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Abstract The extraction of information from Dutch archaeological grey literature

has recently been investigated by the AGNES project. AGNES aims to disclose

relevant information by means of a web search engine, to enable researchers to

search through excavation reports. In this paper, we focus on the multi-labelling of

archaeological excavation reports with time periods and site types, and provide a

manually labelled reference set to this end. We propose a series of approaches, pre-

processing methods, and various modifications of the training set to address the

often low quality of both texts and labels. We find that despite those issues, our

proposed methods lead to promising results.

Keywords Multi-label classification � Grey literature � Machine Learning �
Archaeology

1 Introduction

Over the past decades, the archaeological domain has produced a large quantity of

literature in the form of excavation reports, scholarly articles, and books. The

Archaeological Grey literature Named Entity Search (AGNES) project (Brandsen

et al., 2019) aims to uncover any relevant information from Dutch archaeological
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excavation reports. Such reports are often grey literature: material that is either

unpublished, or published in a non-traditional manner. Information uncovered by

AGNES will be made easily accessible through a specifically designed search

engine, enabling researchers to search for relevant texts.

In this search engine, certain aspects of documents are used for faceted search,

allowing archaeologists to filter search results on site type and time period metadata

fields. This information need is further detailed by Brandsen et al. (2019). AGNES

currently only indexes documents with manually assigned metadata, but in the near

future, documents without metadata will be added. To allow for faceted search on

these documents as well, we propose to automatically assign metadata. Manual

labelling is an unfeasible task due to the amount of texts: there are currently an

estimated 70,000 documents and four to five thousand are added each year. Due to

this volume, using text mining and machine learning techniques becomes a

necessity.

In this paper, the labelling of Dutch archaeological excavation reports with time

periods and site types1 will be addressed in the form of a multi-label classification

task.

We first create a manually labelled reference set, and then define a collection of

pre-processing steps, classification methods, further text formatting and sampling

techniques that lead to a multitude of different combinations. We determine which

approaches are suitable for this particular type of data, and we discuss how these

methods could be further improved.

Although reports are typically freely available in online repositories and archives,

processing the documents proves to be rather difficult for four main reasons:

1. Some of the documents are scanned hard copies, and the OCR process

introduces noise

2. The documents are only available in PDF format, and conversion to plain text

introduces noise

3. The training data labels are derived from the metadata values which has been

added through a free text field, leading to highly diverse and inaccurate

metadata

4. There is a large number of target labels (146 site types, 42 time periods) with a

strong class imbalance

See Table 1 for examples of point 1 to 3, and see Figs. 2 and 3 for point 4.

Besides being useful for faceted search, this machine learning approach can also

be helpful for document depositors when they assign metadata to new documents,

by suggesting a number of possible labels for the user to choose from. If

implemented, this will also lead to more structured metadata in the future, as it

prevents free text input on these fields. With these goals in mind, we address the

following research questions:

1 Complextype in Dutch. This can be regarded as a ‘subject’ field, a site type is what type of past human

behaviour has been encountered. Some examples include settlements, churches, graves, etc.

Brandsen and Koole

123



– Which combination(s) of text pre-processing steps, data augmentation/balanc-

ing, document pre-selection, and classification method yields the highest F1

scores?

– Are the best combinations the same across the different categories and labels, or

do specialised combinations per category lead to better results?

– To what extent can we classify Dutch excavation reports into time periods and

site types?

While multi-label classification is a well-studied subject, in this paper we perform

this task on a noisy data set in an expert domain, making the process more

challenging. Even though the difficulty of the task is high, we achieve decent

results: we achieve comparable or better scores when compared to similar studies in

other domains (Golub et al., 2020; Kleppe et al., 2019). We also specifically test

which pre-processing methods have a positive effect on classification, and provide

the created data in an online repository2.

2 Related work

2.1 Text mining in the archaeological domain

Vlachidis and Tudhope (2012) address the semantic annotation of English

archaeological documents, a process similar to our classification task. Despite a

difference in language, highly similar issues are found in the data set for example.

These include the extraction of relevant document sections, scarcity of vocabulary

resources, and the construction of a reference set in order to assess the results.

Vlachidis and Tudhope (2012) also address the issues of this type of (grey) literature

in general. Often, specific archaeological items or names will be mentioned within

texts, but hold barely any relevance to the overall topic. Similarly, a variety of

terms, such as ‘context’, ‘deposit’ and ‘cut’ yield specific archaeological definitions,

but would normally often be seen as common, and therefore not meaningful.

Like our own study, the Archeotools project Jeffrey et al. (2009) also aimed to

automatically generate metadata for faceted search. They focused on ‘What’,

Table 1 Examples of noise introduced by (1) OCR mistakes, (2) PDF to text conversion and (3) manual

metadata entry in free text fields (locations in time period field)

Error Correct

1 IJsertijdbewoning IJzertijdbewoning

2 H et huidige landschapsbeeld Het huidige landschapsbeeld

3 Time periods: Gelderland, Ede, Nieuwste Tijd Time periods: Nieuwe Tijd

Errors are underlined

2 https://doi.org/10.5281/zenodo.3676703.
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‘Where’ and ‘When’ facets. However, they considered this to be an information

extraction task instead of a classification task. As such, they have a slightly different

approach based on Named Entity Recognition (NER). The extracted entities are

then matched to entries in a English archaeology thesaurus to provide structured

metadata. The OPTIMA system by Vlachidis and Tudhope (2016) also focuses on

information extraction, but using hand-crafted rules instead of machine learning.

In Dutch, no document classification seems to have been done, but some

researchers have experimented with NER, like Paijmans and Brandsen’s research on

detecting time periods (Paijmans & Brandsen, 2010), Vlachidis et al. with their

work in the ARIADNE project (Vlachidis et al., 2017) and the more recent work by

Brandsen et al. (2019, 2020). In the broader context of cultural heritage (also

including museums, monuments, etc), Sporleder (2010) gives an overview of the

use of Natural Language Processing (NLP) in this domain, but there is a focus on

information extraction, not document classification. In an even broader context,

Fiorucci et al. provide a summary of—and a critical reflection on—the use of

machine learning in the cultural heritage sector, but do not address NLP in any

detail (Fiorucci et al., 2020).

2.2 Multi-label text classification

As already mentioned in the introduction, the classification of Dutch archaeological

reports is a multi-label classification problem with many categories and a large class

imbalance, as illustrated by Figs. 2 and 3. These characteristics are not unique to the

archaeology domain, and are also often encountered in e.g. the biomedical domain

(Laza et al., 2011) and library domain (Golub et al., 2020).

A multi-label classification problem refers to a set of items which can be assigned

zero or more labels, according to defined categories. As opposed to binary

classification, where an item can have one of two labels, i.e., true or false. Multi-

class classification shares the multitude of categories, but here, each item receives

one label, rather than zero or more.

Cherman et al. (2011) present a case study for multi-label classification with

many categories. They propose to transform the n-label problem to n binary

relevance problems. One major advantage is that the computational complexity is

drastically lowered compared to other multi-label strategies. A disadvantage

however, is that relationships between labels cannot be taken into account. In our

case, this is not likely to be a problem: though consecutive time periods are naturally

more likely to occur together, there are no direct relationships between these periods

in terms of archaeological finds. As a matter of fact, time periods are generally

defined based on finds, or the material culture of people in the past (Renfrew &

Bahn, 2019). Because of this principle, we decided not to introduce a smaller

penalty for consecutive periods compared to periods that have a (large) time span

between them, i.e., ordinal evaluation. Thus, similarly to the site types, we consider

the evaluation of the time periods to be discrete.

To evaluate our methods, we use the F1 score, which is the weighted average—or

harmonic mean—of the precision and recall. Precision is defined as the fraction of

positive items that are predicted correctly, and recall is the fraction of positive items
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retrieved with respect to all positive items within the set (Powers, 2011). As the

harmonic mean over these values, the F1-score is defined as follows:

F1 ¼ 2 � precision � recall
precisionþ recall

Due to the nature of the task, there is no preference for either recall or precision, and

as such we do not use the more recall oriented F2 score, or the more precision

oriented F0.5 score (Sasaki, 2007).

With regard to the class imbalance, Joachims (1998) showed the robustness of

Support Vector Machines (SVM), as they provide built-in protection for unbalanced

data sets. Another promising approach is the integration of Doc2Vec, a neural

network that converts texts into vector representations. In combination with an

SVM, Doc2Vec yields high results in terms of F1 scores on the task of multi-

labelling, for example in ground lease documents (de Romas, 2019).

Finally, a recent state-of-the-art classification technique is the Bidirectional

Encoder Representations from Transformers (BERT) architecture (Devlin et al.,

2018). This method distinguishes itself from traditional sparse word vectors by

learning pre-trained dense language representations from unlabelled data, creating

context sensitive embeddings. As such, BERT yields a better contextual

understanding of languages, and can lead to improved performance on a lot of

NLP tasks.

3 Data

In this section, we discuss and analyse the raw data. First, a general description of

the data set will be provided based on document titles, content observations and

relevant statistical properties. Next, we present the method that has been used in

order to extract labels from available metadata, to construct the training and test

sets. We then create an overview of the categories extracted from the data and the

corresponding labels based on the Archaeologisch Basis Register (ABR) notation,
further detailed in Sect. 3.2. Finally, observations are made regarding the difficulties

that the data set might introduce in later stages of the overall research process.

3.1 Source data

We use all documents in the ‘archaeology’ category in the 2016 version of the Data

Archiving and Networked Services (DANS) repository, one of the largest Dutch e-

depots. This data set consists of just over 65,000 files, all of which are in PDF

format. Examples of included files—based on document titles—are (excavation)

reports, publications, separate appendices and figures, letters, and metadata.

Although we have not statistically tested the representativeness of this data set, it

represents almost all the output of commercial archaeology units from the last 30

years or so, spanning all time periods, site types and different types of reports.
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Quite often reports have been split into multiple PDFs, one file for each

chapter and appendix is quite common for longer reports. For our research, AGNES

already provides a collection in which all files have been converted to both XML

and raw text format, which allows for the use of information retrieval and text

classification. In this research, we only use the raw text files, which have been

created using the pdftotext software (Glyph & Cog LLC: pdftotext, 1996).

We see that the conversion of the PDF files to the required text format introduced

a lot of noise. This includes headers, page numbering and various indices appearing

at random positions in the text. The main culprits are tables and figures, which are

no longer recognisable after conversion. Brandsen et al. (2019) estimate that around

15% of all documents are OCRed, a process likely to introduce noise even before

the PDF to text conversion. Luckily, this percentage will only decrease, as more and

more born digital documents are added over time.

3.2 ABR ontology

The ABR is a Dutch archaeological ontology describing time periods, artefacts,

materials and site types, and their corresponding shorthand codes, created and

maintained by the RCE (Rijksdienst voor Cultureel Erfgoed, the Dutch heritage

agency) (Brandt et al., 1992)3. The main aim of this ontology is to provide an

exhaustive list of terms and definitions for terms commonly used in archaeology as a

reference.

Unfortunately, the ontology is not geared towards NLP, as concepts are often

defined in ways that do not mirror their use in running text, e.g. the entry for

‘perforated axe’ is ‘bijl, doorboord’ (axe, perforated). Also, synonyms and lemmas/

stems are not included, and terms might occur in multiple categories (e.g. ‘Iron’ as a

material, or part of the time period Iron Age). While this does not pose a problem

for creating a set of target labels for machine learning (as described in the next

section), we are aware that this will cause noise in the term extraction described in

Sect. 4.5, where we use entities as features in a classifier.

3.3 Definition of categories

Classification is to be done in two dimensions: time periods and site types. The

categories for time periods and site types are based on the ABR ontology. These

codes are specifically defined for the description of Dutch archaeological concepts.

In general, the ontology will provide us with a thesaurus, linking aforementioned

codes, textual representations and corresponding descriptions. Furthermore, the

ontology introduces sub-categorisation for both time periods and site types.

Tables 2a and b show an overview of the categories we will take into account.

Ideally, we would also like to label the documents on artefacts (objects, e.g. an

axe) and materials (e.g. flint), as these categories, combined with site type and time

period, are the most used aspects in the information needs of archaeologists

(Brandsen et al., 2021). Unfortunately, this is currently not possible as we do not

3 Available online at https://thesaurus.cultureelerfgoed.nl/.
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have training data for these fields, because this information was not recorded for our

training set.

3.4 Obtaining the document labels from the data

As mentioned briefly in the introduction, the data set has associated metadata for

each document, as entered by the document authors at time of deposition in the

DANS archive. The metadata entry was originally performed through a free text

field, but has since been updated to dropdown boxes with specified ABR codes, and

they are not required fields. Instructions for metadata entry are available on a

separate page. Due to these factors, we see that the quality is relatively low: many

Table 2 Overview of the included labels, full names and the number of sub-categories for each main

category in time periods and site types

(a) An overview of the eight time period categories and number of sub-categories

Time periods

Label Category Sub-categories

paleo Paleolithic 5

meso Mesolitic 3

neo Neolithic 9

brons Bronze Age 5

ijz Iron Age 3

rom Roman Time 9

xme Middle Ages 8

nt Modern 3

(b) An overview of the eleven site type categories and number of sub-categories

Site types

Label Category Sub-categories

xxx Unknown 1

cthd Cult/sanctuary 8

bewv Habitation/settlement 32

apvv Agricultural production 12

wrak Shipwreck 3

idnh Industry 21

sv Shipping 8

gw Resource extraction 9

bgr Grave field 1

bgv Burial (general) 17

infr Infrastructure 25

Category names are translated from Dutch

Labelling the past...

123



documents are missing metadata, there are large inconsistencies between docu-

ments, and we even encountered wrongly entered metadata. To create a training set

for document classification, we retrieve the manual metadata and clean it where

possible, which is described below.

The retrieval of manually assigned metadata (time periods and site types) for

each document is done by means of an XML crawler that uses the DANS Easy

API.4 All fields can have zero or more entries.

3.5 Exploration of the extracted labels

We encountered several issues with the retrieved metadata values. First, there are

over 1200 and 2600 unique metadata values retrieved via the XML crawler for the

time periods and the site types respectively. Some of these metadata values are

valid, but as stated in Sect. 3.3, we will only include a predefined selection of labels.

Many other metadata values are simply not documented in the ABR ontology,

instead being variations or older versions of actual labels, erroneously spelled

labels, or completely irrelevant: for example names of cities instead of time periods.

This reoccurring issue is because metadata was originally entered in a free text field

where mistakes can be easily made. In Sect. 3.6 we describe how we processed the

extracted metadata values into the set of predefined ABR labels set which we can

use for classifier training.

Overall, more than 24,000 files do not have any metadata for the included time

periods, and 29,500 files have no site type metadata (see Fig. 1).

Fig. 1 The number of documents and available metadata values

4 https://easy.dans.knaw.nl/ui/home/.
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3.6 Pre-processing the metadata

In order to introduce consistency, we convert all metadata values to a single, general

format that only includes valid labels in the form of ABR codes. However, for time

periods alone, over 1200 unique metadata values first have to be mapped onto the 45

labels (or 53 including main categories) we actually take into account. This process

was done automatically where possible, but still required manual inspection and

decision making regarding unclear metadata. This means that some unwanted labels

are assigned to files, further affecting the classification process. In combination with

the presence of erroneously assigned labels—those of correct ABR format, but

simply not reflecting the content of the document—the training set will inevitably

contain an unknown percentage of incorrect labels.

This will most likely harm the performance of the models to some extent, but

without manually labelling a large amount of documents as a training set, it would

be impossible to overcome this problem. For the test set, we do create a manually

labelled set (see Sect. 4.4), so we can evaluate the performance even with a noisy

training set.

For the site types, there were approximately 2600 unique values in the retrieved

metadata. Due to the high number of included categories—11 main, 146 in total—

we opted to only map labels in outdated ABR notation to current ones, and check for

textual formats and their plural forms. Here, no further exhaustive manual labelling

was done as the amount of metadata values and target labels is too large, making

manual labelling too time consuming. Similarly to labelling the time periods, valid

ABR codes might be erroneously assigned to documents, again decreasing the

reliability of the training set.

After parsing the metadata for time periods to a valid ABR based format, we

define the following rules to assign additional categories as to further introduce

consistency in terms of time span:

– Whenever a file is labelled with a category of the lowest hierarchical level, all

parental categories will be assigned as well. For example, when a file is only

labelled by lmea (Late Medieval A), then this file will be given additional labels

lme (Late Medieval) and xme (Medieval—main category).

– When a file is only labelled with an intermediate level category, for example

lme, its parental category will be assigned, xme, and its child categories, lmea
and lmeb.

– When a file is labelled only with a main category, then all child categories from

all hierarchical lower levels will be assigned as well.

We are aware that the last two rules are based on the following assumption: when

someone labels a document as a top level time span (e.g. Medieval), they mean that

items from the entirety of the Medieval period have been found, so from early to

late Medieval. However, in some cases this will not hold true, as archaeologists

often find items that can only be broadly defined as e.g. Medieval, and it is not clear

from which of the sub-periods the item originates. Again, this will introduce some

noise in the labels, as we cannot with certainty predict which sub-periods are
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actually present, but we still feel this is the most consistent way to generate our

labelled data set.

For site types, there are only two levels of hierarchy. We will therefore limit the

addition of categories to only main categories in cases where these are not yet

included when only a sub-category is provided. When only a main category is

present however, we will not assign any additional sub-categories, as the exact site

type(s) cannot be derived.

After this process, we end up with an average of 8.1 labels per document

(median: 4, max: 53) for time periods, and an average of 1.65 (median: 0, max: 18)

for site types. Table 3 shows some examples of manually assigned metadata, and

which labels were extracted after the pre-processing steps described above.

4 Methods

In this section, we describe how we pre-processed the documents, modified the

training set, constructed a manually labelled reference set, and selected the

classification models.

4.1 Document pre-processing

In order to prepare the textual data for classification tasks, we define several pre-

processing methods, some of which are specifically targeting characteristics of

observed noise, such as an abundance of punctuation or other non-alphabetical

marks. Pre-processing steps include:

1. Lower-casing

2. Removal of all punctuation marks

3. Removal of abundant spacing

4. Removal of digits

5. Removal of all non-alphabetical marks

6. Stemming by means of NLTK’s Snowball Stemmer5 for Dutch words

7. Removal of tokens with a length equal to or less than three

8. Removal of stop words

We define ten combinations of these pre-processing steps, to find which aspects of

the noise prove to be of most influence. For clarity, we will refer to each step by its

corresponding number as defined in the list above. Some steps are mutually

exclusive (i.e. 2 and 5), so we only use the following possible combinations: 128,

158, 13568, 135678, 1237, 1236, 156, 1567, 123, and 134.

It should be noted that these pre-processed texts are not suitable for all

classification methods (further discussed in Sect. 4.5). Some only require lower-

casing, while others require no pre-processing at all.

5 https://www.nltk.org/api/nltk.stem.html.
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4.2 Document filtering

We remove all documents that have fewer than 1000 utf-8 characters. Files shorter

than 1000 characters rarely contain proper text, but are appendices with only

numbers, or OCRed maps resulting in a file with nonsensical characters.

In addition, we remove non-relevant documents from the data set. This relevance

is based on certain terms occurring in the title, indicating it is a specific type of non-

relevant document. We define two lists, the first consists of a few general terms:

notulen (minutes), bijlage (appendix) and meta (metadata). The second list is more

extensive, and includes several types of reports (RAP), working methods (PVA),

requirements definitions (PVE), referential research IDs (OMN) and the aforemen-

tioned general terms. A complete overview can be found in Appendix B. For

upcoming experiments, we refer to the first list consisting of general terms as

genList, and the extensive list as totList.
It should be noted that while these documents are removed from our training and

test set, this should not affect the usefulness of the methods on new data. Short

documents that do contain useful information can still be labelled by the classifier.

The document types in the genList and totList that we here exclude are most often

grouped in a DANS data set with associated ID, together with the main report.

When this main report has been classified, we can propagate the labels to all

documents in that data set, ensuring useful metadata for all related files.

Fig. 2 An overview of the frequencies of the eight time period categories. X axis labels as per Table 2a
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4.3 Balancing the training set

As can be seen in Figs. 2 and 3, the distribution of the labels among categories is

rather skewed. Some categories are not represented very well, leading to an

imbalanced data set. As this might induce bias to some classifier types, we introduce

two methods that may negate this. The first is balancing of the training set through

under-sampling, i.e., reducing the number of documents of a class until it equals that

of the class with the lowest representation. Under-sampling has been proven to be a

reliable method for addressing the imbalance of a dataset regarding the distribution

of present labels (Branco et al., 2015; Mohammed et al., 2020).

Another option, which primarily aims to create more valid training samples, is

increasing the representation of all labels through augmentation. Here, we enlarge

the training set by including files multiple times, but applying a synonym mapping

function to the duplicate files to avoid bias on certain terms, while still maintaining

context as much as possible. We adapt the Easy Data Augmentation (EDA) method

proposed by Wei and Zou (2019). Synonyms are chosen at random with the use of

the Open Dutch WordNet (Postma et al., 2016) synonym thesaurus. The

augmentation should be applied to the complete corpus in order to introduce a

large variety of terms, rather than merely the archaeological tokens captured within

the texts. We therefore decided to make use of a thesaurus that meets this

requirement, not limiting ourselves to a domain specific, in this case an

archaeological, thesaurus. Contrary to the EDA method, we insert synonyms for

all words longer than five characters—as opposed to a specific number of tokens

based on sentence length. This is because the sentence length is in many cases

simply impossible to properly determine due to noise in the text. This could

potentially lead to too much semantic change in the text for it to be useful, but we

Fig. 3 An overview of the frequencies of the eleven site type categories. X axis labels as per Table 2b

Labelling the past...

123



found this process can lead to higher performance in some cases (as further

described in the Sect. 5).

Fig. 4 An overview of the frequencies of the eight categories for time period classification, as captured
within our reference set

Fig. 5 An overview of the frequencies of the eleven categories for site type classification, as captured
within our reference set
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4.4 Construction of a manually labelled reference set

Because of how we constructed the labels from the data, it would be impossible to

ensure that all files within a randomly sampled sub-set hold only correct labels. This

means that even our test set would include an unknown percentage of incorrectly

labelled documents. Naturally, this is undesirable, as no valid conclusions can be

drawn from a flawed test set.

In order to deal with this issue, we created a manually labelled reference test set

(Brandsen et al., 2020), of which we are certain that it consists of correctly labelled

documents only. As manual labelling is very time consuming, this test set consists

of ‘only’ 100 files. Figures 4 and 5 show the frequencies for each of the categories

captured within the classification of time periods and site types, respectively. The

average number of labels per document is 13.9 for time periods (median: 11, max:

53) and 2.79 for site types (median: 2, max: 13).

The distributions of the test set are similar to those of the training set, as were

shown in Figs. 2 and 3. The only exception is the category of label xxx (unknown)

for the site types. This is because all files in our test set are labelled with at least one

time period, and many files labelled by xxx (i.e., reports about sites with no finds)

are not assigned any time period. A complete overview that includes all the

frequencies of all main and sub-categories can be found in Appendix C.

4.5 Classification methods

We compare three methods for the classification of time periods and site types: a

(naive) baseline, binary relevance, and direct multi-labelling. All methods will be

trained and optimised using a train and development set, and finally evaluated on the

held-out test set consisting of the manually labelled reference set mentioned above.

4.5.1 Baseline

For the baseline, we introduce the rather intuitive method of merely checking

whether the label or its corresponding textual version is present within the text, and

assign labels accordingly. The minimum occurrence for such tokens in the text is set

to two, as often lists of ABR codes are present as period or site type lists. Naturally,

these are uninformative to our research.

4.5.2 Binary relevance

We translate the multi-label task to a series of binary classification tasks, one for

each category, and train a Linear Support Vector Machine (SVM) classifier for each

category. We compare four feature extraction methods:

– A bag-of-words model with TF-IDF weighting;

– A Doc2Vec model (de Romas, 2019) for each individual binary classification

task. The model has a vector size of 100, a window of 5, an initial learning rate
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of 0.025, a minimum learning rate of 2.5e-3, and a minimum count of 5

(ignores all tokens with a frequency lower than 5). We let the model train for 5

epochs.

– Using entities as features. Besides applying pre-processing methods, we also

investigate the effects when classification is done solely on extracted named

entities, again using a bag-of-words model with TF-IDF weighting. We

extracted entities based on the ABR ontology. Here, we extract all terms (time

periods, site types, corresponding abbreviations, etc.) contained in the ontology

from the text, and use this as our input.

– Same as above, but we perform the extraction of entities by means of spaCy

(Honnibal & Montani, 2017), using its pre-trained Dutch model6. Here, we

select entities from any of the following types7: FAC (groupings), NORP
(structures) and DATE (dates or periods).

For the third method, we are aware that the problems with the ABR ontology as

described in Sect. 3.2 will cause noise to some extent. Specifically, as no synonyms

are available in the ontology, and we do not use lemmatisation or stemming,

extracting terms from the text is going to have a low recall. Also, only time period

names are included in the ABR, so actual dates (e.g. ‘1000 BCE’) will not be

extracted. Despite these issues, we still considered this worthwhile to experiment

with, as this method can be improved by using more advanced NER methods if

promising results are achieved.

4.5.3 Direct multi-labelling

Finally, we make use of BERT, a state-of-the-art classification model. We use the

Simple Transformers library 8 for faster training and evaluation. Using the pre-

trained bert-base-multilingual-cased model (Devlin et al., 2018), we use the

following default parameter settings to evaluate the method: a train batch size of 4,

gradient accumulation steps of 1, a learning rate of 3e-5, and a max sequence

length of 256 due to memory constraints. The model will be trained over 3 epochs.

Initially, we limit the classification task to only the top level categories, and will

use the results to determine which setting works best for any particular category.

4.6 Selection round

In summary, we have six approaches (baseline, four binary, one direct multiclass

classification), ten pre-processing combinations, the option of augmenting as well as

balancing the training set, and filtering files based on document title. Exploring all

applicable different settings on each of these approaches will most likely lead to an

abundance of scores that are far from optimal, and not very interesting. We

therefore first run each of the approaches on the raw (no pre-processed versions) of

6 https://spacy.io/models/nl.
7 https://spacy.io/api/annotation#named-entities.
8 https://pypi.org/project/simpletransformers/.
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the documents, and determine how each method performs with respect to the

baseline and one another. To limit the aforementioned parameter exploration, we

will continue with the two best performing approaches for the time periods and site

types, based on the F1 score.

One aspect that should be taken into account is that BERT in particular should

theoretically already be performing closer to optimal compared to the binary

translation approaches, as pre-processing is not required for this method.

5 Results

In this section, we present our results. We first determine how each approach

performs on the data set with no modifications, and then select the top two

performing approaches for further research. We then investigate the effects of

different parameter settings, determine the best possible method per category, and

finally perform the classification task on all categories.

5.1 Selection round

We have a baseline and five approaches we will evaluate first. The obtained

precision, recall and F1 scores can be seen in Table 4. All scores are the macro

average over all categories within the corresponding field. For TF-IDF, D2V, ONT

and SCY (acronyms explained in the table caption), a linear support vector classifier

was used. For BERT, we used the pre-trained bert-base-multilingual-cased model9.

The two best performing approaches are highlighted in green.

For the time periods, the baseline F1 score of 0.358 is substantially outperformed

by the other five approaches. Even without pre-processing, the four binary

classification approaches, TF-IDF, D2V, ONT and SCY already lead to decent

results. As highlighted, TF-IDF and ONT score the highest, the former by a

noticeable amount. BERT unfortunately does not yield very promising results,

particularly so as this approach does not require any prior pre-processing on the

texts.

For the site types, we find that the baseline performs better than both SCY and

BERT, the latter two yielding an F1 score of less than 0.15. Again, TF-IDF and

ONT give the best results, though only by a very small, almost negligible margin

when comparing ONT to D2V. Nevertheless, we continue with TF-IDF and ONT

for both time periods and site types, and will now look at pre-processing

optimisation.

5.2 Pre-processing optimisation

We applied a brute force approach, trying out all 176 combinations of pre-

processing steps, balancing/augmenting the training set, and further pruning the

training set based on document titles.

9 https://huggingface.co/transformers/pretrained_models.html.
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The performance metrics were determined by averaging the F1 scores over three

separate evaluation rounds. During each round, the training set was split into a 4:1

ratio, retaining a suitable training set size and introducing a smaller development

set.

Tables 5 and 6 show the top ten performing settings, ordered by obtained F1

scores on the development set, but showing the performance metrics on the held out

test set. The second column, labelled Test Rank indicates which ranking the top ten

performance settings on the development set achieve when these same settings are

applied to the test set. The ranking captured within the Test Rank column thus

reflects the ordering of the F1 scores, which are shown in the rightmost column. The

top ten combinations all use the bag-of-words model with TF-IDF weighting,

classifier Linear SVC, no balancing and the GenList document pruning list, so these

are not mentioned in the tables.

The results show that rather short combinations consisting of only three or four

pre-processing steps lead to the overall highest results in combination with the SVM

classifier. Steps 1, 2 and 3 occur almost everywhere. These are lowercasing,

removing punctuation marks and removing abundant white space, which are

expected to help with classification as these are commonly used.

Table 5 Overview of the top

ten F1 scores for time period

classification

Highest scores highlighted in

bold

PP = numerical values referring

to pre-processing steps as

described in Sect. 4.1, Aug =

number of augments of the

training set

Dev rank Test rank PP Aug Precision Recall F1

1 3 1237 0 0.873 0.639 0.719

2 8 134 0 0.856 0.602 0.681

3 6 134 2 0.869 0.597 0.692

4 7 123 2 0.865 0.602 0.684

5 5 158 0 0.857 0.635 0.709

6 1 128 2 0.873 0.674 0.752

7 4 123 0 0.880 0.631 0.711

8 2 128 0 0.879 0.652 0.730

9 10 1237 2 0.874 0.568 0.658

10 9 1236 0 0.863 0.605 0.680

Table 4 Overview of the scores for each method

Performance metrics time periods

Approach Precision Recall F1
Baseline 0.500 0.318 0.358
TF-IDF 0.848 0.621 0.703
D2V 0.747 0.500 0.577
ONT 0.854 0.506 0.602
SCY 0.795 0.484 0.565
BERT 0.745 0.519 0.585

Performance metrics site types

Approach Precision Recall F1
Baseline 0.161 0.622 0.232
TF-IDF 0.633 0.355 0.408
D2V 0.313 0.282 0.254
ONT 0.434 0.270 0.259
SCY 0.272 0.140 0.121
BERT 0.225 0.151 0.146

Abbreviations refer to the following: TF-IDF Sklearn, linear SVM with TF-IDF weights, D2V Sklearn,

linear SVM with Doc2Vec vectors, ONT Sklearn, linear SVM classification based on ontology extracted

entities, SCY Sklearn, linear SVM classification based on spaCy retrieved entities
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Augmentation of the training set does not necessarily seem to have a positive

effect on the classification process as it only leads to higher F1 scores with certain

pre-processing combinations. Finally, we can make the observation that filtering

files based on terms included in genList also leads to better performance for both

time periods and site types, whereas totList does not appear in any of the top ten

rankings.

Despite these scores being the average over three runs, the balancing and

augmentation is a rather randomised process. It is therefore possible that a lot of

‘bad’ or ‘good’ files are filtered out, i.e., files that have (un)informative content.

This would mean that the performance metrics could vary slightly when the

experiments are to be repeated, perhaps resulting in a different ranking.

Lastly, the development and test ranking orders provide some interesting insight

into how representative the defined development sets were compared to the

reference set. We can see that for both time periods and site types, the best

performing settings on the test set are found at rank six for the development set. As

the optimal development and test F1 scores differ quite heavily from one another,

the quality of the development sets do not match that of the test set. This was to be

expected, as the training set, and therefore the development sets contain an unknown

percentage of wrong labels.

5.3 Best methods per category

The above section shows which approach and parameter settings lead to the highest

average F1 scores, and here we investigate if we can achieve a higher average F1

score by combining the best approaches and settings for each individual category.

The results for time periods and site types are shown in Tables 7 and 8,

respectively.

For time periods, combining the best method per individual category leads to an

average F1 score of 0.710, which is a slight decrease compared to the 0.719 of the

settings with the best F1 average over all categories. This again can be explained by

the quality of the development sets: by using the optimal parameter settings for a

category obtained on the development set, it unfortunately does not imply that these

Table 6 Overview of the top

ten F1 scores for site types

classification

Highest scores highlighted in

bold

PP = numerical values referring

to pre-processing steps as

described in Sect. 4.1, Aug =

number of augments of the

training set

Dev rank Test rank PP Aug Precision Recall F1

1 7 123 2 0.626 0.360 0.410

2 4 13,568 2 0.637 0.464 0.496

3 3 128 0 0.601 0.462 0.498

4 9 1236 0 0.542 0.347 0.379

5 10 134 2 0.539 0.330 0.366

6 1 158 2 0.640 0.499 0.542

7 2 128 2 0.702 0.469 0.510

8 8 123 0 0.538 0.345 0.390

9 6 1237 2 0.715 0.442 0.482

10 5 1237 0 0.609 0.447 0.484
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settings are (close to) optimal on the test set. This phenomenon is similar to that

observed in the previous section, were the best parameter settings for the test set

ranked sixth on the development set. For the site types, the opposite shows, as we

find an average increase of 0.133 compared to the highest scoring settings on the

development set. Moreover, the F1 score of 0.542—the result of optimal settings for

the test set—is met. It has to be noted that we find F1 scores of 0.0. These categories

are barely represented within our test set, and for these it is difficult to determine the

quality of the classification process: a recall of 0.0 is frequent.

Table 7 Overview of the best methods per individual category for time period classification and the

overall average of these best methods

Category PP Aug Bal List Precision Recall F1 score

paleo 123 2 No Gen 1.0 0.385 0.555

meso 134 2 No Gen 1.0 0.550 0.710

neo 123 2 Yes Gen 0.653 0.630 0.642

brons 158 2 No Gen 0.714 0.435 0.541

ijz 134 0 Yes Gen 0.828 0.828 0.828

rom 128 0 No Gen 0.952 0.741 0.833

xme 1236 0 No Gen 0.764 0.823 0.792

nt 134 0 No Gen 0.722 0.848 0.780

Average – – – – 0.829 0.655 0.710

Column names yield the meaning as provided in the previous section

Table 8 Overview of the best methods per individual category for site type classification and the overall

average of these best methods

Category PP Aug Bal List Precision Recall F1 score

xxx 1237 0 No Tot 0.342 0.765 0.473

cthd 156 2 No Gen 1.0 1.0 1.0

bewv 123 0 No Gen 0.810 0.557 0.660

apvv 128 0 No Gen 0.667 0.286 0.400

wrak 13568 0 No Tot 1.0 0.500 0.667

idnh 123 2 No Gen 0.800 0.444 0.571

sv 1236 2 No Gen 1.0 1.0 1.0

gw 134 2 No Gen 0.0 0.0 0.0

bgv 156 2 No Gen 0.875 0.538 0.667

bgr 128 2 No Gen 0.0 0.0 0.0

infr 1237 2 No Gen 0.875 0.389 0.538

Average – – – – 0.669 0.498 0.543

Column names yield the meaning as provided in the previous section
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The MultNB classifier does not appear in the top ten. We expected to see that

balancing the training set would have a positive effect on the classification process

for this classifier, but this is not reflected by our results. However, it is interesting to

see that balancing the training set has a positive effect on the classification process

Table 9 An overview of the F1 scores for all main and sub-categories for time period classification

All time periods categories: obtained F1 scores overview

Label F1 Label F1 Label F1 Label F1 Label F1

paleo 0.555 neov 0.591 bronsm 0.583 romvb 0.700 vmec 0.439

paleov 0.600 neova 0.605 bronsma 0.522 romm 0.833 vmed 0.439

paleom 0.667 neovb 0.667 bronsmb 0.640 romma 0.809 lme 0.800

paleol 0.500 neom 0.619 bronsl 0.500 rommb 0.833 lmea 0.756

paleola 0.500 neoma 0.537 ijz 0.828 roml 0.780 lmeb 0.787

paleolb 0.500 neomb 0.585 ijzv 0.750 romla 0.800 nt 0.780

meso 0.710 neol 0.681 ijzm 0.644 romlb 0.810 nta 0.738

mesov 0.455 neola 0.667 ijzl 0.719 xme 0.792 ntb 0.764

mesom 0.500 neolb 0.696 rom 0.833 vme 0.455 ntc 0.689

mesol 0.571 brons 0.541 romv 0.700 vmea 0.450

neo 0.742 bronsv 0.483 romva 0.700 vmeb 0.450

Main categories are shown in bold

Table 10 An overview of the F1 scores for the main and sub-categories for site type classification

All site type categories: obtained F1 scores overview

Label F1 Label F1 Label F1 Label F1 Label F1

cthd 1.0 bewv.hp 0.000 idnh.hkb 0.0 bgv.x 0.0 bgr 0.0

cthd.klo 1.0 bewv.bext 0.667 idnh.ll 0.0 bgv.gvc 0.667 bgr.gvic 0.0

bewv 0.857 apvv 0.400 idnh.m 0.0 bgv.gvi 0.0 infr 0.571

bewv.x 0.756 apvv.x 0.0 idnh.pb 0.0 bgv.gvx 0.500 infr.x 0.0

bewv.vx 0.0 apvv.cf 0.0 idnh.vb 0.0 bgv.kh 0.0 infr.weg 0.0

bewv.vlp 0.0 apvv.la 0.333 idnh.mb 0.0 bgv.ghv 0.500 infr.per 0.800

bewv.kwb 0.0 wrak 0.667 sv 1.0 bgv.cjbp 0.0 infr.kan 0.667

bewv.ht 0.0 wrak.schip 0.667 sv.x 1.0 bgv.uv 0.400 infr.brug 0.667

bewv.vic 0.0 idnh 0.800 gw 0.0 bgv.gx 0.0 infr.dij 0.889

bewv.sk 0.667 idnh.x 0.286 gw.vw 0.0 bgv.vg 0.0 xxx 0.473

bewv.rv 1.0 idnh.tn 0.0 bgv 0.667 bgv.dier 0.0

Sub-categories not present within the reference test set are not included. Again, main categories are

shown in bold
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of SVM for neo and ijz, despite the theoretical unbalanced data set ‘protection’.

Again, this can be explained by the random influence of the balancing and

augmenting process, as ‘bad’ files get filtered out.

We have determined which settings work best for each main category, the next

step is to perform the classification task on all sub-categories by using the settings

per corresponding main category. As not all sub-categories for site types are present

within our test set, we will only focus on those that were. The full classification

results can be seen in Tables 9 and 10.

For any set of sub-categories, we expected to find a lower average F1 score than

the corresponding main category, as there are most likely less distinctive terms

between sub-categories. This indeed seems to be case for the majority of the

categories, but a few exceptions for both time periods and site types are present. We

note that in some cases for the site types, F1 scores of 1.0 are found. These (sub-

)categories are only represented once. Nevertheless, it does imply that the classifier

returns a perfect prediction on our test set. We also find numerous F1 scores of 0.0,

which as mentioned earlier is the result of frequent recall values of 0.0.

Such scores are not very indicative of the quality of the classification process

itself, but rather implies an insufficient amount of labelled data for that category.

For completeness however, we decided not to omit these results from aforemen-

tioned tables.

To further illustrate the relation between the frequency of a label in the training

set and the achieved F1 scores, we plotted these in Figs. 6 and 7. We can see that—

as expected—the higher the frequency of the label is, the higher the performance, as

illustrated by the trend lines. We also note that the trend lines are not flattening out,

which indicates that adding more training data might be beneficial for all categories,

not just the less frequent ones.

Fig. 6 Plot of the frequency of time period labels and the associated F1 score for that label. A trend line
has been added to illustrate the correlation (Pearson’s r = 0.56)
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6 Conclusion

In this paper, we have described our approach for the multi-labelling of Dutch

archaeological excavation reports for time periods and site types. In this section we

answer our research questions and propose future work.

Which combination(s) of text pre-processing steps, data augmentation/
balancing, document pre-selection and classification method yields the
highest F1 scores?

We tested many combinations of pre-processing steps, and found that lowercasing,

removing punctuation marks and trimming white space are most valuable on

average, which is expected as these steps are used widely in text classification

problems. Balancing the data set did not lead to better results, and augmentation

helped in only some cases, so we can not draw any conclusions on this. Pruning the

data set by using the standard filename list proved to be most effective. As for the

classification method, using a linear SVM proved to be optimal. In addition, we

found that classification on extracted entities by means of the ontology did not yield

very promising results.

Are the best combinations the same across the different categories and labels,
or do specialised combinations per category yield better results?

We investigated whether optimising the methods per (sub-)category leads to higher

performance. We found that the optimal parameter settings per individual category

for the time periods actually lead to a lower averaged F1 score when compared to

the top performing setting over all categories at once. For site types the F1 score is

the same. It suggests that for these kinds of classification problems, using the same

Fig. 7 Plot of the frequency of subject labels and the associated F1 score for that label. A trend line has
been added to illustrate the correlation (Pearson’s r = 0.28)
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parameters for all the categories is not only better, but also much simpler as only

one model needs to be trained, instead of a model for each category.

To what extent can we classify excavation reports into time periods and site
types?

Our overall aim was to test how well we could classify excavation reports, and we

found that despite the frequent low quality of both texts and labels, our classification

models lead to decent quality when compared to similar studies. For the

classification in eight time periods, we obtained an F1 score of 0.752 with settings

that were found to be optimal on the held-out test set. These included only a few

pre-processing steps, no balancing, and a small selection for filtering documents

based on their titles. For the classification in eleven site type categories, we obtained

an F1 score of 0.542 with highly similar settings, except for a single different text

pre-processing step (removal of non-alphabetical marks instead of removal of

punctuation marks) and the augmentation of the training set.

One caveat to these results is that there is a large deviation in the results obtained

with different partitions of the data, with the top ten highest scoring partitions of the

development set leading to F1 scores on the test set ranging from 0.68 to 0.75 for

time period classification and from 0.36 to 0.54 for site type classification.

We expected to see that the average F1 scores over a set of sub-categories would

be lower than that of the corresponding main category. This was indeed the case

apart from a few exceptions. We argued that this phenomenon is caused by a smaller

number of distinctive terms for sub-categories when compared to solely main

categories.

As predicted, the limited input sequence of 256 for BERT led to quite

disappointing results, considering this method is regarded as a state-of-the-art

approach for multi-label classification tasks. In particular for the site type

classification, performance metric scores for BERT were almost bottom tier.

6.1 Future work

There are several aspects that could prove interesting for follow-up research. At the

moment, we are dealing with a data set that has manually assigned metadata for the

entire collection. This means our methods are not tested on unlabelled, or partially

labelled data. It would be interesting to research this, to see to what extent the

usefulness of the metadata increases. We plan to do this research when we receive

reports without metadata in a follow-up project.

As we were particularly concerned about the effect the quality of the labels and

the texts would have on the classification process, we put more emphasis on the

application of exploratory parameter settings based on statistics on observations,

rather than using all the five approaches. It could prove to be interesting to apply the

parameter settings to each of these, and eventually perform hyper-parameter

optimisation. Ideally, we would like to create a manually labelled training set to

increase the quality of the data, and determine how this affects the performance of

our methods. Due to time constraints we have not been able to do so in yet. If this
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proves too time-consuming, an alternative might be k-fold validation to average out

the difference in label quality across the training set.

Initially, we opted for NER based classification by means of a specifically

designed NER tool for archaeological named entities. Unfortunately, this tool had

not been fully developed yet, and could not be used. SpaCy based NER

classification already lead to promising results—scoring second highest for both

time periods and site types—despite a lack of entity categories that were specific to

our type of documents. If such categories were to be extracted however,

classification on such entities might lead to even better results.

A third aspect that could be addressed is that of balancing: we might be able to

determine which files are often included in a training set that leads to lower

performance. This would arguably imply that such files are either uninformative, or

have erroneous labels. Removing these documents will most likely lead to higher

overall performance.

Furthermore, there is the option of optimising the BERT approach. Currently we

only use the first 256 tokens of a text due to memory and framework constraints.

Distinctive and characteristic terms for categories could therefore be missing in data

used for either training or eventual classification, leading to lower performance.

Increasing the token limit, or potentially classifying smaller segments, might give us

better results.

Finally, an expansion of the test set could be introduced in order to enhance the

representation of the categories. This in particular applies to the categories of site

types. As discussed in Sect. 5.3, we find an F1 score for numerous site type

categories to be equal to 0.0 or 1.0. Because of the low representation of these

categories, such scores are not meaningful, and therefore do not properly reflect on

the quality of the classification process.
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Appendices

A: Category frequencies

Table 11 An overview of the frequencies for all site type categories

Site type categories frequency overview

Label Freq Label Freq Label Freq Label Freq Label Freq

xxx 33,532

cthd 1463 bewv.wp 10 idnh 2015 sv.vorg 0 bgv.meg 9

cthd.x 379 bewv.n 0 idnh.x 1074 sv.bsb 0 bgr 1502

cthd.klo 299 bewv.rv 501 idnh.tk 0 gw 169 bgr.gvic 1502

cthd.kpl 24 bewv.stel 4 idnh.tn 128 gw.x 40 infr 7327

cthd.sgmw 0 bewv.bw 0 idnh.br 36 gw.vw 58 infr.x 1248

cthd.kerk 581 bewv.hp 1566 idnh.zp 0 gw.hout 0 infr.weg 1575

cthd.rcp 372 bewv.th 0 idnh.sb 71 gw.ijw 9 infr.dam 53

cthd.oloc 1 bewv.inka 0 idnh.hkb 127 gw.zw 3 infr.werf 0

cthd.temp 2 bewv.sv 0 idnh.bb 5 gw.kw 50 infr.gem 5

bewv 25,264 bewv.bext 5872 idnh.ll 112 gw.griw 0 infr.rede 0

bewv.x 15,236 bewv.vkm 63 idnh.hb 4 gw.mw 4 infr.per 3766

bewv.lg 89 bewv.tw 388 idnh.m 150 gw.vsw 8 infr.strek 0

bewv.wb 51 bewv.lw 130 idnh.rom 1 bgv 6317 infr.wat 228

bewv.sch 65 apvv 3152 idnh.wam 2 bgv.x 731 infr.dui 221

bewv.vx 815 apvv.x 1415 idnh.wim 1 bgv.gvc 522 infr.vijv 0

bewv.vlp 102 apvv.vw 0 idnh.gp 0 bgv.tpgb 0 infr.kan 273

bewv.lk 0 apvv.vk 166 idnh.pb 227 bgv.gvi 536 infr.slu 103

bewv.ct 0 apvv.vs 6 idnh.vb 312 bgv.gvx 983 infr.kslu 0

bewv.cstl 5 apvv.stel 0 idnh.mb 388 bgv.kh 605 infr.lv 0

bewv.mbh 125 apvv.ek 0 idnh.mbnf 0 bgv.rgv 1 infr.hav 982

bewvv.pls 0 apvv.cf 23 idnh.mbf 0 bgv.ghv 2476 infr.kade 1

bewv.kwb 490 apvv.dp 142 idnh.kb 2 bgv.bhv 0 infr.vweg 7

bewv.ht 332 apvv.la 1879 sv 971 bgv.vgv 0 infr.brug 256

bewv.aw 7 apvv.ak 0 sv.x 971 bgv.cjbp 536 infr.dok 0

bewv.dump 0 apvv.tuin 20 sv.obsb 0 bgv.uv 1295 infr.vs 0

bewv.vic 332 apvv.pdek 2 sv.ijz 0 bgv.gh 1221 infr.vrde 1

bewv.kaze 0 wrak 384 sv.h 0 bgv.gx 731 infr.spre 0

bewv.fort 8 wrak.schip 384 sv.lad 0 bgv.vg 163 infr.watw 11

bewv.sk 2470 wrak.vlgtg 5 sv.hijz 0 bgv.dier 131 infr.dij 721

Main categories are denoted in bold
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B: Filter list

Table 12 An overview of the frequencies for all time period categories

Time periods categories frequency overview

Label Freq Label Freq Label Freq Label Freq Label Freq

paleo 2077 neov 6459 bronsm 8494 romvb 12414 vmec 11767

paleov 1197 neova 6456 bronsma 8397 romm 12427 vmed 12194

paleom 1460 neovb 6445 bronsmb 8312 romma 12381 lme 18832

paleol 1816 neom 6127 bronsl 7910 rommb 12348 lmea 17053

paleola 1732 neoma 6098 ijz 13876 roml 11939 lmeb 18235

paleolb 1816 neomb 5893 ijzv 10356 romla 11921 nt 19833

meso 4290 neol 8954 ijzm 11307 romlb 11850 nta 17511

mesov 3133 neola 8200 ijzl 12033 xme 20593 ntb 17514

mesom 3152 neolb 8947 rom 13299 vme 12642 ntc 18525

mesol 4180 brons 10414 romv 12421 vmea 11645

neo 9916 bronsv 8380 romva 12275 vmeb 11874

Main categories are denoted in bold

Table 13 An overview of different types of lists and included terms

Terms used for document filtering

List name Terms

genList notulen, bijlage, meta

rapList dagrapport, dag_rapport, weekrapport, week_rapport, weekverslag, week_verslag, logboek

pvaList draaiboek, plan_van_aanpak, pva

omnList onderzoeksmeldingsnummer, onderzoeksmeldings_nummer, onderzoeks_meldings_nummer

totList rapList ? pvaList ? pveList ? omnList ? genList
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C: Category frequencies test set

Table 14 An overview of the frequencies for all time period categories captured by the reference test set

Time periods categories frequency overview test set

Label Freq Label Freq Label Freq Label Freq Label Freq

paleo 13 neov 24 bronsm 15 romvb 25 vmec 30

paleov 7 neova 24 bronsma 14 romm 27 vmed 29

paleom 8 neovb 24 bronsmb 15 romma 27 lme 48

paleol 12 neom 23 bronsl 18 rommb 27 lmea 41

paleola 12 neoma 23 ijz 37 roml 25 lmeb 48

paleolb 12 neomb 23 ijzv 34 romla 25 nt 49

meso 21 neol 26 ijzm 28 romlb 25 nta 42

mesov 17 neola 25 ijzl 30 xme 54 ntb 43

mesom 18 neolb 26 rom 29 vme 30 ntc 39

mesol 20 brons 24 romv 25 vmea 28

neo 29 bronsv 19 romva 25 vmeb 28

Main categories are denoted in bold

Table 15 An overview of the F1 scores for the main and sub-categories for site type classification as

captured by the reference test set

Site type categories frequency overview test set

Label Freq Label Freq Label Freq Label Freq Label Freq

cthd 1 bewv.hp 7 idnh.hkb 2 bgv.x 4 bgr 3

cthd.klo 1 bewv.bext 3 idnh.ll 1 bgv.gvc 2 bgr.gvic 3

bewv 65 apvv 8 idnh.m 1 bgv.gvi 3 infr 19

bewv.x 53 apvv.x 3 idnh.pb 1 bgv.gvx 3 infr.x 1

bewv.vx 1 apvv.cf 1 idnh.vb 2 bgv.kh 1 infr.weg 4

bewv.vlp 1 apvv.la 4 idnh.mb 2 bgv.ghv 6 infr.per 6

bewv.kwb 1 wrak 2 sv 1 bgv.cjbp 3 infr.kan 2

bewv.ht 10 wrak.schip 2 sv.x 1 bgv.uv 4 infr.brug 2

bewv.vic 1 idnh 11 gw 1 bgv.gx 4 infr.dij 5

bewv.sk 4 idnh.x 4 gw.vw 1 bgv.vg 1 xxx 17

bewv.rv 1 idnh.tn 1 bgv 16 bgv.dier 1

Sub-categories not present within the reference test set are not included. Again, main categories are

denoted in bold
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