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Abstract
Recently, the topic of research data management has appeared at the forefront of Open Science as a prerequisite for preserving
and disseminating research data efficiently. At the same time, scientific laboratories still rely upon digital files that are processed
by experimenters to analyze and communicate laboratory results. In this study, we first apply a forensic process to investigate the
information quality of digital evidence underlying published results. Furthermore, we use semiotics to describe the quality of
information recovered from storage systems with laboratory forensics techniques. Next, we formulate laboratory analytics
capabilities based on the results of the forensics analysis. Laboratory forensics and analytics form the basis of research data
management. Finally, we propose a conceptual overview of open science readiness, which combines laboratory forensics
techniques and laboratory analytics capabilities to help overcome research data management challenges in the near future.
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1 Introduction

Research data management (RDM) is a pillar of future devel-
opments in open science, and particularly with regards to the
efficiency of data preservation, sharing, and developments of
open infrastructure (Higman et al., 2019). Also, in information
systems research, the opening of data to the IS community is a
current topic of debate (Koester et al., 2020; Link et al., 2017;
Wilms et al., 2018). One practical reason RDM gains traction
is that experimental activities taking place in laboratories in-
creasingly rely upon digital technologies (Huang & Gottardo,
2013). Furthermore, scientific observations themselves are the
product of digital technology, as scientific equipment trans-
forms measurements of the physical world into digital entities
(November, 2012; Stevens, 2013). This trend is observed in
diverse practices encountered in experimental work, e.g., from
small science, where research is conducted in a single

laboratory, to more complex projects where scientists employ
large-scale, distributed, computational infrastructure (Cragin
et al., 2010; D’Ippolito & Rüling, 2019).

Consequently, research software, data files, algorithms,
and workflows are widespread (digital) experimental re-
sources. Besides, scientists create, exchange, preserve and
share those resources using various channels such as digital
files on storage systems, supplemental information sections
integrated to publications, online repository deposits, or
e-mail attachments, to name a few (Tenopir et al., 2011). To
guarantee the re-usability of shared resources, academic pub-
lishers implement new guidelines for more transparent
reporting and stress research data availability as a prerequisite
to publication (Federer et al., 2018). Thus, scientific pub-
lishers operate on this matter, along with public funding agen-
cies, to encourage proper research data planning and manage-
ment to foster (or require) high-quality data dissemination of
scientific data (Federer et al., 2018).

Nevertheless, beyond the efforts to manage experimental
resources more efficiently lays a wealth of issues stemming
from research data management and scientific communication
(NAS, 2018). In the biomedical world, for instance,
decade-long debates about the trustworthiness of results from
lab experimentation and clinical trials pinpointedmethodolog-
ical issues and reporting issues, among others (Huang &
Gottardo, 2013; Laine et al., 2007). Methodological issues
were found to vary frommisapplications of statistics to poorly
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designed experiments (Moonesinghe et al., 2007; Williams
et al., 2019). Reporting issues are the result of methodological
issues (Ioannidis, 2018), and, more broadly, the lack of fit of
the scholarly communication infrastructure to report on the
results of activities and resources used in modern experimen-
tation, such as the integration of results generated by computer
scripts with scientific articles (Bechhofer et al., 2013).

Studies on data sharing and reproducibility in science are
restricted to the analysis of research output, i.e., scientific
articles and questionnaires administered to scholars in the
forms of surveys and interviews (Adewumi et al., 2021;
Federer et al., 2018; Sholler et al., 2019; Tenopir et al.,
2011). On the one hand, reproducibility studies focus exten-
sively on information technology development to mediate ir-
reproducibility in defined research fields such as bioinformat-
ics with Galaxy (Goecks et al., 2010) and reproducible soft-
ware (Napolitano, 2017). On the other hand, studies attempt to
give insights into the wicked ecosystem of technology and the
practices of data publication (Leonelli, 2013; Sholler et al.,
2019; Wilms et al., 2018). However, insights on research data
in laboratories are incomplete, as scientific publications ana-
lyzed in reproducibility studies are curated representations of
experimental processes (Brinckman et al., 2019). Besides, re-
search data has not yet been investigated from an IS perspec-
tive, which makes our understanding of the peculiarities of
RDM scarce and lagging behind studies addressing data ana-
lytics challenges in the corporate world (Mikalef et al., 2018).
At the same time, proper RDM practice can lead to improved
information quality and, therefore, ease the way to re-use
high-quality scientific data at a larger scale. As such, our study
aims at contributing to the evolution of the scholarly ecosys-
tem for.

This is the reason why we elaborate here on an approach
that enables the systematic extraction and analysis of experi-
mental resources preserved on storage systems in laboratories.
The approachwe follow combines digital forensics techniques
with information quality evaluation in laboratories named
Laboratory Forensics, an approach analogous to digital foren-
sics, an already established discipline (Palmer, 2001). By do-
ing so, we aim at uncovering reproducibility issues stemming
from data management practices in laboratories. Hence, our
main research question is stated as follows: “How can a lab-
oratory forensics approach help achieve open science readi-
ness?”We propose to answer this question in the first phase of
this study by investigating data management in one laboratory
to (1) reconstruct the use of experimental data with digital
forensics techniques and (2) evaluate the information quality
of experimental data through the lens of the descriptive theory
of information. Then, the second phase of our study (3) pre-
sents a proof-of-concept of an analytic dashboard which in-
troduces and visualizes principles for designing technology
that will help laboratories achieve open science readiness
(OSR). Briefly, OSR is the laboratory equivalent to digital

forensics readiness, a state of IT infrastructure in organizations
that speeds up forensic investigations by implementing capa-
bilities to trace (cybercriminal) events and audit information
systems (Serketzis et al., 2019).

To further answer the main research question, we first need
to gather knowledge about digital forensic methods and tech-
niques that are readily available to extract information from
storage systems in a systematic way. Therefore, our study
divides the problem of investigating laboratory storage sys-
tems into two parts, (1) the design of the laboratory forensics
approach and (2) the application of the laboratory forensics
approach to the evaluation of the quality of experimental arti-
facts managed by scientists in a laboratory. The former is
presented in this article with the results obtained in a case
study laboratory, where we systematically conducted forensic
investigations in the lab and screened a subset of research data
published by the same laboratory. The latter demonstrates
how forensics results can translate to insights regarding infor-
mation quality issues. This division between the development
of the laboratory forensics approach and its application is il-
lustrated in Fig. 1.

In the second phase of our study, we define several RDM
capabilities that laboratories should consider in order for lab-
oratories to gather evidence about research data management
(RDM) practices. These RDM capabilities are devised from
the results and lessons learned after our forensic investiga-
tions. Then, to illustrate the connection between RDM capa-
bilities and open science readiness, we introduce an analytics
dashboard demonstrating the use of RDM capabilities and
their corresponding performance indicators.

2 Background

In this section, we analyze prior work on RDM capabilities
relevant to achieve open science readiness and deepens the
semiotic concepts underlying our forensic investigations in
laboratories. The concept of readiness is borrowed from the
digital forensic domain (Rowlingson, 2004; Serketzis et al.,
2019). Forensic readiness is a state of technology that enables
organizations to resist (or investigate) external threats, such as
cybercriminal events, on their IT infrastructure (Simou et al.,
2019). In the context of open science, many events can occur
that require information systems in laboratories to be ready to
deliver experimental evidence appropriately to (future) labo-
ratory members, reviewers and comply with their research
institution’s policies. Also, the digitalization of laboratories
brings similar organizational challenges as encountered in
business, for instance with artificial intelligence readiness
(Jöhnk et al., 2020).

The proper management and sharing of research data un-
derlying published studies is a lively subject of debate for a
decade (Bajpai et al., 2019; Editorial, 2014; European
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Commission, 2016; Freire et al., 2012). Scientific communi-
ties, publishers, and libraries, among others, have concurrently
developed numerous solutions to tackle the need for
high-quality preservation and dissemination of research data
and software (Borgman et al., 2016; Callahan et al., 2006).
Furthermore, there are strong methodological incentives to
improve data management in academia, as exemplified by
the reproducible research movement that emerged more than
a decade ago (Peng et al., 2006; Stodden et al., 2014). More
recently, the open science paradigm is perceived as a way of
improving information quality in science through citizen sci-
ence (Lukyanenko et al., 2020). Thus, the increasing number
of initiatives to generate high-quality research data leads us
here to investigate the difficulties currently experienced by
researchers in documenting the research process using under-
lying technology such as digital file systems, remote servers,
and digital repositories.

Similarly, in information systems research, authors have
argued that the targeted use of (big) data analytics can rein-
force the organizational capabilities of companies (Mikalef
et al., 2018). Nevertheless, data availability is a prerequisite
for the success of the Big Data enterprise in business and open
science (Austin, 2019; Joubert et al., 2019, 2021; Sholler
et al., 2019). The extent to which (big) data are in a state that
can fulfill the ambitions of reinforcing organizational capabil-
ities, support (national) policies for big data in businesses
(Joubert et al., 2021) or the development of governance for
open science, reproducible research and, and research evalu-
ation (Austin, 2019). In all examples above, data quality (or

veracity) is a significant factor in the success of big data read-
iness (Austin, 2019; Joubert et al., 2021).

Transposed to the laboratory domain where experimental
work is conducted, we explore how laboratory can better man-
age research data by streamlining local preservation (inside)
the lab and online preservation (i.e., depositing data on the
publisher’s journal) while keeping experiments reproducible.
To achieve that, research data management capabilities need
to be developed along the research data lifecycle, i.e., from
data creation to publication (Cox and Tam, 2018). For in-
stance, the SEI CMM is a capability maturity model tailored
for research data management. The SEI CMM is oriented
towards the production, preservation, and dissemination of
high-quality research data (Crowston & Qin, 2011), as shown
by its four focus areas for RDM: (1) data acquisition, process-
ing, and quality insurance; (2) data description and represen-
tation; (3) data dissemination; (4) repository service and data
preservation (Crowston and Qin, 2011).

Hence, the analysis of research data preserved in laborato-
ries is a starting point to explore research data capabilities
further, including the investigation of data sets and software
that are not publicly available. The reasonmuch information is
not publicly available is that internal storage systems are
meant for exchanging and saving operational data that re-
searchers produce. Thus, operational data created during sci-
entific experimentation is not primarily aimed at being ex-
changed with external parties. Nevertheless, the investigation
of operational data with a lens of information quality is at the
core of the forensics approach presented here. By conducting

Fig. 1 The first part of this work reports on (1) the design of the laboratory forensics approach and (2) the application of laboratory forensics techniques
to report on information quality issues using a semiotic perspective as found in the descriptive theory of information (DTI)
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forensics, we aim at reporting on the reproducibility of schol-
arly work uniquely, i.e., through the lens of an information
systems theory grounded into semiotics. Previous work in
information systems has extensively discussed the usefulness
of the semiotic approach to the analysis of information in
organizations (Burton-Jones et al., 2005; Stamper et al.,
2000). Nevertheless, as noted by Lukyanenko et al. (2020),
scientific organizations differ from corporate organizations.
Typically, scientific organizations such as laboratories are
much more dynamic, and data flows through several actors,
processes and, purposes that are not directly relatable to data
management in the corporate world (Borgman, 2015;
Lefebvre et al., 2018; Lukyanenko et al., 2020).

Thus, in line with semiotics analyses applied to enterprise
data integration for investigating data quality (Krogstie,
2015), we apply semiotics analyses to research data manage-
ment made openly available and their corresponding data pre-
served locally, on storage systems in the laboratory. So, spe-
cific experimentation processes produce the research data we
analyze in this study. These processes leave a wide variety of
(digital) traces from different types of (laboratory) resources.
It leads to the fact that the interpretation of experimental evi-
dence is not straightforward. For instance, editorial, experi-
mental, and computational processes are of a distributed na-
ture and, therefore, combines the use of a variety of data man-
agement systems, software, and laboratory equipment.

From an information point of view, reproducibility is
achieved when the experimental materials involved in the ex-
perimentation process are located on the storage, systemati-
cally named with meaningful concepts that reduce room for
interpretation and are adequately documented. In other words,
our assumption is here that digital traces that are preserved in

such a state that the empirical, syntax, semantic and, pragmat-
ic facets of the information they contain are satisfactory.
Forensics techniques are used to extract digital traces with
meta-data from laboratory storage systems to judge whether
these facets of information are of sufficient quality for repro-
ducing experiments. Therefore, we provide some background
about the experimentation process that leads to those digital
traces and their interpretation with the DTI.

First, the experimentation process corresponds to the activ-
ities, inputs, and outputs of experimental work in a scientific
laboratory. Research cycle models are commonly used to rep-
resent such processes from the conceptualization of a research
problem, the generation of data with instruments, their pro-
cessing, analysis, and communication to outsiders (Cox &
Tam, 2018). The cyclic representation of experimental pro-
cesses is emphasizing the re-use of previously generated data
for new studies. As computers are involved in many (if not all)
of these activities, it is expected to find (digital) traces on
storage systems or even in other devices such as USB sticks
or cloud storage. From a forensic perspective, experimentation
processes are where digital traces originate from, independent-
ly of any research field, specific software, or storage architec-
ture involved. The assumption is that experimental activities
lead to files that are saved on a storage system. Undeniably,
not all activities involved in the experiment are ending as
digital files. Nevertheless, there cannot be reproduction with-
out the presence of enough material to verify an experiment.
Fig. 2 shows how the experimentation process perspective
compares to the forensic investigation process.

Next, the interaction of forensic investigation and the ex-
perimentation process is understood as follows: software and
instruments involved in experimental events generate all sorts

Fig. 2 A comparison of the use of events, signs, and traces from the perspective of experimenters (experimentation process) and forensic investigators
(forensic investigation process)
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of digital traces found on storage systems during the forensic
investigation (Lefebvre & Spruit, 2019). Thus, the purpose of
a (lab) forensic investigation is to report on the information
quality of digital traces left by experimenters conducting lab-
oratory experiments. Moreover, the forensic investigation pro-
cess involves the interpretation of information like signs, signs
which are used by researchers to describe experimental re-
sources used during scientific experimentation. Signs are ele-
ments in filenames such as the identifiers of a lab instrument
and an object of study with the date of analysis written in a file
name. The preserved material is meant for accomplishing the
tasks relevant to communicate experimental results.
Experimenters describe preserved material to accomplish their
tasks. However, a forensic investigation collects these digital
traces to accomplish something different, namely the evalua-
tion of the reproducibility of scholarly work originating from
the laboratory. In short, experimenters use signs to describe
material for experimentation, and forensic investigators inter-
pret those signs for reproducibility purposes. These two per-
spectives on the same material tend to provide a rich account
of experimental events on the one hand and reproducibility
issues, on the other hand. The former perspective is the per-
spective of an experimenter at work choosing concepts to
name the material preserved on storage systems. The latter is
the perspective of a third party that attempts to reproduce the
experimenter’s work.

As will be presented later, the forensic investigation leads to
the interpretation of information signs discovered on storage
systems in laboratories. There are several models of signs in
semiotics, the triadic model of a sign (Klinkenberg, 1996; Nöth,
1990) being the model that conveniently illustrate, see Fig. 3,
the characteristics we investigate in digital files. The first notion
is the notion of a vehicle of a sign, which corresponds to the
digital traces (e.g., a file path). Vehicles are how signs reach
their interpreter. Vehicles are, for instance, a language with
their written symbols or sounds. Then, the sense (or meaning)

is an abstraction in one’s mind occurring when signs are per-
ceived. In our example, it is a class of objects such as the
concept of software. Last, the referent is the object itself, for
instance, the corresponding software (and version of that soft-
ware) used to analyze research data reported in a publication.

For this study, we make use of a descriptive approach root-
ed named the Descriptive Theory of Information (DTI) to
evaluate several aspects of a sign. The DTI was first presented
by Boell and Cecez-Kecmanovic (2015). In their work, the
authors of the DTI elaborate on a generic approach to the
description of the information and provides a critical review
of definitions of the concept of information used in IS research
(Wang & Strong, 1996; Stvilia et al., 2007; Chatterjee et al.,
2017). The DTI describes information according to two di-
mensions. The first dimension of the DTI articulates three
different forms of information. Therefore, the DTI distin-
guishes intended information (i.e., stored) from potential in-
formation (i.e., potentially relevant to third parties), and infor-
mation in use (i.e., as interpreted by third parties).

The second dimension of the DTI regroups the four condi-
tions for a sign to be interpreted as information by someone.
The first branch of semiotics retained in the DTI is named
empirics, which is at the physical level of information and
deals with how information is stored on physical systems.
Second, the syntax is about how information is structured
and obey to rules of a sign system. Third, semantics are con-
ditions of information to provide meaning to information con-
sumers. Last, the pragmatic aspect adds dimensions such as
interests and socio-cultural context to the previous categories.
DTI Facets express each of these branches. Facets are a con-
dition for a sign to become information. Boell and
Cecez-Kecmanovic (2015) suggest 15 facets of information
(e.g., novelty, physical assets) classified into the four semiotic
branches defined earlier.

We observed that, in practice, at the stage of preservation,
i.e., named intended information in the DTI terminology, a

Fig. 3 The interpretation of
digital traces depicted as a
(semiotic) triangle of Ogden-
Richards
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vast amount of research data resides locally and on
organization-specific systems (Prost & Schöpfel, 2015;
Tenopir et al., 2011). In laboratories, such as in the case study
laboratory, the preservation of research data is set up
employing shared folders. The digital file system provides
basic meta-data structures. The generic architecture of digital
file systems defines two types of meta-data: system-dependent
and user-defined metadata (Venugopal et al., 2006).
System-dependentmetadata are analogous to empirics accord-
ing to the DTI and are focused on physical descriptions of
data objects.User-dependentmetadata, on the contrary, might
potentially cover syntax, semantic, and pragmatic facets of
describing the data in folders and file names. With a mix of
both types of meta-data, an investigator can recover experi-
mental resources and obtain knowledge about the time at
which they were created as well as other features written in
filenames.

The evaluation of experimental material leads to a score of
each semiotic level, as can be seen in Fig. 4. The higher the
score on the DTI faces (DTI Score), the higher chance a future
experimenter can perform analyses with the material pre-
served on the local storage or online. For instance, a publica-
tion (A) using a software (Sa) to analyze a dataset (Da) and its
corresponding manuscript (Pa) are stored in distinct locations
that are hard to access. The empirics score of A will be low
(e.g., a score of 1 on a scale from 1 to 3). If we add unstruc-
tured and ambiguous names (syntax and semantics), as well as
the absence of documentation on the workflow (pragmatic),
the DTI score will be low, i.e., publication A scores low on the
empirics, syntax, semantic, and pragmatic levels.

At a later time (noted t’ in Fig. 4), a laboratory conducted
another experiment involving other experimenters who, this
time, carefully described the experiment, chose filenames
wisely, and kept informative hints about their experimental
processes. In that case, we obtain a higher score for B (Pb)
than for Pa. As we explained earlier, digital traces that are
accessible, well-structured and, holding meaningful

information lead to more reproducible experiments.
Therefore, from an information point of view, a high DTI
means a higher reproducibility potential. The process leading
to such an evaluation and scoring with DTI is described later
in Section 3.

The scoring mechanism forms the basis for developing
analytics capabilities further. The scores indicate what type
of issues are encountered. Information systems research has
developed a wealth of useful capabilities, as introduced in
Section 2.2, that can be placed in the context of laboratory
work because laboratories are not entirely similar to the cor-
porate context from which analytics capabilities where previ-
ously devised. Nevertheless, we can seek to connect analytic
capabilities to the information aspects of the DTI that are
scored on a level from 1 to 3, low to high, respectively. In
Table 1, the criteria for scoring each aspect are given.

DTI Score ¼ ∑
A

i¼1

Si
A*C

ð1Þ

Equation 1 Scoring the information aspects on the labora-
tory storage and the associated repository. Using this formula,
four aspects (A) are scored according to three criteria (C) each.

In Eq. 1, the score is divided by 12 to obtain a final DTI
score ranging from 0 to 1 after summing up the score of the
four DTI aspects, namely empirics, syntax, semantics, and
pragmatic. The score (S) is derived from the criteria in
Table 1. The criteria for each aspect were derived from our
initial attempt to evaluate the repeatability of experiments in
Lefebvre and Spruit (2019). We observed that the presence of
certain elements on storage systems made the forensic process
more efficient, while their absence can decrease the reliability
of forensic outcomes. Hence, we have grouped criteria under
the four semiotic aspects, each criterion showing what facili-
tated the recovery of experimental material and at which level
(i.e., empiric to pragmatics). These criteria are applied by the
forensic investigator for evaluating the quality of the

Fig. 4 The laboratory forensics
approach should result in the
assessment of digital traces
encompassing datasets (d),
software (s) and, the publication
(p) employing a score standing for
the quality of those traces. For
instance, here A and B are two
illustrative publications, where A
scores lower (harder to reproduce)
than publication b as the score of
its components (Software, Data,
and Publication) score lower
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experimental resources. For instance, at the syntax level, we
noticed that date times formats are a recurrent issue to deter-
mine if a series of files belong to an experiment. If date times
are used consistently in file names, the score obtained for
syntax should reflect this. In this study, the results of forensic
investigations are used in two ways. First, these results exem-
plify challenges in research data management based on how
research data is preserved in laboratories. Second, research
data management challenges identified by forensic ap-
proaches form a way to reflect on research data management
capabilities in order to enhance reproducibility,

In the two next sections, we investigate what RDM capa-
bilities can play a role in increasing the availability and quality
of research data preserved and shared in laboratories. We first
start by applying a digital forensics approach in Section 3.
Then, in Section 4, we reflect upon our forensic findings by
introducing key RDM capabilities that, once implemented,
will decrease the number of challenges occurring when man-
aging research data locally in laboratories, and online in
journals and digital repositories.

3 Information Quality Evaluation
with Laboratory Forensics

In this section, we explain the process of extracting experi-
mental evidence from laboratory storage systems. We have
conducted the forensic analyses in a chemistry laboratory in
the Netherlands. We opted for a chemistry laboratory that
combined laboratory work with technology development
and bioinformatics so that the research data would cover a
wide range of experimental practices. As an example, an ex-
periment investigated in this study will start in a laboratory,
with experimenters operating instruments that record mea-
surements with meta-data into files. Next, computational ex-
periments use these files for processing and analyzing labora-
tory outcomes. From a research data perspective, those activ-
ities leave traces on storage systems. This is shown by the
included publications, listed in Table 2, which are from exper-
iments that were conducted independently, by different
groups of experimenters that combined PhD students with
more senior researchers. From a digital forensic point of view,
investigating such experiments has the advantage that it offers
material of sufficient complexity. Therefore, each publication
can be investigated using a broad set of DF activities and
techniques. The main forensic activities are grouped in five
steps according to (Årnes, 2017). A DF investigation starts
with the identification of the data sources or interest, which
are possibly containing relevant material. The next step is the
collection step, where the evidence from existing storage sys-
tems is extracted. The collection of evidence requires an im-
age of the data source of interest, as it would be hazardous to
investigate storage systems in use. Once the evidence is

Table 1 Criteria for evaluating the investigated research data with
empirics, syntax, semantics, and pragmatic branches of the DTI

Aspect Score Scale Criterion Example

Empirics 3 HIGH All relevant files
can be accessed
and retrieved

The list of folders
that contain
documents, raw
data, processed
material, and
other relevant
material.

Empirics 2 MEDIUM A part of the files is
still accessible
on the storage
systems;
however, some
files are not
accessible

The raw data might
be preserved,
but the analysis
output has not
been preserved.

Empirics 1 LOW Some files are
located but with
low uncertainty
and might not
belong to the
corresponding
publication

The scientific data
behind the
publication is
hardly
accessible

Syntax 3 HIGH The structure of file
and folder
names is
consistent in all
project folders

The authors follow
a strict
convention to
write file names.

Syntax 2 MEDIUM Files are partially
structured

Parts of file names
can be delimited
by symbols such
as – or _, which
ease the inter-
pretation of their
content

Syntax 1 LOW No consistent
structure in file
names

Date and time in
file names can
be written in
many formats,
some of which
are confusing,
like a date value
02052020,
which might
refer to February
or May

Semantics 3 HIGH Enough resources
mapped with
certainty to the
corresponding
publication

Groups of files are
precisely
matched to their
role in the
experiment
helped by
meaningful
names

Semantics 2 MEDIUM Some resources
mapped to
corresponding
publications

A part of the
software or data
in the method
section can be
mapped to the
preserved
resources
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isolated from a computer device, we proceed with the exam-
ination phase to locate potentially relevant evidence. After the
investigators have recovered potential evidence, the analysis
phase takes place. The last step, presentation, is the translation
of the findings into a format that can be understandable by
third parties, who may not grasp the legal and technical details
of forensic investigations (Graves, 2013).

Hence, we followed a number of steps to achieve score the
quality of the material underlying each publication, structured
around digital forensics approaches:

1) The collection of digital evidence is, therefore, a basic
set of activities. The output of the forensic investiga-
tion depends on the quality of the data sources that are
gathered. The investigated digital evidence is produced
by experiments where experimenters combine labora-
tory work with computational work to produce re-
search results. Once the evidence is gathered and

secured with a snapshot of file system meta-data, an
examination phase follows. During the examination
phase, we conduct further quality checks on the data
acquired from storage systems.

2) Next, we proceed with the analysis of experimental evi-
dence. Once the examination steps confirm the relevancy
of the evidence, the selected traces qualify as relevant
experimental evidence as we are confident at this stage
that the traces belong to the experiments reported in the
publication of interest. Typical forensic techniques that
are applicable at the analysis stage are the production of
timelines (where the date of modification of files are plot-
ted together with other information, such as extensions or
filenames (see Fig. 5A).

3) Last, we present findings as a report mentioning the num-
ber of relevant files found during the investigation, the
total size of the experimental data, and the duration from
the first creation data to the last modification. Besides, we
comment on the quality of the material using the DTI to
communicate, which issues are prevalent in the storage
for each publication.

3.1 Identification and Collection of Research Data

In laboratory forensics, publications are used as a starting point
for investigating the data disseminated together with the publi-
cation. Also, the search space on the storage systems is reduced
to folders containing information about authors, methods, and
software. The publications are extracted from PubMed. The
selection conditions are (1) that a majority writes those publi-
cations of authors originating from the case study laboratory
and (2) that a full-text version is available in PubMed Central
(PMC) in XML format. The reason we opt for publications that
can be retrieved in an XML format is to facilitate the extraction
of meta-data and paragraphs in the articles.

Next, in the case study laboratory, access to the storage
systems was granted by a laboratory member of the case study
laboratory. The storage systems in use in the laboratory are
remote storage servers, which are logically divided into raw
data folders, laboratory computers, users, projects, libraries,
groups, and personal folders. Files and folders were first
inspected using the file explorer in Windows or PowerShell
commands before snapshots were created. We opted for a
pre-selection of relevant folders so that the process of copying
files does not overwhelm the requests on storage servers,
which are used by experimenters. Also, a pre-selection de-
creases the number of files ending in the snapshot.

The snapshot is preserved as a comma-separated value file
(CSV) containing file paths (the location of a file on a file
system), file names, dates of creation, modification, and last
access. As the snapshot is a text file, it can be analyzed with

Table 1 (continued)

Aspect Score Scale Criterion Example

Semantics 1 LOW No (or a small
number of)
experimental
resources
mapped to
corresponding
publications

A list of figures is
found on the
storage, but no
software output
to generate
them.

Pragmatic 3 HIGH Documentation
present and
folder structure
is logical

A readme file is
present, code
(scripts), and
relevant data sets
are described,
and the
connection
between parts of
the article and its
related resources
is unambiguous.

Pragmatic 2 MEDIUM There is little
information
about how the
resources can be
(re)-used

The necessary
resources are
present but in
formats that are
not easily
modifiable, such
data in a
spreadsheet with
many
annotations
instead of
simpler text
files.

Pragmatic 1 LOW Few resources are
reusable

A file named such
as output.txt
does not define
which kind of
output, when
and how it was
acquired
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text and natural language processing techniques during the
examination and analysis phases. We used custom analysis
software to assist in the investigation. The path2insights –
P2i - software is an analysis toolkit for investigating the con-
tent of file systems extracted as text (Lefebvre & Bruin, 2019).
It, therefore, combines traditional forensic techniques (time-
line creation, matching file extensions to software) with natu-
ral language processing techniques such as tokenization, dis-
tances (with Levenshtein distances). P2i offers a unified and
comprehensive set of tools for analyzing file paths. P2I sup-
ports static file systems analysis without requiring access to
the original physical storage. A scan of the storage’s content
exported as a text file suffices to explore the files preserved on
the laboratory’s storage system. Essentially, P2i brings foun-
dational natural language processing techniques to the analy-
sis of file paths. At this moment, P2i supports the tokenization,
similarity, clustering of file paths to compare, and other file
paths across different folders. For instance, a file name can be
split into subparts so to compare these parts between folders
and obtain a comparison of material preserved in different
locations. Using a clustering approach, the content of different
folders can be compared based on a subset of words (or to-
kens) extracted from the filenames.

3.2 Examination of Research Data

During the examination phase, the collected evidence present
in the snapshot is checked and prepared for further analysis.
At the end of the examination, unnecessary files are filtered
out from the storage snapshot, and their inclusion in the snap-
shot is made certain. The decision is made based on the infor-
mation reported in publications. So, experimental resources
are identified from the publication and, if applicable, the

location where the authors have deposited those resources.
Here, we extracted nine concepts that occur in method sec-
tions of the publications (see Table 3). Besides, these concepts
help the investigator detect the origin of resources and specific
file formats, such as file formats that belong to laboratory
equipment.

When we recovered traces containing signs (e.g., words)
referring to software, for instance, we matched those resources
to the category “software,” as defined in Table 3. For instance,
proteome discoverer (Colaert et al., 2011), a software used in
proteomics, leaves particular patterns of files on the storage.
Therefore, these files can quickly be recovered from their
names and extensions, and hence can be mapped with confi-
dence to the publication(s), which refer(s) to them.
Nevertheless, in many cases, the evidence collected is not
linkable to a publication with high certainty. Depending on
the files and folders structure, trial experiments, tests, and
other materials used for unpublished activities are confounded
with the (relevant) material underlying a publication. In such a
case, the DTI score has to be lower to reflect this confusion.

3.3 Analysis of Research Data

Once the digital evidence collected from online sources and
local storage systems has been examined, as explained in the
earlier section, we continue with the analysis of the evidence.
The analysis step is where the analysis of information quality
issues takes place. From the domain of digital forensics, one
can re-use several techniques that help an investigator show
when experimental events occurred with timelines and how
the identified files fit into the experimental process with link
analyses. Timelines are constructed using storage meta-data
(which is only applicable to laboratory storage). The timeline

Table 2 Background information
of the selected publications
examined in this study

Publication
identifier

Year Journal Publisher

PUB_1 2019 Chemical science The Royal Society of Chemistry

PUB_2 2016 Journal of the American Chemical
Society

American Chemical Society Publications

PUB_3 2017 Analytical chemistry American Chemical Society Publications

PUB_4 2017 ACS chemical biology American Chemical Society Publications

PUB_5 2018 Journal of the American Society for
Mass Spectrometry

American Society for Mass Spectrometry

PUB_6 2018 Journal of the American Society for
Mass Spectrometry’

Springer

PUB_7 2019 Journal of proteome research American Chemical Society Publications

PUB_8 2019 Journal of proteome research American Chemical Society Publications

PUB_9 2019 Molecular & cellular proteomics: MCP American Society for Biochemistry and
Molecular Biology

PUB_10 2019 Analytical and bioanalytical chemistry Springer

The data in this study is reported anonymously. Hence only the year, journal, and publisher are communicated
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in Fig. 5A shows the date of modification of files recovered in
the laboratory for PUB_10. In the timeline, we can observe
that there have been several moments where raw data has been
produced for almost a year, with interruptions of a fewmonths
between measurements. Then, data processing occurred after
the production of raw data, making the total duration of ex-
periments reported in an article an effort longer than a year.

Moreover, to understand the context in which these
resources are produced, another useful forensic technique
is link analysis (e.g., Fig. 5B), which compares the

reported experimental data with the traces found on stor-
age. Thus, a network is created using information from a
publication. Subsequently, the list of files is consulted, and
resources reported in the publication which are not located
in the snapshot are labeled as missing. The link analysis
of PUB 10 is presented in Fig. 5B. The red circle pin-
points the resources that are not recovered (or missing) on
the laboratory’s storage. Hence, R and Python scripts men-
tioned in PUB_10 are not found on the storage server of
the laboratory.

Table 3 The nine coded
categories used for annotating the
ten articles published by our case
study laboratory

Name Description Occurrences in
publication

Data Mentions of the data created by equipment in laboratories or data
analysis software reported in a publication

9

Database A database is a collection of data which is searched/queried to
obtain reference material or compare local results with known
recorded outcomes

5

Deposit A dataset or software is deposited in a repository (or website) which
is publicly accessible (or with clear guidelines to access the
material)

7

Equipment Equipment groups, instruments, and lab material intervening in the
process of experimentation

9

Location A city or country where material, data, software, and equipment are
originating from/manufactured.

6

Method Laboratory and computational processes used to operationalize
experiments.

9

Organization A company, laboratory, institution, or any other group reported in
the publication

7

Software Similar to equipment but purely computational. Software refers to
packages, scripts, analysis software, and so on.

9

Supplemental
Information

The authors submit additional files on the editorial system and
accessible directly on the journal’s website. Supplemental
information is referred to from the text.

7

Number of
investigated
articles (N)

The total number of articles investigated in this study 10

Fig. 5 In A, an experimental process timeline is reconstructed by forensic investigations. In B, a link analysis of resources as reported in the
corresponding publications. Green circles refer to resources found on the storage, red circles to missing resources
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3.4 Reporting on Research Data

The last step of laboratory forensics is to produce a report sum-
marizing the results of the investigated cases. The results of the
scoring are presented in Fig. 6, where the criteria shown in
Table 1 have been applied on preserved (I.e., locally archived in
the lab) and deposited (i.e., accessible online) material. To score
the research, the first author of this study examined the files and
publications using forensic techniques as shown earlier. Then, a
score was given to each publication based on the quality of the
data found in the laboratory and online, e.g., data deposited in a
repository or on a journal website. Based on a number of forensic
investigations, the resulting scatter plot of DTI scores shows that
there is a variety of data management situations behind each
publication. There are no standard data management practices in
the laboratory, as the preservation of data depends on the exper-
imenters and their data management choices. The score of depos-
ited data is lower than the preserved data for half of the publica-
tions. The scores of the other half of the investigated publications
had no data available with publications that are of sufficient qual-
ity to support the reproduction of the published work. Moreover,
the material on the local storage is generally of better quality.
However, it comes with a significant drawback: it is not available
to third parties or teams who wish to reproduce the publication.

Regarding the underlying reasons for the variations in DTI
scores, there are several points worth to be noted. All publi-
cations investigated in this study shared research data online,
one study (PUB_2) had files shared online, but no files were
preserved in the laboratory at the time of the investigation.
Nevertheless, half of the publications (PUB_5, PUB_6,
PUB_1, PUB_10 and, PUB_4) uploaded data to repositories
or supplemental information that were only covering a part of
the analyses reported in their corresponding publications.
Also, the low score on the online deposit (y) axis is caused
by the fact that most of the material being available as PDF
files in the supplemental information section of publications.

Besides, there are cases where research data is produced out-
side of the laboratory by external research groups and commer-
cial organizations. The recovery of resources provided by exter-
nal parties is challenging when equipment and raw data where
processed at a different location than the investigated laboratory
as they leave no distinguishable traces on internal storage sys-
tems. Higher DTI scores are easier to obtain when experiments
are entirely produced in the laboratory, while distributed exper-
imental processes and technology led to lower DTI scores.

Moreover, most publications are also related to incomplete
information on the local storage of the laboratory. While gen-
erally, the local storage contained more material underlying
publications, the relations of this material to the analyses re-
ported in their corresponding publications were not clear. One
example is PUB_10 that did not differentiate test raw data and
raw data from another series of experiments not reported in the
investigated publications from the raw data underlying
PUB_10. As this influence the recoverability of research data,
the DTI score is low (below 0.4) despite the right use of file
naming conventions by the authors of PUB_10.

Last, the remainder of this article focuses on transferring
the lessons learned from forensic investigations in a laboratory
to decision-makers, such as laboratory managers, principal
investigators, and support people such as data stewards. In
short, how can RDM failures be reduced through the devel-
opment of RDM capabilities on the one side and analytics on
research data on the other side.

4 RDM Capabilities for Open Science
Readiness

In the previous section, we presented the outcomes of the
forensics approach. Our findings showed that there is a wide
variety of RDM practices that influence the quality of research
data. Besides, we show that not all resources were recovered

Fig. 6 Overview of the scores of
information aspects for research
data underlying each publication
(local storage and deposit). The
closer to 1, the higher the
information quality of the
material extracted from the
storage. In the case of PUB_2, our
approach failed to recover files on
the local storage, which explains
the DTI score of zero
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efficiently. The remainder of this article focuses on capabili-
ties that are aimed at reducing the failures of forensics, i.e., the
non-recoverability of essential experimental resources on stor-
age systems in laboratories. To increase the recoverability also
means that data availability must be guaranteed. Nevertheless,
the results presented in Fig. 6 show that data availability is not
systematic, whether online or locally. Besides, the recovery of
relevant research data underlying published experiments is not
straightforward, as shown by the efforts and techniques re-
quired by a forensics approach to collect digital evidence
systematically.

4.1 Capabilities

The RDM capabilities for open science readiness cover the
four DTI branches that were previously scored: empirics, syn-
tax, semantics, and pragmatic. Each capability could lead to
an improvement of the DTI score as they would make the
recovery of research data with forensics techniques less error
prone. We list the four DTI levels and their corresponding
RDM capabilities in Table 4. First, to increase the empirics
part of the DTI score, linking research data on storage systems
would enable a smoother retrieval of relevant resources
(Bechhofer et al., 2013). Often, research data was retrieved
with low certainty during our investigations. Due to a lack
of explicit links between folders and files, we retrieved more
research data than necessary, files which do not belong to the
experiments reported in the investigated publication. A large
number of files would then need more intensive processing at
the syntax and semantics levels.

Then, the syntax was an issue as crucial elements such as
date times, sequences, data creators, experimental conditions
where inconsistently written by laboratory workers. It makes
those records of experimental operations hard to trace, which
is detrimental to reproducibility (Williams et al., 2017). For
instance, dates and times were alternatively written in US
formats and other formats. Data creators were using first
names, usernames, and initials to identify themselves and

collaborators. Besides, some folders are labeled by journal
name, funder, and project name in an inconsistent way.
Syntax issues could be circumvented by clear rules that make
research data traceable. Traceable research data is, therefore,
included here as a capability at the syntax level.

Next, semantics is the most challenging branch of the DTI
to score based on the forensics approach. A single filename
can carry many parts referring to different objects, for in-
stance, objects of study, samples, journals, authors, locations,
and domain-specific elements. To remove unambiguous ele-
ments, laboratories may use (or develop) ontologies in line
with FAIR principles for research data management (Harjes
et al., 2020). With an ontology-based (research) data manage-
ment approach, ambiguity can be reduced by structuring
domain-specific knowledge (Lenzerini, 2011). A wealth of
ontologies are readily applicable for describing domain-
specific knowledge (Mayer et al., 2014), their combination
with recent developments in FAIR technology extends seman-
tic capabilities to the whole lifecycle of research data (Harjes
et al., 2020).

Last, pragmatic relies on empirics, syntax, semantics, and
open data value capabilities to provide high-quality research
data for reproducibility purposes. Pragmatic is the last level of
the DTI score and stands for the (re-)usability of research data.
Research data should be preserved andmade available follow-
ing a consistent strategy of documentation and curation to be
useful to laboratory members and external parties. Hence,
curation is a collaborative effort between many stakeholders
to ensure the availability of curated data inside research insti-
tutions and on the scholarly communication infrastructure.

These capabilities, summarized in Table 4, are aiming at
implementing open science readiness in laboratories. In other
words, these are capabilities to achieve the state where a lab-
oratory can responsibly manage research data. However, the
dynamic nature of experimentation processes makes the fo-
rensics approach hard to scale, and, therefore, automated mon-
itoring of research data quality based on the laboratory’s eco-
system is presented here as a future step. Once capabilities that

Table 4 RDM capabilities for
open science readiness DTI

Branches
RDM Capabilities Description

Empirics Linked research data Makes experimental resources discoverable on the file systems by
explicitly linking related resources.

Syntax Traceable resources Makes use of distinguishable temporal elements, ownership, and
sequence in filenames and folder names.

Semantics Ontology-based data
management

Develops consistent naming conventions and lists of materials, people,
journal names to be used in filenames with semantically rich
aggregates of resources with FAIR objects.

Pragmatic Open data value
strategy

Guarantees the cohesion between laboratory research data and (meta-)
data made available on online sources (e.g., articles, repositories)
throughout open data value capabilities.
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streamline the description of research data are in place, it will
allow novel possibilities to interpret data quality in an auto-
mated fashion.

4.2 Analytics

The analytics dashboard shown in Fig. 7 is decomposed in
three areas representing the “research data strategy” capability
of research data management discussed earlier. These three
areas are information quality of research data, the openness
of research data with citable data, and alignment with stake-
holder goals, such as open access programs of funders. We
refer to the Tableau public cloud environment for an online
interactive version of the dashboard (Lefebvre, 2020). To gen-
erate a prototype dashboard for monitoring open science read-
iness, as shown in Fig. 7, we extracted data from dimensions.
ai about publications and data sets covering the laboratory
where we conducted our forensic analyses. Then, we created
an additional data set by randomly assigning values to the
properties of interest. The reason values are randomly gener-
ated to populate the dashboard is that extracting real values
from the case study laboratory would necessitate a lengthy
forensic investigation process on hundreds of publications.
Therefore, the random data simulates DTI scores as those
obtained during our forensic investigations, as reported in
Fig. 6.

An overview of DTI scores according to the type of open-
ness, citable data, number of publications, and citations are
shown in Fig. 7A. In Fig. 7A, the overview shows how DTI
scores could be applied to the scientific output of a lab to flag
publications with high, medium, and low information quality.
Publications in a dark-red color indicate that there are serious
data quality problems that hinder reproducibility. Compliance
with open access to research information per funder is shown
in Fig. 7B. Figure 7B is an example of how the availability of
research data complies with requirements from external stake-
holders, in this case, funding agencies. The last part, the state
of data openness, is shown in Fig. 7C. As mentioned before,
the availability of data is crucial for reproducibility. New tech-
niques enabling re-use to rely upon citable data, where re-
search data can be credited in addition to publications
(Robinson-García et al., 2016). Thus, the dashboard in its
current state simulates a view of data quality using DTI scores
to offer a high-level overview to laboratory workers and man-
agers about the state of research data in their organization.

The synergy between the dashboard shown in Fig. 7 and
the outcomes of the forensic analyses shown in Fig. 6 appears
with the classification of the quality of research data according
to DTI aspects. The ambition of such as dashboard is to make
reproducibility issues visible to laboratory managers for dif-
ferent experiments, different funded projects and also indicat-
ing the progress of open data. The dashboard gives an exam-
ple of how RDM capabilities can be exploited to provide

Fig. 7 Analytics dashboard for monitoring open science readiness
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insights into reproducibility and open science and prepare the
laboratory to deal with reproducibility threats that emerge
from low quality research data.

5 Discussion

In this study, we have shown the results of a forensics ap-
proach conducted in a case study laboratory. The forensics
approach, named laboratory forensics, has the purpose of eval-
uating the quality of information preserved in laboratories as
well as the quality of information of research data shared with
scientific publications. Next, we described how the outcomes
of forensic investigations could nurture a reflection about
RDM capabilities and analytics aiming at increasing data
quality, and subsequently reproducibility, of published exper-
iments. Here, we present our contribution concerning the
existing literature and the practical implications of our
findings.

5.1 Implications for Existing Research and Future
Work

We investigated a laboratory that evolves in a chemistry and
life sciences, those are scientific domains where one may find
a profusion of solutions to preserve, describe and share re-
search data (McQuilton et al., 2016). Still, disparities in the
quality of research data exist, showing inconsistencies in the
way research data is managed in a research unit. In that sense,
our results tend to confirm previous literature emphasizing the
responsibility of individual researchers, rather than research
units, for managing data (Baykoucheva, 2015; Wilms et al.,
2018). Nevertheless, we also note that these disparities are
rooted in data management practices that are still challenging
to align with modern solutions to achieve high quality, repro-
ducible data packages like research objects (Bechhofer et al.,
2013).

We found there would be a need for at least four capabil-
ities to make the recovery of research data more robust. Those
are linked research data, traceable resources, ontology-based
management, and open data value strategy. In the literature,
these capabilities are encompassed in findable, accessible, in-
teroperable and, reusable (FAIR) principles and research ob-
ject principles and technologies (Ribes & Polk, 2014;
Wilkinson et al., 2016). However, a point that current FAIR
and research object technology tend to overlook is the multi-
plicity of actors, equipment, locations, and experimental de-
signs that are currently described by experimenters using stan-
dard file management systems in laboratories. A reflection
about technology, on the one hand, and research data manage-
ment capabilities, on the other hand, has to be conducted to
make research data management more resilient.

First, we concur that linked research data is a limited part of
what makes reproducibility a success (Bechhofer et al., 2013).
Nevertheless, many issues arise from the absence of clear
links between different outputs generated during experimen-
tation and publication. It further impedes the possibility to
automate retrieval techniques and automated assessments of
research data preserved on storage systems. At the same time,
analytics on linked data posits additional management chal-
lenges to integrate a broad diversity of datasets, as shown by
the case of big and open linked data analytics (Lnenicka &
Komarkova, 2019). As such, it is notable how the application
of semiotics, as suggested in our laboratory forensics ap-
proach, can account for the enormous diversity of datasets
origins and purposes to study research data challenges in
greater detail and reconstruct their linkages.

Second, the ambition of making scientific experimentation,
at least at the computational level, traceable are the domain of
scientific workflows (Cohen-Boulakia et al., 2017;
Santana-Perez et al., 2017). In scientific workflows, experi-
mental resources are represented as a graph providing the
ability to experiments to repeat experiments by automating
the sequence of steps, inputs, and outputs. The difficulty here
is that in real laboratory settings, completeness of the archive
was a significant issue. As shown in Fig. 5B, some of the
resources are missing from storage archives. Moreover, the
input of the computational experiments is generated by lab
equipment. Both types of resources, i.e., laboratory and com-
putational, were (1) not linked correctly in a majority of the
investigated cases (2) containing ambiguous information
about their usage in an experiment, with the absence of exact
version or date-time properties in the file name, for instance.

Third, ontology-based data management refers to a mech-
anism to access data through a (formal) representation of the
domain of interest (Lenzerini, 2011). In the biological domain,
and more generally, domains dealing with open data, the use
of ontologies for data integration is useful (Mayer et al., 2014;
Soylu et al., 2019). The data model on file systems is a hier-
archical model that lacks the accuracy of a semantic data
model in terms of information that can be preserved. In the
investigated laboratory, there was no semantic technology in
use to preserve and recover research data. In contrast, much of
the information was quite ambiguous as there is no space on
the file system to describe the role of experimental resources
in an experimenter. Often, authors, journals, projects are
named with abbreviations in filenames, abbreviations that
can lead to the uncertain matching of research data to publi-
cations. As an example, the authors’ initials may be confound-
ed with protein names. The role of ontologies would be to
reduce that uncertainty by defining the domain and possible
values.

Last, an open data value strategy was missing in the labo-
ratory, despite its utility to forge high-quality data, as shown
by Zeleti and Ojo (2017). A missing open data strategy makes
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the recovery of research data challenging as the material re-
covered online is not systematically helpful to investigate the
data on the laboratory’s storage. Except for publications
obtaining a high (> 0.7) DTI score (i.e., scoring the maximum
on the majority of semiotic branches), online material
consisted in supplemental information files with modified
names during the editorial process and (extensive) list of files
deposited on online archives accessible through a link and
identifier mentioned in the corresponding publication. We ob-
served that data deposition is then mostly ad-hoc and depen-
dent on the specific requirements of the outlets in which the
investigated articles were published (Wallis et al., 2013).
Laboratories should, therefore, work on their internal capabil-
ities to stay in control of data preservation and dissemination
technology and mechanisms. Furthermore, a data strategy will
foster initiatives to develop a more analytics-driven approach
to the evaluation of reproducibility and openness in laborato-
ries that are currently permitted by current RDM practices. In
other words, a denser reflection around specific capabilities is
necessary for achieving open science readiness. Nevertheless,
before reaching a state of readiness where these capabilities
can be fully exploited, there are several other practical impli-
cations of laboratory forensics that need to be discussed, as
explained in the next section.

5.2 Practical Implications

Our study aims at contributing to a better understanding of
research data management pitfalls as they currently occur in
laboratories. Forensic and semiotic techniques help make
sense of complex research data and identify shortcomings.
In addition, we expect open science readiness to be fundamen-
tal for supporting a robust digitalization of laboratory work.
First, we comment on practical implications for research pro-
fessionals, then we discuss how open science readiness con-
tribute to data analytics ecosystems for generating both busi-
ness and social value of research outcomes. For research data
professionals, the application of forensic techniques may help
shape more specific guidance to laboratories based on their
unique RDM strengths and weaknesses, as well as article and
data publication practices. Moreover, we recontextualize the
scope of FAIR technologies and show their limits when it
comes to informing data professionals about the state of
RDM in laboratories. That being said, several steps are still
necessary before laboratory forensics is fully applicable to
professional research data support, as we have learned from
a focus group evaluation of laboratory forensics with
professionals.

We introduced laboratory forensic techniques to seven
participants with expertise in research and scholarly commu-
nication. Also, participants had a variety of computer skills,
ranging from beginner level to proficient at coding, which is
an ideal situation to obtain feedback about the complexity of

forensics for a wider audience. The focus group session took
place in August 2019 in Los Angeles at the University of
California (UCLA) during a six-hour introduction course to
laboratory forensics where participants actively applied foren-
sics on a snapshot exported from the case study laboratory and
provided feedback on the utility of the forensics approach.
Furthermore, limitations and future directions were discussed.

The advantages mentioned by the participants referred to
information quality issues, and a lesser extent, governance,
and sharing of data. Understanding data to prevent data losses
(or finding lost data) served as a basis for discussing conven-
tions or best practices. Several participants even mentioned
the benefits of such an approach to develop more robust data
organization strategies by discussing conventions in the labo-
ratory. Also, participants considered the practice of forensic
investigations as activities that are beneficial for reproducing
experiments.

Regarding the challenges of laboratory forensics, the par-
ticipants discussed the methodological and technical chal-
lenges ahead. Regarding the forensic methods, participants
experienced difficulties with knowing where the process ends
(e.g., when do we obtain the complete set of files, what to
write in the report). Also, the fact that, at the empirics level,
many files are not coherently aggregated on the storage sys-
tem. A participant experienced that data in multiple places is
challenging. An essential limitation of the forensics approach
mentioned by the participants is that, technically, the investi-
gation required participants to be quite comfortable with dig-
ital file management systems and python tools such as
path2insights (Lefebvre and Bruin, 2019). These technical
barriers were still experienced as significant by the partici-
pants, so future developments of forensic applications should
focus on easier tooling for a wide range of skillsets and audi-
ence. Therefore, to apply to a broader audience, laboratory
forensics has to be further developed, as explained in the next
section.

Then, open science readiness is aimed at making research
data management challenges visible to laboratory workers,
laboratory managers as well as helping stakeholders such as
research funding agencies/ At the core of open science readi-
ness lays the concept of sustainability of scientific informa-
tion. More specifically, we introduced capabilities and in-
sights into reproducibility paving the way how research data
produced in laboratories can be better preserved and shared
with external parties through the scholarly communication
infrastructure. OSR seeks to prepare laboratories to be embed-
ded in larger analytics ecosystems like the open science mon-
itor and OpenAire (Manghi et al., 2020). Therefore, the goal
of the present article is to offer a path to reflect on the current
situation of research data management and shape the digital
transformation of laboratories for the coming decade(s).
Furthermore, open science readiness reduces the gap with
open data value capabilities. Zeleti and Ojo (2017) presented
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open data value capability areas as data generation, knowl-
edge of data standards, knowledge of data value and, data
strategy for generating open data. These open data value ca-
pabilities align with research data policies that share the am-
bition of disseminating high-quality research data using digital
repositories, preferably openly or with few access restrictions
(Amorim et al., 2015; Jones et al., 2012). To achieve this, a
reflection about new capabilities to manage research data has
to be in future research, which leads us to discuss the limita-
tions of this study.

5.3 Limitations

Despite these advantages, the laboratory forensics approach
suffers from several limitations in its current state. One limi-
tation is that it is yet to be further applied and evaluated in
different laboratories to increase its rigor and reliability. Also,
research collecting data through other means than laboratory
equipment, such as field experiments need to be included to
evaluate forensic on a wider range of scientific practices. The
current results are based on a single site case study, which
limits the ability to generalize and compare to other organiza-
tional settings. Despite this limitation, the issues encountered
also indicate that the investigation of storage systems in labo-
ratories provides deeper insights into how experiments are
conducted, which can serve as a basis for the development
of data management systems, scientific workflows and pin-
point specific information issues in laboratories.

The first drawback of the forensic investigation is that thou-
sands of files are created during experiments. On several oc-
casions, their names and folder structure (i.e., signs instead of
content) do not always suffice to ensure that the selected dig-
ital traces are indeed belonging to the investigated publication.
Moreover, a holistic interpretation of such traces is also chal-
lenging when filenames do not contain sufficiently informa-
tive concepts for third parties. For instance, we found repeti-
tive sequences of filenames that only slightly vary in the ex-
perimental conditions. As publications might be based on a
fraction of these files, the absence of explicit experimental
conditions in a publication has detrimental consequences on
the time one investigation might take. In contrast, file names
might not be informative enough and require their content to
be analyzed (which is out of the scope of this study).

Second, as the case study laboratory has no file naming
conventions for archiving data, the evidence contained in a
majority of folders needs to be carefully mapped to publica-
tions. At the same time, this issue of mixing experimental data
with other types of (non-experimental) data can be mitigated
by using discriminative names of folders and files. When no
discriminative name, such as the name of a journal, the meth-
od of the author is used, the likelihood to include files that are
not relevant in the analysis is high. Hence, these limitations
are mainly due to the erratic nature of reconstructing events

from digital footprints (Mabey et al., 2018) and the
error-prone manual extraction of experimental data from stor-
age and publications. Furthermore, the interpretation of signs
requires a great deal of knowledge about the experimentation
processes and idiosyncrasies of one’s field of research.

Third, more research is needed about the causes of the
tensions between material preserved locally and material
shared online. For instance, the level of expertise in software
development of an author and the focus on bioinformatic anal-
ysis can produce data and software that remain producible,
taking advantage of versioned source code, readme files and
a logical division of files and folders. On the other hand,
analyses that relied upon software that produced a large num-
ber of files (i.e., temporary results and configurations) lead to
a more challenging investigation. Comparing the forensic out-
comes between different laboratories and collecting the com-
ments of experimenters is a next step in the development to-
wards laboratory forensics and open science readiness.

6 Conclusions

In this study, we answered the following question: “How can a
laboratory forensics approach help achieve open science read-
iness?”. We have developed an approach to investigate exper-
imental evidence in laboratories, including tool support for
processing digital files. The purpose of laboratory forensics
is to describe reproducibility issues occurring in laboratories
in a systematic way, using digital forensic methods and tech-
niques. By investigating the digital files left on storage sys-
tems and digital repositories of 10 publications using a variety
of tools (e.g., path2insights) and forensic techniques, we have
been able to show that in daily practices (digital), experimental
data are not systematically preserved or shared online in a
reproducible way. We reached this conclusion by applying
the semiotic classification of the descriptive theory of infor-
mation (DTI) on folders and file names. Besides, we propose
that laboratories follow an open science readiness vision on
research data management that focuses on increasing informa-
tion quality for further preservation and dissemination of
(open) research data. Subsequently, we demonstrated how
our findings from laboratory forensics can assist the digital
transformation of laboratories towards open science readiness.
Open science readiness has the potential to include reproduc-
ible laboratory work in the broader reflection about sustain-
able digital transformation. The peculiarities of the diffusion
of scientific information makes the study of scientific experi-
mentation from the perspective of research datamanagement a
first step towards robust and complete communication of sci-
entific evidence to society. In future research, we will further
investigate this promising synergy of laboratory forensics with
research data management practices. Taking these potential
synergies into account, this work contributes to the
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understanding of scientific data by developing open science
readiness to help realize the strategic promise of an open sci-
ence future.
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