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Abstract
Early time series classification (EarlyTSC) involves the prediction of a class label
based on partial observation of a given time series. Most EarlyTSC algorithms con-
sider the trade-off between accuracy and earliness as two competing objectives, using a
single dedicated hyperparameter. To obtain insights into this trade-off requires finding
a set of non-dominated (Pareto efficient) classifiers. So far, this has been approached
through manual hyperparameter tuning. Since the trade-off hyperparameters only pro-
vide indirect control over the earliness-accuracy trade-off, manual tuning is tedious
and tends to result in many sub-optimal hyperparameter settings. This complicates the
search for optimal hyperparameter settings and forms a hurdle for the application of
EarlyTSC to real-world problems. To address these issues, we propose an automated
approach to hyperparameter tuning and algorithm selection for EarlyTSC, building on
developments in the fast-moving research area known as automated machine learning
(AutoML). To deal with the challenging task of optimising two conflicting objectives
in early time series classification, we proposeMultiETSC, a system formulti-objective
algorithm selection and hyperparameter optimisation (MO-CASH) for EarlyTSC.
MultiETSC can potentially leverage any existing or future EarlyTSC algorithm and
produces a set of Pareto optimal algorithmconfigurations fromwhich a user can choose
a posteriori. As an additional benefit, our proposed framework can incorporate and
leverage time-series classification algorithms not originally designed for EarlyTSC
for improving performance on EarlyTSC; we demonstrate this property using a newly
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defined, “naïve” fixed-time algorithm. In an extensive empirical evaluation of our new
approach on a benchmark of 115 data sets, we show that MultiETSC performs sub-
stantially better than baseline methods, ranking highest (avg. rank 1.98) compared to
conceptually simpler single-algorithm (2.98) and single-objective alternatives (4.36).

Keywords Early classification · Time series classification · Automated machine
learning

1 Introduction

The goal of time series classification (TSC) is to assign a class label to a given time
series, i.e., to a sequence of observations that have been sampled over time. Practical
applications of time series classification include the diagnosis of heart conditions from
ECGs, identification of patterns in financial markets, and detection of anomalies in
seismic activity. Many such time-critical applications can benefit from classification
results being available as early as possible, preferably even before the full time series
has been observed. As an example, cardiac surgical patients in postoperative care are
monitored for postoperative complications during an extended period of time. For
some of these complications, indications of increased risk can be made far in advance
of the actual onset (Abdelghani et al. 2016). Being able to automatically detect these
signals as soon as they occur, through a timely classification of the monitored time
series, can mean the difference between life and death.

Early time series classification (EarlyTSC) addresses the problem of classifying
time series based on partial observations while maintaining a reasonable level of accu-
racy. The problem has been first described by Rodríguez Diez and Alonso González
(2002) and has received an increasing amount of attention since. EarlyTSC introduces
a second criterion to the classification problem: classifications do not only need to
be accurate but also early. This results in a natural trade-off between accuracy and
earliness (Mori et al. 2019).

There are currently many algorithms available for EaryTSC with different perfor-
mance on different datasets. To obtain the best performance on a given dataset, it is
typically necessary to carry out algorithm selection as well as hyperparameter tuning.
However, when solving an EarlyTSC problem, we want to optimise both earliness and
accuracy simultaneously. If configuration A (i.e., algorithmchoice and its hyperparam-
eter settings) is better with respect to at least one of these objectives and just as good
w.r.t. the other compared to configuration B, we say that A dominates B. However, if
A is earlier than B but less accurate or vice versa, A and B do not dominate each other,
but rather represent different points in the earliness-accuracy trade-off. In that case, we
call them both non-dominated or Pareto-efficient with respect to each other. For any
EarlyTSC problem, there are many (potentially infinite) possible non-dominated con-
figurations that wewant to identify to get an idea of the trade-off between earliness and
accuracy. However, these configurations can be difficult to identify, since only a very
small portion of all possible configurations is non-dominated, which makes automatic
selection and configuration of EarlyTSC algorithms a challenging task.

123



2604 G. Ottervanger et al.

We illustrate the status-quo in EarlyTSC and our proposed approach in Fig. 1, which
shows configurations obtained using different approaches and their performance on
the GunPoint dataset from the UCR benchmark collection (see Sect. 6.2). Most Ear-
lyTSC algorithms proposed so far provide control over the trade-off between earliness
and accuracy by means of one dedicated hyperparameter. Each hyperparameter set-
ting results in a classifier whose performance is represented by a single point in the
earliness-accuracy space. Figure 1a shows the earliness and accuracy of a set of man-
ually configured algorithms, for each of which five distinct values of the trade-off
hyperparameter have been considered, evenly spread over the full range of the hyper-
parameter (we chose to consider five settings since that number corresponds closely
to what is reported in literature (e.g., Mori et al. 2018; Schäfer and Leser 2020; Mori
et al. 2019) and it would be a realistic number of configurations to evaluate manually).
Based on this plot we can make several observations.

First, we observe that the dedicated hyperparameters do not strictly trade off accu-
racy for earliness, meaning that in some cases, earliness and accuracy increase or
decrease simultaneously. This can be observed for EDSC (in blue) and TEASER (in
grey): some configurations are dominating other configurations of the same algorithm
(i.e., are better w.r.t. both earliness and accuracy). The downside of not having a strict
trade-off is that considering, for example, ten configurations might only lead to two
or three non-dominated ones. This renders the process of finding desirable config-
urations more challenging, as there is no clear logic for predicting how tuning the
hyperparameter can help find a desirable trade-off.

A second observation from Fig. 1a is that, even when covering the full range of the
trade-off hyperparameters, in many cases, a single algorithm can be limited to only
a narrow part of the earliness-accuracy space or leave large gaps between reachable
points. This stems from the fact that these trade-off hyperparameters only provide
indirect control over the earliness-accuracy trade-off. As a result, even after extensive
hyperparameter tuning, the user might be left with a very limited set of trade-off
points, or a choice between configurations that all perform very similarly. This renders
finding a good solution to a specific EarlyTSC problem extremely difficult. Note that
considering multiple algorithms simultaneously can mitigate some of the problems
mentioned above. This is illustrated in Fig. 1b. However, in this example, this involves
evaluating 40 configurations, of which only six turn out to be non-dominated, and
none of these has an error-rate between 0.33 and 0.02.

In summary, several challenges arise when manually optimising the performance
of EarlyTSC algorithms:

– Exploring the earliness-accuracy trade-off requires manual tuning of at least one
dedicated hyperparameter. This is tedious, time-consuming and error-prone.

– The earliness-accuracy hyperparameter does not always effectively trade off ear-
liness against accuracy. As a result, considering many configurations might only
result in a few non-dominated ones.

– The earliness-accuracy hyperparameter provides only indirect and limited control
over the earliness and accuracy, possibly resulting in multiple configurations with
very similar earliness and accuracy limiting the freedom of trade-off choice.
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In this work, we address these challenges by automating the process of hyper-
parameter tuning, while considering multiple algorithms and multiple objectives
simultaneously. This is done using an algorithm configurator, i.e., a fully automated
procedure that repeatedly trains and evaluates algorithm configurations and optimises
for earliness and accuracy. Our proposed automated approach falls into the area of
automated machine learning (AutoML). Recent developments in this field have made
collections of advanced machine learning tools easily accessible for non-experts (e.g.,
Thornton et al. 2013; Feurer et al. 2015; Koch et al. 2018), such that users do not
have to deal with difficult design choices and performance optimisation tasks (e.g.,
the choice of algorithm, or hyperparameter settings). Particularly, when optimising a
single objective function, the problem of combined algorithm selection and hyperpa-
rameter optimisation (CASH) has been addressed by Thornton et al. (2013) through
the well-known SMAC (Sequential Model-based Algorithm Configuration) proce-
dure (Hutter et al. 2011). However, so far, no such approach has been proposed for
EarlyTSC. This is mainly due to the complex, multi-objective nature of this specific
machine learning task. A way around this challenge would be to combine both objec-
tives into a single objective.Within the context of EarlyTSC, using the harmonic mean
of earliness and accuracy as an objective function has been proposed (Schäfer and
Leser 2020). However, this approach fails to capture the complex trade-off between
earliness and accuracy.

In this paper, we address this issue by considering a multi-objective configurator,
previously designed for hyperparameter optimisation, and expanding its use to the
multi-objective CASH (MO-CASH). In particular, we introduce a novel EarlyTSC
framework addressing the MO-CASH problem for EarlyTSC that achieves the fol-
lowing:

– Automating the process of acquiring a set of non-dominated solutions without the
need for manual tuning.

– Enabling the user to make informed decisions through having fine-grained control
over the earliness and accuracy trade-off, as provided by a set of non-dominated
solutions.

– Substantially expanding the number of non-dominated solutions found for a given
EarlyTSC problem by (i) optimising all hyperparameters and (ii) considering a
wide range of EarlyTSC methods, simultaneously.

In Fig. 1c, we illustrate the improvements that can be achieved by an automated
search over an expanded space of multiple algorithms and all their hyperparame-
ters. The result is a large set of non-dominated configurations from which a user can
choose, with high resolution, the one that is best suited to the problem at hand. Using
performance metrics developed for multi-objective optimisation, we can quantify the
performance of sets of non-dominated configurations as a whole. Specifically, we can
calculate the dominated hypervolume (HV, defined in Sect. 6.4), which takes values
between 0 (worst) and 1 (best). Comparing Fig. 1c against Fig. 1b, it can be seen
that automated configuration achieves higher HV and produces a larger, denser set of
non-dominated configurations.

A strong advantage of our proposed approach is that it effectively leverages the
complementary strengths of EarlyTSC algorithms. This means that any algorithm
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(a) (b) (c) (d)

Fig. 1 Illustration of how an automated framework can improve the quality of EarlyTSC algorithms, in
terms of the earliness-accuracy trade-off achieved on the GunPoint data set. Higher HV and a higher number
of solutions show better performance. Each point represents an algorithm configuration in the earliness-
accuracy space (coloured by the algorithm). a Current approach: manual tuning of only the dedicated
hyperparameter controlling the earliness-accuracy trade-off, separately for each algorithm. The Pareto set
of configurations of a single algorithm provides a limited choice of solutions. The best Pareto front belongs
to ECEC with HV = 0.84 and only 2 non-dominated solutions. b By considering multiple manually
configured algorithms, improved performance is achieved, but the choice of configurations remains limited,
and manual configuration requires extensive effort. c Combined automated algorithm selection and tuning
of all hyper-parameters results in a more densely populated Pareto front of solutions. d Adding the simple
Fixed algorithm provides additional non-dominated configurations and improves the overall performance
in terms of the dominated hypervolume

can potentially help in partially improving its overall performance. For example, an
algorithm that achieves relatively good accuracy early on, but does not improve with
more data, would not be considered a good EarlyTSC algorithm. Nevertheless, by
considering multiple algorithms simultaneously within our multi-objective approach,
the strength of this particular algorithm would be maximally exploited, while its
weaknesses are compensated by other algorithms. This means that our approach can,
additionally, open the door to exploring weaker EarlyTSC algorithms that would never
be considered in isolation. These could be relatively simple algorithms, where the
optimisation of earliness-accuracy trade-off is left to the algorithm configurator (as
opposed to be done internally within the algorithm).

An example of such an algorithm is a naïve fixed-time early classifier (i.e., one that
always classifies at a fixed timestep). The performance of such a fixed-time classifier
heavily depends on the fixed point in time at which classification occurs (controlled
by a hyperparameter). Ideally, one would want to consider a high number of possi-
ble classification times to obtain a detailed view of the earliness-accuracy trade-off.
However, each setting requires retraining a model, which renders the process imprac-
tical, unless an automated configuration is used. By using automated configuration,
however, favourable trade-offs between earliness and accuracy are easily identified—
especially, because the effect of the hyperparameter on the performance of this simple
algorithm is very direct. We will build upon this idea, by using the Fixed algorithm
which is introduced in Sect. 5.1. The benefits of this step are illustrated in Fig. 1d,
where we added the Fixed algorithm to obtain better overall performance in terms of
higher hypervolume and a larger number of non-dominated solutions.
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Overall, our work presented here makes the following contributions to solving
EarlyTSC:

– For the first time, we address the problem of EarlyTSC by systematically
considering the trade-off between earliness and accuracy based on all rele-
vant hyperparameters, using a multi-objective automated algorithm configuration
approach.

– WeproposeMultiETSC, a framework for automatic algorithm selection and hyper-
parameter optimisation leveraging a wide range of existing EarlyTSC algorithms.

– Within our MultiETSC framework, we make use of an extension to an existing
general-purpose algorithm configurator, exploiting prior knowledge of the struc-
ture of the MultiETSC search space.

– We demonstrate howMultiETSC framework can leverage regular time series clas-
sification algorithms to improve its performance on EarlyTSC.

– We perform an extensive empirical evaluation of MultiETSC on a benchmark
of 115 data sets showing that MultiETSC can perform substantially better than
baselines, ranking highest (avg. rank 1.98) compared to conceptually simpler
single-algorithm (2.98) and single-objective alternatives (4.36).

The remainder of this article is structured as follows: after covering some prelimi-
naries (Sect. 2), we formally describe the problem of MO-CASH for early time series
classification in Sect. 3. Section 4 covers related work on both EarlyTSC andAutoML.
In Sect. 5, we describe MultiETSC and cover its implementation details. Extensive
experiments are described in Sect. 6, and their results discussed in Sect. 7. Finally, in
Sect. 8, we draw some general conclusions and discuss directions for future work.

2 Preliminaries

A time series is a series of discrete observations over time. Time series can have
varying sampling rates, but for the sake of simplicity, we consider only real-valued
time series with a constant sampling rate. Note that for practical applications, the data
could be transformed to fit this assumption. We denote a time series of l observations
as x = [x1, . . . , xl ] ∈ R

l .
Time Series Classification (TSC) is the problem of determining a function f :

R
l → C that maps a given time series x ∈ R

l to a class label f (x) = y ∈ C, where C
is a finite set of labels. Function f is obtained from a learning algorithm A based on
a set of training examples {d1, ..., dn}, where each example is a pair of a time series
and a class label di = (xi , yi ) ∈ R

l × C. Note that we assume time series of uniform
lengths. Additionally, most learning algorithms expose a set of hyperparameters λ that
control some aspects of their inner workings; settings for these need to be chosen from
a space � and often have a substantial impact on classification accuracy.

Early Time Series Classification (EarlyTSC) has been first mentioned in the litera-
ture by Rodríguez Diez and Alonso González (2002). The main difference to ordinary
TSC occurs when performing the actual classification task on a given time series.
While ordinary TSC assumes receiving the time series x as a single object, EarlyTSC
considersmultiple prefixes xp = [x1, . . . , xp] ∈ R

p of x of increasing lengths (p ≤ l).
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At each prefix length considered, the classifier either classifies or postpones classifi-
cation to await more data. When the full time series has been observed, the classifier
must produce a class output.

Hyperparameter optimisation (HPO) is the problem of finding the set of hyperpa-
rameter settingsλ∗ ∈ �with optimal generalisation performance for a given algorithm
Aλ with hyperparameters λ and a set of training data D. Generalisation performance
can be estimated by repeatedly splittingD into non-overlapping training and validation
subsets of D, Dtrain and Dvalid respectively, training on Dtrain and evaluating per-
formance of the resulting classifier onDvalid . Formally, hyperparameter optimisation
involves determining

λ∗ ∈ argmin
λ∈�

L(Aλ,Dtrain,Dvalid), (1)

where L(Aλ,Dtrain,Dvalid) is the loss of algorithm A with hyperparameters λ when
trained on Dtrain and evaluated on Dvalid . For a classification problem such as TSC,
this loss usually is a measure of prediction accuracy, such as misclassification rate,
but any performance metric could be chosen as an optimisation target. It is important
to note that the combined hyperparameter space is a subset of the product of the
permissible set of values for each individual hyperparameter � ⊂ �1 × · · · × �m . In
most cases, this subset is strict, since some hyperparameters depend on the value of
others (Hutter et al. 2014b). For example, for an algorithmwith optional regularisation,
there might be a hyperparameter λreg controlling whether regularisation is applied.
The hyperparameter λweight controlling the regularisation weight is only active if the
value of λreg is set to TRUE.

More formally, we say hyperparameter λi is conditional on hyperparameter λ j if
λi is only active when the value of λ j is in a given set Vi ( j) � � j . In this case we
call λ j a parent of λi . Conditional hyperparameters can themselves also be parents,
resulting in a tree-structured search space (Bergstra et al. 2011).

When there are multiple learning algorithms to choose from, we might want to
not only optimise hyperparameter settings but simultaneously select the best learning
algorithm for a given data set. This problem is called combined algorithm selection
and hyperparameter optimisation or CASH (Thornton et al. 2013). Given a set of
algorithms A, for each algorithm A( j) ∈ A, and a hyperparameter space �( j), the
goal is to optimise generalisation performance, i.e., to determine

A∗
λ∗ ∈ argmin

A( j)∈A,λ∈�( j)
L(A( j)

λ ,Dtrain,Dvalid) (2)

In their description of the CASH problem, Thornton et al. (2013) note that the
choice of algorithm can be considered a top-level hyperparameter λr that selects an
algorithm from A(1), ..., A(k). Thereby, the CASH problem can be reformulated as an
HPO problem over the combined hyperparameter space � = �(1) ∪ · · ·∪�(k) ∪{λr },
where each algorithm A(i) has its own subspace �(i) that is conditional on λr being
set to A(i). This places λr at the root of the tree-structured search space.
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3 Problem definition

So far, we have presented the single-objective CASHproblem. To formulate the CASH
problem for EarlyTSC, both accuracy and earliness objectives need to be considered.
To accommodate that, we will introduce MO-CASH, the multi-objective extension to
the CASH problem, and formulate this problem for the specific case of EarlyTSC. In
Eqs. 1 and 2, we assumed a one-dimensional loss function defining a total order on
the configuration space.When generalising to multi-objective optimisation, we can no
longer speak of a total order. Let y(1) and y(2) be vectors in objective space R

m withm
objectives. We say y(1) is dominated by y(2) if the following two conditions are met:
1) y(2)

i ≤ y(1)
i for all i ∈ 1, . . . ,m and 2) y(2)

i < y(1)
i for at least one i ∈ 1, . . . ,m.

We denote this relation with y(2) ≺ y(1). The domination relation is a partial order,
meaning that some pairs of configurations are incomparable. In MO-CASH, we are
interested in the efficient set of configurations, i.e., a set that consists solely of non-
dominated, or Pareto-optimal, configurations. Since CASH can be formalised as a
special case of HPO (as discussed in Sect. 2), we will be using the simpler notation of
HPO Let L be a vector-valued loss function on R

m ; then the efficient set �∗ and the
Pareto-front P can be formalised as follows:

�∗ = {λ∗ ∈ � | �λ ∈ � : L(Aλ,Dtrain,Dvalid) ≺ L(Aλ∗ ,Dtrain,Dvalid)} (3)

P = {L(Aλ∗ ,Dtrain,Dvalid) ∈ R
m | λ∗ ∈ �∗} (4)

Note that the single-objective formulation from Eq. 1 can be considered as a spe-
cial case of a more general multi-objective problem. In the single-objective case, the
efficient set is guaranteed to contain only a single configuration, since the ordering in
a 1-dimensional solution space is guaranteed to be a total order. In the multi-objective
case, on the other hand, there can be an arbitrarily large number of non-dominated
configurations, and an optimiser needs to find improvements over a range of trade-off
points in the objective space.

The problemwe address in this work is theMO-CASHproblem for the specific case
of EarlyTSC, which can be defined as follows. Given the setD = {d1, ..., dn} of pairs
of time series and class label di = (xi , yi ) ∈ R

l ×C, and given the combined space of
EarlyTSC algorithms and their hyperparameter settings, in the form of a configuration
space �, find the best set of non-dominated configurations �∗ in terms of earliness
and accuracy.

4 Related work

In this section, we discuss work from the literature that has been fundamental to the
algorithms we used as the basis of MultiETSC. Both the foundations of early time
series classification as well as AutoML are covered.
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4.1 EarlyTSCmethods

Manymethods for solving theEarlyTSCproblemhave been proposed over the past two
decades. Generally, these are adaptions of classification methods for full time series
(for an overview of TSCmethods we refer to Bagnall et al. 2016)). Most methods split
the problem into two parts: one that addresses the classification of the partial data,
aiming to maximise the classification accuracy; and a separate part that manages the
trade-off between earliness and accuracy, by deciding whether enough data has been
evaluated to base a reliable classification on. We will call this decision triggering and
the function that controls it the trigger function. Table 1 shows a concise overview of
the algorithms included in MultiETSC, their underlying classification approach and
triggering mechanism as well as strengths and weaknesses. Next, we briefly discuss
the existing literature on EarlyTSC algorithms.

Rodríguez Diez and Alonso González (2002) were the first to address the classifica-
tion of time series based on partially observed data. They used a boosted set of simple
interval-based binary features using ADABoost (Freund and Schapire 1999). To do
early classification, the features that are not yet fully observed are simply ignored.
Although this can be seen as the first attempt to solve EarlyTSC, this method does
not make an explicit decision when to classify and consequently does not solve the
EarlyTSC problem aswe have defined it. Zz et al. (2011b) introducedECTS, a method
based on 1NN ED classification using the observed prefix of the time series. In the
training phase, the minimum prediction length (MPL) of each time series is learned—
the length at which the prediction based on the time series prefix is likely to be equal
to the prediction on the full time series. The classification triggers as soon as the MPL
of the closest match is equal to the observed prefix length.

EDSC, introduced by Xing et al. (2011a), is a shapelet-based EarlyTSC method.
The shapelets are selected on a combination of their distinctiveness and the earliness
of appearance inmost time series. Classification is done as soon as amatching shapelet
is found. RelClass (Parrish et al. 2013) explicitly estimates classification reliability,
i.e., the probability of the early class prediction being equal to the classification of the
complete time series. The triggermechanism is simply aminimum reliability threshold
that needs to be met.

Hatami andChira (2013) proposed amethod that based the triggering on the “agree-
ment” among different classifiers in an ensemble. When the individual classifiers do
not agree, the classification is rejected, and the method waits for more data. Antonucci
et al. (2015) proposed a method based on “imprecise hiddenMarkovmodels”, where a
Markov model is fitted to the incoming data with some uncertainty. The classification
is done if only a single model of a time series in the training set remains within the
uncertainty bounds. Dachraoui et al. (2015) suggest a meta-algorithm that considers
both the cost of classification quality and the cost of delaying the classification deci-
sion. Additionally, this method predicts in advance how much data will be needed to
make a decision, and only triggers when the observed amount reaches or exceeds the
required amount.

Mori et al. (2016) introduced the idea of prefix classifiers. Their algorithm,
ECDIRE, trains a set of fully-fledged time series classifiers on increasing time series
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prefix lengths. The prefix classifiers are typically probabilistic classifiers to provide a
confidence estimate. This confidence is then used in the triggering mechanism. SR-
CF (Mori et al. 2018), TEASER (Schäfer and Leser 2020) and ECEC (Lv et al.
2019) are all extensions of this idea using slightly different triggering mechanisms
and prefix-classifiers.

EARLIEST (Hartvigsen et al. 2019) is based on a recurrent neural network (RNN)
with LSTM cells. The base RNN produces a vector representation at each time step.
This vector representation is used by two classifiers, one for classification and one
binary classifier for triggering. The system is trained as a whole, minimising a loss
function combining earliness and accuracy.

All methods discussed above employ sophisticated techniques to address the prob-
lem of EarlyTSC. The downside they all have in common is that they only produce
a single classifier. Producing classifiers with different levels of accuracy and earli-
ness requires changing one or more hyperparameters and retraining. These methods
therefore do not fully address the multi-objective nature of the EarlyTSC problem.

Mori et al. (2019) proposed the first, and thus far the only, truly multi-objective
approach to EarlyTSC. They proposed an adaptation of the SR-CF, to which we will
refer to as MO-SR, where the internal parameters are optimised for both earliness
and accuracy simultaneously. MO-SR produces a set of non-dominated classifiers in
a single training phase. The approach we propose in this paper applies multi-objective
optimisation at a higher level (hyperparameters instead of parameters) resulting in
a more complex, tree-structured search space, and it uses a sophisticated optimiser
that can search this space. Following this approach, we developed a more general
method that can incorporate any existing or future EarlyTSC methods. While it would
be interesting to compare MO-SR with our proposed MultiETSC, no implementation
has been made available by the original authors.

As is apparent from this overview, a diverse set of EarlyTSCalgorithms can be found
in the literature, each with its strengths and weaknesses. To the best of our knowledge,
we are the first to attempt to combine the strengths of (a subset of) these algorithms
into a single, integrated system for early time series classification. Additionally, while
all EarlyTSC algorithmsmanage the trade-off between earliness and accuracy in some
way,most do not provide insight into this trade-off.Our automated approach, described
in the following, can produce this insight, without the need to understand the details
of the underlying EarlyTSC algorithms, making EarlyTSC more accessible for non-
experts.

4.2 Automatedmachine learning

The application ofmachine learning to a specific problemoften encompasses decisions
about data pre-processing, choice of algorithm and hyperparameter settings. Auto-
mated machine learning attempts to automate these decisions. Hutter et al. (2009)
addressed the hyperparameter optimisation problem using sequential model-based
optimisation (SMBO). Hutter et al. (2011) used SMBO as the basis for a general-
purpose algorithm configuration procedure, SMAC (Hutter et al. 2011), which enables
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the efficient search of large and complex configuration spaces with categorical and
numerical parameters.

Bergstra et al. (2011) applied two forms of SMBO, Gaussian process (GP) regres-
sion and the so-called Tree-structured Parzen Estimator (TPE), to HPO in deep belief
networks. For this 32-dimensional configuration space, they achieved better results
within 24 h of computing time than had been achieved by manual configuration in
earlier work. Snoek et al. (2012) built further on SMBO for AutoML by propos-
ing Spearmint, an algorithm that takes the variable cost, in terms of training time, into
account. Thornton et al. (2013) introduced Auto-WEKA, a software package based on
SMAC that makes AutoML available for end-users familiar with theWEKA interface,
being the first AutoML system addressing the full CASH problem. Feurer et al. (2015)
introducedAUTO-SKLEARN, a SMAC-basedAutoML system for Python. Addition-
ally, AUTO-SKLEARN supports a meta-learning step before the SMBO phase and an
ensemble building phase after optimisation, improving the efficiency of the configu-
ration process and the quality of the results thus obtained.

Olson et al. (2016) introduced a Tree-based Pipeline Optimisation Tool, or TPOT,
which optimises classification pipelines using decision trees and random forests.
TPOT uses a tree representation for classification pipelines including feature selection,
transformation and construction operators, as well as model selection and parameter
optimisation elements. These pipelines are optimised using aGeneticAlgorithm (GA).
The authors introduce an extension of TPOT, called TPOT-Pareto, which not only con-
siders classification accuracy but also pipeline complexity (i.e., number of pipeline
operators). During optimisation, not just the best k performing pipelines are kept as
the population for the GA, but a Pareto-front of non-dominated pipelines (in terms of
accuracy and complexity) is used. However, the selection of the final pipeline is still
based solely on accuracy and does therefore not address the more general MO-CASH
problem.

Koch et al. (2018) developed the Autotune framework for the proprietary statistical
software package SAS. Autotune uses a hybrid search strategy consisting of random
search, Latin Hypercube Sampling (LHS), global and local search, GA and Bayesian
optimisation using a GP surrogate. Autotune is implemented to maximally exploit
parallel computation. The authors show competitive performance compared to only
Bayesian optimisation and the Spearmint package. Gardner et al. (2019) extended
the work on Autotune to address multi-objective optimisation. They reduced their
hybrid search to only employ LHS, GA and Generating Set Search, a local search
strategy. In their study, the authors address common conflicting objectives for binary
classification, e.g., false-negative rate vs misclassification rate.

Jin et al. (2019) addressed the problem of Neural Architecture Search (NAS) by
developing the open-source Keras-based system: Auto-Keras. NAS can be seen as
a particularly interesting special case of AutoML since the search space of possible
architectures is complex and highly hierarchical. Auto-Keras employs a custom GP
kernel for SMBO, based on the edit-distance of the neural network architecture. The
downside of Auto-Keras is that it only takes into account a single loss metric, without
penalizing architecture complexity.

Some recent efforts have focused on the problem of AutoML for streaming applica-
tions, where the optimal algorithm and hyperparameters might change over time (e.g.,
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Fig. 2 Design of our Automated Machine Learning system. Numbers indicate the order of steps with step
2 being the inner loop of the system

Veloso et al. 2018; Carnein et al. 2020; Celik and Vanschoren 2020). Although this
might be interesting for EarlyTSC, in this paper we consider only static problems.

All the AutoML systems above are built upon existing machine learning packages
and are aimed to provide end-users with easier access to advanced machine learning
pipelines and algorithms and increased overall performance. For EarlyTSC, there does
not yet exist a software package that allows for such a direct extension. This introduced
the additional challenge of integrating all algorithms into a common framework with
all required hyperparameters exposed. An important difference between these existing
AutoML implementations and our AutoML system for EarlyTSC is that our system is
not only meant to benefit possible end-users but should also help in the development
of new EarlyTSC algorithms since it combines the strengths of multiple algorithms
allowing the exploration of weaker EarlyTSC algorithms that would never be consid-
ered in isolation.

5 MultiETSC

In this section, we describe the approach developed for automatically configuring Ear-
lyTSC algorithms and the system that implements our approach. At the core of our
approach, we make use of a general-purpose automated algorithm configurator. It is
the task of the configurator to efficiently search for the best performing configurations
by searching a vast space of EarlyTSC algorithms and their hyperparameters. The
inner loop of the search process consists of three steps: (1) selecting a candidate con-
figuration (i.e., a combination of algorithm and its hyperparameters); (2) training the
configuration on training data; (3) evaluating the configuration on validation data. The
evaluation is fed back into the configurator enabling informed decisions for select-
ing new configurations. The final output thus obtained is a set of configurations that
are mutually non-dominated, based on evaluation on the given validation data. The
overall framework of our proposed approach is illustrated in Fig. 2. In the remainder
of this section, we will first describe in detail the space of EarlyTSC algorithms and
hyperparameter settings that we search over. Second, we describe how configurations
are evaluated. Third, a description of the algorithm configurator that we use to carry
out the search.
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5.1 Configuration space

As discussed in Sect. 3, the configuration space is a tree-structured space defined by the
choices of algorithm and hyperparameter settings. MultiETSC includes 9 EarlyTSC
algorithms: ECTS, EDSC, RelClass, ECDIRE, SR-CF, TEASER, ECEC, EARLIEST
(all described in Sect. 4.1) and a naïve fixed-time Euclidean 1NN algorithm, which
we will refer to as ‘Fixed’ and is described in more detail below. A more detailed
description of the search space, including hyperparameter descriptions and the size of
the search space, is provided in Tables 5, 6 and 7 in Appendix 1.

These algorithms were chosen based on the fact that their implementations were
made available by the original authors (except for Fixed, which we implemented),
which helped us to ensure correctness and efficiency. There were several algorithms
proposed in literature that we would have liked to include, but for which we were
unable to acquire implementations (e.g., Hatami and Chira 2013; Dachraoui et al.
2015; Wang et al. 2016; Martinez et al. 2018; He et al. 2019; Rußwurm et al. 2019).
Note, however, that new algorithms can be added to MultiETSC with relative ease.
No algorithms were excluded based on low expected performance. All EarlyTSC
algorithms from the literature employ various techniques to find the best time to trigger
classification. To put the merit of these techniques into perspective, we extended the
algorithm portfolio with the naïve Fixed method that simply classifies at a fixed point
in time that is determined by a hyperparameter.Without HPO, such amethod would be
too naïve to consider. However, the responsibility of picking a favourable classification
time is now shifted to the configurator, which is given more direct control. This will
potentially lead to a better exploration of the full range of possible trade-off points.

All algorithms were modified and wrapped to provide a common command-line
interface,where test data, training data, hyperparameters and, in the case of a stochastic
algorithm, a random seed can be passed to the algorithm for reproducibility. To achieve
this, the original implementations required a varying degree of modifications. In some
cases, the needed modifications were quite considerable.

– ECTS (Zz et al. 2011b) (C++): is one of the oldest implementations of anEarlyTSC
algorithm and still often used as a baseline in experimental evaluations of new
algorithms.

– EDSC (Xing et al. 2011a) (C++): is the only explicitly shapelet-based EarlyTSC
method.

– RelClass (Parrish et al. 2013) (MATLABmodified for GNU Octave): is the only
EarlyTSC algorithm that is not based on any time series specific method and is
still a very competitive EarlyTSC algorithm.

– ECDIRE (Mori et al. 2016) (R): uses a set of Gaussian process classifiers. This
makes it theoretically better suited for situations where little training data is avail-
able.

– SR-CF (Mori et al. 2018) (R): is the first method introduced with an explicitly
learned trigger function.

– TEASER (Schäfer and Leser 2020) (Java): is designed based on the advanced
WEASEL classifier (Schäfer and Leser 2017) using a relatively simple triggering
mechanism.
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– ECEC (Lv et al. 2019) (Java): is designed based on the advancedWEASEL clas-
sifier (Schäfer and Leser 2017) using a triggering mechanism based on reliability
estimation.

– EARLIEST (Hartvigsen et al. 2019) (Python): is the only neural network based
EarlyTSC method included. It is implemented in Python using the PyTorch mod-
ule (Paszke et al. 2019).

– Fixed (authors)(Python): is a naïve Euclidean 1NN classifier on a fixed length
prefix. A single hyperparameter controls the prefix length at which classification is
done as a proportion of the full time series length. We theorise that any EarlyTSC
algorithm with more control over “when to classify” should perform at least as
well as this naïve algorithm, either by being more accurate with the same average
earliness or by being earlier with the same level of accuracy or both. This algorithm
is implemented by the authors for the purpose of this paper.

5.2 Algorithm performance

As described earlier, the EarlyTSC algorithms are evaluated on both earliness and
accuracy. For our setup, we need to define two metrics that represent the loss in both
of these objectives. For the loss relating to accuracy, we used the error rate Ca defined
as follows:

Ca = |{x ∈ Dtest | f (xl∗x ) 	= Class(x)}|
|Dtest | (5)

where l∗x is the length at which the classification is triggered for time series x, f (xl∗x )
is the early class prediction and Class(x) is the true class of x.

The earlinessCe is quantified by the proportion of the time series needed to produce
a classification averaged over the number of samples classified. It can be written as
follows:

Ce = 1

|Dtest |
∑

x∈Dtest

l∗x
lx

(6)

where lx is the length of time series x.

5.3 Algorithm configurator

SequentialModel-BasedOptimisation (SMBO) has shown to be a promising approach
to the single-objective CASH problem (Thornton et al. 2013). However, the problem
of optimising for multiple objectives is substantially more complex than the single-
objective case.While there have beenmethods proposed formodel-based optimisation
for multi-objective problems (e.g., Emmerich et al. 2015), these methods are not able
to handle the tree-structured search space that is typical for CASH problems.

We make use of the general purpose algorithm configurator MO-ParamILS (Blot
et al. 2016) and customise it, in order to achieve increased efficiency in the context of
the EarlyTSC problem. MO-ParamILS was originally designed for general-purpose
multi-objective algorithm configuration. Here, we leverage its power to search tree-
structured search spaces to extend this to MO-CASH (combined algorithm selection
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and hyper-parameter optimisation) by using the choice of algorithm as a top-level
hyperparameter. MO-ParamILS uses iterated local search (ILS), a stochastic local
searchmethod, tofindpromising configurations.MO-ParamILSmaintains a set of non-
dominated configurations referred to as the archive. The one-exchange neighbourhood
of a configuration λ is the set of configurations that is obtainable by changing a single
parameter. This one-exchange neighbourhood of the configurations in the archive is
used for local search steps. The local search strategy is complemented with random
search steps to increase exploration of the search space, enabling to escape local
optima.

MO-ParamILS handles the tree-structured search space by always keeping a value
for each hyperparameter, whether it is active or not. Changing a higher-level hyperpa-
rameter (e.g., the algorithm choice) results in its dependent hyperparameters becoming
active, retaining the values assigned to them earlier in the search. This means that the
first time a specific algorithm is considered, its hyperparameters will be initialised at
random.

It is known from earlier work on hyperparameter optimisation that, even in
high-dimensional cases, most performance variation can be attributed to just a few
hyperparameters (e.g., Hutter et al. 2014a; Bergstra and Bengio 2012). However, the
original version ofMO-ParamILS treats each hyperparameter equally. Here, we imple-
mented a variant of theMO-ParamILSmethod that is able to leverage prior knowledge
about individual hyperparameters. As can be seen in Table 6 in Appendix 1, all algo-
rithms in our framework have a specific hyperparameter dedicated to controlling the
earliness-accuracy trade-off. We will call these trade-off hyperparameters. In order to
maximise coverage of the possible trade-offs (one of the objectives optimised byMO-
ParamILS), these trade-off hyperparameters should be considered first when exploring
the design space of EarlyTSC algorithms underlying our framework.

The original version of MO-ParamILS keeps track of a set of non-dominated can-
didates called the archive. In each local search step, the one-exchange neighbourhood
of each configuration in the archive is searched uniformly at random, until either a
neighbour is found that dominates at least one configuration in the archive, or all
neighbours have been searched. In our customised version, we first consider neigh-
bouring configurations obtained by changing a trade-off hyperparameter—a subset
of the one-exchange neighbourhood—before considering the remaining neighbours.
The neighbours resulting from changing a trade-off hyperparameter are expected to
be less likely to dominate the current configuration but are at the same time more
likely to be non-dominated. Thus, using this technique, we expect to obtain sets of
configurations that are more diverse in terms of their earliness-accuracy trade-off. In
Sect. 7.4, we show empirical support for the efficacy of this modification within the
context of MultiETSC. We note that, in principle, this approach could be extended
to other multi-objective problems, for which a limited number of (hyper)parameters
controls the trade-off between different optimisation objectives.

One caveat of using MO-ParamILS is the requirement of a discrete search space
requiring discretisation of continuous variables. Thismeans that the true Pareto-set (the
multi-objective optimum) might lie in between the chosen values in the discretisation.
On the other hand, discretisation reduces the size of the search space facilitating
optimisation.
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In the context of reproducible research and to share our efforts with the community,
we have made the source code for MultiETSC publicly available.1

6 Experimental evaluation

We have designed our experiments to answer the following four questions:

– What improvement can be achieved by solving the MO-CASH problem for Ear-
lyTSC compared to multi-objective HPO of any single competitive EarlyTSC
algorithm? (Sect. 7.1)

– What improvement can be achieved by solving theMO-CASH problem compared
to solving the single-objective CASH problem optimising for the harmonic mean
of accuracy and earliness? (Sect. 7.1)

– What would be the impact of adding other EarlyTSC algorithms to the search
space (e.g., the naïve fixed method)? (Sect. 7.3)

– What improvement can be achieved by modifying the MO-ParamILS algorithm
configurator to explore the search space ofMultiETSC by prioritising the trade-off
hyperparameters? (Sect. 7.4)

In the rest of this section, we will introduce our baselines, data sources, and evalu-
ation protocol. Next, we will present the experimental results that will answer these
questions.

6.1 Baselines

To answer the first question we compared algorithm selection, using MO-ParamILS
on the previously defined search space, with hyperparameter optimisation of each
individual algorithm in the search space by fixing the algorithm choice. This results
in 9 baseline methods, one for each included algorithm: ECTS, EDSC, RelClass,
ECDIRE, SR-CF, TEASER, ECEC, EARLIEST and Fixed.

To address the second question, we compared our multi-objective approach with
a method that optimises a single objective (we refer to this baseline as SO-all). For
this objective, we chose the harmonic mean of earliness and accuracy as suggested by
Schäfer and Leser (2020):

HM = 1 − 2 · (1 − Ce) · (1 − Ca)

(1 − Ce) + (1 − Ca)
(7)

Resulting in a value on the closed interval [0, 1]which is to be minimised. This metric
has the property that it will be low when both Ce and Ca are low and high when either
is high. We will refer to this as the HM metric.

Although MO-ParamILS is capable of single-objective algorithm configuration,
more advanced systems are available for this task. To make a fair comparison, we
chose the state-of-the-art SMAC (Lindauer et al. 2017) algorithm configurator for its

1 https://github.com/Ottervanger/MultiETSC.
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ability to efficiently search tree-structured search spaces. We will refer to the baseline
method searching the full algorithm space using SMAC optimising the HM metric as
SO-All.MO-ParamILS andSMACdiffer in the optimisationmethod they are based on.
In addition, for the single-objective case, the HM needs to be computed for each con-
sidered configuration. This means there are differences in the computational demands
of these two methods. However, in this case, the computational costs of training and
evaluating configurations heavily outweigh the costs of selecting the next configura-
tion to evaluate. Furthermore, as we will discuss in Sect. 6.3, both configurators will
be given the same overall time budget, to allow fair comparisons.

6.2 Data

As the main source of data, we will use the University of California, Riverside (UCR)
Time Series Archive (Chen et al. 2015; Dau et al. 2018), last updated in 2018. As of
2018, the archive consists of 128 time series data sets for time series classification.
Since its introduction in 2015, it has become the de facto standard for the evaluation
of time series classification methods. The composers of the UCR archive recommend
evaluating on all 128 data sets, and to clearly motivate excluding any. In our exper-
iments we used 115 of these datasets in this paper due to the reason explained in
Sect. 6.3. The data sets in the UCR archive contain real-world data and simulated data
originating from various sources with varying degrees of complexity. Sources include
ECG, EEG, spectrographs, image outlines, three-axis accelerometers and gyroscopes,
and audio samples. In addition to real-world data, the archive contains 9 synthetic
data sets that are specifically designed to evaluate time series classification meth-
ods. For data set details and descriptions, we refer to the Time Series Classification
Website (Bagnall and Lines 2020).

All datasets in the UCR archive consist only of univariate time series. Time series
lengths vary between a few dozen samples to several thousand samples. For most
data sets, all time series within one set are of equal length. 15 of the 128 data sets
contain time series of varying lengths or with missing values. For these data sets the
archive also includes same-length versions that are imputed using linear interpolation
and padded up to the length of the longest time series with low amplitude noise. For
this paper, we only used the same-length versions of these data sets.

6.3 Evaluation protocol

6.3.1 Train and validation splits

The UCR data sets have pre-defined train-test splits. The UCR defined train set is split
again into five stratified train-validation splits. An algorithm is trained on 80% of the
data and evaluated on 20% of the data. This is illustrated in Fig. 3. For each repeated
configurator run, a different set of cross-validation folds is generated. However, each
experimental condition is run with the same set of cross-validation folds to keep the
comparison fair. Due to the five-fold split requirement, we had to exclude 8 data sets
that did not contain a sufficient amount of training examples per class for this split to be
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Fig. 3 Train, validate and test sets

Table 2 Key numbers of the evaluation protocol

Configurator time budget Config. validation time limit Config. test time limit

120 min 3 min 15 min

Configurator runs Bootstrap sample size Bootstrap samples

25 10 1000

made. These were FiftyWords, Fungi, Phoneme, PigAirwayPressure, PigArtPressure,
PigCVP, and Symbols. We evaluated the remaining 120 datasets.

6.3.2 Configurator runs

Configurator runs because a single configurator run is dependent on the random
train/validation splits, and random initialisation, we performed multiple runs to get
stable results. For each data set, 25 configurator runs were performed. For practical
reasons, we set limits to run times of different stages of the experiment (presented in
Table 2). The test evaluation is provided with a budget that is significantly bigger than
that of the validation. The reason is that the test set can contain much more examples
than the validation set. Additionally, we had to set a maximum amount of memory
that can be used at any point in time by an algorithm implementation, which we set
to 10GB. This made it impossible to process 5 more data sets: Crop, ElectricDevices,
FordB, FordA, InsectWingbeatSound.

6.3.3 Bootstrapping

Each configurator run will result in a Pareto-set of configurations based on the val-
idation performance. Note that in the case of the SO configurator, this set will, by
definition, contain only a single configuration. To create a distribution of the results,
we took a bootstrapping approach by randomly sampling 10 runs from the 25 runs per-
formed. For each subsample, the set of Pareto-sets (one for each run) is then combined
into a single set of non-dominated configurations (based on validation performance).
All configurations ending up in one or more subsample Pareto-sets are evaluated
using test data resulting in a final Pareto-set for each subsample. Evaluation is based
on these final Pareto-sets. By repeating this approach 1000 times we created a boot-
strap distribution. This protocol was designed based on similar experiments presented
in literature (e.g., Hutter et al. 2011; Thornton et al. 2013). Note the fact that the

123



MultiETSC: automated machine learning for early time… 2621

(a) (b)

Fig. 4 Calculation of the Pareto-front metric

single-objective baseline is limited to producing only a single configuration per run.
This means that a subsample of SO-configurator runs can, in the best case, result in a
number of non-dominated configurations equal to the number of runs at most. Tomake
the single-objective baseline slightly more competitive, we increased the number of
runs from 4 in the original design to 10 runs per subsample for all methods. This way
the SO baseline is less constrained by this upper limit. For our analysis, we will be
using robust, non-parametric tests, which means we can keep the amount of bootstrap
samples at a relatively low number of 1000.

6.4 Evaluation

We want to evaluate Pareto-sets of configurations in the earliness-accuracy space.
Solutions that are both accurate and early are desirable, but we also prefer a “cheap”
trade-off, getting much earlier predictions for only a small reduction in accuracy. To
quantify the performance of a particular Pareto-set, we will turn to the theory of multi-
objective optimisation. There is a multitude of Pareto-set performance metrics defined
each capturing one or more desirable aspects (Audet 2018). For our purpose, we will
be using the dominated hypervolume, the �-spread and the HM-metric which we
describe here in detail.

– Hypervolume (HV) also called the S-metric, proposed by Zitzler, Deb and
Thiele (Zitzler et al. 2000), HV is the hypervolume in the objective space that is
dominated by thePareto efficient solutions boundedby a reference pointyre f ∈ R

m

that is dominated by all feasible solutions. Figure 4a shows a Pareto-front and its
dominated hypervolume S in R

2. A commonly mentioned downside of the hyper-
volume is the need for a reference point that is larger than any point in the Pareto-set
on all objectives but not too large since that would reduce the precision. In our
case, however, it is clear that both error rate and earliness will never be larger than
100%, so we can safely use (1, 1) as the reference point.
The hypervolume metric has several properties that make it well suited for our
purpose. First of all, it is intuitive. It is clear that dominating a large part of the
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objective space is desirable.As denoted in (Audet 2018), the hypervolumemetric is
the only known unary Pareto-front performance indicator to be strictly monotonic.
This means that if set A dominates set B (i.e., all points in B are dominated by
at least one point in A) then the hypervolume metric of A is strictly larger than
that of B. This is desirable since set domination is a strong indication that one
set is preferable over the other and we want the metric to represent this property
as well. Furthermore, the hypervolume metric is widely used in the performance
evaluation of various multi-objective optimisation algorithms.

– �-spread a desirable property that is not very well represented in the hypervolume
is the distribution of configurations along the Pareto-front. To have control over
the earliness-accuracy trade-off, these configurations should be evenly distributed
along with a wide range of values. There can be two cases where the hypervolume
metric is equal but in one case all hypervolume is dominated by a single config-
uration and in the other case there are 1000 unique configurations. In that case,
it would be preferable to have a choice out of multiple options. We will be using
the �-spread metric (Zitzler et al. 2000) to quantify the distribution of solutions
in the objective space. This metric is based on the Euclidean distances between
neighbouring solutions di and is formalised as follows:

� = d f + dl + ∑N−1
i=1 |di − d̄|

d f + dl + (N − 1) · d̄ (8)

where d f and dl are distances between the extreme solutions and the boundary

solutions in the Pareto-front, and d̄ =
∑N−1

i=1 di
N−1 . See Fig. 4b for an illustration of

the distances. An ideal distribution would make d f = dl = 0 and all distances di
equal to d̄, resulting in � = 0. More clustering will result in higher values of �.

– HMmetric in addition to the hypervolumemetric and�-spread, we will also look
at the HM scalarisation as defined in Equation 7, to see how this metric compares
to our proposed evaluation methods. Since each point in the Pareto-set will have
its own HM value, we will look at the minimum value in each set.

7 Results

In this section, we cover the results of our extensive experiments. First, we focus on
the relative performance of EarlyTSC and our baselines based on ranked performance.
Next, we cover an illustrative example of one of the data sets in the UCR archive and
show the performance of the produced classifiers. Finally, we analyse the contribution
of the naïve Fixed algorithm to MutliETSC.

7.1 EarlyTSC versus baselines

To compare relative performance between all methods, based on their performance
across 115 data sets, we computed the average ranks based on the three selected met-
rics. Average ranks provide a robust method of comparison without making additional

123



MultiETSC: automated machine learning for early time… 2623

Fig. 5 CD diagram of the Nemenyi test on the Hypervolume. Numbers represent mean ranks (lower means
better). Rank means with non-significant difference are connected with a horizontal line

assumptions about normality and symmetry—assumptions we cannot safely make
in general. This approach is similar to the empirical analysis done by Bagnall et al.
(2016). The ranks are averaged over all subsamples and all datasets. With 1000 sub-
samples for each of the 115 data sets, these are the averages over 115 000 ranks. We
first checked for significant differences between rank means using the Friedman test
and subsequently applied the Nemenyi post-hoc test (Nemenyi 1963) which checks
for significant pairwise differences in average ranks. We visualised the outcome of
this test using critical difference diagrams (Demšar 2006), which are commonly used
for the comparison of TSC methods to show the result of a statistical comparison of
ranking results. These are shown in Figs. 5, 6 and 7. Due to our subsampling method,
we achieved high statistical power resulting in small CD intervals, which means that
most observed differences are statistically significant.

According to the comparison of methods based on all metrics (shown in Figs. 5, 6,
7), MultiETSC performs significantly better than any of the algorithms we compared
against, finding configurations that together dominate a larger portion of the objec-
tive space and distributed more evenly across the trade-off according to the �-spread.
This answers our first question mentioned earlier in Sect. 6. Similarly, MultiETSC
performs significantly better than the single-objective CASH method SO-All, which
answers our second question. We also observed that SO-All performs relatively well
compared to our individual baseline algorithms. However, interestingly, SO-All per-
forms worse than MultiETSC on the HM metric, even though this is the exact metric
that the SO configurator optimises, while MultiETSC does not explicitly consider this
metric during configuration. Overall, methods consistently rank according to different
metrics.

Table 3 shows the performance of the compared methods split out per problem
(dataset) type. This table would show anymethod that is particularly suited or unsuited
for a specific problem type. From these results, we observe that MultiETSC is consis-
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Fig. 6 CD diagram of the Nemenyi test on the �-spread. Numbers represent mean ranks (lower means
better). Rank means with non-significant difference are connected with a horizontal line

Fig. 7 CD diagram of the Nemenyi test on the HM metric. Numbers represent mean ranks (lower means
better). Rank means with non-significant difference are connected with a horizontal line

tently performingwell across a broad range of problem types. The results for individual
data sets are provided in Appendix 2 (Tables 5–7).

We found a significant number of cases with ties for the best method, most often
between Fixed and MultiETSC. In these cases, the set of possible configurations
using the Fixed algorithm dominates all other configurations. This set is found by
both the Fixed method and MultiETSC, which results in equal hypervolume scores.
This results in scenarios for which some rows in Table 3 add up to more than 100%
(e.g., TRAFFIC).

As expected, the performance rank of each single algorithm method seems to cor-
respond closely to the order in which these algorithms were originally introduced.
However, there are some exceptions to this pattern. EARLIEST, the only neural-
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Fig. 8 Pareto-sets for one subsample on BME data set

network-based algorithm, performs not as well as other methods proposed around the
same time. In the original study, EARLIEST (Hartvigsen et al. 2019), is evaluated on
data sets containing considerably more training examples than are available in typical
UCR data sets and in many real-world applications. Additionally, the running time
limits (3 minutes for configuration and 15 minutes for testing) might pose a challenge
for the configurator to find viable parameter settings. This, however, is a challenge for
all methods, not only EARLIEST.

7.2 Application of earlyTSC

To provide some intuition on the produced Pareto-sets and theirmetricswewill discuss
an illustrative example. A single subsample is constructed by combining ten different
validation splits. Each method is run on each split and the resulting Pareto-sets are
combined into one Pareto-set per method. Figure 8 shows these Pareto-sets for an
arbitrary subsample of the BME data set. The BME data set is a synthetic data set
created specifically for TSC research and is part of the UCR archive. It is a three-class
problem with 10 training examples per class. The test set is balanced containing 150
items.

Looking at Fig. 8, it is seen that generally, in Pareto-fronts, 66% seems to be the
upper bound of the error rate at zero earliness (maximally early), which corresponds
to the performance of a random or constant output classifier. With increasing earliness
(later classification) most methods can produce classifiers that are increasingly accu-
rate with clearly diminishing returns. Most methods level out at one-third of the time
series observed, while the better-performing methods reduce the error rate up to 90%
of the data observed achieving close to 5% error rate.

The ability of our approach to provide this visual representation of the trade-off
between earliness and accuracy is a major advantage. Using any EarlyTSC algorithm
requires the user to select a hyperparameter that only indirectly influences the trade-
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Fig. 9 Algorithms as selected by MultiETSC as proportion of non-dominated solutions as found based on
validation and test evaluations

off. Using our approach, a user trying to solve a specific EarlyTSC problem can make
an informed choice, making EarlyTSC more accessible for non-experts.

The metrics evaluating these Pareto-sets are shown in Table 4. In this particular
example, the configurations found by MultiETSC dominate the largest hypervolume
(0.733). Although the competing methods are close, it is clear that MultiETSC corre-
sponds closely to the best of each individual baseline.

7.3 The contribution of fixed

In this section, we study the impact of adding other algorithms to the search space (e.g.,
the naïve fixed method). As seen in Fig. 5, the naïve fixed-time method we introduced
is highly competitive, consistently outperforming six out of the eight EarlyTSC algo-
rithms proposed in the literature, according to all three metrics. More support for the
merit of the Fixed method can be found by looking at how often each algorithm was
selected by the configurator. Figure 9 shows the share of each algorithm in the final set
of configurations. We observe that more than half of all the selected configurations are
based on the Fixed algorithm. This supports our claim that giving more control to the
configurator, in terms of optimising algorithmic choices, enables a better exploration
of the earliness-accuracy trade-off. In turn, this exploration increases the resolution of
choices over the trade-off, which gives the user more freedom and control in picking
the best solution for the problem at hand.

So far we showed that Fixed contributes to the Pareto sets with a large number of
configurations. However, this does not necessarily mean that Fixed provided benefits
to the overall performance of MultiETSC. In other words, the inclusion of Fixed could
even have a negative impact on performance by increasing the size of the search space.
To show that adding Fixed provides tangible benefits to MultiETSC, we ran a series of
experiments (using the same protocol as described earlier) comparing the performance
of MultiETSC with and without Fixed on seven UCR data sets. Figure 10 shows the

123



MultiETSC: automated machine learning for early time… 2629

Fig. 10 CDdiagram of theNemenyi test on theHypervolume comparingMultiETSC toMultiETSCwithout
Fixed (MultiETSC w/o Fixed) and MultiETSC using the original version off MO-ParamILS (MultiETSC-
o). Numbers represent mean ranks (lower means better). All rank differences are statistically significant

critical difference diagram comparing MultiETSC to both MultiETSC without Fixed
(MultiETSC w/o Fixed) and MultiETSC using the original version of MO-ParamILS
(MultiETSC-o, which will be discussed in Sect. 7.4), showing their average ranks on
all 115 data sets. Although MultiETSC with and without Fixed are both close to rank
2, the difference in rank is statistically significant.

These results provide evidence that MultiETSC is able to efficiently ignore ill-
performing configurations and that performance tends to be improved by including
Fixed.

7.4 The contribution of our new variant of MO-ParamILS

In Sect. 5.3, we theorised that modifying MO-ParamILS to be more explorative in
the direction of the so-called trade-off hyperparameters could potentially result in
improved overall performance. Figure 10 comparesMultiETSC (using our new variant
ofMO-ParamILS) toMultiETSC-o, which uses the original version ofMO-ParamILS.
As seen in the figure, there is a significant difference in the average rank in favour
of our new variant. The results shown in Table 7 in Appendix 1 further demonstrate
that our modification also positively affects the average numbers of configurations
searched and non-dominated configurations found compared to the original version.

8 Conclusions and future work

In thiswork,we have introducedMultiETSC, a systematic approach to automated early
time series classification (EarlyTSC).MultiETSCperforms automatic algorithm selec-
tion and hyperparameter optimisation to explore the full range of trade-offs between
accuracy and earliness afforded by a broad set of EarlyTSC algorithms.

Our approach builds upon recently developed techniques in the area of auto-
mated algorithm configuration and uses them in combination with a broad range of
well-known EarlyTSC algorithms. We have modified the general-purpose algorithm
configurator MO-ParmaILS to exploit prior knowledge about the structure of the Ear-
lyETSC problem, resulting in improved overall performance. MultiETSC enables
users to explore and exploit trade-offs between earliness and accuracy, by producing
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a large and diverse set of non-dominated configurations from which a user can choose
the one that is best suited to the problem at hand.

We performed an extensive empirical evaluation of our proposed method, using
115 data sets from the UCR Time Series Archive. We have shown that by leveraging
the potential of many existing EarlyTSC algorithms, our approach can outperform
any single algorithm, even when their hyperparameters are optimised. Our results
also demonstrate that considering both earliness and accuracy separately and in a
multi-objective fashion produces better results than combining the two into a single
objective.

It should be mentioned that the benefits of automated algorithm configuration for
EarlyTSC do come at a significant computational cost, which is primarily caused by
the number of configurations considered and evaluated. This can be illustrated by
looking back at Fig. 1 in the introduction. The evaluation of the solutions represented
in Fig. 1b (manual configuration) costs less than 1 h of CPU time. In contrast, 50 h of
CPU time were required to produce Fig. 1c, d (automated configuration). However,
during this time, hundreds of other possible configurations are evaluated.

Therefore, MultiETSC essentially trades off the time spent by human experts on
manual algorithm selection and configuration against computational effort, while also
producing a more diverse set of qualitatively better results. Furthermore, in our exper-
iments, we limited the running time of individual algorithms, in order to prevent
spending too much time on a small set of configurations, and we limited the time
budget of the automated configurator itself to 2 h per run, in order to keep the com-
putational cost of our experiments manageable. In practice, it would likely be best to
adjust these limits to account for factors such as the size of the data set and the amount
of CPU time the user can afford to spend on configuration.

We see numerous opportunities for future research. We have shown that our pro-
posed approach can be extended and benefit from additional EarlyTSC algorithms
(in particular, the naïve fixed-time classifier). Further research could focus on the
development of additional EarlyTSC algorithms that improve the performance ofMul-
tiETSC. On the other hand, an algorithm might negatively impact the performance of
MultiETSC by increasing the size of the search space without providing any ben-
eficial configurations. Although MultiETSC can reasonably effectively ignore these
ill-performing algorithms, the overall performance could possibly be further improved
by excluding these algorithms altogether. This could be achieved by considering the
marginal contribution or Shapley values of these algorithms in order to assess their
contribution to overall performance (Fréchette et al. 2016).

This might make it possible to even more effectively construct a set of complemen-
tary algorithms that jointly represent the state-of-the-art in EarlyTSC.

For the area of automated machine learning, our work clearly demonstrates the
potential of using multi-objective algorithm configurators within an integrated sys-
tem leveraging many state-of-the-art techniques—an idea that can be extended to
many other problems in machine learning in which multiple conflicting performance
objectives arise. Our approach could also be extended to a larger number of objectives,
whichwould enable the exploration of additional trade-offs, for instance, the resources
required for processing given data. There are many situations where machine learn-
ing solutions need to be applied with limited computing resources. For such cases, it
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could be very valuable to know how much performance an ML solution is losing by
constraining its access to resources.

Finally, we hope that this work will inspire further exploration in other directions,
and ultimately lead to significant improvements in the state of the art in solving a
broad set of machine learning problems that involve multiple competing performance
objectives, as is the case in early time series classification.
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A Hyperparameter space of MultiETSC

This appendix provides amore detailed description of the search space thatMultiETSC
searches. Table 5 provides an overview of all hyperparameters and their descriptions.
Note that some hyperparameters might be conditional on other, higher-level parame-
ters. For example, dSigma is only set when distance is set to EDR. Note that to
MultiETSC the algorithm choice is itself a high-level hyperparameter.

Table 6 shows all hyperparameter values that are used in MultiETSC. In order to
be compatible with MO-ParamILS, real values were discretised. Where possible, the
choice of these values was based on the values considered in the original papers.

Table 7 shows the number of possible configurations, the average number of config-
urations evaluated per run and the average number of non-dominated configurations
per subsample of 10 runs. Note that the number of configurations for MultiETSC
and SO-ALL is simply the sum of the number of configurations for each included
algorithm. Also, note that for ECTS and Fixed the configuration phase is consistently
exhaustive, meaning all possible configurations are evaluated.
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Table 6 All hyperparameter values considered in MultiETSC

Hyperparameter Values

algorithm {ects, edsc, relclass, ecdire, srcf,

teaser, ecec, earliest, fixed}

min_support {.0, .01, ..., 1.0}

version {strict,loose}

minK {1, 2, 3, 4, 5, 10, 20, 50, 100, 200}

maxK {3, 5, 10, 20, 50, 60, 70, 100}

alph {20, 30, 50, 60, 70, 80, 100, 150}

method {ALL, KDE}

boundThreshold {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}

probablityThreshold{.5, .7, .8, .9, .95, .975, .99}

recallThreshold {.5, .2, .1, .05, .02, .01, .005, .002, .001, .0}

tau {2−1,2−2, ...,2−100}

constr {boxco, Naive, Cheby}

LDG {0, 1}

acc_perc {0, 1, ..., 100}

doHPO {TRUE, FALSE}

kernel {gauss, iprod, cauchy, laplace}

distance {euclidean, dtw, edr, fourier}

dSigma {.01, .02, .05, .1, .2, .5, 1, 1.5, 2, 3}

dN {1, 2, 5, 10, 20, 50}

alpha {.0, .01, ..., 1.0}

optimiser {ga, optim, sa, pso}

sr {sr1, sr2}

reg {none, L0, L1}

lambda {.01, .02, .05, .1, .2, .5, 1, 2, 5, 10, 20, 50}

threshold {1, 2, ..., 10}

svmKernelType {LINEAR, POLY, RBF, SIGMOID}

nu {.5, .2, .1, .05, .02, .01, .005, .002, .001}

nClassifiers {10, 15, 20, 30, 50, 100}

minLen {3, 5, 10, 20, 50, 100}

maxLen {50, 75, 100, 150, 200, 300, 450}

ratio {.01, .02, ..., 1.0}

nFolds {1, 2, ..., 10}

LAMBDA {.0, .0015, ..., .15}

lr {1e-4, 1e-3, 1e-2, 2e-2, 3e-2}

lrf {1., .999, .995, .99, .975, .95, .9}

epochs {3, 10, 20, 40, 60, 80, 100, 150, 200, 400, 800, 1000}

nLayers {1, 2, 3, 4}
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Table 6 continued

Hyperparameter Values

hiddenDim {1, 2, ..., 20}

cellType {LSTM, GRU, RNN, RNN_TANH, RNN_RELU}

percLen {.01, .02, ..., 1.0}

Table 7 The number of possible configurations, the average number of configurations evaluated per run
and the average number of non-dominated configurations per subsample of 10 runs

Algorithm Configurations
Possible Avg. evaluated Avg. non-dominated

ECTS 200 200 2.18

EDSC 102 400 706.80 2.12

RelClass 606 79.69 4.44

ECDIRE 16 000 45.42 1.91

SR-CF 1 184 000 50.35 1.97

TEASER 90 720 61.27 6.98

ECEC 252 000 41.30 4.47

EARLIEST 16 800 000 55.78 1.65

Fixed 100 100 10.70

SO-All 18 446 026 63.83 3.25

MultiETSC w/o Fixed 18 445 926 134.74 6.18

MultiETSC-o 18 446 026 109.64 9.32

MultiETSC 18 446 026 159.40 9.75
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Additional, detailed results

This appendix provides tables of per-dataset median values of the three Pareto-set
performance metrics that were computed. These metrics being hypervolume (see
Sect. 6.4), �-spread (Eq. 8) and HM metric (Eq. 7). The reported values are the
medians of the 1000 bootstrap subsamples of size 10, resampled from 25 runs (see
Sect. 6.3). In some cases, not a single viable configuration was found in any of the
subsamples. In these cases, the table entry is left blank (Tables 8, 9, 10).
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