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Abstract
We study the group velocities of electronic states and distributions of currents in α− T3 lattice
ribbons under a uniform perpendicular magnetic field. Using the effective low-energy model
we analyze all possible simple configurations of lattice termination with zigzag and armchair
boundaries. We show that the edge current depends on the type of zigzag termination, and can
be zero or finite near the edge. Also similar dependence is observed in the case of armchair
termination and is related to the size of the ribbon. The nonzero current flowing along the edge
can be used a signature of formation of propagating edge states. In addition, we show the
qualitative difference in the distribution of the edge current between the case of α = 1 (dice
model) and other values of model parameter α �= 1 for armchair-terminated ribbons.

Keywords: dice lattice, edge current, group velocity, lattice termination, nanoribbons

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently it was discovered [1] that in crystals with special
space and point symmetry groups a sophisticated electron
spectra with high pseudospins could be realized with no ana-
logues in particle physics. For example, the spectra of cor-
responding quasiparticles could possess strictly flat bands
[2–4]). The dice model is the paradigmatic and historically
the first example of such a system with a flat band which
hosts pseudospin-1 fermions [5]. In this paper we study its’
generalization, which is called α− T3 model [6]. This is a
tight-binding model of two-dimensional fermions living on the
so-called T3 (or dice) lattice where atoms are situated both
at the vertices of hexagonal lattice and the hexagons centers
[5, 7]. The α− T3 model has three sites per unit cell and the
electron states in this model are described by three-component
fermions. The corresponding quasiparticle energy spectrum is
comprised of three bands, the two of them are Dirac cones and

∗ Author to whom any correspondence should be addressed.

the third one is completely flat and has zero energy [6]. All
three bands meet at the K and K′ points, which are situated
at the corners of the Brillouin zone. The T3 lattice has been
experimentally realized in Josephson arrays [8, 9] and metal-
lic wire networks [10], and the possible optical realization was
proposed in reference [11].

The properties of α− T3 were extensively studied in recent
years [6, 12, 13]. For example, its magnetotransport coeffi-
cients, such as the collisional and Hall conductivity for the
α− T3 model were calculated in reference [13]. In this paper
we concentrate our attention on the properties ofα− T3 model
on terminated lattice placed in perpendicular magnetic field.
Such geometry is typical for the recent magnetotransport
experiments on graphene ribbons [14].

The characteristics of ribbons made of T3 lattice were
already studied in references [15–21]. In a recent paper
[16], the classification of possible termination and low-energy
boundary conditions was given for dice lattice. In the reference
[17] the above classification were used to study the spectral
properties of T3 lattice ribbons in perpendicular external mag-
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netic field. We apply the results of these papers to analyze
the group velocities and current distributions for the lowest
Landau levels. The optical response of T3 lattice ribbons with
all combinations of simple termination was addressed in the
reference [18]. In the recent paper [19] the radiation-dressed
band structure of T3 lattice ribbon with armchair edges was
analyzed, with the emphasize on the appearance of propa-
gating edge states. The formation of edge state in the Hal-
dane model for dice nanoribbons was discussed in reference
[20]. The existence of flat bands near the Fermi level, edge
currents and edge charge localization near zero energy for
open boundary conditions was shown for dice lattice ribbons
with Rashba spin–orbit coupling placed in magnetic field [21].
Interestingly, for dice lattice ribbons with additional Sz mass
the appearance of in-gap edge states, which are degenerate in
zigzag termination case, was predicted in reference [15].

These results motivate us to study the distribution of cur-
rents for the dice lattice ribbons placed in magnetic field. A
similar study in the case of graphene semi-infinite lattices [22]
uncovered peculiar properties of each termination type, for
example, the large edge current densities near armchair edges
and the universal behavior of total currents. As was shown in
references [16,17] there are no edge states for any termina-
tion in dice (α = 1) model, but they are formed for the α �= 1
parameter values or due to the presence of magnetic field. In
the present paper we analyze their manifestation in current dis-
tributions. Also, one should note that the flat band does not play
role in the formation of currents distribution since it consists
of localized states [6,16,23,24]. For the zigzag terminated case
we show that the presence of edge current strongly depends on
the termination type, and completely vanishes in several cases.
In armchair case we find that while the spectrum of the ribbons
was qualitatively the same for any width [17], the distribution
of currents is drastically different for the so-called ‘metallic’
and ‘armchair’ numbers of atomic rows in the ribbon. Together
these results can be used as a clear signature of the presence of
absence of edge states with nonzero energy in a terminated T3

lattice.
The paper is organized as follows. In section 2 we first dis-

cuss the α− T3 model and recall the main termination types
and boundary conditions. Next, in section 3 we proceed to the
T3 lattice ribbons with zigzag termination, that is infinite in
one direction. We analyze the dependence of group veloci-
ties and edge currents on Landau level index, and show that in
zigzag termination case the behavior of these quantities differs
from the graphene case. We analyze all different combinations
of zigzag terminations and show how the current distribution
depends on the termination type. Also the group velocity is
studied for semi-infinite lattice to gain an intuitive insight into
the role of each edge. Next, in section 4 we analyze the arm-
chair termination, and discuss the influence of magnetic field
and ribbon width on currents distribution. Finally, we discuss
the main results and conclusions in section 5.

2. The α− T3 model

In this section we review the main properties of free α− T3

model and the classification of simple lattice terminations with
corresponding boundary conditions.

The α− T3 model describes quasiparticles in two dimen-
sions with pseudospin S = 1 on the so-called dice lattice
schematically shown in figure 1 [6]. This lattice has a unit cell
with three different lattice sites whose two sites (A, C) like in
graphene form a honeycomb lattice with hopping amplitude
tAC = t1 and additional B sites at the center of each hexagon
are connected to the C sites with hopping amplitude tBC = t2.
The two hopping parameters t1 and t2 are not equal, in general,
and the dice model corresponds to the limit t1 = t2. The Bril-
louin zone of this lattice is the same as for graphene because
the underlying sublattices A, B and C are triangular Bravais lat-
tices (see reference [25] for the discussion of graphene case).
The local topology of couplings on dice lattice [4] protects
the flat band against perturbations. The bipartite symmetry is
present because the ‘hub’ sites (C) are coupled only to ‘rim’
sites (A, B) and vise versa. The tight-binding Hamiltonian of
the model in momentum space reads [6]

H =

⎛⎝ 0 f k cos Θ 0
f ∗k cos Θ 0 f k sin Θ

0 f ∗k sin Θ 0

⎞⎠ ,

α ≡ tan Θ =
t2
t1

,

f k = −
√

t2
1 + t2

2 (1 + e−ika2 + e−ika3 ).

(1)

Here a1 = (
√

3, 0)d and a2 = (
√

3/2, 3/2)d are the basis
vectors of triangle C sublattice. The basis vectors of corre-
sponding reciprocal lattice are a∗

1 = 2π/
√

3d
(
1,−1/

√
3
)

and
a∗

2 = (0, 4π/3 d). They are shown together with the lattice in
figure 1, and d denotes the nearest-neighbor interatomic dis-
tance. The energy spectrum of the above Hamiltonian is qual-
itatively the same for any α and consists of three bands: the
zero-energy flat band, ε0(k) = 0, and two dispersive bands
ε±(k) = ±| f k|. The six values of momenta, for which f k = 0,
correspond to the three bands touching points and called K
points. They are situated at the corners of the hexagonal Bril-
louin zone. One can select the two non-equivalent points as

K =
2π
d

(√
3

9
,

1
3

)
, K′ =

2π
d

(
−
√

3
9

,
1
3

)
. (2)

The four remaining corners of Brillouin zone may be con-
nected to one of these points via a translation by a reciprocal
lattice vector. For momenta near the K-points, k = K(K′) + k̃,
we find that f k is linear in k̃, i.e., f k = �vF(λk̃x − ik̃y) with
valley index λ = ±, where vF = 3td/2� is the Fermi veloc-
ity, and in what follows we omit for the simplicity of nota-
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tion the tilde over momentum. Thus, we obtain the low-energy
Hamiltonian near the K(K′)-point in the form [12]

Hλ = �vF (λSxkx + Syky

= �vF

⎛
⎜⎝

0 cos Θ(λkx − iky) 0

cos Θ(λkx + iky) 0 sin Θ(λkx − iky)

0 sin Θ(λkx + iky) 0

⎞
⎟⎠ ,

Sx =

⎛
⎜⎝

0 cos Θ 0

cos Θ 0 sin Θ

0 sin Θ 0

⎞
⎟⎠ ,

Sy =

⎛
⎜⎝

0 −i cos Θ 0

i cos Θ 0 −i sin Θ

0 i sin Θ 0

⎞
⎟⎠ ,

(3)
where S are the spin matrices of the spin 1 representation.
The Hamiltonian acts on three-component wave functions
ΨT = (ΨA,ΨC,ΨB). The full Hamiltonian, which includes
both valleys, is given by block-diagonal matrix diag(H+, H−)
and acts on six-component spinors (Ψ+,Ψ−)T.

It is straightforward to describe the interaction with a mag-
netic field via the standard Peierls substitution k → k + e

�c A
in the Hamiltonian. In the following we will use the freedom
of the choice of the gauge of vector potential A in order to
simplify calculations in particular geometries.

The boundary conditions are determined from the condi-
tion that the matrix element of electric current normal to the
boundary vanishes, 〈ΨB| (J+ + J−)n |ΨB〉 = 0. Here the cur-
rent operator is defined as nJλ = λSxnx + Syny, and the index
λ = ± stands for the valley K(K

′
). This particular form of the

current operators follows from the low-energy Hamiltonian
(3), which is linear in momentum. Thus the current operator
is not a differential operator. This property of current opera-
tor is usually used to derive the proper boundary conditions in
systems with Dirac dispersion [16, 26, 27]. The simple types
of termination can be classified in the same way as in graphene
[27]—into zigzag (usually along x-direction) and armchair
(along y-direction) types. At the same time, the zigzag termina-
tion type supplies much more rich variety of boundary condi-
tions for the dice lattice [16] than in graphene. The example
of ribbons with both types of termination are presented on
figure 1.

Next we proceed to the detailed discussion of group veloci-
ties and current distributions in each termination case. Since
the zigzag termination demonstrates many new properties
comparing to graphene [16, 17] (while armchair termination
is quiet similar to graphene case), we mainly concentrate the
attention on zigzag ribbons.

3. Lattice infinite in x-direction: zigzag termination

For the ribbon shown on panel (b) in figure 1 we choose
the gauge in the form A = (−By, 0), which preserves transla-
tional invariance in the x direction. Then the wave functions
can be chosen in the form Ψμ = eikx xψμ, and the Schrödinger
equation becomes

⎛⎝ 0 cos Θ(λξ + ∂ξ) 0
cos Θ(λξ − ∂ξ) 0 sin Θ(λξ + ∂ξ)

0 sin Θ(λξ − ∂ξ) 0

⎞⎠
×

⎛⎝ψA

ψC

ψB

⎞⎠ =
ε̃√
2

⎛⎝ψA

ψC

ψB

⎞⎠ , ξ = kxl − y/l. (4)

Here we are working in the notation from reference [17]
ε̃ = 2ε

ε0
, where l =

√
�c/|eB| is the magnetic length, and

ε0 =
√

2�v2
F|eB|/c is Landau energy scale. The first and third

lines of the system define ψA and ψB in terms of ψC in the case
ε̃ �= 0

ψA =
√

2 cos Θ
λξ + ∂ξ

ε̃
ψC, ψB =

√
2 sin Θ

λξ − ∂ξ
ε̃

ψC.

(5)
The second line of system (4) gives the second-order differen-
tial equation for ψC:

(∂2
ξ − ξ2)ψC +

(
λ cos 2Θ+

ε̃2

2

)
ψC = 0, (6)

which solution can be expressed in terms of the parabolic
cylinder functions U and V [30]

ψC(y) = C1U

(
− ε̃2

4
− λ cos 2Θ

2
,
√

2ξ

)
+ C2V

(
− ε̃2

4
− λ cos 2Θ

2
,
√

2ξ

)
, (7)

where C1 and C2 are arbitrary constants. From this solu-
tion one can find the spectrum of infinite system εn(Θ) =
±ε0

√
n + 1/2(1 − λ cos 2Θ) [6, 17, 23] which is different in

the K and K′ valleys for Θ �= 0, π
4 .

In our case we need to plug these solutions into the bound-
ary conditions at ribbon edges y = 0 and y = L to determine
the energy spectrum and constant C1 and C2. Since the calcula-
tions of dispersion were discussed in great detail in reference
[17], below we will mainly focus on the evaluation of group
velocity and current.

Firstly, let us recall the main types of zigzag boundary con-
ditions. From the requirement of vanishing of the normal cur-
rent at the boundary one finds the following restriction on wave
functions:

ψC|B = 0, and (ψA cos Θ− ψB sin Θ) |B = 0. (8)

As was found in [16], the first condition (below we called
it ‘C’ condition) corresponds to the C, AC or BC types of
lattice termination at low energies, while the last one cor-
responds to the AB termination (and called ‘AB’). By using
Schrodinger equation, one can rewrite the second condition as
ψ′

C + ξ cos 2ΘψC = 0. Thus, one finds three main combina-
tions of boundary conditions: C–C, BA–C, and BA–AB. Next,
we present the calculation on example of C–C boundary con-
ditions and discuss the physical results for other combinations,
leaving technical details in the appendix A.
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Figure 1. The T3 lattice whose red points display the atoms of the A sublattice, the blue points describe the B sublattice, and the green points
define the C sublattice. On the panel (a) the vectors a1 = (

√
3, 0)d and a2 = (

√
3/2, 3/2)d are the basis vectors of the C sublattice. Panel

(b) shows zigzag termination example, and panel (c) demonstrates the armchair one. Black rectangle measures the actual ribbon width L in
units of lattice constant.

3.1. Group velocity

The group velocity is defined for nth energy level En(kμ) as
V (μ)

g (n, k) = 1
�

∂En(kμ)
∂kμ

. If the spectral equation is expressed in
terms of special functions such as parabolic cylinder func-
tions, it is not always possible to find the exact analytic depen-
dence En(kμ). In such a case one can find the expression for
group velocity from the dispersion equation itself. Suppose
the equation is f (En(k), k) = 0. Then, by differentiating the
equation with respect to kμ, we find

�V (μ)
g (n, k) =

∂En(kμ)
∂kμ

= − ∂k f
∂E f

. (9)

Both derivatives in the right-hand side can be calculated ana-
lytically, so we should only insert the numerical solution for
the En(k) into the right-hand side of equation (9). In the case of
magnetic field we are working in terms of ε̃ = 2ε/ε0 ≡ 2E/ε0.
Then, we rewrite the group velocity as (and set � = 1)

V (μ)
g (n, k) =

ε0

2
∂
˜
εn(k)
∂kμ

= −ε0

2

∂kμ f

∂˜
ε

f
. (10)

This is the most general expression, which we apply for all
termination configurations.

Now let us concentrate on a particular example of C–C type
termination. The corresponding spectral equation in K valley
is [17]

U

(
− ε̃2

4
− cos 2Θ

2
,
√

2kxl

)
V

×
(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)
− U

(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)
V

×
(
− ε̃2

4
− cos 2Θ

2
,
√

2kxl

)
= 0, (11)

where k0 = L/l2 is determined by the width of ribbon. The
resulting spectrum is symmetric with respect to k0/2, e.g.
ε̃(kx) = ε̃(k0 − kx). In panel (a) of figure 2 we plot ε̃(kx) for

the dice model case Θ = π
4 with L = 5l. The spectrum form if

qualitatively similar for all values of Θ �= 0.
Using equation (10) we found the group velocity along

x direction V (x)
g for arbitrary Landau level as a function of

its index n, energy ε̃ and wave number kx. The correspond-
ing analytic expression is very complicated, so we present it
in equation (A1). Substituting numerically obtained solutions
of equation (11), we plot the group velocity in panel (a) of
figure 3. The velocities demonstrate recurrent behavior near
kx = k0/2 with growing index, namely, they start from zero
value and the velocity for upper Landau level grows faster with
wave number. Finally one should note that these results are
qualitatively similar in both valleys, since forΘ �= π

4 the valley
term adds only a constant energy shift to the whole dispersion
ε̃n(kx).

In the case of BA–AB termination the spectrum is also
symmetric with respect to k0/2. The corresponding spec-
tral equation is presented in appendix via (A2). The peculiar
property of such termination is that the dispersion of the first
few Landau levels has a form of ‘Mexican hat’ (the exact num-
ber of such levels depends on the ribbon width). This is mani-
fested in the group velocity as large oscillations at kx near k0/2
(see panel (b) in figure 3). Also, for these levels the group
velocity crosses zero three times, while for higher levels it
crosses zero only in one point.

A similar situation can be observed for BA–C boundary
conditions, as shown on panel (c) in figure 3. However, the
spectrum in this case is not symmetric and the large oscil-
lation in group velocity is present only at one side of the
plot, for kx < k0/2. This can be understood by the fact that
the wave number along the strip is linked with the quasi-
classical center of motion for the electron orbit kx = y0/R2,
and here R2 = �c/|e|B is a cyclotron radius. Thus, panels (c) in
figures 2 and 3 demonstrate how the influences of each bound-
ary type (BA or C) on electronic states interplay deep in the
ribbon.

The intuitive insight into the role of each boundary on group
velocity can be obtain by analyzing the semi-infinite lattice
with particular termination type. To find the edge states spec-
trum of such system, it is sufficient to take L/l →∞ limit in
spectral equation (11) or (A2). The corresponding expressions
for C-boundary and BA-boundary, which are accurate up to

4
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Figure 2. Spectrum of zigzag terminated ribbons ε̃ as a function of wave number k ≡ kx for the width L = 5l. The value of parametric angle
is Θ = π

4 and corresponds to the dice model case. Termination types: (a) C–C, (b) BA-AB, (c) AB–C. Note that on panels (a) and (b) the
spectrum is symmetric with respect to central wave number kl = k0l/2 = 2.5.

Figure 3. Group velocities V (x)
g for the first three Landau levels for zigzag terminated ribbons as functions of wave number k ≡ kx .

Termination types: (a) C–C, (b) BA–AB, (c) BA–C. The width of the ribbon is L = 5l and Θ = π
4 .

kxl2, have the following form [17]:

εC(n, kx,Θ) = ±ε0

√
2n +

3 − λ cos(2Θ)
2

×
(

1 − 4Γ(n + 3/2)
πn!(4n + 3 − λ cos (2Θ))

kxl

)
,

(12)

εBA(n, kx,Θ) = ±ε0

√
2n +

1 − λ cos 2Θ
2

×
(

1 − Γ
(
n + 1

2

)
πn!

kxl

)
. (13)

The corresponding group velocities are

V (x)
g,C(n,Θ) = ∓ε0l

�

4Γ(n + 3/2)√
2πn!

√
4n + 3 − λ cos(2Θ)

,

V (x)
g,BA(n,Θ) = ∓ε0l

�

√
2n +

1 − λ cos 2Θ
2

Γ
(
n + 1

2

)
πn!

.

(14)

These expression describe the group velocities of edge states.
Dividing the Vg,C by Vg,BA, one can easily find that the C
edge group velocity is always larger than BA one in the K val-
ley for Θ � π

4 . This relation is not very universal, since these

expressions do not take into account next powers in kxl. Also,
using equation (14) one can show that Vg,C decays with index
n and Vg,BA grows with n for Θ < π

4 .

3.2. Current distribution

Next, let us proceed to the analysis of currents distribution.
The electric current in the x direction, which is defined as
〈Ψ|λSx|Ψ〉 for the state Ψ with definite kx and ε̃, has the
following expression through sublattice components [17]:

jx(kx, ε̃) = λ
[
cos Θψ∗

AψC + sinΘψ∗
BψC + h.c.

]
=

√
2λ
ε̃

[
λξψCψ

∗
C + cos 2ΘψC∂ξψ

∗
C + h.c.

]
.

(15)

In the second line we used the expressions for ψA and ψB

found from Schrodinger equation. To evaluate this expression
we need to find the exact normalized solutions in each valley.
Thus, to determine the constants C1 and C2 in general solution
(7) we use the boundary condition at y = 0. We find:

C2 = −C1U

(
− ε̃2

4
− cos 2Θ

2
,
√

2kxl

)/
V

×
(
− ε̃2

4
− cos 2Θ

2
,
√

2kxl

)
. (16)

5
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Figure 4. Currents distribution for zigzag terminated ribbon in the direction perpendicular to the edges of the ribbon. The parametric angle
is Θ = π

4 and we took the central wave number kx = k0/2. The size of the ribbon is L = 5l. Boundary condition types: panel (a) C–C, panel
(b) BA–AB, panel (c) BA–C.

Note that the equation at y = L gives the same relation for the
spectral solutions ε̃(kx). Next, to determine C1 we apply nor-
malization condition

∫ L
0 dy

(∑
i=A,B,Cψ

∗
i ψi

)
= 1, which holds

true for each valley separately [16]. Performing the integration
numerically, and substituting C1,2 into equation (15), we find
the current distribution. We plot this distribution for several
lowest Landau levels on figure 4, taking kx = k0/2.

One should note that the current distribution for n = 1 level
is nearly the same for all three configurations C–C, BA–AB
and BA–C. However, near the edge with C-termination the cur-
rent tends to exactly zero value. This holds true for all Landau
levels, since the total expression for current (15) is proportional
to ψC component, which is zero at the boundary. Near the BA
boundary the current is nonzero and grows with Landau level
index n. This manifests a formation of propagating edge states.

4. Ribbon infinite in y-direction: armchair
termination

The ribbon with armchair termination has a translational
invariance along y direction (see figure 1, panel (c)). Thus, it is
convenient to use the vector potential in the following gauge:
A = (0, Bx). The wave functions can be taken in the form
Ψ = eikyyψ(x), withψ(x) defined by the following Schrodinger
equation [17]

i

⎛
⎜⎝

0 cos Θ(−λ∂ξ − ξ) 0
cos Θ(−λ∂ξ + ξ) 0 sin Θ(−λ∂ξ − ξ)

0 sin Θ(−λ∂ξ + ξ) 0

⎞
⎟⎠

×

⎛
⎜⎝
ψA

ψC

ψB

⎞
⎟⎠ =

ε̃√
2

⎛
⎜⎝
ψA

ψC

ψB

⎞
⎟⎠ . (17)

In this equation we defined the variable ξ = kyl + x/l (note
the plus sign before x). In each valley this system reduces to
the second-order equation (6) for the ϕC component. The arm-
chair boundary condition at x = 0 and x = L edges implies
[16, 17, 27]:

ψμ(x = 0) = ψμ′(x = 0), ψμ(x = L) = eiΔKLψμ′(x = L).
(18)

Here μ = A, B, C denoted the sublattice index. The second
boundary condition contains a phase factor eiΔKL that depends
distance between K and K′ points in momentum space in kx

direction,
(
K − K′) (Lex) = ΔKL = 4πL/3

√
3d. The spec-

tral equation for these boundary conditions is presented in
appendix, see equation (A8). From this equation we evalu-
ate the group velocity for four lowest Landau levels by using
the general relation (10). Since the spectrum in perpendicular
magnetic field practically does not change with the ΔKL value
[17]. This is because all levels become gapped, and the quali-
tative difference between cosΔKL = 1 and cosΔKL = −1/2,
that was noted without magnetic field [16] disappears. Thus,
we plot the spectrum and group velocity in figure 5 only for the
case cosΔKL = 1. The ‘Mexican hat’ shape of the spectrum
for the few lowest Landau levels with odd index (n = 1 and
n = 3 in our case) is manifested as a large oscillation in group
velocity profile.

Next we proceed to the evaluation of current is given by the
following expression:

jy(ky, ε̃) =
[
−i cos Θψ∗

AψC + i sin Θψ∗
BψC

+ h.c.] + (λ→−λ), (19)

and now contains the terms from each valley. Substituting the
expressions for ψA and ψB in terms of ψC, we find

jy(ky, ε̃) =

√
2
ε̃

(
cos 2ΘλξΨ∗

C(λ, . . . )ΨC(λ, . . . )

+ΨC∂ξΨ
∗
C

)
+ (λ→−λ). (20)

We find that difference between the two possible cosΔKL val-
ues is crucial for the current distribution profile as a function of
coordinate x. This is due to the fact that the phase factor eiΔKL

also appears in the system of equations for C1,2 and C
′
1,2 con-

stants, see equation (A7) in appendix. The two different cases
for cosΔKL = 1 (panel (a)) and cosΔKL = −1/2 (panel (b))
are plotted on figure 6. We took he relation of ribbon width
to magnetic length to be the same in both cases, L/l = 5, and
plotted the current for the central wave number ky = −L/2l2.
This works well when both L and l are much larger that the
lattice constant a. We used parametric angle Θ = π

4 for panel
(a) and (b) that corresponds to the dice model, and Θ = π

5 for
(c) panel.

One should point out several main differences between
three distributions, plotted in figure 6. On panel (a)
(cosΔKL = 1) the number of points at which jy(x) crosses
zero coincides with the Landau level index. Also, the states
with even index have nonzero current on x = L boundary,

6
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Figure 5. Panel (a): spectrum for the ribbon with armchair termination, for L = 5l, and cosΔKL = 1. Panel (b)—group velocity Vg for the
lowest four Landau levels. One should note the presence of strong oscillations in Vg for n = 1 and n = 3 levels, that are associated with
‘Mexican hat’ shape of corresponding energy levels.

Figure 6. Currents distribution for armchair terminated ribbon in the direction perpendicular to the edges of the ribbon for the lowest Landau
levels with nonzero energy. The parametric angle is Θ = π

4 for panels (a) and (b) and we took the central wave number ky = −k0/2. The size
of the ribbon is L = 5l. On the panel (c) we took Θ = π

5 . The panels (a) and (b) present the cases with cosΔKL = 1 and −1/2 respectively.

which suggests about the formation of current-carrying edge
states. In the bulk the oscillations of current have nearly
the same amplitude. At the same time, on the panel (b)
(cosΔKL = −1/2) the amplitude of oscillations drastically
reduces for n = 2 level comparing to n = 1. Also, the cur-
rent is approximately zero for all levels at x = L edge. One
should note that the current is zero at x = 0 edge only in
dice model, for which the term with cos(2Θ) in equation (20)
vanishes. In the case of Θ �= π

5 the current reaches its max-
imum at the edge x = 0 for all studied levels. This is qual-
itatively similar to graphene case, discussed in reference
[22]. At small angles the α− T3 model becomes similar
to graphene, despite the presence of third, completely flat
band. However, this flat band does not have nonzero group
velocity and does not carry any current, since it consists of
localized states.

5. Conclusions

In the present paper we studied the group velocities and dis-
tributions of current in the ribbons made of T3 lattice placed
in perpendicular magnetic field. Using effective low-energy
model, we performed the analysis for all combinations of sim-
ple boundary conditions of zigzag and armchair type. It is
important to note that the flat band does not play any role
in current distribution since it consists of localized states. On

algebraic level it is manifested through the fact that the current
is always proportional to the C-component of wave function,
which is zero for flat band solutions also in a magnetic field
[17, 23].

In this paper we concentrated attention mainly on zigzag-
terminated ribbons. For the α− T3 model zigzag boundary
conditions demonstrate much larger variety of regimes than
in graphene. Particularly, we found that the formation of edge
current is possible near the BA-type boundary. For the C-type
boundary the current is always zero, because it is proportional
to the C-component of wave function. Notably, the current
is always positively defined and the number of oscillations
per ribbon equals the index of Landau level. Also we dis-
cussed the semi-infinite lattice and found the exact role of each
boundary type on group velocity, which is constant (larger near
C-boundary) near the edge.

In the case of armchair terminated ribbon we found, that
while there is no qualitative difference in the spectrum for dif-
ferent ribbon width, the current distribution is strongly influ-
enced by width type. For the ribbon with ‘metallic’ width
(L = (

√
3/2)(Ñ + 1)d, with Ñ = 3 N − 1 is the number of

atomic rows [16]) the formation of current-carrying edge states
is possible. Notably, such edge states are linked with the Lan-
dau levels with even index. In the opposite case of ‘insulating’
width the edge currents are not observed for the case of
dice model. At parametric angles Θ < π

4 the armchair ribbons

7
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demonstrate very similar behavior to graphene ribbons, for
which the current has strong peak near one of the edges [22].
Also, the current has alternating sign inside the ribbon. The
current distributions reach their maximum values in the bulk
in the case of dice model Θ = π

4 and near the edge for Θ < π
4 .

This can be linked to the fact that for the smaller anglesΘ < π
4

the model is more similar to graphene with weakly coupled
additional sites inside hexagons.

Finally, we note that these results can be important to fur-
ther investigate the formation and properties of edge states
near each boundary type for terminated dice lattice. Another
open question is the formation of edge gapless states in the
ribbons with gapped α− T3 model. References [15, 20] con-
sidered dice ribbons with Sz gap term in the low energy model
and found such states. However, the formation of such states
was not considered for the intervalley gap term [28] or the
Δ diag(1,−1, 1) gap [29]. The intervalley gap (which cou-
ples states from different valleys) was introduced recently
in reference [28], and it was shown that dynamical genera-
tion of this gap is strongly enhanced comparing to gap terms
in one valley.
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Appendix A. Dispersion relations for zigzag- and
armchair-terminated ribbons

In this appendix we recall the dispersion relations for zigzag-
type terminated ribbons, which were derived in reference [17].
Also, we present some results for the group velocities.

A.1. Zigzag termination

The spectrum plots for all three types of termination combina-
tions C–C, AB–BA and AB–C are presented on figure 2.

In the C–C case the group velocity has the following form:
the group velocity is given by

vx(kx,
˜
ε) = −ε0

˜
ε

×
[

2a+ 1
2 le

− 1
2 l2

(
(k0−kx)2

+k2
x

) (
H−a− 1

2
(lkx)

× H 1
2−a (l (k0 − kx)) + H−a− 1

2
(−lkx) H 1

2−a

× (l (kx − k0)) + H−a− 1
2

(l (kx − k0))

×
(

l (k0 − 2kx) H−a− 1
2

(−lkx) − H 1
2−a (−lkx)

)
− H−a− 1

2
(l (k0 − kx))

(
H 1

2−a (lkx)

+ l (k0 − 2kx) H−a− 1
2

(lkx)
))]

×
[
U(a,

√
2lkx)D(1,0)

−a− 1
2

(√
2l (k0 − kx)

)
− D−a− 1

2

(
−
√

2lkx

)
D(1,0)

−a− 1
2

(√
2l (kx − k0)

)
+ U(a,

√
2l (kx − k0))

(
ψ(0)

(
a +

1
2

)
D−a− 1

2

×
(
−
√

2lkx

)
− D(1,0)

−a− 1
2

(
−
√

2lkx

))
+ D−a− 1

2

(√
2l (k0 − kx)

)(
D(1,0)

−a− 1
2

(√
2lkx

)
− ψ(0)

(
a +

1
2

)
D−a− 1

2

(√
2lkx

))]−1

. (A1)

Here Ha(x) are Hermite polynomials, Da(x) are the parabolic
cylinder functions (see [30] and appendix in reference [17]
for the relation between D functions and U, V) and ψ0(x) is
the polygamma function. This expression is relatively com-
plicated. We can obtain similar expressions in all other cases,
but they are even more cumbersome. Thus, we choose to plot
these group velocities for numerically obtained solutions ε̃(kx)
in figure 3.

A.2. The BA–AB zigzag termination

In case of AB–AB termination we have the following charac-
teristic equation[√

2U′
(

a,
√

2kxl
)
+ cos 2ΘkxlU

(
a,
√

2kxl
)]

×
[√

2V ′
(

a,
√

2 (kx − k0) l
)
+ cos 2Θ (kx − k0) lV

×
(

a,
√

2 (kx − k0) l
)]

−
[√

2U′
(

a,
√

2 (kx − k0) l
)

+ cos 2Θ (kx − k0) lU
(

a,
√

2 (kx − k0) l
)]

×
[√

2V ′
(

a,
√

2kxl
)
+ cos 2ΘkxlV

(
a,
√

2kxl
)]

= 0.

(A2)

To evaluate the current, we use the following solution for
the C2 constant in terms of C1

C2 = −C1

[√
2U′

(
a,
√

2kxl
)
+ cos 2ΘkxlU

(
a,
√

2kxl
)]

×
[√

2V ′
(

a,
√

2kxl
)
+ cos 2ΘkxlV

(
a,
√

2kxl
)]−1

.

(A3)

A.3. The C–AB zigzag termination

The characteristic equation has the form[√
2U′

(
a,
√

2kxl
)
+ cos 2ΘkxlU

(
a,
√

2kxl
)]

V

×
(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)
8
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− U

(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)
×
[√

2V ′
(

a,
√

2kxl
)
+ cos 2ΘkxlV

(
a,
√

2kxl
)]

= 0.

(A4)

To evaluate the current, we use the following solution for the
C2 constant in terms of C1

C2 = −C1U

(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)

×
[

V

(
− ε̃2

4
− cos 2Θ

2
,
√

2(kx − k0)l

)]−1

. (A5)

which is the same as in C–C termination case (compare with
equation (16)), despite the fact that substituted energy ε̃(kx) is
different.

A.4. Armchair termination

The set of armchair boundary conditions can be rewritten as

ψ′
C = −ψ′

C′ |x=0, ψC = ψC′ |x=0,

ψ′
C′ = −eiΔKLψ′

C′
∣∣

x=L
, ψC = eiΔKLψC′

∣∣
x=L

.
(A6)

Substituting the solution for ψC in each valley, we find the fol-
lowing system of equations for the free constants C1,2 and C′

1,2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

U (ε1, ξ1) V (ε1, ξ1) −U (ε2, ξ1) −V (ε2, ξ1)

U (ε1, ξ2) V (ε1, ξ2) −eiΔKLU (ε2, ξ2) −eiΔKLV (ε2, ξ2)√
2

l
U′ (ε1, ξ1)

√
2

l
V ′ (ε1, ξ1)

√
2

l
U′ (ε2, ξ1)

√
2

l
V ′ (ε2, ξ1)

√
2

l
U′ (ε1, ξ2)

√
2

l
V ′ (ε1, ξ2) eiΔKL

√
2

l
U′ (ε2, ξ2) eiΔKL

√
2

l
V ′ (ε2, ξ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

C1

C2

C′
1

C′
2

⎞
⎟⎟⎟⎟⎠ = 0. (A7)

where ε1 = − ε̃2

4 + cos 2Θ
2 , ε2 = − ε̃2

4 − cos 2Θ
2 , ξ1 =

√
2kyl,

ξ2 =
√

2(kyl + L/l).
The dispersion relation for the ribbon with armchair edges

is a solution of the following equation:

4
π

cos ΔKL −
(
U′ (ε1, ξ1) V (ε2, ξ1) + V ′ (ε2, ξ1) U (ε1, ξ1)

)
×
(
U (ε2, ξ2) V ′ (ε1, ξ2) + V (ε1, ξ2) U′ (ε2, ξ2)

)
+
(
V ′ (ε1, ξ1) V ′ (ε2, ξ1) + V ′ (ε1, ξ1) V (ε2, ξ1)

)
×
(
U (ε1, ξ2) U′ (ε2, ξ2) + U (ε2, ξ2) U′ (ε1, ξ2)

)
+
(
U (ε1, ξ1) U′ (ε2, ξ1) + U′ (ε1, ξ1) U (ε2, ξ1)

)
×
(
V (ε2, ξ2) V ′ (ε1, ξ2) + V ′ (ε2, ξ2) V (ε1, ξ2)

)
−
(
V (ε1, ξ1) U′ (ε2, ξ1) + V ′ (ε1, ξ1) U (ε2, ξ1)

)
×
(
U (ε1, ξ2) V ′ (ε2, ξ2) + U′ (ε1, ξ2) V (ε2, ξ2)

)
= 0 (A8)

where the coefficient near cosΔKL, is the Wronskian of
parabolic cylinder functions W =

√
2/π [30].
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