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CEREBRAL BLOOD FLOW AND COGNITION

Contributions of Cerebral Blood Flow to 
Associations Between Blood Pressure Levels and 
Cognition
The Age, Gene/Environment Susceptibility-Reykjavik Study

Justine E. Moonen , Behnam Sabayan , Sigurdur Sigurdsson, Mark A. van Buchem, Vilmundur Gudnason,  
Osorio Meirelles, Lenore J. Launer

ABSTRACT: Cerebral hypoperfusion leads to adverse sequalae including dementia. Midlife higher blood pressure (BP) can lead 
to low cerebral blood flow (CBF), but older persons may need higher BP to maintain cerebral perfusion. We investigated 
the associations among late-life BP, CBF, and cognition. Data are from 2498 participants with a mean age of 79.8 (SD, 4.7) 
years of the second exam of the AGES (Age, Gene/Environment Susceptibility)–Reykjavik Study. BP was measured, and 
phase-contrast (PC) magnetic resonance imaging was acquired to estimate total brain CBFPC. Cognitive outcomes included 
verbal and working memory, processing speed, mild cognitive impairment, and all-cause dementia. Relationships among late-
life BP, CBFPC, and cognition were assessed with regression models, controlling for socio-demographics, BP level at midlife 
(at a mean age of 49.6 [SD, 5.9] years), cardiovascular factors, and total brain volume. In fully adjusted models, each mm Hg 
increase in late-life diastolic BP was associated with a −0.082 mL/min per 100 mL (95% CI −0.123 to −0.041) lower CBFPC. 
In contrast, each mm Hg increase in late-life systolic BP or pulse pressure was associated with a 0.027 mL/min per 100 mL 
(95% CI, 0.0065–0.048) and 0.061 mL/min per 100 mL (95% CI, 0.038–0.084) higher late-life CBFPC, respectively. Higher 
CBFPC was significantly related to higher cognitive scores for psychomotor speed, verbal, and working memory and to a 
lower odd of mild cognitive impairment or dementia, irrespective of late-life BP level. Higher late-life diastolic BP and systolic 
BP were differentially associated with CBFPC. Our findings suggest CBF is an important correlate of late-life cognition, 
independent of BP level. (Hypertension. 2021;77:2075–2083. DOI: 10.1161/HYPERTENSIONAHA.120.16894.)  

• Data Supplement
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Chronic hypoperfusion of the brain is one mechanism 
underlying the cerebral damage associated with 
high blood pressure (BP). Chronic hypertension and 

hemodynamic stress can lead to arterial stiffening, lumen 
narrowing, changes in neurovascular coupling, and cere-
bral autoregulation (CA)—thereby affecting cerebral 
blood flow (CBF) and delivery of nutrients and oxygen 
to the brain.1,2 With age, these vascular changes tend to 
lead to an increase in systolic BP (SBP) and a decrease 
in diastolic BP (DBP)3 and to cerebral vascular damage 
that may lead to cognitive decline or dementia.4–6

In older persons, an increased SBP and pulse pres-
sure (PP), may be needed to overcome the increased 
resistance of a cerebral vascular bed that is affected by 
arteriolosclerosis.7 This concern is raised in the context 
of adverse outcomes of a lower BP at old age such as 
falls, cognitive decline, and mortality.8,9 However, there are 
few data on the relationship of late-life BP level to CBF in 
cohorts that better represent the range and distribution of 
CBF, BP, and health status typical in older populations. Fur-
ther, few studies have compared the associations among 
BP, CBF, and cognitive function in the same population. 
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Current studies indicate a negative, positive, or no associa-
tion between late-life BP and cognitive function,5 whereas 
CBF may be a more consistent marker.10

We examined the possible paradox between desirable 
BP levels, CBF, and cognitive function, in the AGES-RS 
(Age Gene/Environment Susceptibility—Reykjavik Study), 
a large population-based study with 30-year follow-up 
between middle and late age. We investigate whether a 
lower BP is related to a lower CBF at old age. Further, we 
hypothesize that in this older cohort there is an associa-
tion between a higher CBF and better cognitive function.

METHODS
Study Population
The data that support the findings of this study are available 
from the corresponding author upon reasonable request. This 
study included cohort members from the AGES-RS, which 
originated from the RS (Reykjavik Study).11 Briefly, the RS was 
initiated by the Icelandic Heart Association to study cardiovas-
cular disease in a population-based cohort of persons born 
between 1907 and 1935 and living in Reykjavik and surround-
ings in 1967. AGES-RS is based on a random sample of RS 

cohort survivors who were examined in 2002 to 2006 and then 
again 5 years later (2007–2011) to study genetic and environ-
mental factors for disease and disability at old age. AGES–RS 
was approved by the National Bioethics Committee in Iceland 
(VSN 00-063) acting as the institutional review board for the 
Icelandic Heart Association, and by the institutional review 
board governing the National Institute on Aging. All participants 
gave written informed consent.

Blood Pressure
In both the AGES-RS and the RS, BP was measured twice 
after 5 minutes of rest in a sitting position with a standardized 
cuff (bladder width×length: 15×22 cm) according to the World 
Health Organization and European guidelines. The mean of 2 
consecutive measurements, that were separated by 1 to 2 min-
utes, was used in analyses. PP was calculated as (SBP−DBP). 
Late-life BP levels were measured at the second visit, concur-
rently with the CBF magnetic resonance imaging (MRI) mea-
sure, when participants had a mean age of 79.8 (SD, 4.7) years. 
The measured midlife BP levels were taken from the RS exam 
conducted closest to when the participants were age 50 years 
(mean age [SD] in years: 49.6 [SD, 5.9]). Antihypertensive 
treatment and other medication were registered by using a 
questionnaire that participants were asked to fill out.

MRI Acquisition and Image Processing
All consenting participants without contraindications were eligi-
ble for brain MRI acquired on a study dedicated 1.5-Tesla Signa 
Twinspeed Excite system (General Electric Medical Systems, 
Waukesha, WI), using an 8 channel phased array head cap coil. 
Described in detail elsewhere12 the image protocol included a 
3-dimensional spoiled gradient-echo T1-weighted, fast spin-
echo proton density/T2-weighted, and fluid-attenuated inver-
sion recovery sequences for structural imaging. Different tissue 
volumes, including white matter lesion load a measure of vas-
cular injury, were segmented automatically using a validated 
image analysis postprocessing pipeline. Total brain volume 
(TBV) was defined as the sum of volumes of gray matter, white 
matter, and white matter lesions. Intracranial volume was esti-
mated as TBV plus cerebral spinal fluid volume. A measure of 
atrophy was defined as the volume of TBV/intracranial volume 
to give a percent (%TBV).

Total CBF (mL/min) was estimated with 2-dimen-
sional phase-contrast (PC)-MRI. The PC-MR images were 

Nonstandard Abbreviations and Acronyms

AGES-RS  Age Gene/Environment Susceptibility—
Reykjavik Study

BMI body mass index
BP blood pressure
CA cerebral autoregulation
CBF cerebral blood flow
DBP diastolic BP
MCI mild cognitive impairment
MRI magnetic resonance imaging
PC phase-contrast
PP pulse pressure
SBP systolic BP
TBV total brain volume

Novelty and Significance

What Is New?
• We show that in late-life not blood pressure (BP) level, 

but a lower cerebral blood flow (CBF) is consistently 
related to worse cognitive outcomes.

What Is Relevant?
• To establish late-life BP values and treatment goals for 

optimizing brain function, it is crucial to consider CBF 
level.

Summary
This large population-based study in older persons 
shows that the effect of late-life BP on CBF is dif-
ferent for systolic BP and diastolic BP, with a higher 
systolic blood pressure but a lower diastolic BP relat-
ing to a higher CBF. Higher CBF was related to higher 
cognitive functioning and lower odd of mild cognitive 
impairment or dementia, irrespective of BP level.
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processed using the software package FLOW (Division of 
Image Processing, Leiden University Medical Center, the 
Netherlands).13 Total CBF was derived from the flow-through 
one standardized oblique axial slice perpendicular to the inter-
nal carotid arteries and the basal artery on a PC sagittal angio-
graphic localizer image. Estimated total CBFPC was defined as 
the sum of the flow in internal carotid arteries and basal artery 
and was expressed per 100 mL brain volume in mL/min per 
100 mL. CBFpc was normally distributed.

Confounding or Moderating Factors
In our analyses, we controlled for several factors that may con-
found the association or moderate the association of BP to 
CBFPC. Questionnaires were used to assess level of education 
(dichotomized at primary education) and smoking status (cur-
rent versus never or former). Measured weight and height were 
used to calculate body mass index (BMI; kg/m2). Diabetes was 
defined as a self-reported history of diabetes, use of blood 
glucose-lowering medication, or fasting serum glucose of ≥7 
mmol/L. Hospital records identified events of stroke and heart 
failure. Coronary calcium load (in mm3), as a measure of athero-
sclerosis load, was acquired using computerized tomography, 
calculated as the sum score of the 4 coronary arteries, and 
scored in Agatston units.14

Cognitive Function
As described previously,15 cognitive function was measured by 
3 composite domain scores, verbal memory, working memory, 
and processing speed. The verbal memory compound score 
included the immediate- and delayed-recall portions of the 
original California Verbal Learning Test.16 The working mem-
ory composite includes Digits Backward,17 the Cambridge 
Neuropsychological Test Automated Battery spatial working 
memory test,18 and the Stroop Test Part III.19 The process-
ing speed composite includes the Digit Symbol Substitution 
Test,17 Figure Comparison,20 and the Stroop Test Parts 1 and 
2.19 All tests had a normal distribution and inter-rater reliabil-
ity was high (Spearman correlations for cognitive tests range 
from 0.96–0.99). Composite domain scores measures were 
computed by converting raw scores of each cognitive test to 
standardized Z scores and averaging them across the tests in 
each composite. Dementia and mild cognitive impairment (MCI) 
were assessed in a 3-step process, as previously described21 
including testing the total population with measures of gen-
eral cognitive function; detailed assessment of cognitive func-
tion of those falling below a cut point; and among those falling 
again below a cut point, a third step that included a neurological 
examination and a proxy interview. A consensus diagnosis of 
dementia and subtypes, according to criteria of the Diagnostic 
and Statistical Manual of Mental Disorders IV22 or of MCI23 was 
made by a panel including a geriatrician, a neurologist, a neuro-
psychologist, and a neuroradiologist.

Analytical Sample
Of the 2643 participants who had MRI, 138 participants had 
incomplete data on CBFPC, 2 had incomplete data on brain vol-
ume, and 12 had missing BP measures at mid- or late-life, and 
2 extreme outliers for CBF were excluded, leaving 2489 par-
ticipants available for analysis.

Statistical Analysis
Late-life characteristics of participants are reported as mean 
(SD), median (interquartile range), or number (%) where 
appropriate. Population characteristics are compared among 
late-life SBP and DBP groups with χ2 for categorical vari-
ables, with ANOVA for normally distributed continuous vari-
ables, and with Kruskal-Wallis for non-normally distributed 
continuous variables. Late-life BP group was categorized 
according to BP Joint National Committee-8 hypertension 
guideline7 cut-offs, late-life SBP; <120, 120 to <140, 140 
to <150, 150+, late-life DBP; ≤70, 70 to <80, 80 to <90, 
90+, and PP; <25th percentile, 25th to <75th percentiles, 
and 75th+ percentiles. The association between late-life BP 
and CBFPC was estimated with linear regression analysis. 
Nonlinearity of associations was tested by entering qua-
dratic terms into an age and sex-adjusted model, but terms 
were not significant. Model 1 included age, sex, education, 
and %TBV; model 2 additionally included coronary calcium 
load, diabetes, BMI, heart failure, smoking status, stroke, use 
of antihypertensive medication (never, both mid- and late-
life, only mid- or only late-life), and midlife BP level of the 
same late-life measure (ie, late-life DBP was adjusted for 
midlife DBP). The relationships among BP level, CBF, and 
cognitive function (psychomotor speed, verbal and working 
memory, and MCI or dementia status) were examined with 
linear (or logistic) regression adjusting for age, sex, educa-
tion, and %TBV.

In secondary analyses, we assessed if the relationship 
between a higher SBP and higher CBF may be more pro-
nounced in subgroups of frailer older persons. We assessed 
whether the following indicators of health status modified 
the association of late-life BP to CBFPC, including age 
(median split at 80 years), sex; groups for midlife SBP 
and DBP,7 use of antihypertensive treatment, late-life BMI 
(≤18.5, 18.5–24.9, 25–29.9, ≥30 kg/m2), late-life smoking 
(yes/no), prevalent diabetes, heart failure, stroke, coronary 
calcium Agatston score (absent: 0, mild: 1–100, moderate: 
101–400, severe >400),24 and upper quartile of abnormal 
white matter volume (≥29.9 cc). Effect modification by these 
factors was tested by adding an interaction term in the lin-
ear regression model (late-life BP×covariate). Stratified and 
interaction analyses were adjusted for age and sex (model 
1). P values for significant interaction-terms will be cor-
rected for multiple testing using the Bonferroni adjustment. 
We also examined the association of CBF to cognition in 
strata of BP, and we tested if there was significant interac-
tion between late-life BP and CBF on cognitive function. 
SAS v. 9 was used for all analyses.

RESULTS
Population Characteristics
The cohort included 40.9% male; 59.9% used antihy-
pertensive medications in late life (Table 1); descrip-
tive statistics by late-life SBP and DBP categories are 
found in Tables S1A and S1B in the Data Supplement. 
In this cohort, 4.3% of the study population had high 
DBP (>90 mm Hg) and 37.8% had high SBP (>150 
mm Hg).
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Late-Life BP and CBF
Each mm Hg increase in DBP was associated with 
−0.082 mL/min per 100 mL (95% CI, −0.123 to −0.041) 
lower CBFPC (Table 2, Model 2). Each mm Hg increase in 
SBP and in PP was associated with a 0.027 mL/min 
per 100 mL (95% CI, 0.0065–0.048) and 0.061 mL/
min per 100 mL (95% CI, 0.038–0.084) higher late-life 
CBFPC, respectively. Mean CBF per BP group is visual-
ized in Figure 1. The positive (for SBP) and negative (for 
DBP) direction of these associations with CBF were 
similar across several demographic characteristics, car-
diovascular risk factors, and sub-clinical vascular disease 
markers (Figure 2). There was no positive association for 
SBP and CBFPC, in persons with dementia, but the inter-
action term for (dementia status×SBP) was not signifi-
cant (P interaction=0.15; Figure 2).

Late-Life BP, CBF, and Cognition
Both CBFPC and late-life BP (either DBP, SBP, or PP) 
were entered into the models to examine their asso-
ciation with cognition. Higher CBFPC was significantly 
related to higher cognitive scores for verbal, working 
memory, and psychomotor speed (Table 3) and to a lower 
odd of MCI or dementia (Table 4) while controlling for 
age, sex, education, BP level, and %TBV. In this model 
with both BP level and CBF, except for higher PP being 
related to lower working memory scores (Table 3), lev-
els of DBP, SBP, and PP were not associated with any 
cognitive domain or with MCI or dementia status. Table 
S2 shows the relationship between CBF and cognitive 
domains by BP level. Estimates were higher in those with 
a lower DBP or in the range of SBP between 120 and 
140 mm Hg, whereas no clear pattern was observed by 
PP level. There was no significant interaction between 
late-life BP and CBF on cognitive function (Table S2). 
There was no significant relationship between midlife 
DBP, SBP, or PP and late-life CBF (Table S3A) or cogni-
tive function (Table S3B). To evaluate the use of a single 
standardized cuff size, which could potentially lead to 
faulty BP measurements in those with extremes of BMI, 
we have rerun BP analyses excluding those in either the 
lower or the upper quartile of BMI, which provided similar 
results (data not shown).

DISCUSSION
In this large population-based study of 2489 persons 
followed for 30 years, we found that the effect of BP 
on CBF is different for SBP and DBP. A higher late-life 
DBP was related to a lower CBFPC, whereas a higher 

Table 1. Characteristics of the AGES-RS Cohort in Mid and 
Late Life

Characteristics Sample, n=2489

Late-life age in years, y, mean (SD) 79.8 (4.7)

≥80 y, n (%) 1207 (48.49)

Male, n (%) 1017 (40.9)

Education, ≤primary school (%) 504 (20.2)

Blood pressure in mm Hg, mean (SD)

 Midlife SBP 129.4 (15.2)

 Midlife DBP 82.3 (9.1)

 Late-life SBP 145.0 (21.05)

 Late-life DBP 70.3 (10.7)

 Use of antihypertensive medication in late-life, n (%) 1491 (59.9)

Late-life characteristics

 Body mass index, mean (SD) 26.8 (4.3)

 Coronary calcium (Agatston units), median (IQR) 461.07  
(92.68–1302.21)

 Heart failure, n (%) 138 (5.5)

 Type 2 diabetes, n (%) 317 (12.7)

 Stroke, n (%) 208 (8.4)

Smoking status, n (%)*

 Never 1308 (52.6%)

 Former 977 (39.3%)

 Current smoker 158 (6.3%)

Cognition*

 Normal cognitive function 2110 (84.8%)

 Mild cognitive Impairment 216 (8.7%)

 Dementia 134 (5.4%)

Late-life brain MRI measures

Total brain volume in % ICV, mean (SD) 0.69 (0.042)

Abnormal white matter volume, median (IQR) 15.66 (8.27–29.69)

Cerebral blood flow in mL/(100 mL·min), mean (SD) 56.7 (10.5)

AGES-RS indicates Age Gene/Environment Susceptibility—Reykjavik Study; 
DBP, diastolic blood pressure; ICV, intracranial volume; IQR, interquartile range; 
MRI, magnetic resonance imaging; and SBP, systolic blood pressure.

*Smoking status is missing for n=46, and cognitive status is missing for n=29.

Table 2. Relationship Between Late-Life BP and CBF 
(n=2489): AGES-RS

BP β value

95% CI

P valueLower Upper

DBP

 Model 1 −0.081 −0.121 −0.042 <0.0001

 Model 2 −0.082 −0.123 −0.041 <0.0001

SBP

 Model 1 0.027 0.0066 0.047 0.009

 Model 2 0.027 0.0065 0.048 0.010

PP

 Model 1 0.060 0.037 0.082 <0.0001

 Model 2 0.061 0.038 0.084 <0.0001

Model 1: adjusted for age, sex, education, brain volume. Model 2: adjusted for 
sex, education, brain volume, coronary calcium, BMI, diabetes mellitus, heart fail-
ure, smoking, stroke, midlife BP, use of antihypertensive medication. β indicates 
change in CBF per 1 mm Hg increase in BP, that is, a positive β indicates that 
a higher BP is related to a higher CBF. AGES-RS indicates Age Gene/Environ-
ment Susceptibility—Reykjavik Study; BMI, body mass index; BP, blood pressure; 
CBF, cerebral blood flow; DBP, diastolic blood pressure; PP, pulse pressure; and 
SBP, systolic blood pressure.
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late-life, SBP was associated with higher CBFPC. Exten-
sive stratified and interaction analyses suggested these 
relationships were robust to level of midlife BP, cardio-
vascular risk factors, and use of antihypertensive treat-
ment. Our findings also indicate that CBF is an important 
correlate of late-life cognition, while accounting for atro-
phy and for level of BP. There were no systematic dif-
ferences in CBF modulation of cognition by level of BP 
(ie, no significant interaction), but the data suggest that 
particularly people with lower DBP, or with SBP between 
120 and 140 mm Hg may have a cognitive benefit of 
having a higher CBF.

There are few data on the association of BP to CBF 
in community-based cohorts. A previous study in non-
demented older adults25 also showed that higher DBP, 
but not SBP was significantly associated with lower 

CBF. To better understand the difference in directionality 
of late-life DBP and SBP with CBF additional studies 
are needed. We did not observe a relationship between 
midlife BP and late-life CBF, while in a middle-aged 
cohort with manifest atherosclerotic disease (SMART-
MR [Secondary Manifestations of Arterial disease-Mag-
netic Resonance] Study) both higher SBP and DBP were 
associated with a decline in CBF.26 Differences in study 
findings may be attributable to differences in population 
characteristics such as the prevalence of cardiovascular 
comorbidities.

Whereas the evidence on the association of BP levels 
to CBF is mixed, there is robust and consistent evidence 
of an adverse impact of midlife hypertension on late-life 
cognitive function.4 A higher BP in late-life, however, has 
demonstrated no27, a negative,28or a positive relationship 

Figure 1. Mean cerebral blood flow 
(95% CI) per blood pressure group.
Adjusted for age, sex, brain volume, and 
education. CBF indicates cerebral blood 
flow; and SBP, systolic blood pressure.
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with cognitive function.5,29 Several studies indicate that 
it is essential to consider history of midlife hypertension 
to understand how late-life BP affects cognitive func-
tion. Walker et al30 showed that those participants with 
hypertension in both mid and late-life and participants 

with midlife hypertension, and late-life hypotension had 
significantly increased risk of subsequent dementia com-
pared with those who remained normotensive. Consider-
ing midlife BP only, we did not observe a relationship with 
late-life cognition. However, Muller et al31 has previously 

Figure 2. A, Stratified analyses for 
the association between late-life 
systolic blood pressure (BP) and 
cerebral blood flow (CBF). 
B, Stratified analyses for the association 
between late-life diastolic blood pressure 
and CBF. MCI indicates mild cognitive 
impairment. #indicates subgroup too 
small; data not shown. Analyses are 
adjusted for age, sex, and total brain 
volume. ^Grading of coronary calcium, 0: 
none, mild: 1–99.9, moderate: 100–
399.9, and severe: ≥400.
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demonstrated in the AGES-RS that those participants 
with midlife hypertension and late-life lower DBP had the 
worst memory performance. BP is known to decline 3 to 
6 years before dementia diagnosis.32

Low CBF has been shown to be a consistent marker 
of dementia,10 although results are mixed in the MCI 
stage.33 The Rotterdam study showed that dementia risk 
estimates for low cerebral perfusion were higher in those 
with higher BP levels at baseline (with significant inter-
action for mean arterial pressure).10 de Heus et al34 also 
showed that the BP to CBF ratio is higher in dementia 
and MCI compared with controls. In line with these find-
ings, we showed that effect estimates for the relation-
ship between CBF and cognitive function were highest 
in those with a lower level of DBP or normal range of 
SBP, although the interaction term for BP and CBF did 
not reach significance.

Our findings on the complex interplay between BP, 
CBF, and cognitive function may be attributable to sev-
eral factors, which fall broadly into 3 categories: physi-
ological changes accumulating with age and disease; 
co-occurrence of BP changes, low CBF, and increased 
mortality; or selective survival.

First, with aging there is an increase in central arterial 
stiffness, leading to an increase in SBP and decline in 
DBP, resulting in a higher PP at old age.35 A higher PP 
transmitted into smaller cerebral arterioles and capillary 
beds can lead to cerebral vascular remodeling, including 
narrowing of lumen and increased vascular resistance.1,2 
These structural changes may be accompanied by dys-
function of CA and neurovascular coupling, which ren-
ders the brain vulnerable for hypoperfusion with lower 
SBP. Cerebral hypoperfusion leads to an imbalance of 
neuronal metabolic supply and demand, thereby precipi-
tating cognitive dysfunction.10 Nevertheless, de Heus et 
al34 showed that in MCI or dementia CA remains func-
tional (as measured by transcranial Doppler ultrasound 
in the middle cerebral artery). Possibly, larger cerebral 
arteries may still be able to compensate to maintain and 
stabilize CBF with varying BP through CA, while there 
is localized increased cerebral vascular resistance and 
impaired CA in smaller arteries.

Second, the positive slope between SBP and CBFPC 
may be driven by factors at the lower end of the BP dis-
tribution, where a lower late-life SBP and lower CBF may 
be an epiphenomenon of incipient death. Lower late-life 

Table 3. Relationship Between BP, CBF, and Cognition: AGES-RS

BP

Verbal memory Working memory Speed

95% CI 95% CI 95% CI

β value Lower Upper P value β value Lower Upper P value β value Lower Upper P value

DBP 0.0028 −0.00060 0.0062 0.11 0.002 −0.001 0.005 0.210 0.0015 −0.0019 0.0048 0.393

CBF 0.0060 0.0026 0.0095 0.0006 0.004 0.001 0.007 0.001 0.0059 0.0025 0.0093 0.001

SBP −0.00071 −0.0024 0.0010 0.42 −0.0011 −0.003 0.0005 0.169 −0.00071 −0.0024 0.0010 0.409

CBF 0.0059 0.0024 0.0093 0.0009 0.0039 0.001 0.007 0.018 0.0058 0.0024 0.0092 0.001

PP −0.0018 −0.0037 0.00012 0.066 −0.002 −0.004 −0.00028 0.023 −0.0014 −0.0033 0.0005 0.151

CBF 0.0062 0.0027 0.0096 0.001 0.004 0.001 0.007 0.012 0.0060 0.0026 0.0094 0.0005

Model includes age, sex, education, BP, CBF, and brain volume (% ICV). The β’s indicate change in standardized cognitive domain score per 1 mm Hg increase in BP, 
or per 1 mL/(min·100 mL) CBF. The significant positive β’s for CBF, indicate that a higher CBF is related to a higher cognitive function. AGES-RS indicates Age Gene/
Environment Susceptibility—Reykjavik Study; BP, blood pressure; CBF, cerebral blood flow; DBP, diastolic blood pressure; ICV, intracranial volume; PP, pulse pressure; 
and SBP, systolic blood pressure.

Table 4. Relationship Between BP, CBF, and Cognitive Status: AGES−RS

BP

Dementia*

P value

MCI†

OR

95% CI

OR

95% CI

P valueLower Upper Lower Upper

SBP 1.00 0.99 1.01 0.68 1.00 0.99 1.007 0.92

CBF 0.97 0.95 0.99 0.003 0.98 0.97 0.999 0.03

DBP 1.00 0.98 1.02 0.80 0.99 0.98 1.006 0.23

CBF 0.97 0.95 0.99 0.003 0.98 0.97 0.998 0.03

PP 1.00 0.99 1.01 0.54 1.00 1.00 1.011 0.41

CBF 0.97 0.95 0.99 0.002 0.98 0.97 0.998 0.03

Model includes age, sex, education, BP, CBF, and brain volume (% ICV). OR <1 indicates a decreased odd for dementia or MCI with a higher 
CBF. OR <1 indicates a decreased odd for dementia or MCI with a higher CBF. AGES-RS indicates Age Gene/Environment Susceptibility—
Reykjavik Study; BP, blood pressure; CBF, cerebral blood flow; DBP, diastolic blood pressure; ICV, intracranial volume; MCI, mild cognitive impair-
ment; OR, odds ratio; PP, pulse pressure; and SBP, systolic blood pressure.

*0: normal cognitive status (n=2011) vs 1: dementia (n=134).
†0: normal cognitive status (n=2011) vs 1: MCI (n=216).
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CBF has been strongly associated with increased mor-
tality risk,36 and SBP is known to decrease progressively 
for more than a decade before death and most steeply in 
the last 2 life years.37

Finally, selective survival may explain the relationship 
between a higher SBP and higher CBF as there may 
have been proportionately more loss from the cohort of 
those with higher SBP and lower CBF (potential high-
risk group for cardiovascular mortality).

Strengths of our study include the population-based 
setting, the large sample size that is extensively phe-
notyped for cardiovascular risk and cognitive function, 
the availability of both midlife and late-life BP data 
over 30-year follow-up, and comprehensive analyses 
to explore the association of both level of BP and CBF 
with cognition. Our extensive stratified analyses provide 
insight into how markers of biological age influence the 
complex relationship between BP and CBF.

However, several characteristics of our study need to be 
considered when interpreting the results. We used phase-
contrast MRI to estimate total brain CBF, which may be 
influenced by accuracy of the segmentation of the arter-
ies, assumptions in the acquisition and processing proto-
cols, changes in vascular morphology such as tortuosity 
and hemoglobin levels.38,39 Further research is needed to 
identify factors that contribute to error in CBF measure-
ment. Nevertheless, PC-MRI has proven to be a reliable 
measure for CBF in the AGES population; the intraclass 
correlation coefficient for whole brain CBF values obtained 
with PC-MRI against pCASL was 0.80.40 Our estimates of 
CBF are also consistent with another, on average younger 
population-based cohort, that also used PC-MRI to mea-
sure CBF.10 Second, CBFpc was only measured once so 
we do not know the start of, how rapid, or to what extent 
there was a decline from middle to late age in CBF in 
total or regional brain areas. Also, we cannot determine 
the directionality of the relationship between a lower CBF 
and dementia risk, either a lower CBF precedes demen-
tia, or vice versa. Future studies are needed with multiple 
time points and combined technologies, such as the MRI 
sequence arterial spin labeling and transcranial doppler to 
give temporal and regional measures of cerebral perfusion 
and autoregulation.41 The AGES-RS included a white com-
munity-dwelling sample, with a prevalence of antihyperten-
sive treatment use of 60%, stroke of 8%, and diabetes of 
13%, which should be considered when generalizing our 
results. Future studies should examine whether BP, CBF, 
and cognition show similar associations in multi-racial sam-
ples or in samples with a different cardiovascular burden. 
Finally, a standardized cuff was used to measure BP that 
was not adjusted for arm circumference, which may have 
affected BP measurements of those participants with a 
particularly small or large arm circumference.

Higher late-life DBP and SBP were differentially 
associated with CBFPC. Our findings suggest that late-
life CBF is an important correlate of cognition.

PERSPECTIVES
In this large population-based study, the effect of late-life 
BP on CBF is different for SBP and DBP. A higher late-
life DBP was related to a lower CBF, whereas a higher 
late-life, SBP was associated with higher CBF. Not BP 
level, but a higher CBF was consistently related to better 
cognitive outcomes. To better understand BP-lowering 
strategies for optimal cognition, future trials on BP and 
cognition should include CBF measurements.
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