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The endothelial glycoprotein thrombomodulin regulates coagulation, inflammation, and apoptosis. In
diabetic mice, reduced thrombomodulin function results in diabetic nephropathy (DN). Furthermore,
thrombomodulin treatment reduces renal inflammation and fibrosis. Herein, thrombomodulin expres-
sion was examined in human kidney samples to investigate the possibility of targeting thrombomodulin
in patients with DN. Glomerular thrombomodulin was analyzed together with the number of glomerular
macrophages in 90 autopsied diabetic cases with DN, 55 autopsied diabetic cases without DN, and 37
autopsied cases without diabetes or kidney disease. Thrombomodulin mRNA was measured in glomeruli
microdissected from renal biopsies from patients with DN and nondiabetic controls. Finally, glomerular
thrombomodulin was measured in diabetic mice following treatment with the selective endothelin A
receptor (ETAR) blocker, atrasentan. In diabetic patients, glomerular thrombomodulin expression was
increased at the mRNA level, but decreased at the protein level, compared with nondiabetic controls.
Reduced glomerular thrombomodulin was associated with an increased glomerular influx of macro-
phages. Blocking the ETAR with atrasentan restored glomerular thrombomodulin protein levels in dia-
betic mice to normal levels. The reduction in glomerular thrombomodulin in diabetes likely serves as an
early proinflammatory step in the pathogenesis of DN. Thrombomodulin protein may be cleaved under
diabetic conditions, leading to a compensatory increase in transcription. The nephroprotective effects
of ETAR antagonists in diabetic patients may be attributed to the restoration of glomerular thrombo-
modulin. (Am J Pathol 2021, 191: 829e837; https://doi.org/10.1016/j.ajpath.2021.02.002)
Supported by the Dutch Kidney Foundation grant 18OKK45
(C.C.L.v.A.).

Disclosures: None declared.
Diabetic nephropathy (DN) is the leading cause of end-stage
renal disease in the Western world,1 occurring in approxi-
mately 40% of patients with diabetes mellitus.2 Impaired
function of the glomerular endothelial cells occurs in the early
stages of diabetic kidney damage, with a reduction in the
glomerular endothelial glycocalyx and altered expression of
endothelial adhesion proteins contributing to inflammation
and fibrosis.3,4 The thrombomodulin/protein C signaling
pathway is critical for maintaining glomerular endothelial
homeostasis and preventing inflammation.5 Indeed, animal
studies indicate that impaired glomerular thrombomodulin
signaling contributes to the pathogenesis of DN.6

Encoded by the THBD gene, the transmembrane glyco-
protein thrombomodulin is expressed primarily by
stigative Pathology. Published by Elsevier Inc

Y license (http://creativecommons.org/licenses
endothelial cells and is a component of the endothelial
surface glycocalyx.7 The thrombomodulin protein contains
an N-terminal lectin-like domain, six epidermal growth
factor (EGF)elike repeats, a serine/threonine-rich domain, a
transmembrane domain, and a cytoplasmic C-terminal
domain. Under physiological conditions, thrombomodulin
binds circulating thrombin via the EGF-like domain, driving
activation of the serine-protease‒activated protein C (APC),
which exerts cytoprotective effects by regulating coagula-
tion, inflammation, and apoptosis.8 Renal thrombomodulin
.
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is down-regulated in a mouse model of DN, leading to the
reduced production of APC and resulting in increased
glomerular apoptosis, glomerulosclerosis, and albuminuria.6

In addition, thrombomodulin prevents inflammation via
APC-independent pathways; thrombomodulin’s lectin-like
domain directly interferes with macrophage recruitment by
regulating NF-kB activity and endothelial adhesion mole-
cule expression9,10 and suppresses glomerular complement
activation in DN.11 Moreover, treating diabetic mice with
thrombomodulin reduces the development of DN and glo-
merulosclerosis by suppressing glomerular inflammation.12

Similar nephroprotective effects of thrombomodulin treat-
ment are reported in animal models of nephrotoxic serum
glomerulonephritis and progressive renal fibrosis.13,14 Thus,
impaired glomerular thrombomodulin function plays a
central role in the pathogenesis of DN in animal models, and
treatment with thrombomodulin shows promising effects
with respect to reducing inflammation in the kidney.

To date, no studies have attempted to measure the
expression of glomerular thrombomodulin in patients with
DN, although some studies have reported that the serum
levels of soluble thrombomodulin (ie, the cleaved extracel-
lular domain of thrombomodulin) are increased, whereas
serum levels of APC are decreased, in diabetic patients.15,16

Although these findings may reflect impaired thrombomo-
dulin function at the systemic level, they do not provide any
information with respect to thrombomodulin expression and
signaling in the glomerular vasculature. Interestingly,
elevated thrombomodulin serum levels have been associated
with impaired function of the endothelial glycocalyx in
patients with chronic kidney disease,17 suggesting a corre-
lation between thrombomodulin expression and glycocalyx
integrity. Moreover, treatment with the endothelin A
receptor (ETAR) antagonist, atrasentan, preserves the
glomerular glycocalyx in a mouse model of DN.18 This
finding raises the question of whether ETAR antagonists,
which recently drew attention by improving renal outcome
in patients with DN,19 may also restore glomerular throm-
bomodulin signaling in DN.

To address this question, glomerular thrombomodulin
protein levels were measured in renal autopsy samples ob-
tained from a large cohort of patients with diabetes with and
without DN, and the relationship between glomerular
thrombomodulin levels and the presence of glomerular
macrophages was analyzed. In addition, glomerular THBD
mRNA was measured in microdissected glomeruli obtained
from patients with DN. Finally, thrombomodulin expression
was studied in diabetic mice following treatment with
atrasentan.

Materials and Methods

Autopsy Cohort

Renal autopsy tissue specimens from a previously described
autopsy cohort20,21 were retrieved from the pathology
830
archives of the Leiden University Medical Center (Leiden,
the Netherlands). In brief, autopsy samples were obtained
from diabetic patients with histologically confirmed DN
(n Z 90), diabetic patients with no clinical or histologic
evidence of DN or renal insufficiency (n Z 55), and age-
and sex-matched nondiabetic controls (n Z 37). The renal
autopsy samples were scored for a diagnosis of DN by two
investigators who were blinded with respect to the patients’
clinical data, and DN was diagnosed in accordance with the
established histopathologic classification for DN.22

Biopsy Cohorts

Autopsy tissue findings were validated by examining renal
biopsies obtained from patients with histologically
confirmed DN (n Z 9); unaffected region of tumor-
nephrectomized samples was used as control (n Z 8).
A second biopsy cohort, previously documented by

Baelde et al,23 was used to measure glomerular THBD
mRNA using real-time quantitative PCR. In short, glomeruli
were isolated using laser microdissection from fresh-frozen
biopsies obtained from diabetic patients with DN (n Z 24)
and from nondiabetic controls (n Z 13), including cadaver
donor kidneys unsuitable for transplantation for technical
reasons and the nonaffected part of tumor-nephrectomized
samples. All samples were collected and handled in
accordance with Dutch national ethics guidelines and in
accordance with the Code of Conduct regarding the Proper
Secondary Use of Human Tissue.

Mice

The diabetic apoE�/� mouse model used in this study has
been described previously.18 In brief, 6-weekeold male
apoE�/� mice (Jackson Laboratory, Bar Harbor, ME) were
rendered diabetic by i.p. injections of streptozotocin. Mice
that developed a blood glucose level �20 mmol/L were
considered diabetic. Beginning 12 weeks after induction of
diabetes, the selective ETAR antagonist, atrasentan (7.5 mg/
kg/day), was added to the drinking water for 4 weeks, after
which the mice were sacrificed and renal tissues were
collected, fixed, and embedded in paraffin for measuring
thrombomodulin expression. To measure Thbd mRNA,
laser-microdissected glomeruli were obtained from the
paraffin-embedded renal tissues. All animal experiments
were conducted in accordance with national guidelines for
the care and use of experimental animals and were approved
by the local Animal Experiment Committee.

Immunohistochemistry and Immunofluorescence

All kidney tissues were divided into sections (4 mm thick).
Human tissues were immunostained using the following
primary antibodies: mouse anti-human EGF-like extracel-
lular domain of thrombomodulin (1:200; Leica Biosystems,
Danvers, MA), mouse anti-human intracellular domain of
ajp.amjpathol.org - The American Journal of Pathology
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thrombomodulin (1:100; Santa Cruz Biotechnology, Dallas,
TX), and mouse anti-human CD68 (1:2000; Dako
Cytomation, Glostrup, Denmark). Mouse tissues were
immunostained using the following primary antibodies: rab-
bit anti-mouse/rat thrombomodulin (1:2000; Abcam, Cam-
bridge, MA) and rat anti-mouse CD68 (1:15; Abcam). The
primary antibodies were visualized using an anti-mouse or
anti-rabbit Envision (Dako Cytomation) horseradish
peroxidaseeconjugated secondary antibody, with dia-
minobenzidine (Dako Cytomation) as the chromogen. For
hematoxylin and eosin staining, a standard protocol was used.
Double-label immunofluorescence was performed using the
anti-human thrombomodulin and goat antievon Willebrand
factor (1:400; Affinity Biologicals Inc., Ancaster, ON, Can-
ada) antibodies, followed by the appropriate fluorescent
secondary antibodies, and Lycopersicon esculentum
agglutininefluorescein isothiocyanate (Sigma-Aldrich, St.
Louis, MO), after which the slides were mounted using
VectaShield (Vector Laboratories, Burlingame, CA). For
each immunostaining experiment, an isotype-matched non-
specific antibody was used as a negative control. To analyze
the putative relationship between glomerular thrombomodu-
lin expression, the number of glomerular CD68-positive cells,
adjacent kidney sections were immunostained, which
allowed measurement of both thrombomodulin and CD68 in
the same glomerulus. All kidney sections were stained in a
single session for immunohistochemical analysis and scan-
ned using a Philips Ultra-Fast Scanner 1.6 RA (Philips,
Eindhoven, The Netherlands).

Staining Analysis

The thrombomodulin-positive area per glomerulus was
measured in 25 glomeruli per section using ImageJ software
version 1.50i (NIH, Bethesda, MD; http://imagej.nih.gov/ij)
and is expressed relative to the total glomerular area. The
glomeruli used for these measurements were selected at
random, and the experimenters (C.A. and H.B.) were
blinded with respect to the groups and outcome.

DN can present with heterogeneous histology; specif-
ically, glomeruli from one patient with DN can have
different histopathologic stages of DN. Therefore, the rela-
tionship between thrombomodulin expression and the
number of CD68-positive cells was evaluated in individual
glomeruli measured in a subset of diabetic patients either
with or without DN and nondiabetic controls (n Z 10 per
group), selected randomly from the autopsy cohort. Then,
the association between thrombomodulin and CD68 was
measured by taking into account both between-patient
differences and within-patient differences. All examined
glomeruli were selected at random.

PCR Data

Total RNA was extracted from microdissected glomeruli
using TRIzol reagent (Ambion, Austin, TX). THBD/Thbd
The American Journal of Pathology - ajp.amjpathol.org
mRNA was then measured with quantitative real-time PCR
using the SYBR Green I master mix (Bio-Rad, Hercules,
CA) in a Bio-Rad CFX real-time system. CT values were
normalized to the housekeeping gene GAPDH/Gapdh. The
following primers pairs were used: human THBD forward,
50-ACATCCTGGACGACGGTTTC-30 and reverse, 50-
CGCAGAT-GCACTCGAAGGTA-30; human GAPDH
forward, 50-CGACCAC-TTTGTCAAGCTCA-30 and
reverse, 50-AGGGGTCTACATGGC-AACTG-30; mouse
Thbd forward, 50-TCAATGCGTGGAGCATGAGT-30 and
reverse, 50-AGGAGCGCACTGTCATCAAA-30; and
mouse Gapdh foward, 50-CTCATGACCACAGTCCATGC-
30 and reverse, 50-CACATTGGGGGTAGGAACAC-30.

In Vitro Studies

Human umbilical vascular endothelial cells were cultured in
Endothelial Cell Growth Medium-2 media (Lonza, Basel,
Switzerland) at 37�C in 5% CO2. THP-1 cells (ATCC,
Manassas, VA) were cultured at 37�C in 5% CO2 in RPMI
1640 medium (Gibco Laboratories, Gaithersburg, MD)
supplemented with 10% fetal bovine serum (Sigma-
Aldrich). Human umbilical vascular endothelial cells were
plated in 96-well plates and grown to 70% confluency
before transfection. Cells were then transfected with siRNA
against THBD or a nontargeting siRNA using Lipofect-
amine 2000 (Thermo Fisher Scientific, Waltham, MA) for 8
hours, after which cells were grown to confluency in com-
plete medium. Cells were then treated with 50 ng/mL tumor
necrosis factor (TNF)-a or vehicle for 12 hours, after which
150,000 Hoechst-labeled THP-1 cells were added to each
well. Cells were incubated for 30 minutes at 37�C under
static conditions. Subsequently, human umbilical vascular
endothelial cells were washed with phosphate-buffered sa-
line to remove the unbound THP-1 cells. Cells were then
fixed in 4% paraformaldehyde for 5 minutes, followed by
two washes with phosphate-buffered saline. The number of
attached THP-1 cells was measured with an ArrayScan XTI
High Content Platform (Thermo Fisher Scientific, Waltham,
MA) using a 10� objective; 25 fields of view were
measured. This experiment was performed in triplicate.

Statistical Analysis

Continuous variables were compared using the t-test or one-
way analysis of variance. Categorical variables were
compared using the c2 test or the Fisher exact test, where
appropriate. To analyze differences in glomerular throm-
bomodulin protein levels between groups in the autopsy
cohort, a linear mixed model that takes into account varying
numbers of observations (glomeruli) within patients was
used. The Pearson correlation coefficient was used to
analyze correlations. For the association between glomerular
thrombomodulin and the number of CD68-positive cells,
linear mixed models with random effects for the individual
patients and fixed effects of thrombomodulin and group, and
831
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an interaction term for a possibly different effect of group on
the thrombomodulin effect were examined. Differences
were considered significant at P < 0.05. Unless stated
otherwise, summary data in the figures are reported as the
means � SEM.

Results

Clinical and Histologic Characteristics

The autopsy cohort included 90 diabetic patients with his-
tologically confirmed DN (62%) and 55 diabetic patients
with no evidence of DN (38%), as well as 37 renal autopsy
samples from nondiabetic controls without renal pathology.
The clinical and histologic characteristics of these 151 cases
are summarized in Supplemental Table S1. The duration of
diabetes was significantly higher in the diabetic patients
with DN compared with the diabetic cases without DN (16.2
versus 8.5 years, respectively; P Z 0.002); however, these
two patient groups did not differ significantly with respect to
age, sex, diabetes type, presence of hypertension, serum
creatinine level, estimated glomerular filtration rate, or
HbA1c level.

Diabetic Patients Have Reduced Glomerular
Thrombomodulin Protein Levels

The glomerular thrombomodulin levels were generally low;
however, thrombomodulin was present in the peritubular
capillaries of all cases. Furthermore, the level of thrombo-
modulin protein varied widely between glomeruli measured
within individual cases. Costaining renal tissue sections in a
nondiabetic control for thrombomodulin and von Wille-
brand factor (a marker for endothelial cells) confirmed that
thrombomodulin is expressed in glomerular endothelial cells
(Supplemental Figure S1). Overall, glomerular thrombo-
modulin expression was lower in the diabetic patients with
Figure 1 Diabetic patients have reduced glomerular thrombomodulin protein.
domain of thrombomodulin in the glomeruli of diabetic patients with diabetic nep
(C). A and B: Representative images of thrombomodulin staining in a nondiab
glomerular area in diabetic patients with DN, diabetic patients without DN, and
diabetic patients without DN (C: DM); n Z 37 nondiabetic controls (C: C). ***P <

50 mm (A and B).
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DN compared with nondiabetic controls (Figure 1);
compared to controls, DN was significantly associated with
lower glomerular thrombomodulin levels (P < 0.0001).
Interestingly, diabetic patients without DN had reduced
thrombomodulin levels compared to controls (P < 0.001).
Glomerular thrombomodulin levels were inversely corre-
lated with the amount of glomerular C5b-9 deposits
(r Z �0.210; P Z 0.015) and with the glomerular C5b-
9epositive area (r Z �0.167; P Z 0.024). In patients with
DN, glomerular thrombomodulin protein was inversely
correlated with serum HbA1c (r Z �0.374; P Z 0.032),
serum cholesterol (r Z �0.353; P Z 0.038), and the
amount of glomerular C1q deposits (r Z �0.302;
P Z 0.004). In contrast, glomerular thrombomodulin pro-
tein was not associated with other histologic changes, such
as DN class, glomerular basement membrane thickness,
renal interstitial fibrosis and tubular atrophy, and glomerular
fibrin depositions (data not shown), or clinical findings, such
as estimated glomerular filtration rate, proteinuria, and
blood pressure. These findings indicate that thrombomodu-
lin protein is decreased in glomeruli of diabetic patients and
that this decrease in glomerular thrombomodulin precedes
the onset of clinically overt DN.
In support of the findings obtained with autopsy tissue,

glomerular thrombomodulin protein was decreased in bi-
opsy samples obtained from patients with DN compared
with samples obtained from nondiabetic patients who un-
derwent tumor nephrectomy (Supplemental Figure S2).

Glomerular THBD mRNA Levels Are Increased in
Patients with DN

Next, THBD mRNA was measured in glomeruli isolated
using laser microdissection from kidney biopsies obtained
from diabetic patients with DN (n Z 24) and nondiabetic
controls (n Z 13). The clinical characteristics are summa-
rized in Supplemental Table S2; the CT values are
Immunohistochemical staining using an antibody against the extracellular
hropathy (DN), diabetic patients without DN (DM), and nondiabetic controls
etic control (A) and a patient with DN (B). C: Thrombomodulin-positive
nondiabetic controls. n Z 90 diabetic patients with DN (C: DN); n Z 55
0.001, ****P < 0.0001 versus control (linear mixed model). Scale bars Z
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mentioned in Supplemental Table S3. Gene expression
analysis revealed that THBD mRNA was 2.3-fold higher in
the glomeruli of patients with DN compared with that in
controls (P Z 0.004) (Figure 2A), consistent with increased
transcription of glomerular THBD in diabetic patients with
DN. Given the finding of decreased thrombomodulin pro-
tein in the glomeruli of diabetic patients, the increased
expression of thrombomodulin at the mRNA level may
reflect a compensatory transcriptional mechanism in an
attempt to offset the reduced endothelial thrombomodulin
protein levels in patients with diabetes.

Next, whether thrombomodulin is cleaved in the
glomerular endothelium in patients with DN was examined
by staining adjacent renal biopsy sections obtained from a
patient with DN using antibodies specific to the protein’s
extracellular and intracellular domains. Staining in the
intracellular domain was higher compared with that in the
extracellular domain, whereas staining in the surrounding
microvessels was similar in the two groups (Figure 2, B and
C). This finding, combined with studies reporting increased
serum levels of soluble thrombomodulin in patients with
DN,15 indicates that thrombomodulin is cleaved in the
glomerular endothelium in DN, thereby releasing the
extracellular domain via ectodomain shedding.
Reduced Glomerular Thrombomodulin Expression Is
Associated with an Increased Infiltration of Glomerular
Macrophages

Next, whether the reduction in glomerular thrombomodulin
protein levels is associated with an increase in the number
of glomerular macrophages was examined. Similar to the
findings with respect to thrombomodulin expression,
relatively high interindividual variability with respect to
the number of glomerular macrophages was observed.
Figure 2 Glomerular THBD mRNA is increased in patients with diabetic nephrop
obtained from biopsy samples taken from diabetic patients with DN and nondiabet
adjacent kidney sections obtained from a patient with DN, stained using an anti
bomodulin (TM). Note the increased immunoreactivity using the intracellular do
noreactivity in the surrounding microvessels (asterisks). n Z 24 diabetic patient
(t-test). Scale bars Z 50 mm (B and C).

The American Journal of Pathology - ajp.amjpathol.org
To compare thrombomodulin and CD68 staining in the
same glomeruli, imminohistochemistry was used to mea-
sure thrombomodulin and the macrophage marker CD68 in
adjacent kidney section obtained from patients. Reduced
glomerular thrombomodulin was associated with higher
numbers of CD68-positive cells (Figure 3). The slopes and
intercepts of the three groups were not significantly
different, giving the single regression equation where the
patients are allowed to have different intercepts
(Figure 3A). The average number of CD68-positive cells in
glomeruli that had absent thrombomodulin (<0.1% of the
glomerular area) was markedly higher in DN compared
with that in diabetic controls and nondiabetic controls
(11.5 versus 7.8 versus 7.2 cells, respectively; P Z 0.015).
In addition, sections adjacent to the thrombomodulin- and
CD68-stained sections were stained for hematoxylin and
eosin. High thrombomodulin and low CD68 staining
colocalized in control glomeruli (Figure 3B), and low
thrombomodulin and high CD68 staining colocalized in
diabetic glomeruli (Figure 3, C and D). However, low
thrombomodulin and high CD68 staining did not exclu-
sively colocalize to lesioned areas; for example, the loss of
thrombomodulin and the presence of CD68-positive cells
are not exclusively localized to the Kimmelstiel-Wilson
lesion (Figure 3D). We conclude that glomerular throm-
bomodulin levels are inversely associated with glomerular
infiltration of macrophages, raising the possibility that
thrombomodulin may play a role in the migration of
macrophages into the diabetic glomerulus.

To support this finding, it was investigated whether
reduced endothelial thrombomodulin expression results in an
increase in the adhesion of monocytes to activated endothelial
cells. Human umbilical vascular endothelial cells were
transfected with a thrombomodulin-targeting siRNA or a
nontargeting control siRNA, and were activated with TNF-a
or vehicle treatment. Then, THP-1 monocytes were applied
athy (DN). A: Summary of THBD mRNA measured in microdissected glomeruli
ic controls, expressed relative to control. B and C: Representative images of
body against the extracellular (B) and intracellular (C) domains of throm-
main antibody in the same glomerulus (arrowheads), with similar immu-
s with DN (A); n Z 13 nondiabetic controls (A). **P < 0.01 versus control
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Figure 3 Glomerular thrombomodulin protein levels are inversely correlated with the number of glomerular CD68-positive cells. Glomerular thrombo-
modulin protein levels and the number of CD68-positive cells were measured in renal autopsy samples from diabetic patients with diabetic nephropathy (DN),
diabetic patients without DN (DM), and nondiabetic controls (C). A: Linear mixed model regression analysis of the number of CD68-positive cells (on the y axis)
on the thrombomodulin-positive area (on the x axis) in the glomeruli of the indicated groups. Each symbol represents an individual glomerulus. BeD:
Representative images of three sets of adjacent kidney sections showing thrombomodulin, CD68, and hematoxylin and eosin (H&E) staining in the same
glomeruli of a nondiabetic control (B), a diabetic control without DN (C), and a patient with DN (D). Kimmelstiel-Wilson lesion (arrowheads). nZ 10 patients
per group (A). ****P < 0.0001 (linear mixed model). Scale bars Z 50 mm (BeD).

van Aanhold et al
for 30 minutes, after which the number of adherent
monocytes was counted. In both nontargeting control siRNA
and thrombomodulin-targeting siRNA endothelial cells,
TNF-a stimulation significantly increased the number of
adherent monocytes compared with vehicle (P < 0.0001). In
the absence of thrombomodulin, TNF-a resulted in a larger
increase in adherent monocytes (Supplemental Figure S3).
The interaction effect of thrombomodulin expression and
TNF-a stimulation on One software monocyte adhesion was
significant (P Z 0.028), meaning that absent thrombomo-
dulin expression augmented the effect of TNF-a on endo-
thelial monocyte adhesion. This indicates that
thrombomodulin expression reduces the adhesion of mono-
cytes to endothelial cells activated by TNF-a.
The ETAR Antagonist, Atrasentan, Increases Glomerular
Thrombomodulin Protein Levels in Diabetic Mice

It was next examined whether the reduction in glomerular
thrombomodulin is associated with changes in the structural
integrity of the glycocalyx (ie, the pericellular matrix).
Diabetic apoE�/� mice, which have decreased glycocalyx
dimensions, were treated with atrasentan, a selective ETAR
antagonist that has been shown to reduce albuminuria
and restore the glycocalyx to control (ie, nondiabetic)
levels.18
834
Consistent with the findings using human tissues,
glomerular thrombomodulin staining was significantly
decreased in diabetic mice compared with nondiabetic
mice (P Z 0.025) (Figure 4A); moreover, treating diabetic
mice with atrasentan increased the levels of glomerular
thrombomodulin nearly to the levels observed in nondia-
betic mice (P Z 0.069) (Figure 4A). At the mRNA level,
there was no significant difference in glomerular Thbd
levels between untreated diabetic mice and controls
(PZ 0.186), and treating diabetic mice with atrasentan had
no significant effect on glomerular Thbd mRNA levels
(Figure 4B). In contrast to the findings in human samples,
there was no significant difference in glomerular CD68
staining between control, diabetic, and atrasentan-treated
diabetic mice (data not shown). Representative images of
glomeruli stained for thrombomodulin and CD68 are
shown in Figure 4, C and D, respectively.
Finally, renal tissue sections of a nondiabetic control case

and a DN patient were costained with thrombomodulin and
lectin, which binds to carbohydrates present in glycocalyx.
Thrombomodulin and lectin binding were both present and
colocalized in the glomerular endothelium of the nondia-
betic control case (Supplemental Figure S4). In glomeruli of
the DN patient, thrombomodulin was absent, even though
the binding of lectin still demonstrated preservation of
glycocalyx constituents on the glomerular endothelial cell
surface (Supplemental Figure S4).
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Glomerular thrombomodulin protein
levels are restored indiabetic apoE�/�mice following
treatment with atrasentan. Diabetic apoE�/� mice
(DM) were treated with the selective endothelin A
receptor antagonist, atrasentan (DM þ A) (Materials
and Methods). A: Summary of the thrombomodulin-
positive area measured in glomeruli stained using
an antibody against the extracellular domain of
thrombomodulin. B: Thbd mRNA was measured in
microdissected glomeruli obtained from the
indicated groups and is expressed relative to the
control (C) group. C and D: Representative images of
glomeruli stained using an antibody against the
extracellular domain of thrombomodulin (C) and an
antibody against CD68 (D). *P < 0.05 (one-way
analysis of variance). Scale barsZ 50 mm (C and D).

Reduced Thrombomodulin in DN
Discussion

This study shows that in diabetes, glomerular thrombomodulin
is decreased at the protein level but increased at the mRNA
level, and the reduction in glomerular thrombomodulin protein
is associated with an increased infiltration of macrophages in
the glomeruli. In addition, blocking the endothelin A receptor
restores glomerular thrombomodulin protein levels in a dia-
betic mouse model. These findings suggest that the reduction
in glomerular endothelial thrombomodulin occurs at an early
stage of diabetic microvascular damage and contributes to
glomerular inflammation in DN.

Current findings in human tissue samples are partially
consistent with a previous finding of reduced thrombomo-
dulin expression at both the protein and mRNA levels in the
renal cortex of streptozotocin-induced diabetic mice.6 In
contrast, here, there was a significant increase in THBD
mRNA in the glomeruli of diabetic patients with DN,
possibly reflecting a mechanism to compensate for the
reduced glomerular thrombomodulin protein levels in these
patients. This notion is supported by a previous report that
diabetic individuals have significantly increased serum
levels of soluble thrombomodulin (ie, the cleaved ectodo-
main),13 which suggests that thrombomodulin is
The American Journal of Pathology - ajp.amjpathol.org
proteolytically cleaved in diabetes (eg, via leukocyte-
derived proteases,24 intramembranous rhomboids,25 and/or
other enzymes that remain to be identified).

Interestingly, treating diabetic mice with an ETAR blocker
restored glomerular thrombomodulin levels. Because these
mice have an improved glomerular endothelial glycocalyx,18

we speculate that thrombomodulin may regulate glycocalyx
integrity. Blocking glomerular ETAR signaling may up-
regulate endothelial thrombomodulin by decreasing hypox-
ia26; the resulting increase in thrombomodulin reduces the
glomerular infiltration of macrophages, which produce
the heparanase-activating enzyme cathepsin L.27 The result-
ing decrease in glomerular cathepsin L may reduce
heparanase-mediated degradation of the glycocalyx. In sup-
port of this hypothesis, a loss of glomerular thrombomodulin
was seen to precede the loss of glycocalyx constituents in
DN. The current finding that thrombomodulin levels are
restored following treatment with an ETAR blocker is
particularly interesting given that ETAR blockers significantly
improve renal function and reduce proteinuria in patients with
DN,19 possibly by increasing the podocyte number.28 Thus,
the current results suggest that thrombomodulin may play a
role in the nephroprotective effects of selective ETAR
blockers.
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Macrophages are increasingly recognized as playing a
critical role in the pathogenesis and progression of DN. For
example, macrophages accumulate in the glomeruli of
patients with early-stage DN,29,30 where they produce cy-
tokines, such as TNF-a and transforming growth factor-b,
thereby contributing to glomerulosclerosis by inducing
mesangial cells to produce matrix proteins.31 Furthermore,
reducing the glomerular infiltration of macrophages can
protect diabetic mice from developing DN.3,32,33 In this
respect, the current results suggest that reduced endothelial
thrombomodulin in diabetic patients contributes to glomer-
ular inflammation, even in patients who have not developed
DN. Thrombomodulin inhibits macrophage recruitment via
several distinct mechanisms. First, the lectin-like ectodo-
main regulates TNF-induced NF-kB and extracellular
signal-regulated kinase 1/2 activation and interferes with
high-mobility group box 1 signaling in endothelial cells,
thereby decreasing adhesion molecule expression and
macrophage extravasation.9,10,13 Second, thrombomodulin’s
extracellular EGF-like domain interacts with thrombin,
reducing thrombin’s chemotactic effects34 and suppressing
NF-kB activity via APC activation.8 Third, thrombomodulin
suppresses the glucose-induced up-regulation of monocyte
chemoattractant protein-1 in podocytes.12 Thus, in diabetes,
degradation of the soluble extracellular domains of throm-
bomodulin in the extracellular milieu leads to a localized
reduction in these anti-inflammatory mechanisms. Interest-
ingly, thrombomodulin also has proinflammatory properties.
For example, in vitro experiments show that the serine-
threonine domain of thrombomodulin, which is positioned
adjacent to the cell membrane, can increase the binding of
macrophages to endothelial cells by binding the integrins
lymphocyte function-associated antigen 1 and macrophage-
1 antigen (alias integrin aMb2).35 Following proteolytic
cleavage of thrombomodulin’s lectin-like and EGF-like
domains, the serine-threonine domain may remain in the
cell membrane, where it can promote the glomerular infil-
tration of macrophages. Thus, the combination of degrada-
tion of thrombomodulin’s anti-inflammatory extracellular
domains in the diabetic glomerulus together with increased
exposure of thrombomodulin’s proinflammatory domain
may promote the infiltration of macrophages into the
glomeruli.

The current study has several limitations that warrant
discussion. First, autopsy cohorts are inherently limited by
the potential incompleteness of clinical data, which may
have limited the strength of this analysis with respect to
measuring correlations with certain clinical parameters.
Also, serum samples of these cases were not available to
study the cleaved thrombomodulin levels. Furthermore, the
presence of glomerular thrombomodulin in human renal
autopsies was generally low, compared with the global
thrombomodulin staining pattern observed in mouse
glomeruli. The analysis may have been affected by autopsy-
related artifacts, such as post-mortem changes in thrombo-
modulin levels. However, this is unlikely, as the findings
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obtained using autopsy tissues were supported by results
obtained using renal biopsy samples. Furthermore, throm-
bomodulin was present in the peritubular capillaries of all
studied samples. The use of autopsy samples provided
several advantages over solely using biopsy-based samples.
For example, this approach provided an accurate represen-
tation of patients with diabetes mellitus, as renal tissues
were analyzed regardless of the duration or severity of
diabetes mellitus, the presence of retinopathy, the degree of
proteinuria, and estimated glomerular filtration rate. In
addition, the use of autopsy material led to studying >25
glomeruli per sample, which is not feasible when using
biopsy samples. Finally, the restoration of thrombomodulin
levels by atrasentan treatment lacked significance because of
a low sample size. Nevertheless, these data are still
indicative of an interaction between thrombomodulin and
glycocalyx components in DN.
In conclusion, our results demonstrate that the glyco-

protein thrombomodulin is significantly reduced in the
glomeruli of diabetic patients, regardless of the onset of DN,
suggesting that reduced thrombomodulin levels contribute
to increased glomerular inflammation in these patients.
Furthermore, the reduction in glomerular thrombomodulin
protein coincides with a reduction in the glomerular gly-
cocalyx in diabetic mice and is restored by treating diabetic
mice with the selective ETAR blocker atrasentan. Taken
together, these findings suggest that impaired thrombomo-
dulin signaling plays a functional role in the development of
DN in diabetic patients. Thus, restoring glomerular
thrombomodulin levels (eg, using ETAR blockers) may
provide a promising strategy for diabetic patients at risk for
developing diabetic nephropathy.
Supplemental Data

Supplemental material for this article can be found at
http://doi.org/10.1016/j.ajpath.2021.02.002.
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