using the final species embedding model for 
classification of the verification-set, all instances are classified as species 
of Anthropods, although it contains illustrations from a variety of phyla 
(among which Chordates and Annelids, see Fig. 5). The t-SNE visual
isation, see Fig. 10, allows us to hypothesise about the results. The vis
ualisation shows instances from the verification-set (depicted as purple 
triangles, see bottom cluster), as well as instances and prototypes from 
the ZICE dataset (all other open triangles and closed circles respec
tively), all embedded by the species embedding model. The species 
embedding model appears to have mapped instances from the 
verification-set to a different manifold than those from the ZICE dataset. 
Consequently, instances from the verification-set manifold are classified 
as Anthropods, as its prototypes are closest (see the red prototype clusters 
in Fig. 10). We hypothesise that both datasets must come from a distinct 
marginal probability distribution. Most likely, this domain shift is the 
result of differences in paper types, sketching techniques and materials. 

Overcoming the aforementioned issues is key, but we argue that ZSL 
and hierarchical learning methods (methods that exploit the label hi
erarchy) are fundamental for problem domains such as the one 
described here: where labelling of images is expensive, but where, at the 
same time, auxiliary data sources contain a wealth of domain knowledge 
maintained by a community of experts. 

8. Conclusions 

In this paper we have analysed the problem of classifying species in 
zoological illustrations. For this purpose, we have introduced a dataset, 
with many classes and few samples, and an independent (unlabelled) 
verification-set, both representative of the problem domain. 

From the experimental results, we conclude that auxiliary data 
sources have allowed us to push the boundaries of automated recogni
tion for this specific problem: illustrations from 80 classes, that con
tained zero example instances for training, could be classified correctly. 
We furthermore conclude that our model improves over the baseline 
classifier. Compared with the baseline, our FP implementation allowed 
us to classify instances from an additional 9 unseen fine-grained classes. 
Moreover, implementing HPL increased the average hierarchical accu
racy substantially (from 36.41% to 39.35%). Finally, from the results of 
the analysis of the verification set in Section 7, we show the complexity 

of our task. Aside from the depicted illustrations, there are other dif
ferences between the digital images that impact the predictive capa
bilities of the model. The illustrators’ technique, the physical drawing 
materials and the chosen perspectives change significantly between il
lustrators. In order for our zero-shot learning model to function well in 
an application, domain adaptation methods should be employed to align 
domain marginal probability distributions (Wang and Deng, 2018) be
tween datasets, and therefore make the model illustrator-invariant. 

Coming back to our main problem description, we conclude that 
computational methods support the development of species embedding 
models for classification. Biodiversity datasets, storing domain knowl
edge and auxiliary data, can be exploited to develop desired species 
embedding models (especially when small samples are available for 
training). These models will then serve as decision support systems for 
biodiversity researchers to help classify the historical and present-day 
scientific illustrations from various species of living organisms, which 
reside underutilised in natural history museums globally. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We thank Nhung T. H. Nguyen and Sophia Ananiadou (National 
Centre for Text Mining) for providing the text embeddings from the 
Biodiversity Heritage Library. This work is supported by the Netherlands 
Organisation for Scientific Research (NWO) and Brill Publishers, grant 
652.001.001. 

References 

Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B., 2015a. Evaluation of output 
embeddings for fine-grained image classification. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, 
pp. 2927–2936. https://doi.org/10.1109/CVPR.2015.7298911. 

Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C., 2015b. Label-embedding for image 
classification. IEEE Trans. Pattern Anal. Mach. Intell. 38 (7), 1425–1438. https://doi. 
org/10.1109/TPAMI.2015.2487986. 

Austen, G.E., Bindemann, M., Griffiths, R.A., Roberts, D.L., 2016. Species identification 
by experts and non-experts: comparing images from field guides. Sci. Rep. 6, 33634. 

Barz, B., Denzler, J., 2019. Hierarchy-based image embeddings for semantic image 
retrieval. In: Proceedings of the IEEE Winter Conference on Applications of 
Computer Vision (WACV), Waikoloa Village, Hawaï, pp. 638–647. https://doi.org/ 
10.1109/WACV.2019.00073. 

Beery, S., Wu, G., Rathod, V., Votel, R., Huang, J., 2020a. Context r-cnn: long term 
temporal context for per-camera object detection. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Seattle, Washington, 
pp. 13072–13082. https://doi.org/10.1109/CVPR42600.2020.01309. 

Beery, S., Cole, E., Gjoka, A., 2020b. The Iwildcam 2020 Competition Dataset. 
Belhumeur, P.N., Chen, D., Feiner, S., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., 

Ramamoorthi, R., Sheorey, S., White, S., Zhang, L., 2008. Searching the world’s 
herbaria: A system for visual identification of plant species. In: Proceedings of the 
European Conference on Computer Vision, Springer, pp. 116–129. https://doi.org/ 
10.1007/978-3-540-88693-8_9. 

Berg, T., Liu, J., Woo Lee, S., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N., 2014. 
Birdsnap: large-scale fine-grained visual categorization of birds. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 
pp. 2011–2018. https://doi.org/10.1109/CVPR.2014.259. 

Choate, P.M., 1999. Introduction to the Identification of Beetles (Coleoptera), 
Dichotomous Keys to Some Families of Florida Coleoptera, pp. 23–33. 

Chu, G., Potetz, B., Wang, W., Howard, A., Song, Y., Brucher, F., Leung, T., Adam, H., 
2019. Geo-aware networks for fine-grained recognition. In: Proceedings of the IEEE 
International Conference on Computer Vision Workshops, Seoul, Korea (South), 
pp. 247–254. https://doi.org/10.1109/ICCVW.2019.00033. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: a large-scale 
hierarchical image database. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. Miami, Florida, pp. 248–255. https://doi.org/ 
10.1109/CVPR.2009.5206848. 

Dietterich, T.G., 1998. Approximate statistical tests for comparing supervised 
classification learning algorithms. Neural Comput. 10 (7), 1895–1923. https://doi. 
org/10.1162/089976698300017197. 

L. Stork et al.                                                                                                                                                                                                                                    

https://doi.org/10.1109/CVPR.2015.7298911
https://doi.org/10.1109/TPAMI.2015.2487986
https://doi.org/10.1109/TPAMI.2015.2487986
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0015
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0015
https://doi.org/10.1109/WACV.2019.00073
https://doi.org/10.1109/WACV.2019.00073
https://doi.org/10.1109/CVPR42600.2020.01309
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0030
https://doi.org/10.1007/978-3-540-88693-8_9
https://doi.org/10.1007/978-3-540-88693-8_9
https://doi.org/10.1109/CVPR.2014.259
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0045
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0045
https://doi.org/10.1109/ICCVW.2019.00033
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1162/089976698300017197


Ecological Informatics 62 (2021) 101222

15

Drew, J.A., Moreau, C.S., Stiassny, M.L., 2017. Digitization of museum collections holds 
the potential to enhance researcher diversity. Nature ecology & evolution 1 (12), 
1789. 

Ferrari, V., Zisserman, A., 2007. Learning visual attributes. In: Advances in Neural 
Information Processing Systems, pp. 433–440. 

Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., Mikolov, T., 2013. 
Devise: a deep visual-semantic embedding model. In: Advances in Neural 
Information Processing Systems, pp. 2121–2129. 

GBIF Secretariat, 2018. Gbif Backbone Taxonomy. https://hosted-datasets.gbif.org/dat 
asets/backbone/2018-06-20/. 

Gwinn, N.E., Rinaldo, C., 2009. The biodiversity heritage library: sharing biodiversity 
literature with the world. IFLA J. 35 (1), 25–34. https://doi.org/10.1177/ 
0340035208102032. 

Harris, Z.S., 1954. Distributional structure. Word 10 (2–3), 146–162. https://doi.org/ 
10.1080/00437956.1954.11659520. 

Hedrick, B.P., Heberling, J.M., Meineke, E.K., Turner, K.G., Grassa, C.J., Park, D.S., 
Kennedy, J., Clarke, J.A., Cook, J.A., Blackburn, D.C., Edwards, S.V., Davis, C.C., 
2020. Digitization and the future of natural history collections. BioScience 70 (3), 
243–251. https://doi.org/10.1093/biosci/biz163. 

Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J. 
V.B., 2012. Leafsnap: A computer vision system for automatic plant species 
identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (Eds.), 
Proceedings of the European Conference on Computer Vision. Springer, Berlin, 
Heidelberg, pp. 502–516. https://doi.org/10.1007/978-3-642-33709-3_36. 

Lampert, C.H., Nickisch, H., Harmeling, S., 2009. Learning to detect unseen object classes 
by between-class attribute transfer. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Miami, Florida, pp. 951–958. https://doi. 
org/10.1109/CVPR.2009.5206594. 

Lampert, C.H., Nickisch, H., Harmeling, S., 2014. Attribute-based classification for zero- 
shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36 (3), 
453–465. https://doi.org/10.1109/TPAMI.2013.140. 

Maaten, L.V.D., Hinton, G., 2008. Visualizing data using t-sne. Journal of Machine 
Learning Research 9 (Nov), 2579–2605. 

Mac Aodha, O., Cole, E., Perona, P., 2019. Presence-only geographical priors for fine- 
grained image classification. In: Proceedings of the IEEE International Conference on 
Computer Vision, Seoul, Korea (South), pp. 9595–9605. https://doi.org/10.1109/ 
ICCV.2019.00969. 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., 2013a. Distributed 
representations of words and phrases and their compositionality, in: advances in 
neural information processing systems. Vol. 2, 3111–3119. 

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013b. Efficient estimation of word 
representations in vector space. In: Workshop proceedings of the International 
Conference on Learning Representations. 

Nguyen, N.T.H., Soto, A.J., Kontonatsios, G., Batista-Navarro, R., Ananiadou, S., 2017. 
Constructing a biodiversity terminological inventory. PLoS One 12 (4), e0175277. 
https://doi.org/10.1371/journal.pone.0175277. 

Nilsback, M.E., Zisserman, A., 2006. A visual vocabulary for flower classification. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2, 
pp. 1447–1454. https://doi.org/10.1109/CVPR.2006.42. New York, New York.  

Oquab, M., Bottou, L., Laptev, I., Sivic, J., 2014. Learning and transferring mid-level 
image representations using convolutional neural networks. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, 
pp. 1717–1724. https://doi.org/10.1109/CVPR.2014.222. 

Patterson, G., Hays, J., 2012. Sun attribute database: discovering, annotating, and 
recognizing scene attributes. In: Proceedings of the 2012 IEEE Conference on 
Computer Vision and Pattern Recognition, Providence, Rhode Island, 
pp. 2751–2758. https://doi.org/10.1109/CVPR.2012.6247998. 

Pennington, J., Socher, R., Manning, C., 2014. Glove: Global vectors for word 
representation. In: Proceedings of the Conference on Empirical Methods in Natural 
Language Processing, Association for Computational Linguistics, pp. 1532–1543. 
https://doi.org/10.3115/v1/D14-1162. 

Romera-Paredes, B., Torr, P.H.S., 2017. An embarrassingly simple approach to zero-shot 
learning. In: Visual Attributes, Springer, pp. 11–30. https://doi.org/10.1007/978-3- 
319-50077-5_2. 

Snell, J., Swersky, K., Zemel, R., 2017. Prototypical networks for few-shot learning. In: 
Advances in Neural Information Processing Systems, pp. 4077–4087. 

Socher, R., Ganjoo, M., Manning, C.D., Ng, A., 2013. Zero-shot learning through cross- 
modal transfer. In: Advances in Neural Information Processing Systems, 
pp. 935–943. 

Sumbul, G., Cinbis, R.G., Aksoy, S., 2018. Fine-grained object recognition and zero-shot 
learning in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 56 (2), 
770–779. https://doi.org/10.1109/TGRS.2017.2754648. 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the 
inception architecture for computer vision. In: Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. Las Vegas, Nevada, pp. 2818–2826. 
https://doi.org/10.1109/CVPR.2016.308. 

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., 2005. Large margin methods for 
structured and interdependent output variables. J. Mach. Learn. Res. 6 (Sep), 
1453–1484. 

Turney, P.D., Pantel, P., 2010. From frequency to meaning: vector space models of 
semantics. J. Artif. Intell. Res. 37 (1), 141–188. 

Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona, P., 
Belongie, S., 2015. Building a bird recognition app and large scale dataset with 
citizen scientists: the fine print in fine-grained dataset collection. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 
Massachusetts, pp. 595–604. https://doi.org/10.1109/CVPR.2015.7298658. 

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., 
Perona, P., Belongie, S., 2018. The inaturalist species classification and detection 
dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, Salt Lake City, Utah, pp. 8769–8778. https://doi.org/10.1109/ 
CVPR.2018.00914. 

Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S., 2011. The Caltech-UCSD 
Birds-200-2011 Dataset, Tech. Rep. CNS-TR-2011-001. California Institute of 
Technology. 

Wang, M., Deng, W., 2018. Deep visual domain adaptation: a survey. Neurocomputing 
312, 135–153. https://doi.org/10.1016/j.neucom.2018.05.083. 

Weber, A., 2020. Collecting colonial nature: European naturalists and the netherlands 
indies in the early nineteenth century. BMGN-Low Countries Historical Review 134 
(3). https://doi.org/10.18352/bmgn-lchr.10741. 

Xian, Y., Akata, Z., Sharma, G., Nguyen, Q., Hein, M., Schiele, B., 2016. Latent 
embeddings for zero-shot classification. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Las Vegas, Nevada, pp. 69–77. https:// 
doi.org/10.1109/CVPR.2016.15. 

Xian, Y., Lampert, C.H., Schiele, B., Akata, Z., 2019. Zero-shot learning–a comprehensive 
evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 
41 (9), 2251–2265. https://doi.org/10.1109/TPAMI.2018.2857768. 

L. Stork et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0065
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0065
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0065
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0070
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0070
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0075
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0075
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0075
https://hosted-datasets.gbif.org/datasets/backbone/2018-06-20/
https://hosted-datasets.gbif.org/datasets/backbone/2018-06-20/
https://doi.org/10.1177/0340035208102032
https://doi.org/10.1177/0340035208102032
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1093/biosci/biz163
https://doi.org/10.1007/978-3-642-33709-3_36
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/CVPR.2009.5206594
https://doi.org/10.1109/TPAMI.2013.140
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0115
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0115
https://doi.org/10.1109/ICCV.2019.00969
https://doi.org/10.1109/ICCV.2019.00969
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0125
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0125
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0125
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0130
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0130
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0130
https://doi.org/10.1371/journal.pone.0175277
https://doi.org/10.1109/CVPR.2006.42
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1109/CVPR.2012.6247998
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1007/978-3-319-50077-5_2
https://doi.org/10.1007/978-3-319-50077-5_2
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0165
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0165
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0170
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0170
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0170
https://doi.org/10.1109/TGRS.2017.2754648
https://doi.org/10.1109/CVPR.2016.308
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0185
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0185
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0185
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0190
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0190
https://doi.org/10.1109/CVPR.2015.7298658
https://doi.org/10.1109/CVPR.2018.00914
https://doi.org/10.1109/CVPR.2018.00914
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0205
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0205
http://refhub.elsevier.com/S1574-9541(21)00013-3/rf0205
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.18352/bmgn-lchr.10741
https://doi.org/10.1109/CVPR.2016.15
https://doi.org/10.1109/CVPR.2016.15
https://doi.org/10.1109/TPAMI.2018.2857768

	Large-scale zero-shot learning in the wild: Classifying zoological illustrations
	1 Introduction
	1.1 Zoological illustrations
	1.2 Automated classification
	1.3 Approach

	2 Related work
	2.1 Computer vision and biodiversity
	2.2 Zero-shot learning

	3 The data
	3.1 The ZICE dataset
	3.1.1 Illustrations
	3.1.2 Notation
	3.1.3 Class embeddings

	3.2 The verification-set

	4 Methodology
	4.1 Zero-shot learning model
	4.2 Image Embeddings
	4.3 Class embeddings
	4.3.1 A hierarchy (ϕh)
	4.3.2 Texts (ϕt)
	4.3.3 Photographs (ϕp)

	4.4 Combining class Embeddings
	4.4.1 Concatenated embeddings (CE)
	4.4.2 Fused prototypes (FP)

	4.5 Hierarchical prototype loss

	5 Experimental setting
	5.1 Dataset splits
	5.2 Data augmentation
	5.3 Evaluation criteria
	5.3.1 Top-k accuracy
	5.3.2 Hierarchical accuracy@k


	6 Experimental results
	6.1 Supervised classification and visualisation
	6.2 Fine-grained zero-shot learning
	6.3 Evaluation (Task 2, 3 and 4)
	6.4 Final results (Task 5)

	7 Analysis and discussion
	8 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


