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Genetic underpinnings of sociability in the general population
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1,2,11

and Geert Poelmans

Levels of sociability are continuously distributed in the general population, and decreased sociability represents an early
manifestation of several brain disorders. Here, we investigated the genetic underpinnings of sociability in the population. We
performed a genome-wide association study (GWAS) of a sociability score based on four social functioning-related self-report
questions from 342,461 adults in the UK Biobank. Subsequently we performed gene-wide and functional follow-up analyses.
Robustness analyses were performed in the form of GWAS split-half validation analyses, as well as analyses excluding
neuropsychiatric cases. Using genetic correlation analyses as well as polygenic risk score analyses we investigated genetic links of
our sociability score to brain disorders and social behavior outcomes. Individuals with autism spectrum disorders, bipolar disorder,
depression, and schizophrenia had a lower sociability score. The score was significantly heritable (SNP h? of 6%). We identified 18
independent loci and 56 gene-wide significant genes, including genes like ARNTL, DRD2, and ELAVL2. Many associated variants are
thought to have deleterious effects on gene products and our results were robust. The sociability score showed negative genetic
correlations with autism spectrum, disorders, depression, schizophrenia, and two sociability-related traits—loneliness and social
anxiety—but not with bipolar disorder or Alzheimer’s disease. Polygenic risk scores of our sociability GWAS were associated with
social behavior outcomes within individuals with bipolar disorder and with major depressive disorder. Variation in population
sociability scores has a genetic component, which is relevant to several psychiatric disorders. Our findings provide clues towards

biological pathways underlying sociability.

Neuropsychopharmacology (2021) 46:1627-1634; https://doi.org/10.1038/s41386-021-01044-z

INTRODUCTION

Sociability, the inclination to seek or enjoy social interaction, is a
human trait that shows significant variability and is continuously
distributed in the general population [1]. Difficulties with
sociability include a tendency to avoid social contacts and
activities, and to prefer being alone rather than being with others,
potentially linked to a desire to avoid social embarrassment [2].
Reduced sociability has been associated with adverse physical and
mental health outcomes [3, 4], including psychiatric and
neurological disorders [5-7]. Deficits in social interaction are key
features of autism spectrum disorders (ASDs) [8]. In addition,
reduced sociability is a common feature of bipolar disorder (BPD)
[9], major depressive disorder (MDD) [6, 10, 11], schizophrenia
(SCZ) [12, 13], and Alzheimer’s disease (AD) [7, 14, 15]. Reduced
sociability thus represents a behavior that is shared by these
disorders, of which ASD and AD can co-occur with MDD, SCZ, and
BPD (e.g., [16-18]). More specifically, in subgroups of patients,
social withdrawal—the gradual withdrawal from friends, family,
and colleagues—is one of the earliest signs of these disorders,

making it a potential target phenotype for early intervention and
prevention [19, 20].

Sociability is a complex behavioral trait modulated by multiple
factors, such as temperament and personality, disability status,
aging, and socioeconomic status [4]. Beyond those influences,
there is also growing evidence that sociability is biologically
influenced [14, 21, 22]. Indeed, behaviors that constitute
(components of) sociability, such as loneliness and social
interaction, are moderately to highly heritable in twin and family
studies [23-26]. Genetic association studies of loneliness [27] and
social interaction and isolation [28] showed that common genetic
variants play a role in these behaviors and that these constructs
are genetically associated with depressive symptoms. However,
the underlying biological basis of sociability as a construct of
multiple behaviors (including loneliness, social interaction, social
isolation, and social embarrassment) is still largely undefined as is
its genetic link with (brain) disorders.

Psychiatric and neurological disorders that have reduced
sociability as a common feature are known to be highly heritable
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(~60-80% for AD [29], ~64-91% for ASDs [30], ~60% for BPD [31],
~30-40% for MDD [32], and ~79% for SCZ [33]). Genome-wide
association studies (GWASs) comparing individuals with these
disorders and unaffected controls needed very large sample sizes
to robustly identify disease-associated genetic risk variants [34-38].
A limitation of the large case-control GWASs is the probable
phenotypic heterogeneity of the cases included; the case-group
will contain individuals with very diverse sets of symptoms,
severity, and clinical course. Moreover, comorbidity between
disorders and overlap in symptomatology between disorders
make it difficult to select a group of cases that encompass just
one disorder, or a true set of controls that have none. In line with
such phenotypic overlap, evidence from twin data [39] as well as
recent evidence from the Brainstorm Consortium also documents
substantial sharing of common genetic risk factors among
psychiatric disorders [40]. The diagnostic distinctions do not seem
to align with biological categories, which emphasizes the need for
an alternative approach to the investigation of genetic factors
involved. Consistent with e.g., Research Domain Criteria (RDoC)
approaches [41], investigating the genetics of common traits
overlapping between disorders, like reduced sociability, may help
increase our understanding of the underlying mechanisms
involved in the disorders and their comorbidity.

With sociability being continuously distributed throughout the
population, having a biological basis, and reduced sociability
being seen in multiple disorders [42, 43], we hypothesized that
studying the genetic underpinnings of sociability in the general
population can be an alternative way to learn more about the
genetics of complex neuropsychiatric disorders. In the current
study, we used large cohort data from the UK Biobank (UKBB)
[44, 45], in which we computed a sociability score based on the
answers to four sociability-related self-report questions. We
investigated its genetic architecture, the phenotypic and genetic
overlap of the sociability score with AD, ASDs, BPD, MDD, and SCZ,
and its link to social behavior in individuals with psychiatric
disorders.

METHODS

Subjects

The UKBB is a major population-based cohort from the United
Kingdom that includes individuals aged between 37 and 73 years
[44]. The UKBB project was approved by the National Research
Ethics Service Committee North West Multi-Center Haydock and
all participants provided written informed consent to participate
in the study.

Sociability phenotype

We constructed a sociability measure based on the total score per
participant on four questions from the UKBB database that
capture different, complementary aspects of sociability: (1) a
question about the frequency of friend/family visits, (2) a question
on the number and type of social venues that are visited, (3) a
question about worrying after social embarrassment, and (4) a
question about feeling lonely (see Supplementary Information 1,
the sociability score has a range of 0-4). Participants were
excluded if they had somatic problems that could be related to
social withdrawal (BMI < 15 or BMI > 40, narcolepsy (all the time),
stroke, severe tinnitus, deafness or brain-related cancers) or if they
answered that they had “No friends/family outside household” (as
these persons could not answer the question about the frequency
of visits) or “Do not know” or “Prefer not to answer” to any of the
questions.

Phenotypic data on disorders of interest

We grouped individuals with ASDs, MDD, SCZ, BPD, and AD-by-
proxy based on the ICD-10 codes provided. For AD-by-proxy, we
applied prior definitions from the literature [38], see Supplementary

SPRINGERNATURE

Methods for details. A “not affected” group was created by
excluding the above mentioned cases, as well as individuals
that fell in the “probable MDD” group (based on [35]), were
schizotypical, or manic based on ICD-10 criteria, for details
see Supplementary Information 2. Mean values of the sociability
score were calculated per group using SPSS 20.0 (SPSS Technol-
ogies, Armonk, NY, USA) and compared to “non affected”
individuals using general linear models (correcting for age, sex,
and assessment center).

SNP genotyping and quality control

Details about the available genome-wide genotyping data for
UKBB participants have been reported previously [44]. Briefly,
genotypes were imputed using the Haplotype Reference Con-
sortium, and the UK10K haplotype resource. We accounted for
ethnicity and relatedness, see Supplementary Methods for details
and excluded individuals with a sex mismatch. Single nucleotide
polymorphisms (SNPs) with minor allele frequency <0.005,
Hardy-Weinberg equilibrium test P value < 1Te—6, missing geno-
type rate >0.05, and imputation quality of INFO <0.8 were
excluded. All analyses are based on 342,461 participants of
European ancestry for which both genotype data and sociability
scores were available.

Genome-wide association analysis

Genome-wide association analysis with the imputed marker
dosages was performed in PLINK2.0, using a linear regression
model with the sociability measure as the dependent variable and
including sex, age, 10 first PCs, assessment center, and genotype
batch as covariates. Robustness analyses were included by
running five split-half validation analyses, i.e., splitting our sample
five times into two equally sized, randomly selected groups and
comparing single-variant results as well as excluding individuals
with known psychiatric and neurological disorders based on the
ICD-10 codes, see also Supplementary Information 2. Genome-
wide association analyses of the four separate questions
were performed using linear and linear probability regression
models and correcting for sex, age, ten principal components
(PCs), assessment center, and genotype batch.

SNP-based heritability

We applied Linkage disequilibrium (LD) score regression (https://
github.com/bulik/Idsc) to estimate the SNP-based heritability from
our sociability GWAS summary statistics [46, 47], using precom-
puted LD scores based on European samples from the 1000
Genomes Project.

Gene-based analysis

SNP-based p values from the main analysis were used as input for
the gene-based analysis in MAGMA (v1.07) [48], using all 19,427
protein-coding genes from the NCBI 37.3 gene definitions. We
applied a stringent Bonferroni correction to account for multiple
testing.

Genetic correlation analyses

We calculated the bivariate genetic correlation (ry) between
sociability and the publicly available summary statistics of AD,
ASDs, BPD, MDD, and SCZ [34, 36, 37, 49, 50] as well as the
behavioral traits loneliness, and social anxiety [26, 27] using LD
score regression [46, 47].

Functional annotation and gene-mapping of genomic risk loci

Functional annotation and gene-mapping of genomic risk loci was
performed using the Functional Mapping and Annotation (FUMA)
online tool, version v1.3.5e (http://fuma.ctglab.nl [51]), including
all nominally significant SNPs that were in LD (* = 0.6) with one of
the independent genome-wide significant SNPs from the socia-
bility GWAS. Within FUMA, ANNOVAR [52] was used to identify
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each SNP’s genic position, Combined Annotation Dependent
Depletion (CADD) scores [53] were used as a measure of the
predicted deleterious effect of a SNP [54] and RegulomeDB scores
were used to predict the regulatory functionality of SNPs based on
expression quantitative trait loci (eQTLs) and chromatin marks. In
addition, the 15-state chromHMM analysis model of epigenomics
data from the Roadmap Epigenomics Consortium was used to
annotate the minimum predicted chromatin states across tissues
for each SNP. Three gene-mapping strategies were used: (1)
Positional mapping, based on location (Ensembl v92; GRCh37/
hg19), (2) eQTL mapping, based on brain expression data from
PsychENCODE, the CommonMind Consortium, BRAINEAC, and
GTEx v8 Brain, (3) 3D chromatin interaction mapping, based on
chromatin interactions between the SNP region and another
gene’s promoter region.

Enrichment analyses of mapped genes

Through the GENE2FUNC procedure in FUMA (http://fuma.ctglab.
nl [51]) we further investigated the set of genes implicated by the
gene-mapping approach (described above) in relation to tissue
specificity and pathway enrichment. Enrichment analyses of
differentially expressed genes (DEGs) were performed across 30
general tissue types and 54 specific tissue types from the GTEx
database v8 [55] and across 11 general developmental stages of
brain samples and 29 different ages of brain samples from the
BrainSpan data [56]. Enrichment of the mapped genes was also
assessed using the collection of publicly available predefined gene
sets from the Molecular Signatures Database (MsigDB v7.0) [57],
WikiPathways (curated version 20191010) [58], and GWAS catalog
(version €96 2019-09-24) [59]. FUMA was used with default
settings unless stated otherwise. For details see the Supplemen-
tary Methods.

Polygenic risk score analyses
The PRISM consortium (see https://prism-project.eu/en/prism-
study/) collected social behavior-related data as well as genetic
data in 6 samples of patient cohorts. The social behavior outcomes
used reflect social avoidance, social withdrawal, loneliness, social
activities and social relationships. Please see Supplementary
Table 1 for the cohorts and social behavior measures that were
included and Supplementary Information 3 for details. All PRS
analyses were performed in PRSice2 [60]. PRS were calculated for
each individual in the independent target samples by scoring the
number of risk alleles weighted by their effect in the UKBB
sociability GWAS for the set of clumped SNPs using the fast score
option in PRSice2. Subsequently, linear regression analyses were
performed testing the relationship between the sociability PRS
and the social behavior outcomes in the PRISM datasets, including
sex, age, and genetic PC’s as covariates, as well as dataset-specific
covariates. Multiple comparison correction was performed using
Bonferroni correction taking into account the number of tests
performed (see Supplementary Information 3).

Further details on all methods performed can be found in the
Supplementary Methods.

RESULTS

Sociability measure

Valid data was available for 342,461 adult participants in the UKBB
(mean age 56.61 (sd =8.022), 53.8% female). The range of our
sociability score was 0 (low sociability) to 4 (high sociability), with
a mean of 2.7 (see Supplementary Information 5). The mean
sociability score of participants assigned to one of the psychiatric
disorder groups (ASD n=42, BPD n=738, MDD n = 8943, and
SCZ n=397) was significantly lower than that of the unaffected
group. The group of people with an AD-by-proxy status (n=
41,648) scored significantly lower than the unaffected group,
though the difference with the unaffected group was much less
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Sociability score

~
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MEAN SOCIABILITY SCORE
-

All Not Affected MDD BPD scz ASD AD-by-proxy

GROUP

Fig. 1 Mean sociability scores in the complete sample (“all”),
individuals without psychiatric and neurological disorders (“not
affected”) and with specific disorders of interest. AD Alzheimer’s
disease, ASD autism spectrum disorders, BPD bipolar disorder, MDD
major depressive disorder, SCZ schizophrenia. Error bars show the
95% confidence interval. Groups significantly different from “Not
affected” group are indicated with an asterix (¥).

pronounced than for the other disorders (Fig. 1 and Supplemen-
tary Table 2).

Genome-wide association analysis (GWAS)

Our sociability measure had a SNP-based heritability of 0.06 (se =
0.0019). In total, 604 SNPs, with 19 lead-SNPs across 18
independent loci, surpassed the threshold for genome-wide
significance (p < 5e—8; Table 1, Fig. 2 results are publicly available
at https://doi.org/10.17026/dans-ztj-zga6). Split-half validation
analyses showed that all variants had robust associations, showing
at least nominally significant associations in all five iterations
(Supplementary Table 3). Exclusion of individuals with psychiatric
and neurological disorders did not change the results substan-
tially, though power was reduced (Supplementary Table 3). Results
for the aggregated score were not driven by a single question, as
all SNP associations had nominal significance for at least two
questions (Supplementary Table 4).

In the gene-based genome-wide analysis [48] 56 genes reached
significance (Supplementary Table 5). Gene-wide analysis in the
nonaffected group showed that the results were not driven by
individuals with a diagnosis (Supplementary Table 5).

Genetic correlation

Our aggregated sociability score showed significant genetic
correlations with different components of sociability, i.e., lone-
liness (ry = —0.45, p = 2.9e—8), which had been assessed in one of
the four questions included in our score, and social anxiety (rq =
—047, p=0.002).

We found highly significant negative genetic correlations
between sociability and ASDs (rg=—0.27, p =3.6e—28), MDD
(rg=—0.67, p = 4.5e—249), and SCZ (ry = —0.15, p = 7.5e—23). No
significant genetic correlations were found between sociability
and BPD or AD (Table 2).

Polygenic risk score (PRS) analyses

PRS analysis in six patient-only samples of BPD, MDD, and SCZ
cases (427 <n < 1705) showed an association between polygenic
load for sociability and “interpersonal relations” in BPD patients
and two additional nominally significant associations (Supple-
mentary Table 6).

Functional follow-up

Among the 1953 candidate SNPs, there was an enrichment for
intergenic SNPs (55.6%; enrichment 1.19; p = 2.63e—15) compared
to the reference panel, while SNPs in intronic (30.2%; enrichment
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Table 1. The location, the significance value, and the nearest gene for the 19 lead-SNPs of the 18 genomic loci that pass the threshold for genome-
wide significance (p < 5e—8) in the GWAS of the sociability score in the UK Biobank sample.

Lead-SNP chr pos p Value Loci Start End Nearest gene A1l A2 Beta
rs10180695 2 5,129,2332 3.16E—08 1 51,203,466 51,306,745 AC007682.1 T C —0.01187
rs202220108 2 148,910,423 3.24E-08 2 148,538,291 148,955,901 MBD5 C A —0.01194
rs57601252 2 157,100,293 4.00E—08 3 157,009,413 157,150,188 NR4A2 A T 0.01329
rs4266214 3 82,003,207 1.53E—09 4 81,630,790 82,402,319 RP11-359D24.1 G A —0.01295
rs62365541 5 50,905,846 1.86E—11 5 50,582,954 50,974,050 CTD-233503.3 A G —0.01511
rs4075651 5 107,878,588 8.77E—09 6 107,718,510 107,932,811 RP11-120B7.1 C T —0.01391
rs10456089 6 11,959,836 2.70E—-09 7 11,959,836 12,056,771 RP11-456H18.1 A G 0.02434
rs4839780 6 100,909,398 1.27E—08 8 100,813,469 101,344,679 SIM1 C T 0.01202
rs34979551 6 100,848,871 1.37E—-08 8 100,813,469 101,344,679 SIM1 G A 0.01786
rs6976111 7 117,495,667 4.42E-10 9 117,494,829 117,636,111 CTTNBP2 A C —0.01451
rs3793577 9 23,737,627 4.55E—-10 10 23,720,380 23,741,776 ELAVL2 A G 0.01335
rs10761244 9 96,387,592 8.21E—-09 11 96,384,524 96,460,883 PHF2 C T 0.01235
rs71507562 9 121,640,304 1.78E—08 12 121,546,458 121,667,198 TUBB4BP6 G T 0.01383
rs34588274 11 13,269,946 1.01E-13 13 13,268,067 13,350,131 ARNTL C T —0.01600
rs527528 11 57,433,327 4.02E—-10 14 57,404,779 57,756,568 ZDHHC5 T C —0.01405
rs4245154 11 113,388,674 7.17E—-09 15 113,317,745 113,451,229 DRD2 G A 0.01236
rs3742021 12 109,883,117 7.43E-09 16 109,849,297 110,027,795 MYOI1H C T —0.01335
rs3784060 14 72,114,138 1.73E—-08 17 71,757,418 72,162,901 SIPATL1T G T 0.01315
rs2216270 18 63,656,060 1.25E—-08 18 63,650,084 63,668,364 RP11-389J22.3 C T —0.01540
The nearest gene is based on Ensembl genes [build 85] annotated using ANNOVAR.

chr chromosome, pos position based on GRCh37/hg19.

-log10 P-value

1 2 3 a 5 6

8 9 10 11 12 13

Chromosome

Fig.2 Manhattan plot of the genome-wide association analysis of the sociability score in the UK Biobank sample (N = 342,461). Every dot
indicates the outcome of the linear regression analysis of one SNP with the sociability measure as the dependent variable and including sex,
age, first 10 principal components, assessment center, and genotype batch as covariates. On the x-axis the distribution of SNPs over the
chromosomes and on the y-axis the —log 10 association p value is shown. The red dotted line indicates the threshold for genome-wide

significance (i.e., p = 5e—8).

0.83; p = 8.94e—09), exonic (0.1%; enrichment 0.10; p = 1.14e—06),
and noncoding RNA (0.5%; enrichment 0.45; p=9.37e—03)
regions were significantly underrepresented (Supplementary
Fig. S1). Two SNPs were located in exons of protein-coding genes,
namely rs2303751 in ISLT and rs2229519 in GBET; the latter had a
CADD-score of 23.9. Overall, 104 SNPs (5.3%) had CADD-scores
>12.37 (i.e., are potentially pathogenic), and these were distrib-
uted across 16 of the 18 significant genomic loci. Analysis of
potential regulatory functions of SNPs using RegulomeDB, where
data was available for 1515 candidate SNPs, showed that 23 (1.5%)
had a score >2, indicating they were highly likely to have
regulatory functions; more generally, the majority of the
annotated candidate SNPs (N=1391; 71.2%) were located in
open chromatin regions (Supplementary Fig. S2). Detailed results
on annotation of candidate SNPs can be found in Supplementary
Table 7.

SPRINGERNATURE

Gene-mapping identified 76 genes likely implicated in socia-
bility genetics. Positional gene-mapping provided support for 31
genes (40.8%), eQTL-mapping implicated 25 genes (32.9%), and
3D chromatin mapping implicated 47 genes (61.8%). Across
approaches, 23 genes (30.3%) were implicated by at least
two approa ches and 4 genes (HIVEP1, MED19, TMX2, and DRD2)
were identified by all strategies. Compared to the MAGMA gene-
based analysis 18 genes were overlapping. Detailed gene-
mapping results are given in Supplementary Table 8, and
schematic representations of the chromatin interaction results
are shown in Supplementary Fig. S3. Follow-up analyses were
performed to examine tissue expression enrichment and pathway
enrichment of the 76 FUMA-mapped genes. Analyses with GTEx
data [55] (30 general tissue types and 54 specific tissue types) and
with BrainSpan data [56] (11 general developmental stages of
brain samples and 29 different ages of brain samples) identified

Neuropsychopharmacology (2021) 46:1627 - 1634
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Table 2. Genetic correlation between the sociability score in UK Biobank (Soc) and autism spectrum disorders (ASD), major depressive disorder
(MDD), schizophrenia (SCZ), bipolar disorder (BP), and Alzheimer’s disease (AD), and quantitative measures of Loneliness and Social Anxiety (SocAnx).
Comparison Rg (se) p Value Sample size PMID
Soc-Loneliness —0.4518 (0.0815) 2.98E—-08 7556 27629369
Soc-SocAnx —0.4743 (0.154) 2.10E-03 11,268 28224735
Soc-AD —0.039 (0.028) 5.74E-01 17,008 cases, 37,154 controls 24162737
Soc-ASD —0.2692 (0.0245) 3.60E—28 18,381 cases, 27,969 controls 30804558
Soc-BPD —0.0143 (0.019) 4.50E-01 20,352 cases, 31,358 controls 31043756
Soc-MDD —0.6746 (0.02) 4.53E—-249 59,851 cases, 113,154 controls 29700475
Soc-SCZ —0.1532 (0.0156) 7.50E—23 34,241 cases, 45,604 controls, 1235 trios 25056061
Significant genetic correlations are indicated in bold.

no significantly enriched differentially expressed gene sets
(Supplementary Fig. S4). Gene-set enrichment analyses identified
seven significantly enriched positional gene sets (MsigBD c1) [57],
one significantly enriched gene set from WikiPathways [58] (i.e.,
the “Amino acid conjugation of benzoic acid" pathway), and
significant enrichment among the set of 19 GWAS catalog
reported genes [59]. The significantly enriched gene sets are
shown in Supplementary Fig. S5.

DISCUSSION

In this study, we showed that sociability, scored based on answers
to four social functioning-related self-report questions in the
general population sample of UKBB, was decreased by 15-27% in
individuals with ASDs, MDD, SCZ, and BPD, but only by 1% in
individuals with AD (by-proxy). This sociability construct showed
moderate genetic correlation with loneliness and social anxiety
that encompass more specific, single aspects of sociability.
Consistent with the phenotypic overlap observed, the sociability
score was also negatively genetically correlated with ASDs, MDD,
and SCZ. The phenotypic overlap of sociability with BPD and AD
was not accompanied by genetic correlations. Through SNP-based
and gene-based GWAS, we identified 18 independent loci and 56
genes associated with the sociability score. Using functional
analysis we found that several SNPs are thought to have
deleterious effects on the gene products.

This is the first study to investigate the genetics of sociability as
an aggregated construct, including aspects of loneliness, social
relationships, social embarrassment, and social activities. Although
other studies have investigated the influence of common genetic
variants on single aspects of this construct, like loneliness [27, 61],
or related ones, like social anxiety [26], we aimed to capture a
broader concept of sociability. Although the four items only
correlate with each other to a limited extend, we have selected
them to reflect four different, complementary aspects of sociability,
including quantitative behavioral aspects of sociability (question 1),
qualitative aspects of sociability (question 2) and subjective aspects
of sociability that are linked to social anxiety/avoidance (question 3
and 4). Based on the phenotypic associations of our aggregated
score to multiple psychiatric disorders we believe our construct
captures a cross-disorder trait and the evidence that our genetic
signals are not driven by single questions indicates the added
value of our combined score. A previous study in UKBB performed
a multi-trait (MTAG) design study of social interaction, including
loneliness, frequency of social interactions, and ability to confide
in someone [28]. We decided to use an additive construct,
preferring this over the multi-trait design because our data did
not satisfy the assumptions on, amongst others, the extent of
the genetic correlation values required for performing MTAG
analyses [62]. Our aggregated measure of different aspects of
sociability was influenced significantly by common genetic
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variants. The SNP-based heritability of the score was 6%, which
was nominally higher than the SNP-based heritability reported for
the multi-trait study of social interactions (h®=3.4-5%; [28], but
lower than the heritability observed for more restricted aspects of
sociability, i.e., loneliness (h* = 4.2-16%; [27, 28], and social anxiety
(h* = 12%; [26]).

We were able to show that the sociability score constructed in
the general population sample picked up aspects of social
behavior altered in different brain disorders. For individuals with
ASDs, MDD, and/or SCZ, we found 19% or more reductions in the
mean of the sociability score compared to the unaffected group.
In line with this, we also showed that sociability was genetically
correlated with ASDs, MDD, and SCZ, with a particularly strong
negative correlation for MDD. As a part of the IMI2 consortium
PRISM, we investigated genetic aspects of sociability and the
active process of social withdrawal using patient cohorts from
consortium partners. While power was limited, we did see nominal
associations with a sociability score PRS for several of the
phenotypic measures, providing additional evidence for the
relevance of population sociability scores for social functioning
of patients with psychiatric disorders. We were limited in these
studies by the fact that the different cohorts had used different
instruments to measure aspects of sociability.

For BPD, findings were different than for the other psychiatric
disorders investigated. Distinctions between BPD and the other
disorders are also seen more often, both phenotypically, with for
example higher premorbid adjustments in BPD compared to SCZ
[63], as well as genetically, with for example positive genetic
correlations between educational attainment and BPD, while
educational attainment is negatively correlated to MDD [64] and
SCZ [65]. Patients with BPD fluctuate between depressive and
manic states. Reduced sociability is pronounced in depressive
periods, but also observed during remission phases [66]. While
manic episodes are often characterized by an increase in social
visits, feeling less socially embarrassed, and having the energy to
visit public social places, the aspects covered in our sociability
score. After finding the reduced sociability score in BPD
individuals, we were somewhat surprised not to find any genetic
correlation for the sociability score and BPD risk. This may be
explained by the known (genetic) heterogeneity of BPD [37] in
combination with the more limited extent of social deficits in this
disorder. Alternatively, reduced sociability in BPD patients might
rather be explained by environmental risk factors that are shared
or because of unexplained genetic variance in both traits and we
cannot rule out power issues in the discovery GWAS used to
calculate the correlation.

Reduced sociability has previously been suggested as a risk
factor and early behavioral sign of AD [67, 68], and linked with
cortical amyloid burden, a putative biomarker of AD [69]. We only
found a minimal (1%) reduction in our sociability score in AD-by-
proxy individuals, which included both diagnosis and family
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history of AD, and has been reported to capture AD risk in
previous UKBB genetic studies [38, 70]. Similarly, we did not find
significant genetic correlations between the sociability score and
AD risk. Different explanations might capture this discrepancy. The
few AD patients in UKBB may represent a group biased towards
better cognitive/social performance, or the AD by-proxy group
may not carry many genetic risk factors for social deficits, or may
only develop those deficits at a later stage. Alternatively, the
aspects of social behavior included in our sociability score may not
optimally capture the social deficits relevant to AD. With regard to
the lack of genetic overlap, one may consider that the social
deficits in AD may not be genetic in nature but rather occur
downstream of environmental risk factors and we cannot rule out
power issues in the discovery GWAS used to calculate the
correlation. The apparent discriminatory power of our sociability
score for psychiatric disorders and AD may form an interesting
starting point for follow-up research.

By performing a GWAS of the sociability score, we were able to
detect 18 robust genome-wide significant independent loci,
including 19 lead-SNPs. Functional analysis in FUMA indicated
that that several SNPs are thought to have deleterious effects on
the gene products. While this may suggest an increase in the
plausibility of their implication on a given disease or trait, this is by
no means determinant and caution is highly recommended to
avoid over-interpretation. Further studies are necessary to
determine whether or not they drive the association at a given
locus.

The strongest association signal in the SNP-based GWAS was
observed on chromosome 11p15 (rs34588274, p = 1.01e—13). This
locus encompasses the ARNTL gene, which is a circadian clock
gene also known as BMAL1 [71]. Circadian disruptions, like
delayed sleep, reduced sleep efficiency, difficulties falling asleep,
early waking, and higher levels of day-time sleepiness, are
common features of MDD, SCZ, BPD, and several neurodegenera-
tive diseases [72-74]. Genetic variants within clock genes,
including ARNTL, have been previously associated to psychiatric
disorders and AD [75-77]. Interestingly, the lead-SNP in this
region, rs34588274, has previously been associated with neuroti-
cism, the well-being spectrum (life satisfaction, positive affect,
neuroticism, and depressive symptoms), and BMI (GWAS catalog,
https://www.ebi.ac.uk/gwas/ [78, 79]). Another significant locus
worth highlighting is located on 11q22 (rs4245154, p = 7.17E—09);
it includes DRD2, a gene that has been extensively studied in
multiple disorders, including SCZ. This gene encodes the
D2 subtype of the dopamine receptor that is the target of all
currently used antipsychotics [80, 81]. DRD2 is one of the few
candidate genes for SCZ, that have been confirmed by GWAS [36].
Our top-SNP for the gene was recently also found to be
significantly associated with MDD [35, 36]. Importantly, the
association with DRD2 remained significant when we excluded
neuropsychiatric cases from our sociability analyses, indicating
that the association is not driven by diagnosed individuals in our
sample. A third interesting genome-wide significant locus was
located on chromosome 9p21 (rs3793577, p =4.55E—10). ELAVL2
has also been shown to be associated with MDD in the latest
GWAS [35]. The protein encoded by this gene is a neuron-specific
RNA-binding protein that is involved in several aspects of
neuronal functioning important for normal functioning of the
brain [82]. Co-expression networks for ELAVL2 highlight its
connection to neurodevelopmental genes, implying it to be a
potential important gene for neurodevelopmental disorders more
general.

This study should be viewed in light of some strengths and
limitations. A major strength of the current study is the large
sample size, providing us with the power to detect single-variant
genetic associations. Another main strength is the combined
phenotype that is capturing a sociability construct shared
between disorders. A limitation of the current study is the modest
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SNP-based heritability, indicating we are only touching on part of
the heritability of the complex multifactorial disorders showing
reduced sociability as an overlapping trait. Another limitation is
that our sociability questionnaire addresses average behaviors
over a time frame of maximally 1 year and does not take into
account sociability-related behaviors that may be present or
absent in specific time frames, e.g., during manic episodes in BPD.
Further, as the current study has been conducted in a cohort of
European-only participants, this limits the generalizability of our
results across other ancestral populations, and the field is in
current need of more genetic diversity and future work is needed
to address this.

In conclusion, our data shows that there is a significant genetic
component to the variation in (population) levels of sociability.
This genetic contribution to sociability is relevant to the
psychiatric disorders ASDs, MDD, and SCZ, but not to BPD and
the neurological disorder AD.
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