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ABSTRACT
Background  Machine learning algorithms hold the 
potential to contribute to fast and accurate detection of 
large vessel occlusion (LVO) in patients with suspected 
acute ischemic stroke. We assessed the diagnostic 
performance of an automated LVO detection algorithm 
on CT angiography (CTA).
Methods  Data from the MR CLEAN Registry and 
PRESTO were used including patients with and without 
LVO. CTA data were analyzed by the algorithm for 
detection and localization of LVO (intracranial internal 
carotid artery (ICA)/ICA terminus (ICA-T), M1, or M2). 
Assessments done by expert neuroradiologists were used 
as reference. Diagnostic performance was assessed for 
detection of LVO and per occlusion location by means of 
sensitivity, specificity, and area under the curve (AUC).
Results  We analyzed CTAs of 1110 patients from 
the MR CLEAN Registry (median age (IQR) 71 years 
(60–80); 584 men; 1110 with LVO) and of 646 patients 
from PRESTO (median age (IQR) 73 years (62–82); 358 
men; 141 with and 505 without LVO). For detection of 
LVO, the algorithm yielded a sensitivity of 89% in the 
MR CLEAN Registry and a sensitivity of 72%, specificity 
of 78%, and AUC of 0.75 in PRESTO. Sensitivity per 
occlusion location was 88% for ICA/ICA-T, 94% for M1, 
and 72% for M2 occlusion in the MR CLEAN Registry, 
and 80% for ICA/ICA-T, 95% for M1, and 49% for M2 
occlusion in PRESTO.
Conclusion  The algorithm provided a high detection 
rate for proximal LVO, but performance varied 
significantly by occlusion location. Detection of M2 
occlusion needs further improvement.

INTRODUCTION
CT angiography (CTA) is currently the most widely 
used imaging modality for detection of a large 
vessel occlusion (LVO) in patients presenting with 
suspected acute ischemic stroke. For acute isch-
emic stroke due to LVO in the anterior circula-
tion, endovascular treatment (EVT) is considered 
the most effective therapy.1 However, technical 
success and, more importantly, individual patient 
benefit are strongly dependent on the time between 

symptom onset and initiation of treatment.2 3 Fast 
and accurate detection of LVO on CTA can there-
fore contribute to the likelihood of a good clinical 
outcome.

In general, experienced (neuro)radiologists are 
well-capable of identifying LVOs on CTA, enabling 
prompt diagnosis of acute ischemic stroke due to 
LVO.4 5 Yet, such expertise is not always readily 
available, for instance in hospitals with lower case-
loads and during off-hours when dedicated neurora-
diologists are not on call. This may hamper fast and 
accurate CTA assessment.6 7 At the same time, the 
number of CTA examinations for suspected acute 
ischemic stroke is increasing due to optimization 
of stroke management and prolonged treatment 
windows.8 9

To support fast and accurate CTA assessment, 
diagnostic tools applying artificial intelligence algo-
rithms are being developed. These tools are aimed 
at screening CTAs for LVOs and, in case of a posi-
tive finding, notifying not only local radiologists 
but also the stroke team at the nearest EVT-capable 
stroke center.10–14 Determining the performance of 
such algorithms is needed to estimate their poten-
tial clinical utility.

The aim of this study was to assess the diag-
nostic performance of an automated LVO detection 
algorithm in patients with and without anterior 
circulation LVO, and to assess the impact of scan 
acquisition parameters on performance.

METHODS
Study design and patient selection
This study was performed in accordance with the 
STARD guidelines for reporting diagnostic accu-
racy.15 We used data from the first part of the 
Multicenter Randomized Clinical Trial of Endo-
vascular Treatment for Acute Ischemic Stroke 
(MR CLEAN) Registry16 and from the Prehospital 
triage of patients with suspected stroke (PRESTO) 
study.17 The MR CLEAN Registry is a multicenter 
prospective registry including patients (n=1627) 
with acute ischemic stroke undergoing EVT from 
March 18, 2014 until June 15, 2016. PRESTO is 
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a multicenter prospective observational cohort study including 
patients (n=1334) with suspected stroke in the ambulance from 
August 13, 2018 until September 2, 2019.

All patients who underwent baseline CTA were eligible for 
inclusion. Imaging parameters required for inclusion were: 
axial series; slice thickness 0.2–3 mm; slice increment equal to 
or smaller than slice thickness (ie, no excess z-spacing); matrix 
size of 512×512 or above; full head coverage. The evaluated 
algorithm was developed and trained only to detect intracranial 
internal carotid artery (ICA)/ICA terminus (ICA-T), M1, and 
M2 occlusions, but not isolated extracranial ICA, A1/A2, M3/
M4, and posterior circulation (vertebral artery, basilar artery, or 
posterior (P1/P2) cerebral artery) occlusions. The latter group 
will be evaluated when implementing the current algorithm in 
a clinical setting. Therefore, we chose to include patients from 
our real-world PRESTO cohort with occlusions other than ICA, 
ICA-T, M1 or M2, but classified them as patients without LVO in 
order to assess whether they interfere with real-world diagnostic 
performance. CTA data that were used for algorithm training 
were not included in the current assessment of diagnostic perfor-
mance. A complete overview of patient inclusion and exclusion 
criteria is outlined per cohort in online supplemental figure 1.

Reference LVO definition
CTAs were evaluated for the presence and location of LVO 
by imaging core labs consisting of 3 neuroradiologists and 10 
interventional neuroradiologists (5–20 years of experience) who 
were blinded for algorithm output and all clinical data with the 
exception of the symptomatic side of stroke symptoms. The 
most proximal occlusion sites scored by core lab observers were 
defined as follows: extracranial ICA from the cervical segment to 
the clinoid segment; intracranial ICA from the clinoid segment 
to the ICA terminus; ICA terminus (ICA-T); M1-middle cerebral 
artery (MCA) from the ICA bifurcation to the MCA bifurcation; 
M2-MCA from the MCA bifurcation to where the vessels turn 
from the insula or exit the Sylvian fissure.18 Proximal occlusion 
sites used as reference location in this study included the intra-
cranial ICA/ICA-T, M1-MCA, and M2-MCA. In patients with an 
extracranial ICA occlusion and concomitant intracranial tandem 
lesion, the most proximal intracranial occlusion site was taken as 
the reference location.

Automated LVO detection
The commercially available LVO detection algorithm (StrokeV-
iewer v2.1.22, NICO.LAB, Amsterdam, The Netherlands) eval-
uated here is based on a deep learning convolutional neural 
network and runs within a web-based application hosted on a 
cloud platform. All CTA series were uploaded in Digital Imaging 
and Communications in Medicine (DICOM) format and 
processed separately. The algorithm indicated whether an occlu-
sion was present via a binary output (ie, LVO detected: ‘Yes’ or 
‘No’). In case of a positive LVO finding, an occlusion box was 
centered around the proximal occlusion site and shown using 
maximum intensity projection reconstructions in axial, coronal 
and sagittal views (figure 1). The threshold for detection of LVO 
was fixed at a single cut-off value by the developers of the algo-
rithm and could not be adjusted.

Algorithm outcome and image quality assessment
All results generated by the algorithm were inspected by an 
independent observer who was blinded for all core lab imaging 
assessments and clinical data. In case of a positive LVO finding, 
the observer noted the hemisphere and the vessel segment 

(intracranial ICA/ICA-T, M1, or M2) on which the occlusion box 
was placed. Cases in which the occlusion box was not correctly 
placed (eg, in brain parenchyma or in the unaffected hemi-
sphere) were classified separately (figure 2). Processing time was 
recorded as the time between receiving messages that the CTA 
series were successfully uploaded and receiving the results.

The CTA scan phase was classified into one of five phases 
using a previously described method for which interobserver 
agreement has also been determined (weighted ĸ 0.87).19 20 For 
the current study, scans were grouped into arterial (early arterial 
and peak arterial), equilibrium, or venous (peak venous and late 
venous) phase. Information on slice thickness, slice overlap, and 
peak kilovoltage was extracted from DICOM tags.

Statistical analysis
Diagnostic performance for correct detection of LVO and correct 
assessment of the exact occlusion location was evaluated within 
each cohort. Performance was reported by means of sensitivity, 
specificity, positive predictive value (PPV), negative predictive 
value (NPV) and area under the curve (AUC) as appropriate. In 
order to assess the impact of image quality on detection of LVO, 
we pooled data from the MR CLEAN Registry and PRESTO, 
and reported diagnostic performance stratified by scan acquisi-
tion parameters. Performance per occlusion location stratified 
by scan acquisition parameters could only be reliably assessed in 
the MR CLEAN Registry due to the large sample of patients with 
LVO and heterogeneity of scan protocols used in this cohort. To 
allow comparison between performance of the current algorithm 
with those described in prior studies,12–14 we performed a sensi-
tivity analysis in which we excluded patients with M2 occlusions 
and assessed performance for detection of LVO based on correct 
identification of the affected hemisphere but not exact occlu-
sion location. Statistical differences in AUC were evaluated using 

Figure 1  Algorithm output of three patients showing maximum 
intensity projection reconstructions indicating the location of the 
occlusion by a blue occlusion box in axial, coronal and sagittal views. 
(A) Patient with a left internal carotid artery terminus occlusion. (B) 
Patient with a left proximal M1 occlusion. (C) Patient with a right short 
segment M2 occlusion. Contrast opacification is seen just distal of the 
occlusion site indicating good collateral flow.
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DeLong’s method.21 Results are reported with corresponding 
95% confidence intervals (95% CI). Statistical analyses were 
performed using R statistical software (version 3.6.1).

RESULTS
CTAs of 1110 patients in the MR CLEAN Registry (median 
age (IQR), 71 years (60–80); 584 men; 1110 with LVO) and of 
646 patients in PRESTO (median age (IQR) 73 years (62–82); 
358 men; 141 with and 505 without LVO) were successfully 
processed. Detailed patient and imaging characteristics are 
summarized per cohort in online supplemental table 1. Mean 
processing time of the algorithm was 4 min and 59 s (SD±1 min 
and 12 s).

LVO detection
Assessment of diagnostic performance was based on correct 
identification of the exact location of an LVO or the absence 
of LVO. In the MR CLEAN Registry, 992/1110 LVOs were 
correctly identified by the algorithm resulting in a sensitivity 
of 89% (95% CI 87% to 91%) (table 1). The algorithm incor-
rectly indicated absence of LVO in 46 patients, and in 72 patients 
the algorithm correctly indicated that LVO was present, but 
the occlusion box was incorrectly placed (online supplemental 
table 2). In PRESTO the algorithm correctly identified 102/141 
patients with LVO and 392/505 patients without LVO. This 
resulted in a sensitivity of 72% (95% CI 64% to 80%), spec-
ificity of 78% (95% CI 74% to 81%), PPV of 47% (95% CI 
41% to 54%), NPV of 91% (95% CI 88% to 93%), and AUC 

of 0.75 (95% CI 0.71 to 0.79) (table 1). The algorithm incor-
rectly indicated that LVO was absent in 29 patients with LVO 
and correctly indicated that LVO was present in 10 patients, but 
with incorrect placement of the occlusion box (online supple-
mental table 3). A total of 113 false positives were counted in 
patients without LVO, of which the majority were M2 occlusions 
(61/113, 54.0%) (online supplemental table 3).

In the sensitivity analysis, patients with M2 occlusions were 
excluded and correct identification of the affected hemisphere 
was used to assess diagnostic performance. By doing so, we 
report the performance for detection of ICA/ICA-T and M1 
occlusion, and the correct detection of LVO by the algorithm 
was based on identifying the affected hemisphere but not the 
exact occlusion location. This resulted in a sensitivity of 96% 
(912/952; 95% CI 94% to 97%) in the MR CLEAN Registry, 
and a sensitivity of 93% (71/76; 95% CI 85% to 98%) and spec-
ificity of 78% (392/505; 95% CI 87% to 92%) in PRESTO.

Sensitivity per occlusion location
For ICA/ICA-T occlusion, the algorithm yielded a sensitivity 
of 88% (243/276; 95% CI 84% to 92%) in the MR CLEAN 
Registry and 80% (12/15; 95% CI 52% to 96%) in PRESTO 
(table 2). The highest detection rate was observed for M1 occlu-
sion with a sensitivity of 94% (636/676; 95% CI 92% to 96%) 
in the MR CLEAN Registry and 95% (58/61; 95% CI 86% to 
99%) in PRESTO. For M2 occlusion, a lower detection rate was 
observed than for other vessel segments and differed between 
the two study cohorts with a sensitivity of 72% (113/158; 
95% CI 64% to 78%) in the MR CLEAN Registry and 49% 
(32/65; 95% CI 44% to 79%) in PRESTO. In patients who had 
an extracranial ICA occlusion with a concomitant intracranial 
tandem lesion, the algorithm correctly detected 35/40 (87.5%) 
intracranial lesions.

Impact of scan acquisition parameters on performance
Slice thickness of ≥2 mm had a negative impact on diagnostic 
performance of the algorithm compared with  <1 mm (AUC 
0.71 vs 0.83, p<0.01) and 1–2 mm scans (AUC 0.71 vs 0.85, 
p<0.01) (online supplemental table 4). Lower diagnostic perfor-
mance was also observed for the venous scan phase compared 
with equilibrium (AUC 0.75 vs 0.87, p=0.02), but not compared 
with the arterial scan phase (AUC 0.75 vs 0.82, p=0.14). Sensi-
tivity per occlusion location within different subgroups was only 
evaluated within the MR CLEAN Registry. This revealed that 
increasing slice thickness, no slice overlap, and later scan phase 
resulted in a lower sensitivity for detection of M2 occlusion 
but not for detection of ICA/ICA-T and M1 occlusion (online 
supplemental table 5).

DISCUSSION
This study evaluated the diagnostic performance of an auto-
mated LVO detection algorithm based on deep learning in a 
large cohort of patients with and without LVO, demonstrating 

Figure 2  Algorithm output of two patients showing maximum 
intensity projection reconstructions with incorrect placement of the blue 
occlusion box in axial, coronal and sagittal view. (A) Patient with a left 
M2 occlusion. The occlusion box is incorrectly placed more inferior in 
the temporal lobe. (B) Patient with a left intracranial internal carotid 
artery occlusion resulting in the reduced vessel density seen in the 
left hemisphere. The occlusion box was incorrectly placed in the right 
hemisphere on the middle cerebral artery bifurcation.

Table 1  Diagnostic performance for detection of an LVO in the MR CLEAN Registry and PRESTO

LVO present/
LVO absent

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

AUC
(95% CI)

MR CLEAN Registry 1110/0 89 (87 to 91) n/a n/a n/a n/a

PRESTO 141/505 72 (64 to 80) 78 (74 to 81) 47 (41 to 54) 91 (88 to 93) 0.75 (0.71 to 0.79)

Sensitivity, specificity, PPV and NPV are presented as percentages.
AUC, area under the curve; LVO, large vessel occlusion; NPV, negative predictive value; PPV, positive predictive value.
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an overall high performance for the detection of intracranial 
LVOs. Differences in detection rate were seen between occlusion 
sites and based on image acquisition parameters.

Studies on the diagnostic performance of human readers 
generally show a high detection rate for occlusions in the ICA/
ICA-T and M1 segments, with sensitivities ranging from 89% 
to 97%,5 22 which is comparable to the sensitivity found here. 
Human diagnostic error for more distal, in particular M2 occlu-
sions, is notably higher with a reported sensitivity of only 65% 
in one study,7 similar to the sensitivity of local radiologists in 
PRESTO.23 This indicates a large potential for improvement of 
detection of M2 occlusion. For the algorithm evaluated here, we 
found a clear difference in detection of M2 occlusion between 
both cohorts. This was most likely the result of the selection 
of the MR CLEAN Registry population, where all occlusions, 
including M2 occlusions, were already identified by human 
readers and where patients were referred for EVT. In contrast, 
PRESTO represents a real-world stroke cohort including patients 
prior to imaging assessment and reflects the distribution of LVOs 
as encountered in daily clinical practice. As a consequence a 
broader spectrum of M2 occlusions is included in PRESTO, even 
those more difficult to detect for human readers. This makes it 
a more suitable target population for evaluating the diagnostic 
performance of the algorithm in a real-world setting.24 The 
sensitivity of the algorithm for detection of M2 occlusion in 
PRESTO was lower than that of human readers.

The algorithm also provided a lower specificity than human 
readers (78% vs 86–97%).5 22 When evaluating the diagnostic 
performance of LVO detection algorithms, however, it is 
important to put performance measures into a clinical context 
and thereby also consider the prior probability of LVO in patients 
undergoing CTA due to suspected acute ischemic stroke.25 
For LVO detection, a false positive result means the radiol-
ogist and stroke team wrongfully receive an alert of a poten-
tial LVO finding on CTA prompting fast imaging assessment. 
A false negative result wrongfully indicates no LVO is present, 
potentially providing false reassurance and delaying further 
CTA evaluation by a radiologist. While false positives may be 
a nuisance for clinicians, false negatives may delay initiation of 
treatment and possibly be harmful for patients. Efforts should 
therefore be aimed at achieving a high sensitivity for detecting 
LVOs along with an acceptable specificity. On the other hand, 
previous studies including PRESTO have shown that the prior 
probability of anterior circulation LVO on CTA in patients with 
suspected acute ischemic stroke is relatively low and lies within 
the range of 16–21%.23 26 This means that, despite the specificity 
of 78% of the current algorithm, true positives will occur just as 
frequently as false positives when implementing this algorithm in 
a real-world setting, as indicated by the PPV of 47% in PRESTO.

An elegant feature of the current algorithm mitigating this 
issue is placement of a box around the exact location where 
it detects an occlusion. This direct detection method allows 
inspection of what triggered the algorithm to come to its deci-
sion, providing users with transparency and directing them 

to (pathological) features that led to the output.27 By doing 
so, users can quickly distinguish true positive from false posi-
tive results. Other algorithms notify users in case of a positive 
LVO finding and provide more indirect information (eg, brain 
regions with reduced vessel density) on how the decision was 
reached.10 13 28 The current algorithm thus has the potential to 
aid in locating the exact occlusion site. This can be especially 
useful for less experienced readers and possibly aid in the early 
detection of LVO, thereby also accelerating diagnosis. It further 
allows remote access to output both at the primary stroke center 
and also the nearest EVT-capable intervention center. This may 
help to expedite decision-making about EVT and enrollment in 
clinical trials. Such algorithms thus hold the potential to increase 
patient benefit of EVT as the treatment of LVO is known to be 
highly time sensitive.3

Recent studies have reported performance metrics of other 
commercially available LVO detection algorithms. For detec-
tion of LVO, a sensitivity of 96% and specificity of 98% have 
been reported for the RAPID-LVO,12 a sensitivity of 82% and 
specificity of 90% for Viz LVO,13 and a sensitivity of 84% and 
specificity of 96% for e-CTA.14 However, direct comparisons of 
performance of these algorithms with the current algorithm are 
difficult to make due to discrepancies in study design. Studies 
evaluating RAPID-LVO and Viz LVO excluded M2 occlusions in 
their analyses, for which it has been shown that these algorithms 
yield lower detection rates.13 28 In addition, diagnostic perfor-
mance was based on either the presence or absence of LVO 
with12 14 or without13 correct identification of the affected hemi-
sphere, whereas we assessed performance based on correct iden-
tification of the exact location of LVO or the absence of LVO. 
Not including M2 occlusion as LVO and assessment of perfor-
mance not based on the exact location of the occlusion leads to 
higher detection rates of LVO as shown in our sensitivity anal-
ysis. Other factors contributing to differences in performance 
are varying inclusion criteria and patient populations. Some 
studies used curated datasets12 14 and others a real-world stroke 
population.13 This may lead to differences in the distribution of 
LVO locations and, because of varying detection rates by occlu-
sion location, overall performance measures. As demonstrated 
in the current study, the sensitivity of the algorithm for detec-
tion of LVO was considerably higher in the MR CLEAN Registry 
compared with PRESTO, mainly due to the higher proportion 
and broader spectrum of M2 occlusions in the latter cohort.

However, diagnostic performance of LVO detection algorithms 
should preferably be assessed in a real-world stroke population 
such as PRESTO as it provides a more reliable estimation of the 
potential of the algorithm in a clinical setting. Nevertheless, bene-
fits of using the MR CLEAN Registry here was that CTAs were 
acquired with a variety of acquisition protocols. This allowed us 
to show that image acquisition parameters such as slice thickness 
and CTA scan phase significantly impact algorithm performance, 
and that high-quality input data are a prerequisite for adequate 
diagnostic performance. This was most evident for the detection 
of M2 occlusions, likely due to the smaller caliber, branching 

Table 2  Sensitivity per occlusion location in the MR CLEAN Registry and PRESTO

ICA/ICA-T M1 M2

N Sensitivity (95% CI) N Sensitivity (95% CI) N Sensitivity (95% CI)

MR CLEAN Registry 276 88 (84 to 92) 676 94 (92 to 96) 158 72 (64 to 78)

PRESTO 15 80 (52 to 96) 61 95 (86 to 99) 65 49 (37 to 62)

Sensitivity is presented as percentage.
ICA, internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of the middle cerebral artery; M2, M2 segment of the middle cerebral artery.
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pattern, and tortuosity of these vessels, making vascular segmen-
tation more susceptible to errors. Especially for M2 occlusions, 
it is possible that other acquisition schemes such as multiphase 
CTA lead to better detection by automated algorithms,10 as is 
seen for M2 occlusion detection by human readers.29

The strengths of this study include the large sample size of 
LVOs, allowing us to assess diagnostic performance both for 
overall detection of an LVO and per individual occlusion loca-
tion with sufficient precision. By including CTAs from a variety 
of hospitals (>50) using different acquisition protocols, we were 
able to investigate the impact of scan acquisition parameters 
on performance. Also, the current evaluation was conducted 
independently of commercial developers and their affiliates. A 
limitation of this study is that the evaluation was carried out 
retrospectively and we were therefore not able to assess the 
impact of the current LVO detection algorithm on decision-
making and treatment parameters.30 Also, we were not able to 
reliably compare performance of the current algorithm to those 
described by others mainly due to the use of different test sets. 
If feasible, head-to-head comparisons of different algorithms 
within the same test set will ultimately allow for more unbiased 
and reliable comparisons.

CONCLUSIONS
The algorithm we evaluated here has a high sensitivity for the 
detection of proximal anterior circulation LVOs (ICA/ICA-T and 
M1) on CTA. The sensitivity for M2 occlusion is lower than 
human assessment in a real-world setting and future efforts 
should specifically target improvement of M2 occlusion detec-
tion. Together with the lower specificity of the algorithm than 
human readers, critical CTA evaluation by radiologists remains 
crucial irrespective of algorithm output.
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