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Abstract
Following the operator algebraic approach to Gabor analysis, we construct frames
of translates for the Hilbert space localisation of the Morita equivalence bimodule
arising from a groupoid equivalence between Hausdorff groupoids, where one of the
groupoids is étale and with a compact unit space. For finitely generated and projective
submodules, we show these frames are orthonormal bases if and only if the module
is free. We then apply this result to the study of localised Wannier bases of spectral
subspaces of Schrödinger operators with atomic potentials supported on (aperiodic)
Delone sets. The noncommutative Chern numbers provide a topological obstruction
to fast-decaying Wannier bases and we show this result is stable under deformations
of the underlying Delone set.

Keywords Operator algebras · Groupoid and Morita equivalence · Gabor analysis ·
Wannier basis

Mathematics Subject Classification 46L08 · 46L55 · 81R60

1 Introduction

A key question in time-frequency analysis and related fields is the reconstruction of
elements in a Hilbert space h via a set of vectors {Tjw1, . . . , Tjwm} j∈J spanning h
and where {Tj } j∈J ⊂ B(h) is some canonically defined set of operators. An important
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example are (multi-window) Gabor frames, where given a locally compact and abelian
group G, a frame on L2(G) is constructed via translation and modulation operators
from a closed subset� ⊂ G×̂G on awindow function.Morita equivalence bimodules
of C∗-algebras, also called imprimitivity bimodules, have been shown to be a useful
tool in the construction of such Gabor frames [1,2,27]. One may also consider frames
generated from translations by elements of a discrete group or étale groupoid, which
we call frames of translates, cf. [14, Chap. 9] or [8].

Closely related to frames of translates and arising from physics are Wannier bases.
Given a Schrödinger-type operator H with periodic potential acting on L2(Rd , C

n), a
Wannier basis is an orthonormal basis of a spectral subspace of H constructed from a
finite set of functions along with their translations in Z

d . Because the operator H has
a periodic potential, such bases exist by the Bloch–Floquet transform. The regularity
of Wannier bases changes drastically depending on the topological properties of the
spectral band of the Schrödinger operator, where a delocalised Wannier basis can be
used as an indicator that the system has a non-trival topological phase, see [15,16,
24,29,32] for example. Wannier bases with exponential decay can be constructed for
periodic and aperiodic Hamiltonians such that the compression of a position operator
by the Fermi projection has uniform spectral gaps [40,41].

In the context of periodic systemswith a space group translation symmetryG ⊂ R
d ,

it was shown by Ludewig and Thiang that the existence of a fast-decaying Wannier
basis is equivalent to whether a finitely generated and projective C∗

r (G)-module is
free or not [26].

Thepurpose of this paper is twofold. First, using a similar framework to [2],we study
the relation between frames of translates and Morita equivalence bimodules arising
from groupoid equivalences. We then use this relation to extend the results of Ludewig
and Thiang [26] on fast-decaying Wannier bases to étale groupoids. Regularity of
frames is examined using pre-Morita equivalence bimodules of algebras defined from
derivations and differential seminorms.

For both of our aims, our guiding example is the étale groupoid GDel constructed
from a Delone set � ⊂ R

d and which is equivalent to the crossed product groupoid of
the translation action on the orbit space of �, �� � R

d . In previous work [11,12], the
index theory of GDel and its application to aperiodic topological phases was studied.
In [23], Gabor frames of L2(Rd) were constructed from Delone subsets of R

2d with
finite local complexity and the groupoid GDel using results from [19]. Gabor duality
was shown for Gabor frames constructed from model sets in [31]. We do not consider
the important question of Gabor duality in this work.

Outline andMain Results

Because our results bring together constructions from time-frequency analysis,
groupoids,C∗-modules andMorita equivalence, we give a brief overview of these con-
cepts in Sect. 2. In Sect. 2.3, using the framework of differential seminorms (cf. [10]),
we construct pre-Morita equivalence bimodules for pre-C∗-subalgebras obtained from
a finite family of commuting unbounded ∗-derivations.
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In Sect. 3 we consider a groupoid equivalence G ← Z → H of Hausdorff, sec-
ond countable and locally compact groupoids G and H, where H is étale with a
compact unit space H(0). By choosing the evaluation state for some x ∈ H(0) we
obtain a translation action of the fibre r−1(x) on the Hilbert space localisation hx
of the Morita equivalence bimodule between C∗

r (G) and C∗
r (H). This allows us to

construct a normalised tight frame of translates for hx from the C∗-module frame
of the Morita equivalence bimodule. Restricting to finitely generated and projective
C∗
r (H)-submodules, we obtain a frame of translates with a finite generating set for a

subspace of the Hilbert space localisation hx . This frame is an orthonormal basis for
all x ∈ H(0) if and only if the finitely generated and projective module is free, and
thus its class in the reduced K -theory of C∗

r (H) is trivial. These results are extended
in Sect. 4 to the case of abstract transversals with a normalised 2-cocycle twist.

We apply these results to the étale Delone groupoid in Sect. 5. We consider a
magnetic Schrödinger operator with an atomic potential v arranged on a Delone set
� ⊂ R

d ,

H� =
d

∑

j=1

(

− i
∂

∂x j
− A j

)2 +
∑

p∈�

v(· − p),

where A is the magnetic potential. Results by Bellissard et al. show that for suffi-
ciently regular v, H� and its magnetic translates are affiliated to the crossed product
C∗-algebra C∗

r (�� � R
d , θ) with θ a magnetic twist [5,6]. We show that for any

Delone set L in the transversal subset �0 ⊂ ��, a gapped spectral subspace of HL
has a normalised tight frame built from the magnetic translations {Uy}y∈L. This frame
is an orthonormal basis if and only if the corresponding finitely generated and pro-
jective C∗

r (GDel, θ)-module is free. Using derivations of the groupoid algebras and
differential seminorms, we show this normalised tight frame has faster than polyno-
mial decay. We therefore see that topological properties of spectral subspaces of the
Delone Schrödinger operator can be related to the regularity of (aperiodic) Wannier
bases.

The regularity of such Wannier basis is closely related to the Localisation
Dichotomy Conjecture for non-periodic insulators raised in [29, Section 5 (arXiv
version)] and further studied in [25,30]. We prove a weaker version of this conjecture
in Sect. 5.3 and show that the existence of Wannier bases with faster than polynomial
decay is equivalent to the existence ofWannier bases such that

∑

j (1+|x |2)|w j (x)|2 ∈
L1(Rd). This in turn is equivalent to the spectral projection defining a freely generated
C∗
r (GDel, θ)-module. Our results are weaker than those posed in [29] as we consider a

family of Schrödinger operators and Hilbert spaces rather than a single Hamiltonian.
Similarly we do not consider Wannier bases with exponential decay.

By relating the existence of a localised Wannier basis to a K -theoretic property,
the noncommutative Chern numbers for C∗

r (�� � R
d , θ) and C∗

r (GDel, θ) studied in
[11–13] give a topological obstruction to a Wannier basis with fast decay. We also
show that these Chern number formulas are continuous under deformations of the
magnetic field or Delone atomic potential provided the spectral gap stays open. This
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implies that a non-localised Wannier basis is stable under deformations of the atomic
potential (e.g. from a periodic lattice to an aperiodic point pattern).

2 Preliminaries

2.1 Hilbert Space Frames

Let us recall a few basic definitions from time-frequency analysis.

Definition 2.1 Let h be a Hilbert space and {g j } j∈J is a collection of elements in h.
We say that {g j } j∈J form a Hilbert space frame if there are constants C, D > 0 such
that

C‖ψ‖2 ≤
∑

j∈J

∣

∣〈g j , ψ〉∣∣2 ≤ D‖ψ‖2 for all ψ ∈ h.

If C = D, then {g j } j∈J is called a tight frame. If C = D = 1, then {g j } j∈J is called
a normalised tight frame or Parseval frame.

Orthonormal bases are obvious examples of normalised tight frames. The restriction
of an orthonormal basis of a Hilbert space to a closed subspace yields a normalised
tight frame for the subspace. Normalised tight frames always arise as a compression
of an orthonormal basis.

Proposition 2.2 [20, Sect. 1] Let {g j } j∈J be a normalised tight frame of a Hilbert
space h1. Then there is Hilbert space h2 and an orthonormal basis {e j } j∈J of h1 ⊕ h2
such that g j = pr1(e j ).

Any Hilbert space frame yields an invertible frame operator

S : h → h, S(ψ) =
∑

j∈J

g j 〈g j , ψ〉.

We note that, in contrast to the Gabor analysis literature, we work with inner-products
that are linear on the right. This is tomake our resultsmore easily compatible with right
C∗-modules and their Hilbert space localisations (Definition 2.11 below). Because S
is invertible, one obtains a reconstruction formula for elements in h.

ψ =
∑

j∈J

S−1g j 〈g j , ψ〉, ψ ∈ h.

The elements {S−1g j } j∈J are called the dual frame to {g j } j∈J .
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2.2 Pre-C∗-Modules andMorita Equivalence

Following a similar framework to [2], wewill useC∗-modules andMorita equivalence
bimodules to study questions around frames of translates for their Hilbert space local-
isations. We now recall some basic definitions and establish notation. Further details
can be found in [9,35].

We will also be interested in the case where the C∗-algebras A and B have dense
∗-subalgebras A and B.

Definition 2.3 Let B be a C∗-algebra, B ⊂ B a dense ∗-subalgebra and EB a vector
space that is also a rightB-module.We say that EB is a right inner productB-module if
there is a sesquilinear pairing (e1, e2) �→ (e1 | e2)B ∈ B linear in the second variable
such that for e1, e2, e ∈ E

(e1 | e2)B = (e2 | e1)∗B, (e1 | e2 · b)B = (e1 | e2)B b,

(e | e)B ≥ 0 ∈ B, (e | e)B = 0 ⇒ e = 0.

An inner product module EB is called full if span{(e1 | e2) : e1, e2 ∈ EB} is C∗-norm
dense in B. If B is a C∗-algebra, a C∗-module is a right inner product B-module that
is complete in the norm ‖e‖2 := ‖(e | e)B‖B .

Given a C∗-algebra A and dense ∗-subagebra A, a left inner product A-module
AE can be analogously defined, where the sesquilinear pairing (e1, e2) �→ A(e1 | e2)
is linear in the first variable and A(a · e1 | e2) = a A(e1 | e2). In case the algebras
A and B and left/right inner product module structure are clear from context, we will
suppress subscripts and write E for AEB.

On an inner product module EB, the norm ‖e‖2 := ‖(e | e)B‖B is defined and
the completion of EB in this norm is a right C∗-module EB over B. For a right inner
product B-module, the ∗-algebra of finite rank operators FinB(EB) is defined to be the
algebraic span of the finite-rank operators {�R

e1,e2}e1,e2∈E , where

�R
e1,e2(e3) = e1 · (e2 | e)B,

(

�R
e1,e2

)∗ := �R
e2,e1, e1, e2, e ∈ E .

When EB is a C∗-module over a ∗-algebra B, the compact endomorphisms KB(E)

are defined as the operator norm closure of FinB(E). It is a closed two-sided ideal in
the C∗-algebra End∗

B(E) of adjointable operators on EB .

Definition 2.4 Let EB be a right inner product B-module. A set {e1, . . . , en} is called
a finite module frame if

IdE =
n

∑

k=1

�R
ek ,ek .

If EB is a right C∗-module, a countable subset {e j } j∈J ⊂ EB is a (right) C∗-module
frame if

∑

j �
R
e j ,e j converges strictly to IdE .
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We remark that any countably generated right C∗-module over a σ -unital algebra
B admits a C∗-module frame [9,35]. If an inner product module EB admits a finite
frame {v j }nj=1, then there is a projection p = p∗ = p2 ∈ Mn(B) and right module
maps

S : E → Bn, R : Bn → E, (1)

S(e) = (

(v j | e)B
)n
j=1, R

(

(b j )
n
j=1

) =
n

∑

j=1

v j · b j , (2)

that restrict to isomorphisms S : E → pBn and R : pBn → E . In particular

p = (vi | v j )B ∈ Mn(B), R ◦ S = IdE , e = R ◦ S(e) =
n

∑

j=1

v j · (v j | e)B =
n

∑

j=1

�R
v j ,v j

(e).

Similar formulas hold for left modules with a finite frame.

Definition 2.5 Let A and B be C∗-algebras. An A-B Morita equivalence bimodule is
a full right-B C∗-module and full left-A C∗-module AEB such that

(a · e1 | e2)B = (e1 | a∗ · e2)B , A(e1 | e2 · b) = A(e1 · b∗ | e2), A(e1 | e2) · e3 = e1 · (e2 | e3)B

for all a ∈ A, b ∈ B and e1, e2, e3 ∈ E . We say that A and B are Morita equivalent if
there is a Morita equivalence bimodule AEB .

To distinguish left and right inner products, for e1, e2 ∈ E we use the notation

�L
e1,e2(e3) = A(e3 | e1) · e2, �R

e1,e2(e3) = e1 · (e2 | e3)B .

A full right-B C∗-module is a Morita equivalence bimodule between KB(E) and
B with the KB(E)-valued inner product K(E)(e1 | e2) = �R

e1,e2 . Hence A is Morita
equivalent to B if and only if there is a full right-B C∗-module EB and a∗-isomorphism
φ : A → KB(E).

Definition 2.6 Let A and B be dense ∗-subalgebras of C∗-algebras A and B. A pre-
Morita equivalence bimodule is an A-B bimodule AEB, equipped with a full left-A
valued and a full right-B valued inner product such that for any a ∈ A, b ∈ B and
e, e1, e2, e3 ∈ E the compatibility conditions

A(e · b | e · b) ≤ ‖b‖2A(e | e), (a · e | a · e)B ≤ ‖a‖2(e | e)B, A(e1 | e2) · e3 = e1 · (e2 | e3)B,

are satisfied. Here ‖ ·‖ denotes theC∗-norm on the algebrasA and B, and the inequal-
ities are in the C∗-algebras A and B.
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As expected, a pre-Morita equivalence bimoduleAEB can be completed to aMorita
equivalence bimodule AEB , using either of the norms ‖e‖2 := ‖(e | e)B‖B or
‖e‖2 := ‖A(e | e)‖A see [35, Sect. 3.1]. We proceed with some definitions and
results concerning frames in dense submodules of C∗-modules. For this we need our
dense ∗-subalgebras to be equipped with additional analytic structure.

We provide a definition of smooth subalgebra of aC∗-algebra (see for instance [18,
Definitions 3.25 and 3.26]) that is flexible enough for our purposes.

Definition 2.7 We say that a ∗-algebra A is a pre-C∗-algebra if it is

(i) Fréchet, i.e. complete and metrizable such that the multiplication is jointly con-
tinuous;

(ii) Isomorphic to a proper dense ∗-subalgebra ι(A) of a C∗-algebra A, where ι :
A ↪→ A is the inclusion map, and ι(A) is stable under the holomorphic functional
calculus. That is, if f is a holomorphic functionon aneighbourhoodof the spectrum
of a ∈ ι(A), then f (a) ∈ ι(A).

Stability under the holomorphic functional calculus extends to nonunital algebras,
since the spectrum of an element in a nonunital algebra is defined to be the spectrum of
this element in the one-point unitization, thoughwemust restrict to functions satisfying
f (0) = 0. Similarly, the definition of a Fréchet algebra does not require a unit.
The K -theory groups K0(A) and K1(A) can be defined for a pre-C∗-algebra A,

see [18, Sect. 3.8] or [9] for example. A useful feature of pre-C∗-algebras is that they
contain all the K -theoretic information of their C∗-completion.

Proposition 2.8 [37] If A is a pre-C∗-algebra with C∗-completion A, then the map
induced by the inclusion ι∗ : K j (A) → K j (A) is an isomorphism for j = 0, 1.

Lemma 2.9 Let A and B be pre-C∗-algebras with B unital and AEB a pre-Morita
equivalence bimodule.

1. There is a finite left module frame {g1, . . . , gn} ⊂ E and 1B = ∑n
k=1(gk | gk)B.

2. For any p = p∗ = p2 ∈ Mn(A), pE⊕n is a finitely generated and projective
B-module and there exists a finite right module frame {v1, . . . , vm} ⊂ pE⊕n.

Proof We write A and B for the C∗-algebra closures of A and B and E for the C∗-
module closure of E , which is a Morita equivalence bimodule for the C∗-algebras A
and B.

(1) The ∗-algebra of finite rank operators span{�L
e1,e2}e1,e2∈E is C∗-norm dense in

AK(E). Thus for ε < 1 we can find {e1, . . . , en} ⊂ E such that the operator

g :=
n

∑

k=1

�L
ek ,ek =

n
∑

k=1

(ek | ek)B ∈ B,

satisfies ‖1B − g‖B < ε. Hence the positive element g is invertible in B. Because the
spectrumof g is contained in the regionof analycity of f (z) = z−1 andB is stable under

the holomorphic functional calculus, g−1 and g−1/2 ∈ B. Define gk := ek · g− 1
2 ∈ E ,

for 1, . . . , n so that
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n
∑

k=1

(gk | gk)B =
n

∑

k=1

�L
gk ,gk =

n
∑

k=1

�L

ekg
− 1
2 ,ek g

− 1
2

= g− 1
2

(

n
∑

k=1

�L
ek ,ek

)

g− 1
2 = g− 1

2 gg− 1
2 = 1B,

which proves the claim.
(2) Since p is a compact operator on E⊕n , it is finite rank by [18, Corollary 3.10], so

themoduleW := pE⊕n is finitely generated and projective over B.WriteW := pE⊕n

for the dense B-submodule defined by p ∈ Mn(A).
The ∗-algebra of finite rank operators span{�R

e1,e2}e1,e2∈W is C∗-norm dense in
KB(W ). Hence for ε < 1 there exist w1, . . . , wm ∈ W such that w := ∑

�R
wk ,wk

satisfies ‖p − w‖KB (W ) < ε. It follows that w is invertible in the unital C∗-algebra
KB(W ) ∼= pMn(A)p and has spectrum contained in B(1; ε). The spectrum of w in
Mn(A) is thus contained in the disconnected set B(1; ε)∪{0}. By spectral invariance,
the same holds for the spectrum of w ∈ Mn(A). Thus there is a function f , holomor-

phic on a neighborhood of the spectrum of w such that f (0) = 0 and f (z) = z− 1
2

for z ∈ B(1; ε). Hence f (w) ∈ Mn(A) ∩ pMn(A)p = pMn(A)p and satisfies
f (w)w f (w) = p. Now put vk := f (w)wk so that, as above,

m
∑

k=1

�R
vk ,vk

= f (w)

(

m
∑

k=1

�R
wk ,wk

)

f (w) = p,

which proves the claim.

2.3 Derivations, Pre-Morita Equivalence Bimodules and Localisation

We now describe a general method to construct pre-Morita equivalence bimodules and
pre-C∗-algebras from a family of densely defined derivations on a given C∗-algebra.
For instance, the algebra C∞(M), with M a compact manifold, can be constructed in
this way.

As a technical tool we will use the notion of differential seminorms introduced
in [10, Definition 3.1]. The space 1(N) is an algebra in the convolution product
f ∗g(n) := ∑

k≤n f (k)g(n−k).The subspace 1+(N) := 1(N, R+) ⊂ 1(N) inherits
the coordinatewise ordering from R+ and satisfies 1+(N)1+(N) ⊂ 1+(N). Following
[10], a differential seminorm on a subalgebra A ⊂ A is a map T : A → 1+(N)

such that T (a)(0) ≤ C‖a‖ and T (λa) = |λ|T (a) and T (ab) ≤ T (a) ∗ T (b). The
functional

∫ : 1(N) → C, f �→ ∑

k∈N f (k), is positive and multiplicative, and if
T : A → 1+(N) is a differential seminorm, then

∫

T : A → R+ is a submulitiplicative
seminorm.

Proposition 2.10 (Cf. [10]) Let A be a C∗-algebra with norm ‖ · ‖, A ⊂ A a dense
∗-subalgebra and {∂ j : A → A}dj=1 a finite family of commuting ∗-derivations. Then
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for α ∈ N
d a multi-index,

‖a‖n =
∑

|α|≤n

∥

∥∂αa
∥

∥

α! , ∂α = ∂
α1
1 . . . ∂

αd
d , |α| :=

n
∑

k=1

αk, α! :=
d

∏

k=1

(αk !),

is a sequence of submutliplicative seminorms on A. Let An denote the closure of A
in the seminorms ‖ · ‖k , k ≤ n and A∞ := lim←−An the Fréchet closure of A in all the
seminorms ‖ · ‖n. Then for n = 0, . . . ,∞, An is a pre-C∗-algebra.

Proof Defining

(

α

β

)

:= ∏d
k=1

(

αk

βk

)

, one proves that ∂α(ab) = ∑

β≤α

(

α

β

)

∂β(a)

∂α−β(b), by induction on α. Following [10], for n ∈ N we consider the maps

Tn : A → 1+(N), Tn(a)(k) :=
∑

|α|=k ‖∂αa‖
α! for k ≤ n, Tn(a)(k) = 0 for k > n.

Indeed the Tn satisfy Tn(a)(0) = ‖a‖ and Tn(λa) = |λ|Tn(a) as well as

Tn(ab)(k) =
∑

|α|=k

1

α!
∥

∥∂α(ab)
∥

∥ ≤
∑

|α|=k

∑

β≤α

1

β!
∥

∥∂β(a)
∥

∥

1

(α − β)!
∥

∥∂α−β(b)
∥

∥

≤
∑

|α|+|β|=k

1

β!
∥

∥∂β(a)
∥

∥

1

α!
∥

∥∂α(b)
∥

∥ ≤ Tn(a) ∗ Tn(b)(k),

which shows that Tn is a differential algebra norm. Moreover for k ≥ 1

Tn(ab)(k) ≤
∑

|α|+|β|=k

1

β!
∥

∥∂β(a)
∥

∥

1

α!
∥

∥∂α(b)
∥

∥

= ‖a‖
(

∑

|β|=k

1

β!
∥

∥∂β(b)
∥

∥

)

+
(

∑

|α|=k

1

α!
∥

∥∂α(a)
∥

∥

)

‖b‖

+
∑

|α|,|β|≥1

1

β!
∥

∥∂β(a)
∥

∥

1

α!
∥

∥∂α(b)
∥

∥,

so that each Tn is of logarthmic order ≤ 1 (see [10, Definition 3.4]). We then have
‖a‖n = ∫

Tn(a) and the result for An follows from [10, Propositions 3.3 and 3.12].
The result for A∞ then follows since A∞ = ⋂∞

n=0 An and the result holds for each
An .

Now let A ⊂ A and B ⊂ B be dense ∗-subalgebras and E an A-B pre-Morita
equivalence bimodule. Suppose we are given a families of commuting ∗-derivations

{∂L
j }dj=1 : A → A, {∂ R

j }dj=1 : B → B,
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as well as a commuting family of operators ∇ j : E → E such that for each j and all
a ∈ Cc(G), b ∈ Cc(H), ξ, η ∈ Cc(Z) and b ∈ B we have

∇ j (a · ξ · b) = ∂L
j (a) · ξ · b + a · ∇ j (ξ) · b + a · ξ · ∂ R

j (b), (3)

∂ R
j (ξ | η)B = (ξ | ∇ j (η))B − (∇ j (ξ) | η)B. (4)

It is worth noting that the identity

∂L
j A(ξ | η) = A(ξ | ∇ j (η)) − A(∇ j (ξ) | η), (5)

is satisfied as well. By using Eqs. (3), (4) and the compatibility of left and right inner
products, we find for ξ, η, e ∈ E :

A(ξ | ∇ j (η)) · e − A(∇ j (ξ) | η) · e = ξ · (∇ j (η) | e)B − ∇ j (ξ) · (η | e)B
= ξ · (η | ∇ j (e))B − ξ · ∂ R

j (η | e)
− ∇ j (ξ) · (η | e)B

= ξ · (η | ∇ j (e))B − ∇ j (ξ · (η | e)B)

= A(ξ | η) · ∇ j (e) − ∇ j (A(ξ | η) · e))
= ∂L

j A(ξ | η) · e,

so that (5) follows.
We write An,Bn for the pre-C∗-algebra completions obtained through Proposi-

tion 2.10. Similarly we write

∇α := ∇α1
1 · · · ∇αd

d , α ∈ N
d , ‖e‖n :=

∑

|α|≤n

‖∇α(e)‖
α!

as well as En for the completion of E in the seminorms up to degree n, and E = E∞
for the completion of E in all these seminorms.

Definition 2.11 Suppose that EB is a right C∗-module with B a unital C∗-algebra and
ωB : B → C a state. The localisation hω is the Hilbert space that comes from the
completion of E in the inner product

〈e1, e2〉ω = ωB
(

(e1 | e2)B
)

.

Remark 2.12 If AEB is a Morita equivalence bimodule and the state τ : B → C is
a trace, then there is a canonical dual tracial weight Trτ on KB(E) ∼= A such that
Trτ (�R

e1,e2) = τ((e2 | e1)B) for any e1, e2 ∈ E .We can localise AEB with a left-linear
inner-product from Trτ to obtain the dual localisation space h∗

ω. Hence in this special
case, the localisation Hilbert space directly agrees with the Gabor analysis literature.
See [2] for more details.



Journal of Fourier Analysis and Applications (2021) 27 :69 Page 11 of 39 69

Given any state ω : B → C, the seminorms ‖ · ‖n induce a family of seminorms
‖ · ‖n,ω on the Hilbert space localisation hω,

‖ξ‖n,ω :=
∑

|α|≤n

‖∇α(ξ)‖hω

α! , n ∈ N.

Proposition 2.13 For n = 0, . . . ,∞ the space En is aAn-Bn pre-Morita equivalence
bimodule. Moreover, for any state ω : B → C, the image of En in hω is bounded in
the seminorms ‖ · ‖k,ω for 0 ≤ k ≤ n.

Proof The space

L(E) :=
{(

a ξ

η∗ b

)

: a ∈ A, b ∈ B, ξ, η ∈ E

}

with multiplication and involution

(

a1 ξ1
η∗
1 b1

)

·
(

a2 ξ2
η∗
2 b2

)

:=
(

a1a2 + A(ξ1 | η2) a1ξ2 + ξ1b2
(a∗

2η1)
∗ + (η2b2)∗ (η1 | ξ2)B + b1b2

)

,

(

a ξ

η∗ b

)∗

:=
(

a∗ η∗
ξ b∗

)

,

is an associative ∗-algebra, the linking algebra of E. It is a dense ∗-subalgebra of the
linking C∗-algebra L(E) of the C∗-module closure E of E. Using the identities (3),
(4) and (5), one shows that the maps ∇ j induce a family of commuting ∗-derivations
on the linking algebra via

� j

(

a ξ

η∗ b

)

:=
(

∂L
j a ∇ j (ξ)

−∇ j (η)∗ ∂ R
j b

)

,

and the norms ‖e‖n defined above are the restrictions of the norms obtained from the
derivations� j . This proves that En is anAn-Bn bimodule. Since En is a subspace of E ,
the properties of Definition 2.6 will follow once we show that the left and right inner
products on AEB take values in An and Bn , respectively, when restricted to En . This
in turn follows since the inner products are realised as multiplications in the linking
algebra. Lastly we have ‖e‖k,ω ≤ ‖e‖k for any state ω, so the image of En is bounded
in each of the seminorms ‖e‖k,ω with k ≤ n.

Remark 2.14 The pre-Morita equivalence bimodule A∞E∞B∞ is the ‘smoothest’
bimodule over pre-C∗-algebras that we can consider from the derivations {∂L

j }dj=1 and

{∂ R
j }dj=1. The lower-order pre-Morita equivalence bimodules AnEnBn for 1 ≤ n < ∞

will allow us to consider C∗-module and Hilbert space frames of differing regularity.
This will be of use to us when considering the localisation dichotomy of Wannier
bases in Sect. 5.3.
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2.4 Groupoid C∗-Algebras and Equivalence

Groupoids provide a useful generalisation of groups and group actions on spaces. A
standard reference for groupoid C∗-algebras is [36].

Definition 2.15 A groupoid is a set G with a subset G(2) ⊂ G × G, a multiplication
map G(2) → G, (γ, ξ) �→ γ ξ and an inverse G → G, γ �→ γ −1 such that

(i) (γ −1)−1 = γ for all γ ∈ G,
(ii) if (γ, ξ), (ξ, η) ∈ G(2), then (γ ξ, η), (γ, ξη) ∈ G(2),
(iii) (γ, γ −1) ∈ G(2) for all γ ∈ G,
(iv) for all (γ, ξ) ∈ G(2), (γ ξ)ξ−1 = γ and γ −1(γ ξ) = ξ .

Given a groupoid we denote by G(0) = {γ γ −1 : γ ∈ G} the space of units and
define the source and range maps r , s : G → G(0) by the equations

r(γ ) = γ γ −1, s(γ ) = γ −1γ

for all γ ∈ G. The source and range maps allow us to characterise

G(2) = {

(γ, ξ) ∈ G × G : s(γ ) = r(ξ)
}

.

Throughout thiswork,wewill assume thatG is equippedwith second countable, locally
compact and Hausdorff topology such that the mulitplication, inversion, source and
range maps are all continuous. A groupoid G is étale if the range map r : G → G(0) is a
local homeomorphism. Étale groupoids have the useful property that for all x ∈ G(0),
the fibres r−1(x) and s−1(x) are discrete.

Examples 2.16 (i) Let G be a group, then it is also a groupoid such that G(0) = {e}
with multiplication and inverse given by the group operation. If G is discrete, then
it is étale as a groupoid.

(ii) Let X be a locally compact Hausdorff space, G a locally compact group and
suppose there is a continuous left-action G → Homeo(X) so that (g, x) �→
g · x is jointly continuous. We can define the locally compact and Hausdorff
transformation groupoid X � G given by pairs (x, g) ∈ X × G such that (X �

G)(0) = X ,

(x, g)−1 = (g−1 · x, g−1), (x, g)(g−1 · x, h) = (x, gh),

s(x, g) = g−1 · x, r(x, g) = x .

Definition 2.17 Let G be a locally compact and Hausdorff groupoid. A continuous
map σ : G(2) → T is a 2-cocycle if

σ(γ, ξ)σ (γ ξ, η) = σ(γ, ξη)σ (ξ, η)

for any (γ, ξ), (ξ, η) ∈ G(2), and

σ(γ, s(γ )) = 1 = σ(r(γ ), γ )
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for all γ ∈ G. We will call a groupoid 2-cocycle normalised if σ(γ, γ −1) = 1 for all
γ ∈ G.

The following result is well-known, though for completeness we provide a proof.

Lemma 2.18 If a groupoid 2-cocycle σ : G(2) → T is normalised, then σ(γ, ξ) =
σ(γ ξ, ξ−1) and σ(γ, ξ) = σ(ξ−1, γ −1) for all (γ, ξ) ∈ G(2).

Proof Using the 2-cocyle identity,

σ(γ, ξ)σ (γ ξ, ξ−1) = σ(γ, s(ξ−1))σ (ξ, ξ−1) = 1

so σ(γ, ξ) = σ(γ ξ, ξ−1). Next we compute that

σ(γ ξ, ξ−1)σ (γ ξξ−1, γ −1) = σ(γ ξ, ξ−1γ −1)σ (ξ−1, γ −1) = σ(ξ−1, γ −1)

and using the first identity

σ(γ ξ, ξ−1)σ (γ ξξ−1, γ −1)

= σ(γ, ξ)σ (γ ξξ−1γ −1, γ ) = σ(γ, ξ)σ (r(γ ξ), γ ) = σ(γ, ξ)

which gives that σ(γ, ξ) = σ(ξ−1, γ −1).

We briefly review the construction of groupoid C∗-algebras.

Definition 2.19 A Haar system on a locally compact Hausdorff groupoid G is a set of
measures {νx : x ∈ G(0)} on G such that supp(νx ) = r−1(x) and for all f ∈ Cc(G),

∫

G
f (ξ) dνr(η)(ξ) =

∫

G
f (ηξ) dνs(η)(ξ), g(x) :=

∫

G
f (ξ) dνx (ξ) ∈ C(G(0)).

Étale groupoids always have a Haar system given by the counting measure on the
(discrete) fibres r−1(x). Given G with a 2-cocycle σ and Haar system {νx }x∈G(0) , we
can define a ∗-algebra structure on Cc(G, σ ),

( f1 ∗ f2)(η) =
∫

G
f (ξ)g(ξ−1η) σ (ξ, ξ−1η) dνr(η)(ξ), f ∗(ξ) = σ(ξ, ξ−1) f (ξ−1).

We will restrict ourselves to normalised cocycles, σ(ξ, ξ−1) = 1 as it covers all
examples of interest to us. See [36] for the general construction. The algebraCc(G, σ )

has a right C0(G(0))-module structure, where ( f · g)(ξ) = f (ξ)g(s(ξ)) for f ∈
Cc(G, σ ) and g ∈ C0(G(0)). We can define a C0(G(0))-valued inner-product

( f1 | f2)G(0) (x) =
∫

G
f1(ξ−1) f2(ξ

−1) σ (ξ, ξ−1) dνx (ξ)

=
∫

G
f1(ξ−1) f2(ξ

−1) dνx (ξ)
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as σ is normalised. Completing this space in the norm of C0(G(0)) gives a right-
C0(G(0))-module, which we denote by L2(G, ν)G(0) . There is a canonical left-action
of Cc(G, σ ) on L2(G, ν)G(0) by the (twisted) convolution product.

Definition 2.20 (cf. [22]) The reduced groupoid C∗-algebra C∗
r (G, σ ) is the com-

pletion of Cc(G, σ ) in the norm inherited from the embedding Cc(G, σ ) ↪→
End∗

C0(G(0))
(L2(G, ν)).

If there is a topological space Z with (continuous) map ρ : Z → G(0), we denote by
G�ρ Z and Z�ρG the pullbackwith respect to the source and rangemaps respectively.

Definition 2.21 (G-space) A Hausdorff topological space Z is a left G-space if there is
a continuous map, called the anchor or moment map, ρ : Z → G(0) and a continuous
map

G �ρ Z → Z , (γ, z) �→ γ · z ∈ Z

such that for (γ, z) ∈ G �ρ Z and (γ1, γ2) ∈ G(2),

ρ(γ · z) = r(γ ), ρ(z) · z = z, (γ1γ2) · z = γ1 · (γ2 · z)

Unless otherwise stated, wewill always assume that themomentmap ρ : Z → G(0)

is open and surjective. One may also consider a right H-space from φ : Z → H(0),
where the definition is analogous to the above but instead using a map Z �φ H → Z
such that ρ(z · η) = s(η). When the context is clear, we will write left/right-actions
as γ z or zη.

We say that Z is a proper G-space (or that G acts properly) if the map

G �ρ Z → Z × Z , (γ, z) �→ (γ · z, z)

is proper. If the map (γ, z) �→ (γ ·z, z) is injective, then we say that Z is a free G-space
or that G acts freely.

Definition 2.22 Let G and H be (locally compact, Hausdorff) groupoids and assume
that Z carries both a left-G and right-H action via moment maps ρ : Z → G(0) and
φ : Z → H(0). We say that Z is a G–H-bibundle if the actions commute, i.e.,

(1) for all (γ, z) ∈ G �ρ Z and (z, η) ∈ Z �φ H, (γ · z) · η = γ · (z · η),
(2) for all (z, η) ∈ Z �φ H, ρ(z · η) = ρ(z),
(3) for all (γ, z) ∈ G �ρ Z , φ(γ · z) = φ(z).

A G–H bibundle is a groupoid equivalence if the maps

G �ρ Z → Z ∗H(0) Z , (γ, z) �→ (γ · z, z),
Z �φ H → Z ∗G(0) Z , (z, η) �→ (z, z · η)

are homeomorphisms.
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At the level of operator algebras, groupoid equivalence implies Morita equivalence

of the (full or reduced) groupoidC∗-algebras [34,38]. Let G ρ←− Z
φ−→ H be a groupoid

equivalence such that G and H have Haar systems {νx }x∈G(0) and {λy}y∈H(0) respec-
tively. Then there is a left (resp. right) action of Cc(G) (resp. Cc(H)) on Cc(Z) given
by

( f · ξ)(z) =
∫

G
f (γ )ξ(γ −1z) dνρ(z)(γ ), ξ ∈ Cc(Z), f ∈ Cc(G),

(ξ · g)(z) =
∫

H
ξ(zη)g(η−1) dλφ(z)(η), ξ ∈ Cc(Z), g ∈ Cc(H). (6)

There is also the Cc(H)-valued inner product

(ξ1 | ξ2)H(η) =
∫

G
ξ1(γ −1z)ξ2(γ

−1zη) dνρ(z)(γ ) (7)

where z ∈ Z is chosen such that φ(z) = r(η).

Proposition 2.23 [38, Theorem 4.1] Let Z be a G–H groupoid equivalence. Then
Cc(Z) is a pre-Morita equivalence bimodule for Cc(G) and Cc(H). Consequently,
C∗
r (G) and C∗

r (H) are Morita equivalent.

We denote by GL2(Z)H the Morita equivalence bimodule that links C∗
r (G) and

C∗
r (H). Because we work with reduced groupoidC∗-algebras, theMorita equivalence

bimodule completion of Cc(Z) is constructed from the linking groupoid L = G � Z �
Zop�H [38]. In Sect. 4.1we discuss instances of twisted groupoidMorita equivalence.

3 Frames of Translates andWannier Bases fromGroupoid
Equivalences

We let G ρ←− Z
φ−→ H be a G–H equivalence of locally compact, second countable

and Hausdorff groupoids such that H(0) is compact and H is étale. In particular, this
implies that C∗

r (H) is unital. We assume that G has a Haar system {νx }x∈G(0) and so
Cc(G)Cc(Z)Cc(H) is a pre-Morita equivalence bimodule described by Eqs. (6) and (7).
Because H is étale, the right-action in Eq. (6) reduces to a sum over the discrete set
r−1(φ(z)).

3.1 C∗-Module Frame

Because all C∗-algebras are separable, there exists a countable right module frame
for GL2(Z)H. Furthermore, since C∗

r (H) is unital, GL2(Z)H is finitely generated and
projective as a left C∗

r (G)-module and so has a finite left C∗-module frame.
A right module frame for the submodule Cc(Z) is constructed in [34, Proposition

2.10]. We briefly review this construction. We say that a subset L ⊂ G is r -relatively
compact if L ∩ r−1(K ) is relatively compact for every compact K ⊂ G. We consider
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a triple (K ,U , ε) with K ⊂ G(0) compact with U ⊂ G an r -relatively compact
neighbourhood of G(0) and ε > 0. Because G(0) is paracompact and G acts properly
on Z , there are open, relatively compact sets {Vj }nj=1 ⊂ Z such that {ρ(Vj )}nj=1 cover
K and are such that (γ z, z) ∈ Vj ×Vj implies that γ ∈ U . We take a partition of unity
{ψ j }nj=1 subordinate to the cover {ρ(Vj )}Nj=1. We can then find functions {ψ̃ j }nj=1

such that supp(ψ̃ j ) ⊂ Vj and

∑

η∈r−1(φ(z))

ψ̃ j (zη) = ψ j (ρ(z)).

Finally, we can approximate ψ̃ j with {ϕ j }nj=1 such that supp(ϕ j ) ⊂ Vj and

∣

∣

∣ψ̃ j (z) − ϕ j (z)
∫

G
ϕ j (γ

−1z) dνρ(z)(γ )

∣

∣

∣ ≤ ε

M
M = sup

z

n
∑

j=1

∑

η∈r−1(φ(z))

χVj (zη).

The functions en = ∑n
j=1 G(ϕ j | ϕ j ) are an approximate identity for the left action

of Cc(G) on Cc(Z). The functions {ϕ j } ⊂ Cc(Z) can then be used to construct a right
C∗-module frame in the Morita equivalence bimodule GL2(Z)H [38].

3.2 Localisation and Hilbert Space Frame

For any x ∈ H(0) we have a state ωx given by the restriction of f ∈ Cc(H) to H(0)

and then evaluation at x ∈ H(0). We see that

ωx (g
∗g) =

∑

η∈r−1(x)

|g(η)|2,

which shows thatωx is positive. There are other possible states onC∗
r (H) that onemay

also consider such as integration with respect to a quasi-invariant measure [36]. The
reason we choose the evaluation state is because we would like to construct Parseval
frames that have a discrete labeling. By choosing x ∈ H(0), the discrete set r−1(x)
provides us with such a labeling.

Lemma 3.1 Fix an element x ∈ H(0). Then there are real-valued functions
{δα}α∈r−1(x) ⊂ Cc(H) such that ωx (δα1 ∗ δ∗

α2
) = δα1,α2 .

Proof Because H(0) is compact and r−1(x) is discrete, for each α ∈ r−1(x) we take
δα a bump function supported on Uα such that Uα ∩ r−1(x) = {α} and δα(α) = 1.
Then we compute that

ωx
(

δα1 ∗ δ∗
α2

) =
∑

β∈r−1(x)

δα1(β)δα2(β) = δα2(α1) = δα1,α2

as the sum vanishes everywhere except for at most one term.
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Lemma 3.2 Let Zx = φ−1(x) and for z ∈ Zx define the measure νρ(z) on Zx by

∫

Zx

f (w)dνρ(z)(w) :=
∫

G
f (γ −1 · z)dνρ(z)(γ ).

The Hilbert space localisation hx of GL2(Z)H in ωx is L2(Zx , dνρ(z)) with z ∈ Zx

chosen arbitrarily.

Proof We consider the inner-product, where

〈e1, e2〉x = ωx
(

(e1 | e2)H
) = (e1 | e2)H(x) =

∫

G
e1(γ −1z)e2(γ

−1zx) dνρ(z)(γ )

=
∫

G
e1(γ −1z)e2(γ

−1zφ(z)) dνρ(z)(γ ) =
∫

G
e1(γ −1z)e2(γ

−1z) dνρ(z)(γ )

Hence the Hilbert space is the L2-completion of Cc(Zx ) with respect to the measure
νρ(z). Since Z is an equivalence, for every z, w ∈ Zx there exists γ ∈ r−1(ρ(z)) ⊂ G
such that w = γ −1z. The measure νρ(z) is thus independent of the choice of z ∈ Zx .

Given x ∈ H(0) and e ∈ GL2(Z)H, we let ex be the corresponding element in
the localisation L2(Zx ). Given any α ∈ r−1(x), define a function eα

x ∈ L2(Zx ) by
(eα

x )(y) = e(yα), y ∈ Zx .

Lemma 3.3 Let e ∈ GL2(Z)H, a ∈ H(0) and α ∈ r−1(x).

(i) There is an equality eα
x = (e · δ∗

α)x with δα be the bump functions from Lemma 3.1.
(ii) If e ∈ GL2(Z)H is such that (e | e)H = 1H, then {eα

x }α∈r−1(x) is an orthonormal
system in L2(Zx );

(iii) Given e1, e2, ξ ∈ GL2(Z)H,

(

�R
e1,e2(ξ)

)

x =
∑

α∈r−1(x)

(e1)
α
x 〈(e2)αx , ξx 〉x .

Proof. We first note that e(yα) is well-defined as ρ(y) = x = r(α). For part (i) we
compute for y ∈ Zx ,

(e · δ∗
α)(y) =

∑

β∈r−1(x)

e(yβ)δ∗
α(β−1) =

∑

β∈r−1(x)

e(yβ)δα(β) = e(yα).

Using part (i) and Lemma 3.1, we see that for e such that (e | e)H = 1,

〈eα1
x , eα2

x 〉x = ωx
(

(e · δ∗
α1

| e · δ∗
α2

)H
) = ωx

(

δα1 (e | e)H δ∗
α2

) = δα1,α2

and so {eα
x }α∈r−1(x) is an orthonormal system, which proves part (ii).
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For part (iii), we again compute for y ∈ φ−1(x)

(

�R
e1,e2(ξ)

)

(y) =
∑

α∈r−1(x)

e1(yα)(e2 | ξ)H(α−1)

=
∑

α∈r−1(x)

e1(yα)

∫

G
e2(γ −1z)ξ(γ −1zα−1) dνρ(z)(γ ).

We now let u = zα−1, where uα = zs(α) = zφ(z) = z and ρ(u) = ρ(zα−1) = ρ(z)
as Z is a groupoid equivalence. Hence

(

�R
e1,e2(ξ)

)

(y) =
∑

α∈r−1(x)

e1(yα)

∫

G
e2(γ −1uα)ξ(γ −1u) dνρ(u)(γ )

=
∑

α∈r−1(x)

(e1)
α
x (y) 〈(e2)αx , ξx 〉x .

This completes the proof.

For a countable set J and a C∗-algebra B we denote by 2(J , B) the standard
Hilbert C∗-module of sequences indexed by J . That is

2(J , B) :=
{

f : J → B :
∑

j∈J

f ( j)∗ f ( j) < ∞
}

,

where the series converges in B. We now come to our main result relating C∗-module
frames to localised frames of translates.

Theorem 3.4 Let {e j } j∈J ⊂ GL2(Z)H be a countable subset and E :=
spanH{e j : j ∈ J } the closed C∗

r (H) submodule generated by {e j } j∈J . The following
are equivalent:

(1) The sequence {e j } j∈J is a right C∗-module frame of E ⊂ GL2(Z)H;
(2) For ξ ∈ E the map j �→ (e j | ξ)H takes values in 2(J ,C∗

r (H)) and for all
x ∈ H(0) the set {(e j )αx } j∈J ,α∈r−1(x) is a normalised tight frame for Ex ⊂ L2(Zx );

Proof (1) ⇒ (2): Using part (iii) of Lemma 3.3, we see that

∑

j∈J

∑

α∈r−1(x)

(e j )
α
x 〈(e j )αx , ξx 〉x =

∑

j∈J

(

�R
e j ,e j (ξ)

)

x = ξx

as (e j ) j∈J is a right C∗-module frame.
(2) ⇒ (1): In order to prove that {e j } j∈J is a Hilbert C∗-module frame for E , we

need to show that the map

v : E → 2(J ,C∗
r (H)), ξ �→ (e j | ξ)H,
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satisfies v∗v = 1. Note that v is well-defined sincewe assume that j �→ (e j | ξ)H is an
element of 2(J ,C∗

r (H)), and v is automatically adjointable with v∗(b j ) = ∑

j e j ·b j .

Since {(e j )αx } j∈J ,α∈r−1(x) is a normalised tight frame for Ex ⊂ L2(Zx ), the map

vx : L2(Zx ) → 2(J × r−1(x)), ψ �→ 〈(e j )αx , ψ〉x ,

is an isometry, for

〈ψ,ψ〉x = ‖ψ‖2x =
∑

( j,α)∈J×r−1(x)

∣

∣〈(e j )αx , ψ〉x
∣

∣

2 = ‖vx (ψ)‖2

= 〈vxψ, vxψ〉2(J×r−1(x)),

and it follows that v∗
xvx = 1 . The map v∗

x is given by

v∗
x : (λα

j ) �→
∑

j, α

(e j )
α
x λα

j ,

and we find from Lemma 3.3

ξx = v∗
xvx (ψ) =

∑

α, j

(e j )
α
x 〈(e j )αx , ξx 〉x =

(
∑

j

�e j ,e j (ξ)
)

x
= (v∗v(ξ))x .

Therefore we can conclude that

‖ξ − v∗v(ξ)‖ = sup
x

‖ξ − v∗v(ξ)‖x = sup
x

‖ξx − (v∗v(ξ))x‖x = 0,

and hence v∗v = 1.

Remark 3.5 Well-definedness of the map v : E → 2(J ,C∗
r (H)) entails that for all

e ∈ E the series

∑

j

(e | e j )H (e j | e)H,

is norm convergent in C∗
r (H). This is automatic when the index set J is finite but

poses a non-trivial restriction for infinite J .

3.3 Finitely Generated and Projective Modules

Using the left-action of C∗
r (G) on L2(Z), we can define a representation of πx :

C∗
r (G) → B(hx ), where

πx ( f )ξx = ( f · ξ)x , f ∈ C∗
r (G), ξ ∈ L2(Z).
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Concretely,

(πx ( f )ξx )(y) =
∫

G
f (γ )ξ(γ −1y) dνρ◦φ−1(x)(γ ), f ∈ Cc(G), ξ ∈ Cc(Z).

We consider projections, p = p∗ = p2 ∈ Mn(C∗
r (G)), which act compactly on

L2(Z)⊕n .

Proposition 3.6 Let p = p∗ = p2 ∈ Mn(C∗
r (G)). There is a finite set {v j }nj=1 ⊂

pL2(Z)⊕n such that for any x ∈ H(0), {vα
1 , . . . , vα

n }α∈r−1(x) is a normalised tight
frame of πx (p)h⊕n

x .

Proof By Lemma 2.9 (2), there is a finite frame {v j }nj=1 of pL
2(Z)⊕n . It is immediate

that the localisation of pL2(Z)⊕n in ωx is πx (p)h⊕n
x . The result then follows by the

same proof as Theorem 3.4.

Let us now consider the converse, i.e. given the Hilbert space frames {wα
1 , . . . ,

wα
m}α∈r−1(x) for x ∈ H(0), we construct a finitely generated and projective module.

Proposition 3.7 Let W ⊂ GL2(Z)H be a closed submodule and {w1, . . . , wn} a finite
subset of GL2(Z)H such that W := spanC∗

r (H){w1, . . . , wn}. Suppose that for all

x ∈ H(0), {wα
1 , . . . , wα

m}α∈r−1(x) is a normalised tight frame of Wx ⊂ L2(Zx , dνρ(x)).
ThenW is a finitely generated andprojectivemodule overC∗

r (H). If, for each x ∈ H(0),
{wα

1 , . . . , wα
m}α∈r−1(x) is an orthonormal basis, then W ∼= C∗

r (H)⊕m.

Proof The first part of the Proposition follows immediately from Theorem 3.4 and the
fact that any C∗

r (H)-module with a finite C∗-module frame is finitely generated and
projective. Now suppose that {wα

1 , . . . , wα
m}α∈r−1(x) is an orthonormal basis and let

p jk = (w j | wk)H ∈ C∗
r (H). For any x ∈ H(0), we have that

δ j,k δα1,α2 = 〈wα1
j , w

α2
k 〉x = ωx

(

δα1 (w j | wk)H δ∗
α2

) =
∑

β∈r−1(x)

(δα1 ∗ p jk)(β)δα2(β)

= (δα1 ∗ p jk)(α2) =
∑

η∈r−1(x)

δα1(η)p jk(η
−1α2) = p jk(α

−1
1 α2)

for all α1, α2 ∈ r−1(x) and all j, k ∈ {1, . . . ,m}. Now, for any η ∈ H, we can
find some x ∈ H(0) and α, β ∈ r−1(x) such that η = α−1β. Hence, p jk(η) =
p jk(α

−1β) = δ j,k δα,β . This implies that the matrix p ∈ Mm(C∗
r (H)) is the identity

matrix. Hence W
�−→ C∗

r (H)⊕m .

Theorem 3.8 Let p = p∗ = p2 ∈ Mn(C∗
r (G)). The finitely generated and projective

module pL2(Z)⊕n with frame {v j }mj=1 is isomorphic to the free module C∗
r (H)⊕m if

andonly if for all x ∈ H(0), {vα
1 , . . . , vα

m}α∈r−1(x) is an orthonormal basis ofπx (p)h⊕n
x .
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Proof Suppose there is a unitary isomorphism of C∗-modules ϕ : pL2(Z)⊕n �−→
C∗
r (H)⊕m . It is clear that {1 j }mj=1 is right-frame of C∗

r (H)⊕m and because ϕ respects

the inner-product structure {v j }mj=1 is a frame of pL2(Z)⊕n with v j = ϕ−1(1 j ). We
know that {vα

j } is a normalised tight frame by Proposition 3.6 and we see that

〈(v j )
α1
x , (vk)

α2
x 〉x = ωx

(

(v j · δ∗
α1

| vk · δ∗
α2

)H
) = ωx

(

δα1 (ϕ−1(1k) | ϕ−1(1 j ))H δ∗
α2

)

= δ j,k ωx (δα1 ∗ δ∗
α2

) = δ j,k δα1,α2 .

Hence the tight frame is orthonormal and so is an orthonormal basis. The converse
statement follows from Proposition 3.7.

Remark 3.9 (K -theoretic interpretation) Theorem 3.8 has an interpretation via the K -
theoryof thegroupoidC∗-algebras.Using the∗-isomorphismC∗

r (G) ∼= KC∗
r (H)(L2(Z)),

we can naturally consider any projection p ∈ Mn(C∗
r (G)) as a finite-rank operator on

L2(Z)⊕n
H . Therefore we can also consider p as a projection in Mm(C∗

r (H)) for some
m, with corresponding K -theory class [p] ∈ K0(C∗

r (H)). If pL2(Z)H ∼= C∗
r (H)⊕m ,

then [p] = m[1] ∈ K0(C∗
r (H)) and the projection p is trivial in reduced K -theory.

Let us now consider the case where there are dense pre-C∗-algebras A ⊂ C∗
r (G)

andB ⊂ C∗
r (H), whichwill allow us to considerC∗-modules andHilbert space frames

with additional regularity as in Proposition 2.13. Thus suppose there are families of
commuting ∗-derivations

{∂Hj }dj=1 : Cc(H) → Cc(H), {∂Gj }dj=1 : Cc(G) → Cc(G),

as well as a family of maps ∇ j : Cc(Z) → Cc(Z) such that for each j and all
a ∈ Cc(G), b ∈ Cc(H), ξ, η ∈ Cc(Z), Eqs. (3) and (4) hold. Denote by Sk(G) and
Sk(H) the degree k Fréchet completions of Cc(G) and Cc(H) in these seminorms
(Proposition 2.10), and by Sk(Z) the degree k Fréchet completion of Cc(Z). We often
write S for S∞ in each of these cases. By Proposition 2.13, Sk (G)Sk(Z)Sk (H) is a
pre-Morita equivalence bimodule for all k = 0, . . . ,∞.

Theorem 3.10 Let k = 0, . . . ,∞ and p = p∗ = p2 ∈ Mn(Sk(G)). Then there is a
finite frame {v j }mj=1 of pSk(Z)⊕n

Sk (H)
such that for all x ∈ H(0) the normalised tight

frame {vβ
1 , . . . , v

β
m}β∈r−1(x) of πx (p)h⊕n

x is finite with respect to the seminorms ‖ ·‖l,x
on hx for 0 ≤ l ≤ k. There is an isomorphism pSk(Z)⊕n

Sk (H)
∼= Sk(H)⊕m if and only

if for all x ∈ H(0), {vβ
1 , . . . , v

β
m}β∈r−1(x) is an orthonormal basis.

Proof Because v j · δ∗
β ⊂ Sk(Z) for any x ∈ H(0) and β ∈ r−1(x), the first statement

then follows from Lemma 2.9 and Proposition 2.13. Lemma 2.9 and the fact that
Sk(H) is a pre-C∗-algebra give that pSk(H)⊕n is a free Sk(H)-module if and only if
its C∗-completion is a free C∗

r (H)-module.
If pSk(Z)⊕n

Sk (H)
∼= Sk(H)⊕m , then there is a finite frame {v1, . . . , vm} ⊂ pSk(Z)⊕n

such that (vi | v j )B = δi, j 1Sk (H). By part (ii) of Lemma 3.3 we therefore see that
{v1, . . . , vα

m}α∈r−1(x) is an orthonormal system and hence must be an orthonormal
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basis. For the converse, we can use Proposition 3.7 and the fact that the finite C∗
r (H)-

module frame can be approximated arbitrarily well by a finite Sk(H)-module frame
of the same size.

4 Frames of Translates andWannier Bases from Twisted Transversals

Here we consider our framework in the case of groupoid equivalences that come from
abstract transversals with an additional twist by a normalised groupoid 2-cocycle. In
Sect. 5 we apply these results to the Delone transversal groupoid with twist coming
from a magnetic field.

4.1 TwistedMorita Equivalence

Definition 4.1 A topological groupoid G admits an abstract transversal if there is a
closed subset X ⊂ G(0) such that

(i) X meets every orbit of the G-action on G(0);
(ii) for the relative topologies on X and

GX := {γ ∈ G : s(γ ) ∈ X} ⊂ G,

the restrictions r : GX → G(0) and s : GX → X are open maps.

Given an abstract transversal X ⊂ G(0), G r←− GX
s−→ H is a G–H groupoid

equivalence for H = {γ ∈ GX : r(γ ) ∈ X}, see [34, Example 2.7]. Examples of
abstract transversals include transitive groupoids and groupoids from foliations.

We now fix a locally compact, second countable and Hausdorff groupoid G such
that X ⊂ G(0) is compact and admits an abstract transversal GX withH étale. We also
fix a normalised groupoid 2-cocycle σG on G, i.e. σG(γ, γ −1) = 1 for all γ ∈ G. The
restriction of σG then gives a groupoid 2-cocycle σH for H. The 2-cocycle twists the
module structure

( f · e)(z) =
∫

G
f (γ )e(γ −1z) σG(γ, γ −1z) dνr(z)(γ ), e ∈ Cc(GX ), f ∈ Cc(G, σG),

(e · g)(z) =
∑

η∈r−1(s(z))

e(zη)g(η−1) σG(zη, η−1), e ∈ Cc(GX ), g ∈ Cc(H, σH),

(e1 | e2)H(η) =
∫

G
e1(γ −1z)e2(γ

−1zη) σG(z−1γ, γ −1zη) dνr(z)(γ ), r(η) = s(z).

Proposition 2.23 can be extended to the case of such simple twists. The case of general
groupoid twists arising from S1-extensions is handled via equivalence of Fell bundles,
see [33,39].

Proposition 4.2 The module Cc(GX ) is a pre-Morita equivalence bimodule for
Cc(G, σG) and Cc(H, σH). Consequently, C∗

r (G, σG) and C∗
r (H, σH) are Morita

equivalent.
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4.2 Twisted Frames andWannier Bases

We now outline the minor changes required to recover the results of Sect. 3 to the case
of twisted algebras. One advantage of restricting to normalised cocycles is that in the
Hilbert space localisation, the inner-product simplifies. Namely, for x ∈ X = H(0),

〈(e1)x , (e2)x 〉x = (e2 | e1)H(x) =
∫

G
e2(γ −1z)e1(γ

−1z) σG(z−1γ, γ −1z) dνr◦s−1(x)(γ )

=
∫

G
e2(γ −1z)e1(γ

−1z) dνr◦s−1(x)(γ ).

Lemma 4.3 Let x ∈ X and α ∈ r−1(x). For ex ∈ hx , define eα
x (y) =

e(yα) σG(yα, α−1).

(i) If e ∈ L2(GX , σ ) is such that (e | e)H = 1H, then {eα
x }α∈r−1(x) is an orthonormal

system in hx .
(ii) Given e1, e2, ξ ∈ GL2(GX , σ )H,

(

�R
e1,e2(ξ)

)

x =
∑

α∈r−1(x)

(e1)
α
x 〈ξx , (e2)αx 〉x

Proof. Like in the untwisted case, we see that for y ∈ s−1(x),

(e · δ∗
α)(y) =

∑

β∈r−1(x)

e(yβ)δα(β) σG(yβ, β−1) = e(yα) σG(yα, α−1).

Hence we can compute

〈eα1
x , eα2

x 〉x = ωx (δα1 ∗ δ∗
α2

) =
∑

β∈r−1(x)

δα1(β)δα2(β) σH(β, β−1) = δα1,α2 .

For part (ii), can follow the same argument as Lemma 3.3. For y ∈ s−1(x) and
u = zα−1 with uα = zs(α) = zs(z) = z and r(u) = r(zα−1) = r(z),

(

�R
e1,e2 (ξ)

)

(y)

=
∑

α∈r−1(x)

e1(yα) σG(yα, α−1)

∫

G
e2(γ −1uα)ξ(γ −1u) σG(α−1u−1γ, γ −1u) dνr(u)(γ )

=
∑

α∈r−1(x)

e1(yα) σG(yα, α−1)

∫

G
e2(γ −1uα) σG(γ −1uα, α−1) ξ(γ −1u) dνr(u)(γ )

=
∑

α∈r−1(x)

(e1)
α
x (y) 〈(e2)αx , ξx 〉x ,

where we used the 2-cocycle identity

σG(α−1, u−1γ )σG(α−1u−1γ, γ −1u) = σG(α−1, s(γ −1u))σG(u−1γ, γ −1u) = 1
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which implies that σG(α−1u−1γ, γ −1u) = σG(α−1, u−1γ ). Then using Lemma 2.18

σG(α−1, u−1γ ) = σG(γ −1u, α) = σG(γ −1uα, α−1).

This completes the proof.

Given elements w
α1
j , w

α2
k ∈ hx = L2(GX , dνr◦s−1(x)), we can compute that

〈wα1
j , w

α2
k 〉x = ωx

(

δα1(w j | wk)Hδ∗
α2

) = (

δα1 ∗ (w j | wk)H
)

(α2)

= (w j | wk)H(α−1
1 α2) σH(α1, α

−1
1 α2).

Hence, if 〈wα1
j , w

α2
k 〉x = δ j,k δα1,α2 for some α1, α2 ∈ r−1(x), the 2-cocycle term

will be 1.
At this point we can follow the same arguments as those in Theorem 3.4 and Sect.

3.3, so we summarise our results.

Proposition 4.4 If (e j ) j∈J is a right C∗-module frame of GL2(GX , σ )H, then for all
x ∈ X the set {(e j )αx } for j ∈ J and α ∈ r−1(x) is a normalised tight frame of hx .

We can again define a representation of πx : C∗
r (G, σG) → B(hx ), where

(πx ( f )ξx )(y) =
∫

G
f (γ )ξ(γ −1y) σG(γ, γ −1y) dνr◦s−1(x)(γ ),

f ∈ Cc(G), ξ ∈ Cc(GX ).

We consider the case of pre-C∗-algebras Sk(G, σ ) ⊂ C∗
r (G, σG) and Sk(H, σ ) ⊂

C∗
r (H, σH) defined from families of derivations with a pre-Morita equivalence bimod-

ule Sk (G,σ )Sk(GX , σ )Sk (H,σ ) defined from a family of maps ∇ j : Cc(Z) → Cc(Z)

using the construction in Proposition 2.13.

Proposition 4.5 Let k = 0, . . . ,∞ and p = p∗ = p2 ∈ Mn(Sk(G, σ )). There are
elements {v j }mj=1 ⊂ pSk(GX , σ )⊕n

Sk (H,σ )
such that for all x ∈ X, {vβ

1 , . . . , v
β
m}β∈r−1(x)

is a normalised tight frame of πx (p)h⊕n
x that is finite under the seminorms ‖ · ‖l,x on

hx for 0 ≤ l ≤ k. This tight frame is an orthonormal basis for all x ∈ H(0) if and only
if pSk(GX , σ )⊕n

Sk (H,σ )
∼= Sk(H, σ )⊕m.

5 Frames of Translates andWannier Bases for the Delone Groupoid

5.1 Delone Sets and the Transversal Groupoid

We review some of the material from [6] as outlined in [11]. We denote by B(x; K ) ⊂
R
d the open ball centered at x with radius K > 0.

Definition 5.1 Let L ⊂ R
d be discrete and infinite and fix 0 < r < R.

(1) L is r -uniformly discrete if |B(x; r) ∩ L| ≤ 1 for all x ∈ R
d .
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(2) L is R-relatively dense if |B(x; R) ∩ L| ≥ 1 for all x ∈ R
d .

An r -uniformly discrete and R-relatively dense set L is called an (r , R)-Delone set.

Proposition 5.2 [4, Sect. 3.2] The set of (r , R)-Delone sets is a compact and metriz-
able space. Let dH denote the Hausdorff distance between sets. A neighbourhood base
at L ∈ Del(r ,R) is given by the sets

Uε,M (L) = {

L′ ∈ Del(r ,R) : dH
(

L ∩ B(0; M), L′ ∩ B(0; M)
)

< ε
}

, M, ε > 0.

The set of Delone sets Del(r ,R) is clearly invariant under translations and rotations.

Definition 5.3 Let � be a an (r , R)-Delone subset of R
d . The continuous hull of � is

the dynamical system (��, R
d , T ), where �� ⊂ Del(r ,R) is the closure of the orbit

of � under the translation action.

The continuous hull of � therefore gives a locally compact Hausdorff groupoid
�� � R

d . This groupoid admits a transversal in the sense of Definition 4.1.

Definition 5.4 The transversal of � is given by the set

�0 = {L ∈ �� : 0 ∈ L},

We see that �0 is a closed subset of �� and so is compact.

Proposition 5.5 [21, Lemma 2] Given a Delone set � with transversal �0, define the
set

GDel := {

(L, x) ∈ �0 × R
d : x ∈ L

}

,

with maps

(L, x)−1 = (L − x,−x), (L, x) · (L − x, y) = (L, x + y),

s(L, x) = L − x, r(L, x) = L

and unit space G(0) = �0. Then GDel is a Hausdorff étale groupoid in the relative
topology inherited from �0 × R

d .

Notation Following the previous proposition, we will let GDel denote the étale
groupoid from a Delone set. We let F = �� � R

d be the crossed product groupoid.

Proposition 5.6 [11, Proposition 2.16] Let L ⊂ R
d be an (r , R)-Delone set with

transversal �0 and associated groupoid GDel. For U ⊂ �0 an open set, the sets

V(U ,y,ε) := (U × B(y; ε)) ∩ GDel = {(L, x) ∈ �0 × R
d : L ∈ U , x ∈ L ∩ B(y; ε)},

form a base for the topology on GDel. For 0 < ε < r/2, the restriction s : V(U ,y,ε) →
�0 is a homeomorphism onto its image. Moreover, the set �0 ⊂ �� is an abstract
transversal and the groupoid GDel ⊂ �� � R

d , with the subspace topology, is equiv-
alent to �� � R

d .
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Let us now fix a normalised 2-cocycle σ : (�� � R
d)(2) → T, σ(γ, γ −1) = 1 for

all γ ∈ �� � R
d , which also restricts to a 2-cocycle on GDel. Our main motivation to

consider such twists comes from the following example.

Example 5.7 (Magnetic twists, Sect. 2.2 of [7]) Working with the continuous hull
�� � R

d , we can define a 2-cocycle, σ : F (2) → T as follows. We first define a
parametrised magnetic field as a continuous map B : �� → ∧2

R
d . Then we define

σ((L, x), (L − x, y)) = exp
( − i�L〈0, x, x + y〉), �L〈x, y, z〉 =

∫

〈x,y,z〉
B(L)

and 〈x, y, z〉 ⊂ R
2d is the triangle with corners x, y, z ∈ R

d . Hence �L〈0, x, x + y〉
measures themagnetic flux through the triangle defined by the points 0, x, x+ y ∈ R

d .
It is shown in [7] that σ is a well-defined 2-cocycle. We remark that σ will always be
trivial for d = 1 and is normalised because

σ((L, x), (L − x,−x)) = exp
( − i�〈0, x, 0〉) = 1.

If the magnetic field is constant over ��, then our general flux equation can be
described using a real-valued and skew-symmetric matrix B with

σ((L, x), (L − x, y)) = exp
( − i〈x, B(x + y)〉) = exp

( − i〈x, By〉).

The 2-cocycle σ on �� � R
d also restricts to a normalised 2-cocycle on GDel, where

we note that if ((L, x), (L − x, y)) ∈ G(2)
Del, the points 0, x, x + y ∈ L and so

�L〈0, x, x + y〉 gives a flux through the triangle with points in L.

Remark 5.8 Given a groupoid 2-cocycle σ : (�� �R
d)(2) → T, the twisted groupoid

C∗-algebra C∗
r (�� �R

d , σ ) is canonically isomorphic to the twisted crossed product
C(��) �σ ′ R

d , where

σ ′ : R
d × R

d → U(C(��)), σ ′(x, y) = σ((L, x), (L − x, y)).

Regularity, smoothness and decay properties of functions on�� �R
d and GDel are

encoded via the groupoid 1-cocycles

ck : �� � R
d → R, c(L, x) = xk, k ∈ {1, . . . , d}.

and their restrictions to GDel. It is shown in [11, Proposition 2.17] that the groupoid
cycles are exact, in that c−1

k (0) has a Haar system and ck is a quotient map onto its
image.

Given the cocycles c j : �� � R
d → R

d , we obtain families of commuting deriva-
tions {∂ j }dj=1 on both Cc(�� � R

d , σ ) and Cc(GDel, σ ) given by (∂ j f )(L, x) =
x j f (L, x). For k = 0, . . . ,∞, we obtain pre-C∗-algebra completions Ak of
Cc(�� � R

d , σ ) and Bk of Cc(GDel, σ ) using Proposition 2.10.
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5.2 The TransversalGDel-Space and Its Localisation

Following Sect. 4, we consider the space

F�0 := {

(L, x) ∈ �� � R
d : x ∈ L

}

, s : F�0 → �0, s(L, x) = L − x,

which implements a groupoid equivalence between F = �� � R
d and GDel. Thus

Cc(F�0) is a pre-Morita equivalence bimodule for Cc(�� � R
d , σ ) and Cc(GDel, σ )

and can be completed into theMorita equivalence bimoduleF L2(F�0 , σ )GDel between
C∗
r (�� � R

d , σ ) and C∗
r (GDel, σ ).

Lemma 5.9 The restrictions of the cocycles c j : �� � R
d → R to F�0 define maps

∇ j : Cc(F�0) → Cc(F�0), ∇ j ( f )(L, x) := x j f (L, x).

For all a ∈ Cc(F , σ ), b ∈ Cc(GDel, σ ) and ξ, η ∈ Cc(F�0) we have

∇ j (a · ξ · b) = ∂ j (a) · ξ · b + a · ∇ j (ξ) · b + a · ξ · ∂ j (b),

∂ j (ξ | η)GDel = (ξ | ∇ j (η))GDel − (∇ j (ξ) | η)GDel .

Consequently, for all k = 0, . . . ,∞, the space Cc(F�0) can be completed into a
pre-Morita equivalence bimodule AkSk(F�0 , σ )Bk for the pre-C∗-algebras Ak ⊂
C∗
r (�� � R

d , σ ) and Bk ⊂ C∗
r (GDel, σ ).

Proof As F�0 and GDel are subspaces of �� � R
d and the bimodule structure and

inner product are induced by the convolution product inCc(�� �R
d , σ ), the required

identities follow from the fact that multiplication by x j is a derivation of Cc(�� �

R
d , σ ). The result now follows from Propositions 2.10 and 2.13.

For every L ∈ �0, there is a state ωL on C∗
r (GDel, σ ) such that ωL( f ) = f (L, 0)

for f ∈ Cc(GDel, σ ). Note that

ωL( f ∗ f ) =
∑

y∈L
| f (L − y,−y)|2, ωL(1C∗

r (GDel)) = 1

and so ωL is faithful. From this point, all results from Sect. 4 apply to the Delone
groupoid setting. Though for concreteness, we highlight some key aspects of this
example.

Lemma 5.10 For every L ∈ �0, the localised Hilbert space hL ∼= L2(Rd).

Proof We define a map βL → L2(Rd) that agrees with the localised Hilbert space
inner product. Namely, we considerβL : L2(F�0) → L2(Rd), given by [βL(ξ)](x) =
ξ(L−x,−x) for almost all x . To see why this is true, we first note that for anyL ∈ �0,
s−1(L) = {(L−x,−x)}x∈Rd and themeasure on s−1(L) is just the Lebesguemeasure
on R

d . We also see that

〈ξ1, ξ2〉L = (ξ1 | ξ2)C∗
r (GDel)(L, 0) =

∫

Rd
ξ1(L − y,−y)ξ2(L − y,−y) dy.
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Hence we see there is a canonical identification of hL with βL[L2(F�0)] ∼= L2(Rd).

For any ξ ∈ F L2(F�0)GDel , let ξL ∈ hL be its localisation. Because ∇αξ(L, x) =
xαξ(L, x) for α ∈ N

d and ξ ∈ Cc(F�0), Proposition 2.13 gives the following.

Lemma 5.11 For any k = 0, . . . ,∞ and L ∈ �0, every element in dense subspace
βL[Sk(F�0)] ⊂ hL has polynomial decay of at least degree k,

‖xαξL‖hL ≤ C, ξ ∈ Sk(F�0), α ∈ N
d , |α| ≤ k.

Lemma 5.12 Let χ be a smooth and real-valued bump-function such that supp(χ) ⊂
B(0; r/2), χ(x) = χ(−x), χ(0) = 1 and ‖χ‖2 = 1.

(i) Extend χ to a function χ ∈ Cc(F�0) such that χ(L, x) = χ(x). Then (χ |
χ)GDel = 1GDel .

(ii) Given p ∈ R
d , define the function χp ∈ Cc(GDel, σ ) by χp(L, x) = χ(x − p).

Then for any L ∈ �0 and p, q ∈ L, ωL(χp ∗ χ∗
q ) = δp,q .

Proof For part (i) we compute

(χ | χ)GDel(L, y) =
∫

Rd
χ(L − z,−z)χ(L − z, y − z) σ ((L, z), (L − z, y − z)) dz.

The integral will be zero unless −z, y − z ∈ L − z ∩ B(0; r/2). But because y ∈ L,
L ∈ �0 andL is uniformly r -discrete, thiswill only happenwhen y = 0.Then, because
the 2-cocycle is 1 when y = 0 and ‖χ‖2 = 1, (χ | χ)GDel(L, y) = δy,0 = 1GDel(L, y).

For part (ii) we compute that

(χp ∗ χ∗
q )(L, 0) =

∑

y∈L
χp(L, y)χq(L, y) σ ((L, y), (L − y,−y))

=
∑

y∈L
χ(y − p)χ(y − q) = χ(p − q) = δp,q

where we have used that supp(χ) ⊂ B(0, r/2) and L is r -discrete.

Given (L, y) ∈ GDel, define the action

ξ (L,y)(x) = ξ(L − x, y − x) σ ((L − x, y − x), (L − y,−y)) ∈ hL, ξ ∈ L2(F�0).

In the case thatσ is comes fromamagnetic twist that is constant over the unit space��,
we see that ξ (L,y)(x) = e−i〈x,By〉ξ(L − x, y − x) with B a real-valued skew-adjoint
matrix describing the magnetic field. Lemmas 4.3 and 5.12 now give the following.

Lemma 5.13 (i) Recall the functions {χp} from Lemma 5.12. Then for any ξ ∈
L2(F�0) and (L, p) ∈ GDel, ξ (L,p) = (ξ · χ∗

p)L.
(ii) Let e ∈ F L2(F�0 , σ )GDel be such that (e | e)C∗

r (GDel) = 1C∗
r (GDel). Then for any

L ∈ �0 the set {e(L,y)}y∈L is an orthonormal system in hL.
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Proposition 5.14 Let (e j ) j∈J be a (countable) right frame of F L2(F�0 , σ )GDel . Then

for all L ∈ �0, the set {e(L,y)
j } j∈J ,y∈L is a normalised tight frame for hL ∼= L2(Rd).

If (e j ) j∈J ⊂ AkSk(F�0 , σ )Bk for k = 0, . . . ,∞, then the normalised tight frame

{e(L,y)
j } has polynomial decay of at least order k.

Proof The first statement is a special case of Proposition 4.4. Lemma 5.11 ensures
that the elements e(L,0)

j (x) = e j (L− x,−x) have polynomial decay of at least degree

k. The translation e(L,y)
j (x) = e j (L− x, y − x) σ ((L− x, y − x), (L− y,−y)) will

have the same decay properties for all y ∈ L.

We can define an action πL : C(��) � R
d on the localisation Hilbert space

hL ∼= L2(Rd) by

(πL( f )ξL)(x) = (

f · ξ)L(x) = ( f · ξ)(L − x,−x).

Explicitly, we can compute that

( f · ξ)(L − x,−x) =
∫

Rd
f (L − x, u − x)ξL(u) σ ((L − x, u − x), (L − u,−u)) du.

Let us now consider the localisation πL(p)h⊕n
L for p ∈ Mn(C∗

r (�� � R
d , σ )) a

projection.

Theorem 5.15 Let k = 0, . . . ,∞ and p = p∗ = p2 ∈ Mn(Ak). Then there are
elements {e j }mj=1 ⊂ pSk(F�0 , σ )⊕n

Bk
such that for allL ∈ �0, {e(L,y)

1 , . . . , e(L,y)
m }y∈L

is a normalised tight frame of πL(p)L2(Rd , C
n) with polynomial decay of at least

degree k. The normalised tight frame {e(L,y)
1 , . . . , e(L,y)

m }y∈L is an orthonormal basis
for all L ∈ �0 if and only if pSk(F�0 , σ )⊕n

Bk
∼= B⊕m

k .

For concreteness, we note that the case p ∈ Mn(A) with A = A∞ gives a nor-
malised tight frame with faster than polynomial decay.

Remark 5.16 (Invariance under homotopies of 2-cocycles) Let us briefly consider
the stability of Theorem 5.15 under deformations of the groupoid 2-cocycle σ using
results from Gillaspy [17]. Given the groupoid F = �� � R

d , we can consider the
trivial bundle of groupoids F × [0, 1] equipped with the product topology so that
groupoid operations preserve the fibres and such that F × [0, 1] is a locally compact
Hausdorff groupoid. A homotopy of groupoid 2-cocycles is a groupoid 2-cocycle
ω : (F × [0, 1])(2) → T, which will give rise to a family of 2-cocycles {ωt }t∈[0,1] on
F that is continuous in t .

Because �� � R
d satisfies the Baum–Connes conjecture with coefficients, [17,

Theorem 5.1] applies, which says that the evaluation map

qt : C∗
r ((�� � R

d) × [0, 1], ω) → C∗
r (�� � R

d , ωt )

induces an isomorphism of K -theory groups. Composing this isomorphism with the
Morita equivalence of �� � R

d with GDel, given a homotopy of 2-cocycles σ• on



69 Page 30 of 39 Journal of Fourier Analysis and Applications (2021) 27 :69

F × [0, 1] (and so on GDel × [0, 1] by restriction), we can consider finitely generated
and projective modules P• over C∗

r (GDel ×[0, 1], σ•). Composing with the evaluation
map, P0 is a freeC∗

r (GDel, σ0)-module if and only if P1 is a freeC∗
r (GDel, σ1)-module.

Considering the magnetic twists of Example 5.7, we can easily construct homo-
topies of 2-cocycles via a continuous map B• : �� ×[0, 1] → ∧2

R
d which restricts

to a continuous path {Bt }t∈[0,1] of magnetic fields.

5.3 The Localisation Dichotomy

Decay properties of the normalised tight frame in Theorem 5.15 come from the
seminorms on the dense submodules Sk(F�0 , σ ) over the pre-C∗-algebras Ak ⊂
C∗
r (�� � R

d , σ ) and Bk ⊂ C∗
r (GDel, σ ) for k = 0, . . . ,∞. Because each Ak is a

pre-C∗-algebra, given p = p∗ = p2 ∈ Mn(C∗
r (�� � R

d , σ )) and 0 < ε < 1,
there is some pk = p∗

k = p2k ∈ Mn(Ak) ⊂ Mn(C∗
r (�� � R

d , σ )) such that
‖p − pk‖ < ε in C∗-norm as well as a unitary uk in Mn(C∗

r (�� � R
d , σ )) such

that pk = u∗
k puk (see [9, Sect. 4]). Consequently the finitely generated and projective

C∗(GDel, σ )-modules pL2(F�0 , σ )⊕n
GDel

and pk L2(F�0 , σ )⊕n
GDel

are isomorphic. The

module pk L2(F�0 , σ )⊕n
GDel

contains the dense submodule pkSk(F�0 , σ )⊕n
Bk

. Note that
we can choose pk = p∞ for all k ≥ 1.

By comparing C∗-module frames for S∞(F�0 , σ ) ⊂ S1(F�0 , σ ) ⊂ L2(F�0 , σ ),
we can prove a weak version of the localisation dichotomy considered in [29, Sect. 5
(arXiv version)].

Proposition 5.17 (Weak localisation dichotomy) Let p = p∗ = p2 ∈ Mn(C∗
r (�� �

R
d , σ )) and pk = p∗

k = p2k ∈ Mn(Ak) be equivalent projections as above. The
following statements are equivalent.

(i) There is a C∗-module isomorphism pL2(F�0 , σ )⊕n
GDel

∼= C∗
r (GDel, σ )⊕m.

(ii) There are elements {w j }mj=1 ⊂ p1S1(F�0 , σ )⊕n
B1

such that for all L ∈ �0, the

collection {w(L,y)
1 , . . . , w

(L,y)
m }y∈L is anorthonormal basis ofπL(p)L2(Rd , C

n)

and for all y ∈ L,

m
∑

j=1

∫

Rd
(1 + |x − y|2)∣∣w(L,y)

j (x)
∣

∣

2 dx < ∞. (8)

(iii) There exists {e j }mj=1 ⊂ p∞S∞(F�0 , σ )⊕n
B∞ where for all L ∈ �0, {e(L,y)

1 , . . . ,

e(L,y)
m }y∈L is an orthonormal basis of πL(p)L2(Rd , C

n) with faster than poly-
nomial decay.

Proof All statements except for Eq. (8) immediately follow from Theorem 5.15. To
see Eq. (8), we note that the frame elements are such that ‖w j · χ∗

p‖1 < ∞ for
j ∈ {1, . . . ,m}, p ∈ R

d and ‖ · ‖1 the seminorm on S1(F�0 , σ ),

‖ξ‖1 = ‖ξ‖ +
d

∑

l=1

‖∇lξ‖.
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Passing to the localisation, the functions w
(L,y)
j and [∇l(w j · χ∗

y )]L(x) = (xl −
yl)w

(L,y)
j (x) are in πL(p)L2(Rd , C

n) for any y ∈ L, j ∈ {1, . . . ,m} and l ∈
{1, . . . , d}. We can combine these cases to obtain Eq. (8).

Proposition 5.17 should be compared to the Localisation Dichotomy Conjecture
in [29, Sect. 5 (arXiv version)]. We have shown that an s∗-localised Wannier basis
for s∗ = 1 is equivalent to a Wannier basis with faster than polynomial decay, which
in turn is equivalent to a free finitely generated and projective module. To improve
condition (iii) to an exponentially localised Wannier basis will require more analytic
arguments that fall outside the framework of pre-C∗-algebras we have considered. In
Sect. 5.5, we show that conditions (i)-(iii) of Proposition 5.17 imply that the (even)
noncommutative Chern numbers vanish.

Since the submission of this manuscript, the preprints [25,30] have appeared
that further develop the Localisation Dichotomy Conjecture for generalised Wannier
bases in dimension 2. In particular, [25, Theorem 1] shows that for gapped spec-
tral projections of a magnetic Schrödinger operator on L2(R2) (with mild regularity
assumptions), an exponentially localisedWannier basis is equivalent to an s∗-localised
Wannier basis with s∗ > 5/2. Hence, for projections p ∈ C∗

r (�� � R
2, σ ) that fall

into the framework of [25], we can improve condition (iii) of Proposition 5.17 to expo-
nential decay. The magnetic Schrödinger operator with Delone atomic potential we
consider below (see Equation (9)) satisfies the regularity assumptions of [25] when
d = 2.

Remark 5.18 (Connections to the Balian–Low Theorem) Theorem 5.15 and Proposi-
tion 5.17 plays a similar role to the Balian–Low Theorem in time-frequency analysis.
Brieflly, the theorem states that if a Gabor system {e2π imt g(t − n)}m,n∈Z forms an
orthonormal basis of L2(R), then either g or the Fourier transform ĝ is such that the
sum in Equation (8) with m = 1 diverges. By the work of Luef [28], the Balian–Low
Theorem can also be interpreted using finitely generated and projective modules over
C∗(Z2) and the fact thatC(T2) has no non-trivial projections. See [28] formore details
and a generalisation to the rotation algebra Aθ � C∗(Z2, θ).

5.4 Wannier Bases for Hamiltonians on L2(Rd,C
n)with Delone Potentials

We model a particle in R
d subject to a uniform magnetic field perpendicular to the

sample. We take a magnetic potential A = (A1, . . . , Ad) such that A j ∈ L2
loc.(R

d)

and differentiable with

∂

∂x j
Ak − ∂

∂xk
A j = const.

for all j, k ∈ {1, . . . , d}. For simplicity, we consider constant magnetic field strength
but more general fields are possible (cf. Example 5.7). The magnetic Schrödinger
operator is given by
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H0 =
d

∑

j=1

(

−i
∂

∂x j
− A j

)2

,

We choose the symmetric gauge and define A j = − 1
2

d
∑

k=1
θ j,k xk for j = 1, . . . , d,

where θ j,k is antisymmetric and real. Our choice of gauge gives the magnetic transla-
tions {Ua}a∈Rd , where for any a ∈ R

d ,

[H0,Ua] = 0, (Uaψ)(x) = e−i〈x,θa〉ψ(x − a), ψ ∈ L2(Rd).

Given a compact space � with action T : R
d → Homeo(�), we can define the

groupoid 2-cocycle

θ : (� � R
d)(2) → T, θ((ω, x), (T−xω, y)) = e−i〈x,θ y〉,

which is normalised, θ((ω, x), (T−xω,−x)) = 1, and constant over the unit space.
We wish to relate spectral properties of aperiodic Schrödinger operators to the

Delone groupoid. We do this by considering atomic potentials on point sets,

H� = H0 +
∑

p∈�

v(· − p), H0 =
d

∑

j=1

(

− i
∂

∂x j
− A j

)2
, (9)

where v an atomic potential function. Provided the potential V� = ∑

p∈� v(· − p)
is essentially bounded, real valued and measurable, H� is essentially self-adjoint on
the dense core C∞

c (Rd). We assume � is r -discrete and restrict our potentials to the
K -subharmonic functions on R

d ,

L1
K ,r (R

d) =
{

f ∈ L1(Rd) : | f (x)| ≤ Kr−d
∫

|x−y|<r/2
| f (y)| dy for a.e. x

}

.

Theorem 5.19 [5] Let � be an (r , R)-Delone set and v ∈ L1
K ,r (R

d) be a uni-
formly continuous and R-valued atomic potential. Then the family of operators
h = {HL}L∈��

with HL as in Eq. (9) is affiliated to the groupoid C∗-algebra
C∗
r (�� � R

d , θ).

Remark 5.20 Theorem 5.19 is proved by showing that h = {HL}L∈��
is affiliated

to a crossed product groupoid constructed from the continuous hull of the potential
V� = ∑

p∈� v(· − p). In general the continuous hull of a Delone set is topologically
semi-conjugate to the continuous hull of a Delone potential via a surjective map
�� → �V� . If supp(v) ⊂ B(0, rv) for some rv ≤ r , then the map is injective, see [6,
Sect. 2.7].

Let us now fix an (r , R)-Delone set � and Hamiltonian of the form Eq. (9) such
that the family of Schrödinger operators h = {HL}L∈��

is affiliated to the twisted
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groupoid C∗-algebra C∗
r (�� � R

d , θ). With the choice of twist θ , we see that for
πL : C∗

r (�� � R
d , θ) → B[L2(Rd)],

(πL( f )ψ)(x) =
∫

Rd
e−i〈x,θu〉 f (L − x, u − x)ψ(u) du, UaπL( f )U∗

a = πL−a( f ).

The twisted groupoid algebra C∗
r (�� � R

d , θ) is Morita equivalent to C∗
r (GDel, θ)

and for every (L, y) ∈ GDel, we have a twisted translation action

ψ(L,y)(x) = e−i〈x,By〉ψ(x − y) = (Uyψ)(x).

Hence, the discrete groupoid translations are just the magnetic translations restricted
to L ∈ �0.

Recall the pre-C∗-algebra A = A∞ ⊂ C∗
r (�� � R

d , θ) that comes from the
Fréchet completion of Cc(�� ×R

d , θ) in the seminorms defined from the derivations
{∂ j }dj=1 (Proposition 2.10).

Lemma 5.21 Let h be a self-adjoint element affiliated to Mn(C∗
r (�� � R

d , θ)). Sup-
pose that� ⊂ σ(h) is a bounded spectral region separated from σ(h)\�with positive
distance. Then p�(h) = χ�(h) ∈ Mn(A).

Proof Because� is an isolated spectral region, p�(h) can be approximated arbitrarily
well by ϕ(h) with ϕ ∈ C∞

c (R) such that ϕ(x) = 1 for x ∈ � and ϕ(x) = 0 for
x ∈ σ(h) \ �. Hence ϕ(h) ∈ Mn(A).

Hence, we can adapt Theorem 5.15 to the case of Schrödinger operators on
L2(Rd , C

n) with Delone atomic potentials.

Theorem 5.22 Let � be a (r , R)-Delone set and let H� be a magnetic Schrödinger
operator on L2(Rd , C

n)with Delone atomic potential as in Eq. (9)with v ∈ L1
K ,r (R

d)

and uniformly continuous. Suppose that � is an isolated and bounded spectral region
of σ(HL) for all L ∈ ��. Then there are elements w1, . . . , wm ∈ p�S∞(F�0 , θ)⊕n

such that for all L ∈ �0 the magnetic translates {Uyw
L
1 , . . . ,Uyw

L
m }y∈L give a

normalised tight frame of p�(HL)L2(Rd , C
n) with faster than polynomial decay.

The frame {Uyw
L
1 , . . . ,Uyw

L
m }y∈L is an orthonormal basis of p�(HL)L2(Rd , C

n)

for all L ∈ �0 if and only if the finitely generated and projective C∗-module
p�L2(F�0 , θ)⊕n

GDel
∼= C∗

r (GDel, θ)⊕m.

Proof By the spectral gap assumption, the family of spectral projections {p�(HL)}L∈��

give an element p�(h) ∈ Mn(A). As such,we can apply Theorem5.15which gives the
faster than polynomially decaying tight frame or orthonormal basis of the localisation
πL(p�)h⊕n

L = p�(HL)L2(Rd , C
n).

Remarks 5.23 (i) The existenceof an isomorphism p�L2(F�0 , θ)⊕m
GDel

∼= C∗
r (GDel, θ)⊕m

is a K -theoretic statement and implies that [p�] = m[1] ∈ K0(C∗
r (GDel, θ)).

(ii) If we take a deformation of the magnetic field {θt }t∈[0,1] such that the R-valued
2-cocycle ωt (x, y) = 〈x, θt y〉 is continuous in t , we obtain a homotopy of 2-
cocycles in the sense of Remark 5.16. Therefore, Theorem 5.22 is stable under
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deformations of the magnetic field provided that the spectral gap remains open
throughout the deformation.

5.5 Obstruction to LocalisedWannier Basis by (Noncommutative) Chern Numbers

Let us briefly recall the periodic setting. If the atomic potential V� = ∑

p∈� v(·− p) is
such that � is a periodic and co-compact group G, then H� is affiliated to the algebra

C∗
r (�� � R

d , θ) ∼= C∗
r ((Rd/G) � R

d , θ) ∼= C∗
r (G, θ) ⊗ K.

In the case G = Z
d , the the non-triviality of finitely generated and projective

C∗
r (Zd , θ)-modules with θ rational can be examined by studying the Chern classes of

the spectral subspaces of the Hamiltonian viewed as a complex vector bundle over the
Brillouin torus, ̂Zd . In the aperiodic setting, we can use tools from noncommutative
geometry to carry out an analogous argument. Indeed, noncommutative Chern num-
bers for Hamiltonians affiliated to C(�) �θ R

d and C∗
r (GDel, θ) have already been

studied [11–13].
Throughout this section, we will regularly take advantage of the equivalence

between the continuous hull �� � R
d and GDel, which gives an isomorphism

K0(C∗
r (�� � R

d , θ)) ∼= K0(C∗
r (GDel, θ)).

We first recall the top degree noncommutative Chern numbers for aperiodic or
disordered magnetic Schrödinger Hamiltonians with a spectral gap. To do this, we
recall the trace per unit volume on L2(Rd). Let � j be an increasing sequence of
sets that converge to R

d in an appropriate sense, e.g. � j = [− j, j]d . Then for any
a ∈ B(L2(Rd)),

TrVol(a) = lim
j→∞

1

Vol(� j )
Tr(�� j a), �� j : L2(Rd) → L2(� j ).

Proposition 5.24 [13]Fix a probability measureP on�� that is invariant and ergodic
under the R

d -action and let Sd denote the permutation group of {1, . . . , d}. If d > 0
is even and p = p∗ = p2 ∈ Mn(A), then for almost all L ∈ �� the functional

Cd(p) = (−2π i)d/2

(d/2)!
∑

τ∈Sd
(−1)τ (Tr Cn ⊗ Tr Vol)

(

πL(p)
d

∏

j=1

[Xτ( j), πL(p)]
)

(10)

is integer valued and almost surely constant in ��.

The numberCd almost surely defines a homomorphism K0(C∗
r (���R

d , θ)) → Z,
which we can also consider as a homomorphism K0(C∗

r (GDel, θ)) → Z. In particular
Cd(p) = Cd(p′) if [p] = [p′] ∈ K0(C∗

r (GDel, θ)) and Cd(p) = 0 if [p] = m[1] ∈
K0(C∗

r (GDel, θ)).
For systemswithd ≥ 3,wemay alsowish to consider lower-dimensional invariants.

These invariants are not integer-valued in general, but can still be used to study the
topology of gapped spectral projections. We fix a probability measure P on �� that
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is invariant and under the R
d -action. Then we recall the noncommutative calculus for

A ⊂ C∗
r (�� � R

d , θ),

T ( f ) =
∫

��

f (L, 0) dP, (∂ j f )(L, x) = x j f (L, x), f ∈ A, j ∈ {1, . . . , d}.

Proposition 5.25 [13] Let p = p∗ = p2 ∈ Mn(A) and P a probability measure on
�� that is invariant and under the R

d-action. Then for any k ≤ d an even integer, the
functional

Ck(p) = (−2π i)k/2

(k/2)!
∑

τ∈Sk
(−1)τ (TrCn ⊗T )

(

p
k

∏

j=1

∂τ( j) p

)

, (11)

defines a homomorphism K0(C∗
r (�� � R

d , θ)) → R. If P is ergodic under the R
d-

action and k = d, then Ck(p) = Cd(p) ∈ Z from Eq. (10) almost surely.

Weagain note that if [p] = m[1] ∈ K0(C∗
r (GDel, θ)), thenCk(p) = 0 for any k ≥ 2.

Combining our results on the noncommuative Chern numbers with Theorem 5.15 and
the weak localisation dichotomy (Proposition 5.17), we have the following.

Corollary 5.26 Let p = p∗ = p2 ∈ Mn(A) and P a probability measure on �� that
is invariant under the R

d -action. If Ck(p) from Eq. (11) is non-zero for some k ≥ 2,
then for any L ∈ �0 there can not be Wannier basis of πL(p)L2(Rd , C

n) constructed
from magnetic translations in L of elements {w j }mj=1 ⊂ pS1(F�0 , θ)⊕n

B1
such that for

any y ∈ L

m
∑

j=1

∫

Rd
(1 + |x − y|2)∣∣(Uyw

L
j )(x)

∣

∣

2 dx < ∞.

5.6 Deformation of the Delone Atomic Potential

Wewould like to consider the stability of our results on aperiodicSchrödinger operators
H� when the Delone set � is deformed (e.g. from an aperiodic set to a periodic
lattice). Deforming a Delone set � will change the crossed product groupoid and
the K -theory may change substantially as the Delone set changes. However, we will
show the pairings in cyclic cohomology considered in Sect. 5.5 are unaffected by such
deformations.

Lemma 5.27 Let v ∈ Cc(R
d) be a continuous atomic potential with compact support.

If {�t }t∈[0,1] is continuous path of (r , R)-Delone sets in Del(r ,R), then the path of
Schrödinger operators {H�t }t∈[0,1] is norm-continuous in the resolvent topology.
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Proof It is straightforward to see that for any v ∈ Cc(R
d), v ∈ L1

K ,r (R
d) and the

function v�(x) = ∑

p∈� v(p− x) is real-valued, measurable and essentially bounded
for any (r , R)-Delone set �. Because Dom(H�) is constant for any � ∈ Del(r ,R), we
can use the resolvent identity to bound

‖(z − H�1)
−1 − (z − H�2 )

−1‖ = ‖(z − H�1)
−1(H�1 − H�2 )(z − H�2 )

−1‖
≤ ess. sup |v�1 − v�2 | ‖(z − H�1)

−1‖ ‖(z − H�2 )
−1‖

for any z ∈ C \ R. The result will therefore follow if we can show that the essential
supremum is controlled by the topology onDel(r ,R). Suppose that supp(v) ⊂ B(0; M)

for some M > 0. Recalling the topology of Del(r ,R) (Proposition 5.2) with dH the
Hausdorff metric, we take x ∈ R

d and suppose that dH (�1 − x ∩ B(0; M),�2 − x ∩
B(0; M)) ≤ δ < r/2. Taking δ small enough, we can ensure that |�1 − x ∩ B(0; M +
r/2)| = |�2 − x ∩ B(0; M + r/2)| and, furthermore, we can decompose the sets
�1 − x ∩ B(0; M + r/2) and �2 − x ∩ B(0; M + r/2) as pairs (p, q) ∈ �M :=
�1 ∩ B(x; M + r/2)×�2 ∩ B(x; M + r/2) such that ‖p−q‖ ≤ δ. We can therefore
estimate

|(v�1 − v�2)(x)| =
∣

∣

∣

∑

p∈�1

v(p − x) −
∑

q∈�2

v(q − x)
∣

∣

∣

=
∣

∣

∣

∑

p∈�1∩B(x;M)

v(p − x) −
∑

q∈�2∩B(x;M)

v(q − x)
∣

∣

∣

=
∣

∣

∣

∑

(p,q)∈�M‖p−q‖≤δ

v(p − x) − v(q − x)
∣

∣

∣

≤
∑

(p,q)∈�M‖p−q‖≤δ

∣

∣v(p − x) − v(q − x)
∣

∣.

By continuity of v, given any ε > 0 we can choose a small enough δ so that
∣

∣v(p −
x) − v(q − x)

∣

∣ < ε
|�1∩B(x;M+r/2)| for all ‖p − q‖ ≤ δ. Hence |(v�1 − v�2)(x)| < ε

and the essential supremum is also bounded by ε.

Definition 5.28 Let {�t }t∈[0,1] be a continuous path in Del(r ,R). We say that
{H�t }t∈[0,1] is a gapped path if there exists a bounded interval � ⊂ R such that
for all t ∈ [0, 1] and Lt ∈ ��t , � ∩ σ(HLt ) is non-empty and � is separated from
the rest of the spectrum of HLt by a positive distance.

The conditions to obtain a gapped path are quite strong, but if satisfied give a path of
operators {ht }t∈[0,1] such that ht is affiliated to C∗

r (��t � R
d , θ) and pt = χ�(ht ) ∈

At ⊂ C∗
r (��t � R

d , θ), a dense pre-C∗-algebra.

Proposition 5.29 Let {�t }t∈[0,1] be a continuous path in Del(r ,R) and fix an atomic
potential v ∈ Cc(R

d). Suppose that {H�t }t∈[0,1] is a gapped pathwith isolated spectral
region � ⊂ R. Then for pt = {χ�(HLt )}Lt∈��t

∈ At and any even integer k ≤ d,
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the function

[0, 1] � t �→ Ck(pt ) = (−2π i)k/2

(k/2)!
∑

τ∈Sk
(−1)τ (TrCn ⊗T )

(

pt

k
∏

j=1

∂τ( j) pt
)

∈ R

is continuous, where Ck(p) is the weak Chern number from Eq. (11).

Proof The assumption on the spectral gap implies that Ck(pt ) is well-defined for all t .
Because we have a uniform isolated spectral region �, we can write for all t ∈ [0, 1],

pt = 1

2π i

∮

C
(z − ht )

−1 dz, ht = {(z − HLt )
−1}Lt∈��t

with C a contour enclosing � and not intersecting any other part of the spectrum. If
{�t }t∈[0,1] is a continuous path in Del(r ,R), then there is a corresponding continuous
path {Lt }t∈[0,1] with Lt in the orbit space of �t . Because t �→ (z − HLt )

−1 is norm-
continuous by Lemma 5.27, so is t �→ ‖(z − ht )−1‖. By the integral formula for the
spectral projections, t �→ ‖pt‖ is continuous. Because the functional Ck induces a
weaker topology than the norm topology, t �→ Ck(pt ) is also continuous.

Continuity of the function [0, 1] � t �→ ‖(z − ht )−1‖ ∈ R for all z in the resolvent
set implies that the spectral edges of σ(ht ) are continuous away from gap closing
points, see [3].

Continuity of the Chern numbers under deformations of Delone sets means that if
the range of the pairing is quantised, then it is constant under deformations.

Corollary 5.30 Let {�t }t∈[0,1] be a continuous path inDel(r ,R) and fix an atomic poten-
tial v ∈ Cc(R

d). Suppose that {H�t }t∈[0,1] is a gapped path with isolated spectral
region � ⊂ R. Let P0 be an invariant and ergodic probability measure on ��0 . Then
for almost all L0 ∈ ��0 ,

Cd(pt ) = Cd(pL0)

:= (−2π i)d/2

(d/2)!
∑

τ∈Sd
(−1)τ (TrCn ⊗TrVol)

(

χ�(HL0)

d
∏

j=1

[Xτ( j), χ�(HL0)]
)

is integer valued and constant for all t ∈ [0, 1].
Corollaries 5.30 and 5.26 then give us the following stability result on delocalised

Wannier bases.

Corollary 5.31 (Stability of delocalisedWannier basis under atomic deformations) Let
�0 be an (r , R)-Delone set and consider H�0 with atomic potential v ∈ Cc(R

d). Fix
an invariant and ergodic probability measure on ��0 and suppose that Cd(pL0) �= 0
for almost allL0 ∈ ��0 . Then for any gapped path {H�t }t∈[0,1] with isolated spectral
region � ⊂ R and any Lt in the transversal �0,t , there can not be a faster than
polynomially decaying Wannier basis of χ�(HLt )L

2(Rd , C
n) built from magnetic

translates in Lt .
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We again note that by Proposition 5.17 the non-existence of a faster than polyno-
mially decaying Wannier basis also implies that the weaker localisation bound of Eq.
(8) diverges,

m
∑

j=1

∫

Rd
(1 + |x |2)∣∣wL

j (x)
∣

∣

2 dx = ∞.
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