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Abstract
Observational studies have revealed associations between short leucocyte tel-
omere length (LTL), a TL marker in somatic tissues and multiple Metabolic Syndrome 
(MetS) traits. Animal studies have supported these findings by showing that in-
creased telomere attrition leads to adipose tissue dysfunction and insulin resistance. 
We investigated the associations between genetically instrumented LTL and MetS 
traits using Mendelian Randomisation (MR). Fifty-two independent variants identi-
fied at FDR<0.05 from a genome-wide association study (GWAS) including 78,592 
Europeans and collectively accounting for 2.93% of LTL variance were selected as 
genetic instruments for LTL. Summary-level data for MetS traits and for the MetS 
as a binary phenotype were obtained from the largest publicly available GWAS and 
two-sample MR analyses were used to estimate the associations of LTL with these 
traits. The combined effect of the genetic instruments was modelled using inverse 
variance weighted regression and sensitivity analyses with MR-Egger, weighted-
median and MR-PRESSO were performed to test for and correct horizonal pleiotropy. 
Genetically instrumented longer LTL was associated with higher waist-to-hip ratio 
adjusted for body mass index (β = 0.045 SD, SE = 0.018, p = 0.01), raised systolic 
(β = 1.529 mmHg, SE = 0.332, p = 4x10−6) and diastolic (β = 0.633 mmHg, SE = 0.222, 
p = 0.004) blood pressure, and increased MetS risk (OR = 1.133, 95% CI 1.057–1.215). 
Consistent results were obtained in sensitivity analyses, which provided no evidence 
of unbalanced horizontal pleiotropy. Telomere shortening might not be a major driver 
of cellular senescence and dysfunction in human adipose tissue. Future experimental 
studies should examine the mechanistic bases for the links between longer LTL and 
increased upper-body fat distribution and raised blood pressure.
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1  |  INTRODUC TION

Metabolic syndrome (MetS) is a cluster of interrelated factors, in-
cluding abdominal obesity, dyslipidaemia characterised by raised 
triglycerides and low HDL cholesterol, hyperglycaemia, and hyper-
tension, that increase the risk of type 2 diabetes and cardiovascular 
atherosclerotic diseases (Alberti et al., 2009). Chronological age is 
one of the strongest predictors for the development of the MetS and 
is thought to reflect the impact of biological ageing (Hamczyk et al., 
2020). Regardless of the defining criteria used, the prevalence of the 
MetS is high and rising in both western and developing countries. 
For example, the prevalence of the MetS in the adult US population 
between 2011–2016 was estimated to be around 35% and signifi-
cantly increased with advancing age, being 19.5% among subjects 
aged 20 to 39 years and 48.6% among those aged 60 years or older 
(Hirode & Wong, 2020). Insulin resistance is the central hallmark 
and thought to be the main driver of the MetS and accumulating 
evidence suggests that it results from inadequate subcutaneous ad-
ipose (AT) storage capacity in the face of continuous, excess energy 
intake resulting in ectopic fat deposition in visceral AT, muscle, liver, 
pancreas, and the vasculature (Mann & Savage, 2019).

Telomeres are DNA-protein complexes that cap the ends of eu-
karyotic chromosomes and function to promote chromosomal sta-
bility. Telomere length (TL) varies considerably between subjects 
and is genetically determined, with heritability estimates between 
44%–86% (Li et al., 2020). Telomeres shorten progressively with 
each cell division and thus TL reflects the amount of cellular turn-
over within an individual. Accelerated telomere attrition might also 
occur due to increased exposure to oxidative stress and chronic low-
grade inflammation, both of which are considered important driv-
ers of biological ageing (Beckman & Ames, 1998; Finch & Crimmins, 
2004; Mather et al., 2011). Shortened telomeres ultimately reach 
a critical length, which leads to loss of genome integrity (i.e. DNA 
damage) with ensuing loss of replicative capacity and cell senes-
cence or apoptosis. This in turn results in compromised tissue stem 
and progenitor cell function, tissue atrophy and functional decline 
(Jaskelioff et al., 2011; Sahin & Depinho, 2010). Indeed, short-term 
reactivation of endogenous telomerase, the enzyme responsible 
for telomere maintenance, in adult mice with short dysfunctional 
telomeres led to reversal of neurodegeneration and tissue atrophy 
in several other organs including the testes, spleen and intestines 
(Jaskelioff et al., 2011). As such, telomeres have been proposed as 
markers of the biological ageing process.

TL is generally measured in leucocytes due to the easy accessi-
bility of these cells in peripheral blood. Nonetheless, as TL within in-
dividuals is generally strongly correlated across tissues (Daniali et al., 
2013; Demanelis et al., 2020; Gurung et al., 2020), it is thought that 
leucocyte measures also serve as a marker of TL in other tissues. 
Cross-sectional epidemiological studies have demonstrated positive 
associations between short leucocyte TL (LTL) and multiple traits of 
the MetS (Monickaraj et al., 2012; Rehkopf et al., 2016; Revesz et al., 
2014; Verhulst et al., 2016), as well as risk of coronary artery disease 
(CAD) (Haycock et al., 2014). In addition, longitudinal data (Cheng 

et al., 2020; Revesz et al., 2014; Verhulst et al., 2016), have highlighted 
associations between short baseline LTL and worse metabolic and 
cardiovascular disease (CVD) outcomes at follow up, although these 
findings have not been replicated in all studies (Brouilette et al., 2007; 
Revesz et al., 2018). Nonetheless, results from observational stud-
ies may be subject to residual confounding and/or reverse causation 
bias and cannot infer causality with any degree of certainty. Indeed, 
with some exceptions (Verhulst et al., 2016), directionally opposite 
associations between baseline prevalence of CVD risk factors and 
increased telomere attrition have also been reported (Gardner et al., 
2005; Huzen et al., 2014; Revesz et al., 2015, 2018). Consequently, 
whether short TL is a cause or consequence of the MetS remains 
unknown. Related to this, whether stem cell senescence due to TL 
shortening in subcutaneous AT contributes to the upper-body fat 
redistribution and metabolic dysfunction associated with ageing 
(Hirode & Wong, 2020) is unclear. These are important questions in 
determining whether telomere therapeutics (Nagpal et al., 2020) have 
a place in the treatment of cardiometabolic disorders, particularly in 
the elderly. Finally, whether the link between short LTL and increased 
CAD risk reported in observational (Haycock et al., 2014) and genetic 
epidemiology (Codd et al., 2013; Kuo et al., 2019; Li et al., 2020) stud-
ies is driven by or is independent of conventional CVD risk factors 
is uncertain. In this respect, whilst a meta-analysis of observational 
data concluded that the inverse association between LTL and risk of 
CAD was independent of established vascular risk factors (Haycock 
et al., 2014), the largest GWAS on LTL conducted to date, produced 
suggestive evidence of a shared genetic architecture between short 
LTL and dyslipidemia (Li et al., 2020).

Mendelian randomisation (MR) is an epidemiological technique 
using genetic variants as instrumental variables for exposures such 
as TL. Because genotypes are randomly allocated at conception and 
are therefore not generally susceptible to reverse causation bias and 
confounding, in contrast to conventional epidemiological methods, 
MR can facilitate robust causal inference (Davies et al., 2018). Here 
we conducted a MR study to determine the association between 
genetically instrumented LTL and development of the MetS. We hy-
pothesised that shorter telomeres would be causally associated with 
a higher prevalence of metabolic dysfunction.

2  |  RESULTS

We used 52 independent variants identified at FDR <0.05 as genetic 
instruments for LTL (Table S1). These were discovered in a recent 
GWAS meta-analysis of LTL from 78,592 subjects of European de-
scent and collectively explained 2.93% of the total proportion of LTL 
variance (Li et al., 2020). Summary-level data for the different compo-
nents of the MetS were obtained from the largest publicly available 
GWAS meta-analyses for anthropometric (n = up to 694,649 sub-
jects) (Pulit et al., 2019), glycaemic (n = up to 151,188) (Lagou et al., 
2021), lipid (n  =  up to 188,577  subjects) (Willer et al., 2013), and 
blood pressure (BP) (n = up to 757,601 subjects) (Evangelou et al., 
2018) traits conducted in Europeans. In the case of lipid traits, we 
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only had access to metadata from a multi-ancestry GWAS, which 
nonetheless comprised over 95% European subjects. We also ac-
cessed summary statistics from a GWAS of the MetS as a binary 
trait conducted in the UK Biobank (UKBB) (n  =  291,107  subjects) 
(Lind, 2019). Two-sample MR analyses were subsequently used to 
estimate the associations of LTL with the MetS and its components.

Using inverse variance weighted (IVW) MR, genetically instru-
mented longer LTL was associated with higher waist-to-hip ratio ad-
justed for body mass index (WHRadjBMI) (β = 0.045 SD, SE = 0.018, 
p = 0.01), higher waist circumference adjusted for BMI (β = 0.055 
SD, SE = 0.024, p = 0.02), increased systolic BP (β = 1.529 mm Hg, 
SE =  0.332, p =  4  ×  10−6), raised diastolic BP (β  =  0.633 mmHg, 
SE = 0.222, p = 0.004), and higher odds ratio of developing the MetS 
(OR = 1.133, 95% CI 1.057–1.215) (Table 1). No significant associa-
tions between longer LTL and any other MetS traits were detected.

To detect violations of MR assumptions, we also conducted 
sensitivity analyses using MR-Egger, weighted-median MR, and 
MR-PRESSO (Table S2). All three methods demonstrated consistent 
directions and similar effect estimates to IVW (Figure 1, Table S2). 
Furthermore, MR-Egger regression did not detect evidence of direc-
tional pleiotropy for any of the outcomes except for diastolic BP and 
MetS (binary) which, nonetheless had no major influence on the ef-
fect estimate (p for pleiotropy from MR-Egger = 0.04). On the other 
hand, MR-PRESSO revealed evidence of pleiotropic variants for all 
significant associations, BMI-adjusted waist circumference aside (p 
for presence of outliers from MR-PRESSO<10−4) (Table 1). However, 
removal of these outlier variants made no changes to the signifi-
cance or interpretation of the results derived using IVW regression 
(Table S2). Finally, restricting the SNPs included in the LTL genetic 
instrument to the 21  lead variants with genome-wide significance 
produced consistent MR estimates for all outcomes (Table S3).

3  |  DISCUSSION

We have investigated the relationship between LTL and the MetS 
and its component traits using MR. Contrary to our hypothesis, our 
study revealed that genetically predicted longer LTL was associat-
ing with a higher risk of developing the MetS, which appears to be 
primarily driven by causal links between longer LTL and raised BP, as 
well as upper-body fat distribution. We did not identify any evidence 
favouring causal associations between LTL and any other constitu-
ent parts of the MetS. These findings highlight that (1) genetically 
instrumented LTL is not associated with insulin resistance, which can 
account for all the features (Mann & Savage, 2019) and is thought 
to underpin the pathogenesis of the MetS and (2) there are multiple 
forms of MetS not all of which are associated with impaired insulin ac-
tion. Indeed, studies that investigated this relationship showed that 
only about three quarters of subjects with a diagnosis of MetS were 
insulin resistant (Cheal et al., 2004). Several studies summarised in a 
recent review (Smith et al., 2021), reported that senescent cells con-
tribute to the development of AT dysfunction and systemic insulin 
resistance, at least partly, through the secretion of pro-inflammatory 

cytokines and chemokines, known collectively as the senescence-
associated secretory phenotype (SASP). DNA damage, which can 
result from critical telomere shortening was also demonstrated to 
directly trigger adipocyte insulin resistance (Vergoni et al., 2016). 
Finally, short LTL was shown to be associated with increased risk 
of CAD in both epidemiological and MR studies (Codd et al., 2013; 
Haycock et al., 2014; Kuo et al., 2019; Li et al., 2020). Viewed in 
the context of these findings, our results suggest that telomere at-
trition might not be a major driver of senescence in AT in humans. 
In this respect, ROS can induce cellular senescence independent of 
telomere shortening via direct DNA damage and/or chromatin dis-
ruption (Campisi, 2005; Shay & Wright, 2005). Furthermore, both 
ROS and chronic inflammation were demonstrated to cause tel-
omere dysfunction in the absence of shortening (Jurk et al., 2014). 
Alternatively, or additionally, only a few short telomeres might be 
sufficient to trigger replicative senescence (Shay & Wright, 2005). 
Finally, our findings indicate that, the previously observed link be-
tween short LTL and CAD risk appears to be independent of conven-
tional cardiovascular risk factors (Smith et al., 2021).

3.1  |  Genetically instrumented LTL and body fat 
distribution

The finding that genetically instrumented longer LTL was posi-
tively associated with upper-body fat distribution was unexpected 
because upper-body obesity, typically characterised by expansion 
of the visceral fat depot, is a hallmark of dysfunctional subcutane-
ous AT and is associated with insulin resistance. According to the 
lipid overflow hypothesis (Virtue & Vidal-Puig, 2010), when the ca-
pacity of adipose progenitors (APs) to generate new adipocytes is 
exhausted, for example consequent to senescence, fatty acids are 
inappropriately stored in extra-adipose tissues including the visceral 
depot (see Introduction). Accordingly, patients with premature age-
ing due to rare genetic progeroid syndromes, often develop partial 
lipodystrophy, characterised by loss of subcutaneous and expansion 
of visceral AT concomitant with severe insulin resistance (Akinci 
et al., 2000). Consistent with these findings in humans, mice with 
short telomeres due to global deficiency of telomerase reverse tran-
scriptase (TERT), the enzyme responsible for telomere maintenance, 
developed insulin resistance and glucose intolerance on an obeso-
genic diet (Minamino et al., 2009). This phenotype was coupled with 
senescent changes and inflammation in AT and was recapitulated by 
transplantation of AT from TERT deficient mice to wild-type animals. 
Knockout of TERT in fat progenitors, also led to proliferative senes-
cence and AP exhaustion, adipocyte hypertrophy and systemic insu-
lin resistance in male but not female mice, which was aggravated by 
high fat-diet (Gao et al., 2020). Finally, endothelial cell-specific prog-
eroid mice developed AT dysfunction and systemic insulin resistance 
even on a normal chow diet due to the secretion of SASP factors 
consequent to oxidative stress (Barinda et al., 2020). Interestingly, 
other metabolic tissues namely muscle, liver, and brown adipose tis-
sue were unaffected. Of note, in parabiosis experiments, endothelial 
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cell-specific progeroid mice transmitted the metabolic disorders to 
wild-type animals (Barinda et al., 2020). Based on the findings de-
scribed above, we speculate that the preferential upper-body fat 
distribution associated with genetically predicted long LTLs is due 
to healthy AT expansion consequent to enhanced proliferation and 
adipogenesis of subcutaneous abdominal (rather than visceral) pro-
genitors. In this respect, APs from this depot were shown to have 
shorter TL than visceral fat progenitors (Lakowa et al., 2015) and 
thus longer TL might endow these cells with enhanced proliferative 
capacity. Finally, and provided that LTL is a good surrogate for TL in 

other tissues as has been reported (see below), our data suggest that 
TL shortening in AT does not play a major role in the fat redistribu-
tion and impaired insulin sensitivity that occurs with ageing.

3.2  |  Genetically instrumented LTL and blood 
pressure traits

In contrast to fat distribution, the epidemiological data linking LTL 
and BP traits have been inconsistent, with positive, negative, and 

F I G U R E  1 Scatter plots showing the relationship of genetically instrumented LTL on the x-axis, against the following outcomes on the y-
axis: (a) WHRadjBMI (n = 46 SNP instruments), (b) waist circumference adjusted for BMI (n = 30 SNP instruments), (c) systolic blood pressure 
(n = 45 SNP instruments) and (d) diastolic blood pressure (n = 45 SNP instruments). Data points and error bars are betas ± SEs from the 
respective GWAS summary statistics
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mostly null associations reported (Brouilette et al., 2007; Cheng 
et al., 2020; Huang et al., 2020; Nordfjall et al., 2008; Rehkopf et al., 
2016; Revesz et al.,2014, 2015). This may be because the relation-
ship between LTL and both systolic and diastolic BP is not linear as 
previously reported (Huang et al., 2020; Rehkopf et al., 2016). On 
the other hand, mice lacking telomerase activity displayed hyper-
tension due to an increase in plasma endothelin 1 levels, which was, 
at least in part, driven by increased ROS production (Perez-Rivero 
et al., 2006). It is unclear why genetically predicted longer LTL would 
be causally associated with higher BP as reported herein. One 
clue may come from an epidemiological study in the Framingham 
Offspring Cohort, where longer LTL was associated with increased 
aldosterone-to-renin ratio, indicative of aldosterone hypersecretion 
(Vasan et al., 2009). In this respect, primary hyperaldosteronism is an 
established cause of hypertension.

3.3  |  Study limitations

Our findings should be interpreted in the context of some limita-
tions. The main limitation is that we studied mean LTL length, which 
does not necessarily translate to TL in tissues and cells relevant 
to the development of the MetS, for example adipose stem cells. 
However, TL within individuals is generally strongly correlated 
across tissues (Daniali et al., 2013; Demanelis et al., 2020; Gurung 
et al., 2020). Secondly, our findings are based on data from GWAS 
conducted in subjects of European ancestry. Hence, our results and 
conclusions might not extend to other ethnic populations although, 
evidence from a recent, large, ancestrally diverse GWAS meta-
analysis of glycaemic traits suggests that similar results might also 
be expected (Chen et al., 2021). Thirdly, two-sample MR studies as-
sume that the SNP-exposure (in this case LTL) associations are also 
present in the outcome dataset(s). Given that both the instrumental 
variables for LTL, as well as the summary statistics for all outcomes 
were derived from large GWAS meta-analyses, we consider this to 
be a safe assumption. However, we acknowledge that there may be 
some noise in the causal effect estimates of LTL on the traits investi-
gated herein, depending on the population characteristics (age, BMI, 
sex, socio-economic status) of the LTL and the prediction GWAS sets 
(Mostafavi et al., 2020). Fourthly, our genetic instrument explained 
only 2.93% of the variance in LTL. However, because all the SNPs 
associated with LTL in the exposure instrument had an F-statistic 
>10 (Table S1), the risk of weak instrument bias is small. On the other 
hand, the low percentage of LTL variance explained may have led to 
reduced statistical power in some of the MR analyses. Nonetheless, 
the sample sizes of all outcome datasets were large (>100,000 par-
ticipants) and the MR beta estimates small. Thus, any missed asso-
ciations, except potentially for fasting glucose, are unlikely to be of 
any biological or clinical significance. Indeed, we had 80% power to 
detect effect sizes ranging between 0.02–0.05 SDs for BMI, lipid, 
and glycaemic traits at a significance level of 0.05 (Table S4). In ad-
dition, the 52 SNPs used as LTL exposure instruments were derived 
from a less stringent false discovery rate (FDR) threshold of <0.05. 

Within this FDR list, 5% of variants (i.e. 2–3 SNPs) are estimated to 
be false positives. However, near identical results were obtain with 
the 21 SNP instrument of GWAS significant variants. Furthermore, 
we were not able to examine the causal role of MetS traits in tel-
omere attrition as we did not have access to summary statistics from 
any of the LTL GWAS. Finally, we were unable to provide a molecular 
mechanism to explain the reported observations.

In summary, we provide evidence that genetically instrumented 
longer LTL is associated with upper-body fat distribution, raised 
BP and increased risk of developing the MetS. Future experimen-
tal studies should examine the mechanistic basis for these links. In 
view of previous observational data demonstrating positive asso-
ciations between short LTL and multiple components of the MetS 
(Monickaraj et al., 2012; Rehkopf et al., 2016; Revesz et al., 2014; 
Verhulst et al., 2016), the effects of MetS traits and particularly in-
sulin resistance on LTL should also be investigated using MR. Finally, 
our data suggest that telomere attrition might not be a major cause 
of senescence and dysfunction in AT in humans.

4  |  E XPERIMENTAL PROCEDURES

We conducted a two-sample MR study to investigate the relation-
ships between LTL and measures of adiposity (BMI, WHRadjBMI, 
and waist circumference adjusted for BMI), fasting glucose ho-
meostasis (fasting glucose, fasting insulin), fasting lipids (triglyc-
erides and HDL cholesterol), and blood pressure (systolic BP, 
diastolic BP). Genetic instruments for TL were selected from a 
genome-wide meta-analysis for LTL (Table S1, (Li et al., 2020), 
n = 52 instruments, FDR<0.05; GWAS significant (p < 5 × 10−8), 
n  =  21 instruments, based on N of up to 78,592 individuals of 
European descent). For outcome data, we used summary-level re-
sults from meta-analyses of GWAS for obesity and body fat dis-
tribution in the UKBB and GIANT (BMI and WHRadjBMI, based 
on N of up to 694,649 individuals of European ancestry (https://
github.com/lindg​rengr​oup/fatdi​stnGWAS) (Pulit et al., 2019), and 
GWAS summary statistics from the GIANT consortium (waist 
circumference adjusted for BMI, based on N of up to 231,353 
individuals of European descent) (MRBase [app.mrbase.org], ieu-
a-67) (Shungin et al., 2015); the European-based analyses of the 
Meta-Analyses of Glucose and Insulin-related traits Consortium 
(MAGIC) (fasting glucose and fasting insulin, based on N of up to 
151,188 individuals of European ancestry without diabetes mel-
litus) (https://magic​inves​tigat​ors.org/ downloads/) (Lagou et al., 
2021); the Global Lipids Genetics Consortium (GLGC; fasting 
lipid traits, based on N of up to 188,577  subjects of European 
[95%], East Asian, South Asian and African ancestry) (MRBase, 
ieu-a-299, ieu-a-302) (Willer et al., 2013); and the International 
Consortium for Blood Pressure (BP phenotypes, based on data 
from N  =  757,601 individuals of European descent) (MRBase, 
ieu-b-38, ieu-b-39) (Evangelou et al., 2018). For the MetS as de-
fined by the harmonised NCEP criteria (Alberti et al., 2009), we 
used publicly available GWAS summary statistics from the UKBB 

https://github.com/lindgrengroup/fatdistnGWAS
https://github.com/lindgrengroup/fatdistnGWAS
https://magicinvestigators.org/
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(https://www.ukbio​bank.ac.uk) (based on N = 291,107 individuals 
of British descent and European ancestry). Individuals who met 
three of the following five criteria were defined as having MetS: 
BP ≥130/85  mmHg or antihypertensive treatment, serum glu-
cose ≥6.1 mmol/L or antidiabetic treatment, serum triglycerides 
≥1.7 mmol/L, waist circumference >102 cm in men and >88 cm in 
women, HDL cholesterol <1.0 mmol/L in men and <1.3 mmol/L 
in women (Lind, 2019).

We used the IVW approach for two-sample MR analyses 
(Burgess et al., 2013). The IVW MR estimate assumes that all in-
struments included in the analyses are valid, affect the outcome 
only through the exposure, and do not associate with any con-
founders. However, since this is often not the case, we performed 
sensitivity analyses including the MR-Egger regression, weighted-
median estimator and MR-PRESSO (MR Pleiotropy RESidual Sum 
and Outlier). MR-Egger does not force the regression line through 
the intercept and is therefore able to test for the presence of di-
rectional pleiotropy (Bowden et al., 2015). The weighted-median 
estimator assumes that at least 50% of the genetic instruments 
are valid (Bowden et al., 2016). MR-PRESSO (https://github.
com/rondo​lab/MR-PRESSO) detects the presence of variant ef-
fect sizes that are outliers and corrects pleiotropy via outlier re-
moval (Verbanck et al., 2018). Analyses were conducted using the 
TwoSampleMR package (v0.5.5) and MRPRESSO package (v1.0) 
implemented in R (v3.6.3) statistical software (Hemani et al., 2018; 
Verbanck et al., 2018; Yavorska & Burgess, 2017) according to the 
TwoSampleMR Guide (https://mrcieu.github.io/TwoSa​mpleM​R/), 
and MRPRESSO vignette, respectively.
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