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Abstract

Urban litter, such as cans, packaging, and cigarettes, has significant impacts, and yet

little is known about its spatio-temporal distribution, with little available data. In con-

texts of data scarcity, crowdsourcing provides a low-cost approach to collecting a large

amount of geo-referenced data. We consider 1.7 million litter observations in the

Netherlands, collected by the crowdmapping project Litterati. First, we analyze the

biases of this data at the province and municipality level. Second, in a local case study

with high-quality data (the city of Purmerend), we investigate the spatial distribution

of urban litter and the points of interest that attract it. This study’s findings can sup-

port both the crowdmapping process, steer volunteers’ efforts, and policy-making to

tackle litter at the urban level. This article met the requirements for a gold–gold JIE

data openness badge described at http://jie.click/badges.

Gold
Contribution

Accessibility
Gold

KEYWORDS

crowdmapping, data analysis, litter, Litterati, spatial analysis, waste

1 INTRODUCTION

The generation of solid waste has been steadily increasing in the past decades, outpacing the growth rates of global urbanization and industrializa-

tion. Worldwide urban waste generation is predicted to increase from 0.64 kg/capita/day in 2010 to an average of 1.2–1.4 kg/capita/day by 2025

(Hoornweg & Bhada-Tata, 2012). A fraction of the anthropogenic waste generated is not treated in any facility.

Mismanaged urban waste is comprised of urban litter, defined as waste that is not adequately disposed of (e.g., packaging left on the curb),

and inadequately contained waste (e.g., open dumping of waste), which is transportable via runoff and wind from land to water bodies (Lebreton

& Andrady, 2019). Inadequately contained waste is typically distinguished from urban litter by the type and amount of the waste and how it is

discarded (Ichinose & Yamamoto, 2011). An example of urban litter could be a plastic bottle left on the curb, or a paper wrapper blown away from a

rubbish bin by the wind. In contrast, illegal dumping typically is greater in volume, is forbidden in most countries, andmay also involve the dumping

of hazardousmaterials.We focus in this contribution on urban litter, as the phenomenon is predominant in the study area under assessment. There

is increasing evidence that mismanaged waste on land, especially in coastal regions, is a major contributor to the accumulation of anthropogenic

debris of all forms in themarine environment (Brennan et al., 2018; Hardesty et al., 2017).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.
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The environmental consequences of the growing level of accumulation of macro- and micro-anthropogenic debris on land and global waters

are still under assessment. Nevertheless, macro- and micro-litter types and plastics, in particular, have been associated with endpoints such as

entanglement and smothering, and alsowith potential effects on toxicity, bioaccumulation, and reproduction, among others (Bergmann et al., 2015;

Li et al., 2016). Litter not only presents a hazard to wildlife, but also affects human health, for example, via ingestion of small particles that enter

the foodweb (Carbery et al., 2018) and humanwealth, as litter determines economic loss, for example, in the form of costly clean-up operations and

decline in touristic attractiveness due to deteriorated landscapes (Kiessling et al., 2017).

Also, litter represents amissedopportunity formaterial recovery as part of ongoing efforts of urbanmining (DiMaria et al., 2013), sincematerials

such as plastics or aluminum could also enter remanufacturing streams, should litter be reduced or recovered from the natural environment.

Traditionally, because of the poor spatial and temporal quality of data, scientists have beenmaking inferences on the spatial distribution of litter

based on small samples of data, with wide margins of error and uncertainty (Lynch, 2018). New data directly collected from citizens can shed new

light on urban litter. Crowdmapping, in particular, is a form of digitally mediated collaborative work that empowers citizens to collect and share

geographic knowledge for a variety of purposes (Quattrone et al., 2014; Senaratne et al., 2017). Using a smartphone, citizens and organizations can

trace phenomena in space and time, providing data that can be processed cheaply by analysts.

Notably, applying this approach to littermapping, the company Litterati (litterati.org) collects granular spatio-temporal data about various forms

of litter through volunteered contributions. The collection process of Litterati is conducted either by contributors acting autonomously or through

coordinated “challenges” or “mapping parties,” that is, events that draw volunteers to specific areas to systematically collect and map all litter in

those areas. The goal of Litterati is to build and maintain a global map of litter on land, supporting litter management and environmental activism

(Litterati, 2020). TheLitterati dataset provideshighly granular informationabout thepresenceof litter,moredetailed thananyother existing source,

such as openlittermap.com (Lynch, 2018).

The use and analysis of crowdmapping data can increase the efficiency of urban sustainability governance (Certomà et al., 2015). Crowdmapping

data and other data from citizen science are considered a core new source of data that could be used tomonitor and track progress, and to support

decision-making on the sustainable development goals (SDG), as such data provide a finer spatial and temporal scale than traditional data sources

(Fraisl et al., 2020; Fritz et al., 2019). Specifically, an improved understanding of the phenomenon of litter generation can contribute to better guid-

ing policy-making for sustainability. The identification of the hotspots of litter generation and the coldspots of litter collection can better direct

policy efforts toward the improved collection, thus intervening to limit the environmental impacts of the sheer presence of litter in the natural envi-

ronment, and can contribute to the recovery of potentially valuable materials. Such policy interventions could directly work as a fly wheel for both

litter generation and collection, as demonstrated by well-established findings from experimental research that suggest that individuals are more

likely to litter in a littered environment, compared to a clean one, and are less likely to litter after observing someone pick up litter (Cialdini, 2003;

Hartley et al., 2018; Keizer et al., 2008; Schultz et al., 2013).

Litterati data, while abundant and detailed, may suffer from several biases intrinsic to the collection process. Volunteers are a self-selected pop-

ulation and tend to belong to specific demographic groups in terms of age, education, income, and ethnicity (Buil-Gil et al., 2020). The mapping

activity is not spread evenly spatially and temporally, but tends to cluster in areas and periods thatwill be overrepresented (Ballatore&De Sabbata,

2020).While existingwork investigated data representativeness in a variety of projects (Ballatore &Arsanjani, 2019), crowdsourced litter data has

not received any attention and little is known about its properties and limitations.

To understand the characteristics of urban litter, we consider 1.7 million crowdsourced litter observations for the Netherlands from Litterati,

generated in the period 2016−2019. This dataset captures the presence and type of urban litter to an unprecedented scale and volume. First, we

analyze the biases of litter data from Litterati at the national level for the Netherlands, addressing the following questions (QA): (1) What is the

spatial and temporal distribution of litter observations at the national level? Are there hotspots? (2) What is the relationship between population

density and litter observation density at multiple spatial scales? (3) What is the relationship between the geo-demographic characteristics (age,

ethnicity, education, and income) and litter observations?

Second, we focus on a local case study (the city of Purmerend), in which the Litterati data is extremely dense and has been produced by a profes-

sional data collector and campaigner. To characterize the urban environment, we harvest a variety of points of interest (POIs) from Google Places.

This analysis reveals previously unknown details of urban litter and allows answering (QB): (1)What is the temporal and spatial distribution of litter

observations at the urban scale? Are there litter hotspots? (2) What types and volumes of litter are present? Are there visible brands? (3) What

is the spatial clustering between litter observations? What is the spatial clustering between urban litter and POIs, for example, restaurants, cafés,

schools?What types of POI tend to attract more litter?

Answering these research questions achieves two complementary goals. On the one hand, studying the characteristics of this crowdsourced

data is the first step toward the production of better estimates of urban litter, mitigating the biases to extract more representative samples. On the

other, the urban case studyof Purmerendprovides the first quantitative assessment of urban litter, enlighteningmultiple facets of this understudied

phenomenon. These findings can informboth project owners and volunteers at initiatives such as Litterati, aswell as urban policy-makers andwaste

managers. To support reproducibility and replicability, compatibly with the terms of use of Litterati and Google, we make the study’s data, results,

and figures available as supporting material (see Supporting Information and Ballatore et al. (2021)). The next section covers the existing body of

knowledge on litter and crowdmappingmethods.

http://litterati.org
http://openlittermap.com
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2 RELATED WORK

2.1 Litter estimation

In the field of industrial ecology, waste is classified as in use, post-consumer managed, and mismanaged waste (Geyer et al., 2017). Waste statistics

are notoriously scattered, fragmented, and present high variations by year, and country. As reported by Tisserant and co-authors (Tisserant et al.,

2017), high-income countries usually have comprehensivewaste accounts, while low- andmiddle-income countries have only a fewwaste types for

which data are available. All of the waste accounts, nomatter the country of origin, have poor coverage of unmanagedwaste and litter even though

these should be in principle covered by official statistics (Eurostat, 2017). As a result, mismanagedwaste including litter is typically either excluded

due to lack of data (see, e.g., Brouwer et al., 2018) or estimated based on the mass balance, with considerable uncertainty on the effective quantity

of mismanagedwaste ending up in the natural environment.

An example of mass-balance estimation is the work of Jambeck and co-authors (Jambeck et al., 2015), which estimate mismanaged and lit-

tered plastics based on (i) the mass of waste generated per capita annually by the countries analyzed; (ii) the percentage of waste that is

plastic; and (iii) the percentage of mismanaged plastic waste. In particular, the authors assume that the fraction of litter in mismanaged plas-

tics corresponds to 2% of waste generated in all countries. The assumption is based on litter dynamics in the United States (Jambeck et al.,

2015).

Similarly, Lebreton and Andrady (2019) conservatively consider a minimum of 1% as a threshold for mismanaged plastics. The authors

acknowledge a significant degree of uncertainty associated with the value and include scenarios with upper and lower thresholds from

0.1% to 10% minimum mismanaged waste. Only for the city of Philadelphia, USA, we found a study that explored the spatial and tempo-

ral elements of urban litter (Lockwood et al., 2020). No other approaches to map other urban litter types can be found to the best of our

knowledge.

Estimates of urban litter by mass balance and other model-based approximations are associated with large uncertainties and do not account

for spatial heterogeneity within a country and between countries, that is, the unevenness of litter distribution in different areas. More accurate

alternatives require the sampling of litter on location, though such approaches are currently mostly limited tomarine and freshwater systems (see,

e.g., van Emmerik et al., 2018).Moreover, sampling approaches are expensive and time consuming, as they require collection equipment and several

people to perform themeasurements (Kiessling et al., 2019; van Emmerik et al., 2018).

2.2 Crowdmapping and citizen science

Advances in information technology in the last decade have enabled new forms of data collection and citizen participation (See et al., 2016). In ecol-

ogy, large projects involving citizen science have allowed keeping track of the ecological and social impacts of large-scale environmental change, for

example,monitoring phenology, relative abundance, distributions, survival, and reproductive success of organisms across timeand space (Dickinson

et al., 2010). Projects and methods of this kind hinge on contributions from nonexpert, nonprofessional, typically unpaid users have been variously

labeled as user-generated content, crowdsourcing, volunteered geographic information, as well as citizen science (See et al., 2016; Senaratne et al.,

2017). Citizen science and citizen-generated data are being recognized as an important source of information for policy and actions on sustainable

development (Fritz et al., 2019).

Litter has been mapped using citizen science data, for example, in volunteer beach clean-up actions (Lynch, 2018). These data sources are typ-

ical of lower quality than professionally collected data but are often available in greater volumes and at a lower cost (Haarr et al., 2020). Citizens,

such as outdoor hobbyists, gather data over large geographic regions and enter them into a centralized system, which provides interactive graphs

and maps (Cooper et al., 2007). When data have a strong geospatial component, collaborative mapping can produce large volumes of contribu-

tions at a high spatial and temporal granularity (See et al, 2016).While nonprofit projects such as OpenStreetMap uniquely rely on crowdmapping,

prominent commercial ventures such asGoogle Places crowdsource information from their users too to complement and enrich their informational

assets.

Variable data quality poses a persistent challenge in this type of data production, limiting its applications in geographic data science (Ballatore &

De Sabbata, 2020). Crowdsourced data may be affected by different, interacting biases (Senaratne et al., 2017). The demography of projects tends

to be skewed toward relatively educated, affluent, urban contributors who have access to IT infrastructure and skills, although exceptions exist

(Ballatore & Arsanjani, 2019). Population density influences data density, making urban areas often better mapped than rural areas. Human-made

features such as buildings are easier to categorize and demarcate than vague natural ones such as forests and rivers. Basic, clear mapping tasks are

more likely to produce good quality data than complex ones.

Crowdmapping projects also suffer from spatial heterogeneity that reflects the human geography of their managers and contributors. Data col-

lection tends to happen in bursts that are highly localized in space and time (e.g., in mapping parties in cities), and popular locations attract more
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F IGURE 1 Overview of the study, including
input datasets andmethods

data than unpopular ones, neglecting low-density rural areas without particular attractions. The sustained, long-term, homogeneous, systematic

mapping performed by traditional mapping agencies is harder if not impossible to achieve (Senaratne et al., 2017). Some early work aims at devel-

oping bias-reduction methods, bootstrapping more representative models of phenomena from highly skewed samples (Buil-Gil et al., 2020). In the

context of littermapping, no prior work has been done on the characteristics of crowdsourced litter observations. Our study lies at the intersection

between geographic data science and industrial ecology, showing how these novel data sources may contribute to managing crucial environmental

challenges.

3 METHODS

3.1 Study overview

In this study, we use spatial analysis to investigate our research questions, starting from the distribution of urban litter observations to the associa-

tion between litter observations andPOIs. As shown in Figure 1, we rely on two newdatasets, containing litter observations fromLitterati and POIs

fromGoogleMaps. The data is first analyzed at the national scale, using a clusteringmethod (Gi*) to identify litter hotspots. A local case study is then

considered (Purmerend, NL). A temporal analysis is also performed at both national and local scale. At the local scale, we use Gi* to identify litter

hotspots, andwe perform a distance analysis, relying on the K- and L-functions. This spatial analysismethod allows observing towhat extent spatial

objects or events tend to be associated. First, we observe the distance between litter observations of different types. Second, we consider the dis-

tance between POIs and litter, overall and by types, quantifying their spatial association. The remainder of this section will discuss the datasets and

themethods for the temporal and spatial analyses in this study.

3.2 Litter dataset

Litterati has global coverage with 166,800 activemembers across 165 countries, with a total litter count currently at 5.8million units as of January

2020 (Litterati, 2020). Users from the Netherlands are the most active on the platform, followed by the United States and Austria. Users generate

these observationswith a dedicated smartphone app.Whenusers see a piece of litter, they photograph it, select tags for it (e.g., “plastic,” “wrapper”),

and upload it, and are encouraged to dispose of it, combining data collectionwith activism and direct clean-up. This reduces the likelihood of double

counting the same piece of litter. In January 2020, we obtained from Litterati litter observations located in the Netherlands from 2012 to 2019,

generated by about 7000 users. As the data before 2016 is very sparse (687 data points in 2012–2014 and 5278 in 2015), we included in the study

litter data from 2016 to 2019.

This dataset comprises 1.7 million litter observations, with 3.5 million corresponding tags (with an average of 2.1 tags per litter observation),

and the 2019 data also provides anonymized information about users (4589 users). As discussed above, the coverage and sampling quality of these

observations vary, and largely dependent on the practices and preferences of volunteers and local organizers. We distinguish here between litter
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tags, which are the labels attributed to items by the users of the Litterati platform, and litter types, which represent the litter items that can be

identified from their tags.

3.3 Google points of interest

To study the relationship between urban POIs and litter in the Purmerend case study (QB3), we had to retrieve high-quality and up-to-date POI

information. To the best of our knowledge, several data sources, including official government data, had limited coverage of POIs that could be

associated with litter, and we could not identify a suitable specialist commercial provider. Hence, we concluded that GoogleMaps hosted the most

appropriate data, including urban POIs at high coverage, collected and verified by the company with the contribution of the large Google user base

(see https://cloud.google.com/maps-platform/places).

Using a dedicated research tool that we developed (Ballatore et al., 2021), we retrieved 1420 POIs located in Purmerend from the GoogleMaps

Places API in March 2020. This tool partitions the query area into small areas and generates API queries, re-splitting the areas as needed. This

method ensures full coverage of POIs in the target area. Each resulting POI is associated with a location and with multiple “types” that describe its

purposes. In particular, the dataset includes stores (850), transit stations (255), food (246), restaurants (128), schools (22), and places of worship

(19) (note that a single POI can be categorized as “food,” “meal takeaway,” and “restaurant”). This kind of dataset provides very high coverage and

accuracy of urban POIs relevant to littering behavior. The analysis can be scaled up to any other geography covered by the Google API. Because of

Google’s terms of service, this dataset is provided for replicability in a spatially aggregated form.

3.4 Hotspot analysis

To investigate the temporal dimension of the data collection process (QA1 and QB1), we structured the dataset in litter collected per year and the

correspondingmonth to create a temporal overview of the data.We include a temporal analysis for all the available data in theNetherlands and our

case study in Purmerend to gain insight into the possible seasonality of the data. To inspect spatial distribution, the litter observations are at first

analyzed at the national scale using a density analysis based on a hexagonal grid. Subsequently, we carry out a hotspot analysis with Getis–Ord Gi*

statistic, identifying hot and coldspots, that is, areas of statistically significant concentration or dispersion of litter (Getis &Ord, 2010).

Such density-based hotspot analysis is widespread in epidemiology and criminology, which are interested in identifying and predicting high-

density areas. The core intuition is that, in spatial processes, it is hard to distinguish clusters of objects that occur stochastically (e.g., litter dispersed

by thewind) and clusters that are nonrandom (e.g., litter clustered around a fast-food restaurant), and thismethod provides an interpretable test of

statistical significance. A similar method is then applied at the urban scale for the urban environment of Purmerend, including density and hotspot

analysis. By contrast, QA3, which focusses on the socio-demographic dimension of the data, is investigated through correlation analysis of socio-

economic variables and litter counts at a fixed spatial scale.

3.5 Point pattern analysis

To study the clustering and dispersion of litter and POIs (QB3), we adopt methods from point pattern analysis, a branch of spatial analysis widely

used in ecology and geography to study spatial processes in the natural and social sciences (Baddeley et al., 2015). Spatial association, also called

clustering, can beobservedbetween the litter points andbetween litter andPOIs. Treating both litter observations andPOIs as points in a projected

metric space, we observe multi-distance clustering using point pattern analysis. The main function we use is Besag’s L-function, a transformation

of Ripley’s K-function (O’Sullivan & Unwin, 2010). The K-function summarizes the distance between points at a range of distances, for example,

between 0 and 1 km, dividing themean of the sum of the number of points at different distance radii for each point by the area event density. More

clustered phenomenawill therefore produce higher values of K, havingmore events falling within the radius.

K can be applied to events of the same type (univariate) or to compare events of different type (cross K). K allows the detailed observation of the

distance pattern, without having to choose an arbitrary radius, which is a major advantage in contexts where the exact scale of analysis is hard to

determine (L is a more interpretable transformation of K). To ascertain to what extent K is likely to be the result of a random process or not, we use

aMonte Carlo simulation, as the direct calculation of a p value is difficult.When comparing K (or L) values, we scaled the values by considering their

z scores to increase the interpretability of the results. Ourmodel adopts Euclidian distance, as in an urban context it provides a good approximation

of the street network distance (Apparicio et al., 2008). The next section outlines the results of these analyses.

https://cloud.google.com/maps-platform/places
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F IGURE 2 Distribution of litter from Litterati data in the Netherlands. Total litter observations: 1.71million. Themaps are north oriented. (a)
Density of litter observations in the Netherlands (2016–2019) with province borders. Observations grouped into five logarithmic bins, over 4405
spatial units (each hexagon covers 10 km2). (b) Hotspot analysis with Getis–Ord Gi* with significance level. Hotspots are labeled withmunicipality
names. Most coldspots are bodies of water. The data used to create this figure can be found in Ballatore et al. (2021)

4 RESULTS

4.1 Litter data biases at the national scale

4.1.1 Spatial and temporal distribution

Crowdsourced data may exhibit important spatial, temporal, and thematic biases. We start the analysis of national data (QA) by focusing on the

spatio-temporal distribution of litter observations (QA1). Breaking down the 1.7 million litter observations per month reveals a relatively high col-

lection rate during the summer and autumn periods (June, July, August, September, October). The collection of litter in January and February is

generally lower than the monthly collection during the summer or autumn. This trend can be explained by the wintry conditions in these months,

which discourage outdoor activities, while the peak in the yearly collection of litter takes place during September as a result of theWorld Cleanup

Day (15th of September). The temporal data is available at Ballatore et al. (2021). 3.5million litter tags provide information about the types of litter

for 1.3 of the 1.7 million observations generated by participants (89% of observations have at least one tag). The most frequent tags are plastic

(46%), can (12%), wrapper (10%), paper (9%), metal (8%), cigarette (5%), bottle (5%), with a tail of less frequent tags. Most litter types have a con-

sistent collection rate throughout the year with little relative tag variation, with the exception of the seasonal “knetterball,” a type of firework (see

QB2 formore details on litter types and volumes). In terms of waste volume, estimating its weight based onmaterial (KPLUSV, 2015), the dominant

types are glass (∼5500 kg), plastic bottles (∼3000 kg), metal cans (∼2500 kg), and plastic wraps (∼1300 kg). We refer the reader to the Supporting

Information for additional information.

Being an anthropic phenomenon, the distribution of litter observations is expected to benonuniform,with variable density across the geographic

space. Figure 2a illustrates the density of litter observations across the country (QA1). The hexagonal grid is fixed at 10 km2, a spatial scale that was

determined through a sensitivity analysis (varying the scale to higher and lower granularity by 100%had a negligible impact on the resulting hot and

coldspots). The grid is available at Ballatore et al. (2021). The litter data appear to have national coverage, with all Dutch provinces being included,

with higher density in some central areas of the country.

Assuming a homogeneous spatial Poissonprocess as a baseline, hotspot analysis allowsdetecting areas that have a higher or lower concentration

of litter observations than expected with a random process. It is critical to note that these are hot and coldspots of litter observations generated
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TABLE 1 Provincial distribution of 1.7million litter observations from Litterati 2016–2019 byDutch Province, with litter observations per
1000 people with z scores and inter-quartile range. Ordered by litter per 1000 people. Population estimates and density fromCBS Statline 2017.
Purmerend is located in Noord-Holland. The data used to create this table can be found in Ballatore et al. (2021)

Province Largest cities Pop. (mill.)

Pop. density

(km2) Litter obs.

Litter obs. per

1000 people z score IQR

Gelderland Arnhem, Nijmegen, Apeldoorn 2.05 420 425,645 208 2.1 152.3

Noord-Holland Amsterdam, Haarlem, Zaanstad 2.81 1081 573,410 204 2 134.5

Noord-Brabant Eindhoven, Tilburg, Breda 2.51 522 220,769 88 0.2 23.9

Friesland Leeuwarden, Sneek, Heerenveen 0.65 195 53,109 82 0.1 77.9

Zuid-Holland Rotterdam, TheHague, Delft 3.62 215 215,647 60 −0.3 42.2

Flevoland Almere, Lelystad, Emmeloord 0.41 300 23,476 58 −0.3 49.4

Zeeland Middelburg, Vlissingen, Goes 0.38 912 19,490 51 −0.4 64.1

Utrecht Utrecht, Amersfoort, Houten 1.32 1374 64,437 49 −0.4 35.9

Limburg Maastricht, Roermond, Heerlen 1.12 520 38,885 35 −0.6 23.1

Overijssel Zwolle, Almelo, Deventer 1.15 350 35,279 31 −0.7 22.1

Drenthe Emmen, Assen, Hoogeveen 0.49 188 13,474 27 −0.8 9.5

Groningen Groningen, Oldambt, Stadskanaal 0.58 252 12,493 21 −0.9 12.5

by Litterati, and not necessarily of the actual litter distribution. As is possible to note in Figure 2b, six areas emerge as hotspots at 99% confidence,

including Amsterdam and Purmerend, and other eight areas at 95% confidence (QA1). These hotspots indicate a higher level of activity by local

Litterati volunteers and, rather surprisingly, do not correspond with themost populated cities. Hence, to explore this aspect more systematically, it

is useful to observe the density of litter observations in proportion to the local population.

4.1.2 Litter observations by population

Observing the density of observations relative to the density of the location population allows studying the spatial distribution in the Litterati data,

starting by observing the 12 Provinces of the Netherlands (QA2). The data is available in Ballatore et al. (2021). Table 1 shows the summary of litter

by 1000 people for the provinces in descending order, including z scores for the divergence from average and inter-quartile range for distribution

spread. Provinces range from those with an abundance of litter data (z ∼ 2, more than 200 observations per 1000 people, Gelderland, and Noord-

Holland) to the least represented (Limburg, Overijssel, Drenthe, and Groningen, z<−0.5). This indicator shows high regional variability, from 21 to

208, indicating that Litterati has uneven coverage with a few hotspots in the central part of the country dominating the dataset as discussed above.

When considering population density, no clear pattern emerges, as litter observation density exhibits aweak correlationwith population density at

the province level (rho= 0.2) (Table 1).

As shown in Figure 3a, the Eastern provinces are underrepresented, while no clear spatial pattern emerges for the other parts of the coun-

try (QA2). The litter statistics calculated at the municipality level highlight the high variability within provinces (Figure 3b). The top municipalities

include statistical outliers such as Duiven, Ouder-Amstel, Purmerend, and Oosterhout (z > 3, with values between 1423 and 5365 litter observa-

tions per 1000 people). Surprisingly, major cities appear to be around the average or below average: Amsterdam and Almere are at the average

(∼100 litter observations per 1000 people, z = 0), while Rotterdam, The Hague, Tilburg (z = −0.1), Utrecht, Eindhoven, Groningen, Nijmegen, and

Maastricht (z=−0.2) are all slightly below average. The only notable exception is Breda, which is above average (z= 0.3). This confirms the absence

of the urban bias that is usually expected in crowdmapping projects (QA2).

4.1.3 Geo-demographic analysis at the municipality scale

Considering the litter data at the national scale, socio-demographic factors of the resident population might influence the data distribution, high-

lighting geo-demographic biases (QA3). This type of analysis can reveal, for example, to what extent the collection tends to occur in older, more

educated, wealthier areas of the country. In other studies, socio-economic factors are found to be of influence on the littering behavior of resi-

dents within a city (Grimmer et al., 2016). Using data Dutch Census from 2017 (Kadaster, 2017), we calculated a set of litter-related variables for

388 municipalities (gemeente), including the number of litter observations (overall and by litter type). Each municipality comprises between 941

and 844,947 residents with a median of 27,000 residents and is described in terms of total inhabitants, population density, and the percentage of

residents by gender, age, and ethnicity. Average income (euro per capita) was also included in the analysis (CBS, 2019).
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F IGURE 3 Litter observations from Litterati per 1000 people in the Netherlands (2016–2019). (a) Province level, withmanual bins (provincies,
12 units). (b)Municipality level, with Jenks bins (gemeentes, 388 units). Total litter observations: 1.71million, total population: 17.2million.
Population data fromDutch Census (2017). The data used to create this figure can be found in Ballatore et al. (2021)

When correlating litter observations and these socio-demographic factors, an expected correlation emerged between the population size and

thenumberof litter observations (rho=0.52,p<0.001), and for this reasonweonly considered litter variablesweightedby the local population (per

1000people). The complete correlationmatrix is available at Ballatore et al. (2021). Using these variables, surprisingly, the correlations ranged from

none to veryweak. Higher population density weakly corresponds tomore litter observations (rho= 0.17, p< 0.001), suggesting that denser urban

areas have more active contributors. Most age groups showed no correlation, with a weak inverse correlation with the percentage of residents

between 0 and 14 years of age (rho = −0.15, p < 0.01). The percentage of different ethnic groups and average income also showed no correlation

with litter. Overall, no clear and statistically significant trend was detected in the Litterati data at the municipality level (QA3). This indicates that

the Litterati data collection does not present obvious geo-demographic biases, while volunteers are predominantly in their 30s and 40s.1

4.2 Urban litter in the Purmerend case study

4.2.1 Data collection and quality

In this second study (QB), we turn our attention to a local case study with high-quality data that can reveal insights about urban litter, with high

confidence in the data’s ability to reflect the actual distribution of litter. Purmerend emerged as the most promising case study for the quality

and volume of its data. This municipality is located about 10 km north of Amsterdam, with 80,117 inhabitants as of 2019, occupying 23.39 kmš,

and is an average urban area in the Dutch context from a socio-economic perspective. From 2016 to 2019, it received 178,557 litter observations

with 456,140 tags (the third-highest municipality). While the data was generated by 46 users, Purmerend exhibits an interesting case of extreme

contribution inequality, with a single user generating 98% of the data.

This user, Dirk Groot–Zwerfinator, is well known in the Netherlands as the top collector of litter data and has a public profile of advocacy and

activism (Atlas Leefomgeving, 2020). He is the only contributor that collects data professionally, generating litter data as a full-time paid job for

local authorities and companies. This data is produced in a systematic way, focusing on high-litter areas for an average of 160 observations a day:

Groot produces regular litter observations, following the same routes where he expects high litter density.2 The spatial coverage, regularity, and

volume of these litter observations make them suitable to answer research questions about urban litter (QB). The datasets used in this section are

available in aggregated form (Ballatore et al., 2021)
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4.2.2 Spatial and temporal distribution

The collection of litter in Purmerend has the highest collection rate during themonths ofMay, June, and July, reaching 20,000−40,000 litter points.

In these months Groot performs a yearly litter collection campaign for the city council of Purmerend.2 The lowest collection rate (2000−12,000)

takes place in winter, reflecting the national trend. Given the systematic collection, this suggests that less litter is recorded in the winter months

(QB1). From personal communicationwith Groot,2 we ascertained that themoment a piece of litter is collected (and recorded) is not a good predic-

tor of the moment in which that piece of waste became litter. In particular, Groot could verify using personal data collected over the past 3 years

that a higher quantity of beverage packaging could be found in the autumn months than in the summer months. Such a trend could be explained

by the fact that shrubs lose their leaves and grass is mowed in the autumn, so that litter only becomes visible then. Spatially, the litter observations

in Purmerend exhibit high coverage, including the vast majority of the city’s public spaces. Figure 4a shows the litter observation distribution, with

hot- and coldspots highlighted in Figure 4b. Overall, the litter appears concentrated in a North–West to South–East corridor, and absent only in

some residential areas and a private golf course (QB1).

Most hotspots occur in central areas of the city, in the historic center, train stations, and shopping malls. Hotspots in the outskirts are linked

to fast-food restaurants and bus stations. Areas of social aggregation with litter hotspots include a laser tag hall, a shopping district, a church, a

stadium, a school, and a water park. Another large hotspot in the same area is co-occurring with multiple supermarkets, bakeries, and markets,

which typically attract high foot traffic on a daily basis. The train stations are located centrally and intersect with several sidewalks. Most coldspots

are located at the eastern edge of the municipality. The largest coldspot corresponds to a golf resort, only accessible to members and coldspots to

the north and south of the golf course public parks, as well as residential areas, with a low density of litter and POIs. The coldspot at the northern

edge of the city corresponds to a canal and a dual carriageway. Some smaller coldspots in the city center are located near canals.

4.2.3 Litter type analysis

This data allows quantifying the types of litter released in the urban environment.Most observations are tagged as plastic (50%), followed bywrap-

per (14%), can (12%), metal (11%), paper (11%), cigarette (7%), bag (5%), bottle (5%), energy drink (5%), beer (4%), and firework (4%), with other

tags having lower prevalence (QB2).

Table 2 summarizes the occurrence of litter types, which combine multiple tags, including the brands that emerge as most frequent. These find-

ings are overall consistentwith those at the national level: Urban litter is dominated by plastic wrappers, cans, cigarette butts, and plastic bags, with

some brands being particularly prominent (McDonald’s, Knetterball, Anta-Flu, Red Bull, and Coca-Cola) (QB2). We also estimate the mass of litter.
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TABLE 2 Most prominent litter types with estimatedmass and brands in the Litterati data for Purmerend (2016−2019). Total number of
observations: 178,557. The data used to create this figure can be found in Ballatore et al. (2021)

Top litter type % Mass (kg) Weight per item (gram) (KPLUSV, 2015) | Top brand %

Plastic wrapper 13 201.9 8.7 | McDonald’s 3.7

Metal can 10 267.8 15 | Anta-Flu 2.6

Cigarette 7 6.2 0.5 | Red Bull 2.5

Candywrapper 6 21.4 2 | Heineken 1.5

Piece of paper 5 8.9 1 | Coca-Cola / Coke 1.0

Plastic bag 5 17.9–133.9 2.0–15 | Marlboro 0.9

Energy drink 5 133.9 15 | Amstel 0.8

Plastic bottle 4 212.8 29.8 | CandymanMac Bubble 0.6

Beer can 3 80.4 15 | Lipton 0.5

Firework/Knetterball 3 46.6 8.7 | Fanta 0.5

Cup 2 16.1 4.5 | Haribo 0.3

Tissue 2 17.9 5 | KFC 0.3

Straw 1 0.7 0.42 | Bavaria 0.2

Glass bottle 1 491.0 275 | Camel 0.2

Glass bottles (30%), metal cans (17%), plastic bottles (14%), and plastic wrappers (13%) dominate the spectrum. By material category, both plastic

and glass share around 30% of the total weight, in total taking upmore than half of the total mass of litter.

Spatial clustering of litter and POIs

The various types of litter exhibit varying levels of spatial clustering. Both litter observations and POIs can be modeled as points produced by a

homogeneous Poisson point process. As stated in themethods section, the L-function allows studyingwhether points are clustered in a statistically

significant way at different distances, with values higher than the complete spatial randomness baseline (CSR) indicating clustering, and lower val-

ues indicating dispersion.3 To estimate the statistical significance of the L-function, we use 99Monte Carlo simulations, resulting in an envelope at

alpha level 0.02, derived as 2 rank (n + 1), where rank is 1 and n is the number of simulations, which we consider acceptable for this analysis.

Litter clustering. We apply the L-function to litter observations of the most frequent types between 0 and 1000m, a range suitable for this urban

analysis (see also Supporting Information). All litter groups are above the CSR and outside of their envelopes, indicating statistically significant

clustering, as largely expected. These clustering patterns appear homogenous, withmost types converging, particularly at a short distance (0 to 200

m). The only two types that stand out as beingmore clustered than the others are fireworks (also highly clustered temporally) and cigarettes, while

bags are slightly less clustered than other types while having a similar overall pattern (QB3).

Clustering ofGoogle POIs. To answerquestions about the spatial associationbetween litter andPOIs, it is important to analyze the spatial structure

of POIs to see how they cluster to one another in the urban space. Different types of POIs are expected to cluster at different levels (Krider&Putler,

2013). When applying the L-function to the most frequent 12 POI categories in Purmerend, the majority of Google POI types show, as expected,

higher clustering thanCSR, a common feature of urban structure, at almost all distances considered. The intensity and spatial structure of clustering

vary considerably between POI types, with restaurants and cafes showing the highest level, exhibiting a tendency to agglomeration that is common

in retail (Krider & Putler, 2013). Most POIs are at an intermediate level (parking, meal takeaway, supermarkets, bakeries, and places of worship),

while parks and transit stations show no clustering, confirming their planned nature, as they are deliberately not located too close to each other.

Overall, the variability between POIs is much higher than that between litter types, which appear more spatially homogeneous (QB3).

Distance analysis. To study the spatial association between litter and POIs, we conduct a distance analysis, followed by a point pattern analysis.

Assuming that litter observations are produced in a nonrandom spatial pattern, we consider POIs such as supermarkets, schools, and restaurants,

which attract the presence of people for a variety of purposes. The analysis focuses on the spatial association between the 178,557 litter observa-

tions and the 1420Google POIs in Purmerend (QB3). The scale of the analysis is chosen to observe the co-location of litter and POIs, assuming that

the presence of a POI can generate litter in the environment (e.g., fast-food packagingmay be released near the restaurant that sold it).

According to Dirk Groot, litter is highly spatially structured and tends to appear in specific locations near specific POIs, for example, in

“candy&snack routes” in proximity to schools and shops that sell candies and snacks.4 While the spatial association does not imply causality, it is

reasonable to assume that a substantial part of the data concerns litter coming from POIs, such as shops, supermarkets, and fast-food restaurants.

Of the 48 POI types defined by Google, we discarded generic ones (such as “food” and “health”) in favor of those used as main POI description (e.g.,

“restaurant” and “pharmacy”). Some types were discarded as too infrequent to provide useful information (e.g., “roofing contractors”).
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This selection resulted in 25 relevant POI types. When selecting which litter points fall within a given radius from any POI, a 50-m radius com-

prises 44% of all litter, 100m 78%, while a radius of 200m reaches 98% of litter. Hence, we consider a distance between 0 and 100m as suitable to

characterize the vastmajority of litter in the dataset. Above this threshold, each litter point tends to fall within several POIs, making the association

difficult to ascertain. As a first step, we observe the relative presence of litter in this distance range (0–100m) by POI type and the average litter by

POI (QB3). These two indicators are calculated as:

c =

|
|
|
lit(poi, d)

|
|
|

|lit|
cp =

|
|
|
lit(poi, d)

|
|
|

|poicat|
,

where lit is the set of litter observations, poi is the set of POIs, cat is a POI category, and d is a distance threshold in meters. These two indicators

are displayed in Figure 5, at five different distance thresholds, allowing a comparison between the overall presence of litter near POIs and their

average, weighting very frequent and rare POIs. As some POIs are very frequent than others, it is beneficial to consider these ratios as opposed to

an absolute count. 24% of all litter falls within 100 m from Purmerend’s 128 restaurants, while 3% of all litter is near the 4 department stores in

Purmerend, but restaurants are co-located with litter below average (331 observations per POI) and department stores above (1186). At 100 m,

the average percentage of litter by category is 4, while the average litter per POI is 670.

Figure 5 indicates how litter prevalence per POI (cp) varies with distance: For instance, bars are above average at 20 m, but closer to aver-

age at 100 m. High-litter POIs provide products that can be opened and consumed in the street (department store, liquor store, and pharmacy).

The below-average categories might be due to monitoring and cleaning that might reduce the presence of litter (transit stations), sales of goods

that are consumed elsewhere (meal delivery), and consumption occurs primarily within the POI’s premises (restaurants) (QB3). Some litter types

are found around specific POIs. Less litter tagged as “drink” than expected is located near transit stations and restaurants (z < −2). On the other

hand, “plastic” litter is found in larger quantities than expected across the full spectrum of POIs, with stronger associations around liquor stores,

night clubs, and pharmacies (z > 2). It is important to note that these co-occurrences are purely based on proximity and do not imply causation

(QB3).
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F IGURE 6 Average cross L-function (with z values) in range 0 to 100m between themost frequent 16 litter tags and 25Google POI categories
in Purmerend. Blue (red) values indicated higher (lower) clustering than average. The histogram shows the distribution of values omitting the
outlier greater than 300. Gray cells are outliers with very high values (z> 3). For example, litter tagged as “cigarette” tends to cluster with bus
stations, movie theatres, and parking, and little with gyms and beauty salons. Note that even the lowest values in this table are spatially clustered,
well above the CSR. All results are significant at alpha level 0.05. Total number of observations: 178,557. The data used to create this figure can be
found in Ballatore et al. (2021)

Clustering of litter to Google POIs. The previous analysis at fixed distances provides some insights, but it cannot estimate the statistical significance

of the observed co-occurrences. Hence, we apply point pattern analysis to quantify the spatial association between litter and POIs by calculating a

cross L-function for each L(litter type, POI type) pair. The clustering patterns between all litter observations and POIs grouped by type appear rather

similar, with some types clustered more than average (bus station, cafe, night club, bar), some below average (stadium, school, park, beauty salon),

and all other types are in between. The first column in Figure 6 summarizes the clustering by POI type as average cross L, ranging from 58 to 220

(QB3).

To understand which POIs deserve particular attention as litter attractors, it is useful to observe the association of specific POI types with litter

types. Using the average cross L-function between 0 and 100 m, the matrix in Figure 6 provides an overview of the spatial relation between litter

and POIs, both overall and in specific pairs. The “all POIs” and “all litter” values confirm that litter types tend to be rather homogenous, while the

variation between POI categories is markedly higher (QB3). Surprisingly, litter observations are present between all POI categories and litter tags,

confirming the high granularity and coverage of the Purmerend data. It is important to note that even cases with a negative z are not spatially

dispersed, having L-functionwell above theCSR,with statistical significance at alpha level 0.05. The z scores allow the comparison between relative

levels of clustering.

As the histogram in Figure 6 suggests, the distribution of the average cross L has a clear average at 125 with pairs below and above aver-

age, slightly skewed to the right. Outliers are present in the right tail of the distribution (z > 3) and include bus stations (highly clustered with

cardboard, cellulose acetate, and firework litter), and movie theater (cellulose acetate, cigarette, and fireworks), as well as parking (McDonald’s).

High associations are observed around bars (piece of paper), bus stations (cigarettes, energy drinks, plastic bottles), night club (energy drinks, metal
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cans), and parking (cellulose acetate, cigarette, firework) (z > 2). The relative absence of litter can also be revealing (z < −1). McDonald’s litter is

highly clustered to a minority of POIs; beer bottles and cans tend not to be near bakeries nor movie theatres; cigarette occurs near parking lots

and cafes; fireworks are present near parking lots, bus stations, movie theatres and, luckily, not in gas stations. At the opposite end of the distribu-

tion, extremely low L values are found for “stadium” POIs, which are sports facilities located in relatively peripheral areas, outside of the city center

(QB3).

5 DISCUSSION

This investigation on crowdsourced litter data has generated several findings, both concerning the biases of the Litterati data at the national level

(QA) and on the local case study, in which high-quality data can provide insights into urban litter (QB), which can be summarized as follows. (QA1)

The litter data has national coverage across all provinces, with higher density in some central areas of the country. Six areas are hot spots of lit-

ter observations at the national level, including Amsterdam, Purmerend, Nieuw-Vennep, Arnhem, Duiven, and Zevennar. Summer months have a

higher collection than winter months, with a peak at theWorld Cleanup Day. The most frequent tags are plastic (46%), cans (12%), wrapper (10%),

and paper (9%). In terms of waste volume, the top types are glass (∼5500 kg), plastic bottles (∼3000 kg), metal cans (∼2500 kg), and plastic wraps

(∼1300 kg). This corresponds to 1% of municipal waste officially collected in the Netherlands. (QA2) Considering litter observations per 1000 res-

idents, two Dutch provinces are largely overrepresented (Gelderland and Noord-Holland), and four are underrepresented (Limburg, Overijssel,

Drenthe, and Groningen). At the municipality level, with the exception of Breda, all major Dutch cities are average or slightly underrepresented.

(QA3) The litter data does not exhibit geo-demographic biases.When considering age, income, and ethnicity at themunicipality level, no correlation

was foundwith litter observation density.

(QB1) In the Purmerend case study, the data covers the entire city, showing that litter is concentrated in a North–West to South–East corridor.

Hotspots are located in the historic center and other agglomerates of urban POIs, suggesting a strong relationship between urban flows and litter.

Less litter is recorded in the winter months, with the exception of fireworks. (QB2) Urban litter is dominated by plastic wrappers, cans, cigarette

butts, and plastic bags. Some brands top the unenviable list of most present in litter (McDonald’s, Anta-Flu, Red Bull, Heineken, Coca-Cola, Marl-

boro, Amstel, and Candyman Mac Bubble). (QB3) All litter types are clustered in a statistically significant way, with fireworks and cigarettes being

more clustered than average and bags below average. 78% of litter is within 100 m from POIs, and 98% are within 200 m. The clustering between

POIs varies more than the clustering between litter types, which appearmore spatially homogeneous. Bus stations, cafes, bars, night clubs, parking

lots, attract more litter than average; stadia (sports facilities), beauty salons, schools, parks attract the least litter, while all other POI types are in

between.

Our national study of Litterati data indicates a strong spatial variability but without clear biases toward urban areas or to specific geo-

demographic groups (QA). While a degree of heterogeneity is intrinsic to crowdsourced data, it is possible to mitigate it with explicit or implicit

methods. Using our findings, project owners could explicitly nudge volunteers to map underrepresented areas (e.g., the eastern Dutch provinces)

and underrepresented POIs and litter types. Implicit methods can deploy statistical methods such as bootstrapping to select more representative

samples from the collected data (Buil-Gil et al., 2020). Efforts are needed to further improve the spatial, temporal, and thematic quality of this data,

estimating the distribution of litter at an increasingly small temporal and spatial scale. Crowdsourced data could more easily be integrated into

monitoring infrastructure, and could support the creation of predictivemodels of urban litter.

Beyond litter, crowdsourcing tools, such as crowdmapping, are developing as a policy tool that can increase the speed and ease of participation

of citizens in the policy cycle (Taeihagh, 2017). These data are also key in addressing challenging urban sustainability issues, such as energy con-

sumption, transport efficiency, quality and availability of material resources, access to services, such as water and sanitation, and the availability

and distribution of environmental services (Afzalan &Muller, 2018; Certomà et al., 2015). Increased knowledge of such endpoints of urban sustain-

ability could contribute both to the monitoring of sustainability goals (Fraisl et al., 2020; Lozano-Díaz & Fernández-Prados, 2020), but also could

provide a growing source of bottom-up data for industrial ecology analyses, such as material flow analysis. The system of assessment that we pro-

pose in this contribution can also support the study of other sustainability endpoints that can be crowdsourced, and for which traditional sampling

strategies can be too costly.

Involving citizens in the process of analyzing and planning for sustainability has been expanding as part of ongoing initiatives of urban experi-

mentation (Fuenfschilling et al., 2019). Urban, participatory, and people-centered approaches (Stevens & D’Hondt, 2010) to which crowdmapping

efforts belong are a distributed approach to addressing sustainability issues, which increase public engagement in planning for sustainability (Afza-

lan &Muller, 2018), andwhich can empower collective action through everyday grassroots citizen science across blocks, neighborhoods, cities, and

nations (Hasbrouck et al., 2007). Such approaches will have to be further integrated into the industrial ecology research agenda.

The case study we assessed (Purmerend) offers a first empirical quantification of urban litter (QB), which appears aligned with national trends

in the Netherlands in terms of types of litter being collected. However, it might prove hard to generalise these findings to other contexts, without

further fieldwork. The geo-demography of theNetherlands does not show significant influence on the data, but thismight not be the case at smaller

scales. Moreover, the geographic space is not homogenous, as litter and POIs do not have the same likelihood of being located anywhere. Human
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mobility is constrained by infrastructure and obstacles, such as the canals commonly found in Dutch cities, and network distances would provide a

more accuratemodel of the distances between litter observations and other geo-located objects.

The findings from crowdsourced data alignwith those based on traditional data, reinforcing the value of this data: smoking and food preparation,

and consumption are been seen as themain litter sources in other countries (Hidalgo-Ruz et al., 2018; Kiessling et al., 2019; Zettler et al., 2017).Our

study suggests that cigarettes are one of themost clustered litter types tomany POIs, and some POIs deservemore attention than others for litter

management (restaurants, cafes, takeaways). The qualitative experiences of litter collectors should inform litter research, and not only their data.

Notably, Dirk Groot pointed out that unmanaged litter that remains permanently in the environment is located in peripheral, low-density areas and

not in urban cores, where it tends to be collected by local services.5 Research efforts in this directionmight also help collection services design their

routes more efficiently.

In this article, we analyzed crowdsourced data about urban litter to understand its characteristics and possible biases. Combining questions

and methods from industrial ecology and geographic data science, this inter-disciplinary work can be extended to several promising directions,

supporting policy-making, and enhancing our understanding of litter-related behavior. The application of citizen sciencemight have great potential

in mapping mismanaged waste in the Global South, in which the impact of inadequate disposal is likely to become more severe in the near future

(Lebreton &Andrady, 2019).

The societal benefits of citizen participation in litter mapping cannot be understated and include unmanaged and illegal waste dynamics (Geer-

aerts et al., 2017). Further work on the relationship between POIs and litter can help policy-makers and planners place more bins near litter-

intensive POIs, or intensify the cleaning services, together with targeted campaigns. Specific policy actions that can reduce the production of spe-

cific litter types can also play a role. For example, in January 2016, the Netherlands implemented a comprehensive ban on disposable plastic bags

handed for free at shop counters (Rijksoverheid, 2015; SAMR, 2017). In the Litterati data, the percentage of observed plastic bags litter has slightly

decreased by 4% yearly since 2016.

Comparative studies across urban systems in different contexts would be beneficial to identify generalizable trends and behaviors of humans

and unmanaged litter. In this sense, crowdsourced data sources should be validated with ground-truth data, such as ad hoc multi-strata samples of

litter observations, granular data fromwaste collection services, or information about urban behavior, including transport flows and retail footfall.
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