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Abstract
Link prediction is a well-studied technique for inferring the missing edges between two nodes in some static representation 
of a network. In modern day social networks, the timestamps associated with each link can be used to predict future links 
between so-far unconnected nodes. In these so-called temporal networks, we speak of temporal link prediction. This paper 
presents a systematic investigation of supervised temporal link prediction on 26 temporal, structurally diverse, real-world 
networks ranging from thousands to a million nodes and links. We analyse the relation between global structural properties 
of each network and the obtained temporal link prediction performance, employing a set of well-established topological 
features commonly used in the link prediction literature. We report on four contributions. First, using temporal information, 
an improvement of prediction performance is observed. Second, our experiments show that degree disassortative networks 
perform better in temporal link prediction than assortative networks. Third, we present a new approach to investigate the 
distinction between networks modelling discrete events and networks modelling persistent relations. Unlike earlier work, 
our approach utilises information on all past events in a systematic way, resulting in substantially higher link prediction 
performance. Fourth, we report on the influence of the temporal activity of the node or the edge on the link prediction perfor-
mance, and show that the performance differs depending on the considered network type. In the studied information networks, 
temporal information on the node appears most important. The findings in this paper demonstrate how link prediction can 
effectively be improved in temporal networks, explicitly taking into account the type of connectivity modelled by the temporal 
edge. More generally, the findings contribute to a better understanding of the mechanisms behind the evolution of networks.

Keywords Temporal link prediction · Supervised learning · Temporal networks · Network evolution · Multigraphs

1  Introduction and problem statement

Link prediction is a frequently employed method within the 
broader field of social network analysis (Barabási 2016). 
Many important real-world applications exist in a variety 
of domains. Two examples are the prediction of (1) miss-
ing links between pages of Wikipedia and (2) which users 
are likely to be friends on an online social network (Kumar 
et al. 2020). Link prediction is often defined as the task to 
predict missing links based on the currently observable 

links in a network (Linyuan and Zhou 2011). Many real-
world networks have temporal information on the times 
when the edges were created (Divakaran and Mohan 2020). 
Such temporal networks are also called dynamic or evolv-
ing networks. They open up the possibility of doing tem-
poral link prediction. This means that they are able to infer 
future edges between two nodes as opposed to predicting 
only missing links (Liben-Nowell and Kleinberg 2007). For 
instance, in friendship networks, temporal link prediction 
might (1) facilitate friend recommendations, and (2) may 
actually predict which people will form new friendships in 
the future.

Existing work on temporal link prediction is typically 
performed on one or a handful of specific networks, making 
it difficult to assess the generalisability of the approaches 
used (Marjan et al. 2018). This paper presents the first large-
scale empirical study of temporal link prediction on 26 dif-
ferent large-scale and structurally diverse temporal networks 
originating from various domains. In doing so, we provide a 
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systematic investigation of how temporal information is best 
used in a temporal link prediction model.

This can be illustrated briefly by the social networks used 
in this study. They have a higher density then the other net-
works. This might improve performance in temporal link 
prediction, because the pairs of nodes in the networks used 
in our study are likely to have more common neighbours, 
providing more information to the supervised link prediction 
model. Thus, it is important to have an understanding of the 
relation between structural characteristics of the network and 
performance of topological features.

A common approach in temporal link prediction is to 
employ a supervised machine learning model that utilises 
multiple features to classify which links are missing or, in 
case of temporal link prediction, will appear in the future 
(de Bruin et al. 2021). Features are typically computed for 
every pair of nodes that is not (yet) connected, based on 
the topology of the network (Kumar et al. 2020). These 
topological features essentially calculate a similarity score 
for a node pair, where a higher similarity signals a higher 
likelihood that this pair of nodes should be connected. Com-
monly used topological features, both used in supervised 
and unsupervised learning, include Common Neighbours, 
Adamic-Adar, Jaccard Coefficient and Preferential Attach-
ment (Sect. 4.1.1). These features clearly relates to the struc-
tural position of the nodes in the network. Previous work 
has suggested a straightforward approach to take the tem-
poral evolution into account in these topological features 
(Tylenda et al. 2009; Bütün et al. 2018). We describe the 
process of obtaining the set of temporal topological features 
in Sect. 4.1.2. The benefits of using this set of features are 
that they are well-established and interpretable. Moreover, 
recent work has shown that in a supervised classifier these 
topological features perform as well as other types of fea-
tures that are less interpretable and more complex (Ghasem-
ian et al. 2020). A further comparison with other types of 
features is provided in Sect. 2.

In our work, we extend the set of state-of-the-art tem-
poral topological features by considering that two types 
of temporal networks can be distinguished: networks with 
persistent relationships and networks with discrete events 
(O’Madadhain et al. 2005). The aforementioned example 
of friendship networks contains edges marking persistent 
relationships, that occur at most once for related persons. 
In case of communication networks, an edge usually marks 
a discrete event at an associated timestamp, representing a 
message sent from one person to another. In contrast to net-
works with persistent relationships, multiple edges can occur 
between two persons in discrete event networks. Previous 
studies have ignored that each link is not of the same type. In 
our approach, we address this gap in the literature by means 
of what we coin past event aggregation. This allows us to 
take both types of temporal links into account, where all 

information of two-faceted past interactions (i.e. persistent 
and discrete) are incorporated into the temporal topological 
features.

Last but not least, the temporal topological features 
implicitly assume so-called edge-centred temporal behav-
iour, suggesting that phenomena at the level of links deter-
mine the evolution of the network. Here, we may challenge 
the usual assumption that the temporal aspect is merely 
caused by the activity of nodes, being the decision-mak-
ing entities in the network, and operating somewhat inde-
pendently of the structure of the remainder of the network 
(Hiraoka et al. 2020). To investigate whether this assump-
tion holds, we present a comparison between (1) tempo-
ral topological features and (2) features consisting of static 
topological features along with features capturing temporal 
node activity. By testing this distinction on the 26 different 
temporal networks, we can better understand whether the 
temporal aspect is best captured by considering edge-centred 
or node-centred temporal information.

To sum up, the four contributions of this work are as fol-
lows. First, to the best of our knowledge, we are the first to 
present a large-scale empirical study of temporal link predic-
tion on a variety of networks. In total, we assess the perfor-
mance of a temporal link prediction model on 26 structurally 
diverse networks, varying in size from a few hundred to over 
a million nodes and edges. Second, we analyse possible rela-
tions between structural network properties and the observed 
performance in temporal link prediction. We find that net-
works with degree disassortativity, signalling frequent con-
nections between nodes with different degrees, show better 
performance in temporal link prediction. Third, we propose 
to account for all past interactions in discrete event networks. 
Fourth, in an attempt to understand the relation between 
node-centred and edge-centred temporal behaviour, we find 
that the information networks used in this study stand out, as 
they appear to have more node-centred temporal behaviour.

This work is structured as follows. In Sect. 2, we further 
elaborate on related work. Section 3 provides the notation 
used in this work, leading up to the definition of temporal 
link prediction. After that, we continue with the approach 
in Sect. 4. This will be followed by a description of the 
temporal networks in Sect. 5. In Sect. 6 the four results of 
the experiments are presented and discussed. In Sect. 7, the 
conclusion is presented, together with suggestions for future 
work.

2  Related work

Although there is much literature available on link predic-
tion, we found that attention for temporal networks and 
temporal link prediction is relatively limited. Some reviews 
have been published. They are pointing out the various 
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approaches that exists towards temporal link prediction 
(Dhote et al. 2013; Divakaran and Mohan 2020). Conse-
quently, we will start with an exploration of four types of 
approaches presented therein.

First, probabilistic models require (1) additional node or 
edge attributes to obtain sufficient performance (which hin-
ders a generic approach to all networks) or (2) techniques 
that do not scale to larger networks (Kumar et al. 2020) 
(rendering them unusable for the larger networks used in 
the study).

Second, approaches such as matrix factorisation, spec-
tral clustering (Romero et  al. 2020), and deep learning 
approaches, like DeepWalk (Perozzi et al. 2014) and Node-
2Vec (Grover and Leskovec 2016), all try to find a lower 
dimensional representation of the temporal network and use 
the obtained representation as a basis for link prediction. 
These approaches all learn a representation of the network 
without requiring explicit engineering of features. However, 
the downside is that the obtained features are hard to inter-
pret, thereby making it difficult to explain why a certain 
link is predicted to appear. In applied scenarios, under some 
jurisdictions, this explanation can be required by law when 
an employed machine learning model affects people, which 
is often the case in for example the health and law enforce-
ment domain (Holzinger et al. 2017). As an example, in pre-
vious work we examined driving patterns of trucks in a so-
called truck co-driving network, where trucks are connected 
when they frequently drive together (de Bruin et al. 2020). 
When an inspection agency would use gathered network 
information to predict which trucks should be inspected for 
possible misconduct, truck drivers may legally have the right 
to know why they were selected. Since we aim to provide a 
approaches towards temporal link prediction that are appli-
cable to any scientific domain, we disregard approaches that 
learn a lower dimensional representation.

Third, in the time series forecasting approach, the tem-
poral network is divided into multiple snapshots (Potgieter 
et al. 2007; Da Silva Soares and Prudencio 2012; Öczan and 
Öğüdücü 2015; Güneş et al. 2016; Öczan A, Öğüdücü 2017). 
For each of these snapshots, static topological features are 
learned. By using time series forecasting, the topological 
features of a future snapshot are learned, enabling link pre-
diction. This approach does scale well to larger networks and 
is interpretable. However, it is unclear into how many snap-
shots the temporal network should be divided and whether 
the number of snapshots should remain constant across all 
networks used. Again, hindering a truly generic approach.

Finally, we focus on temporal topological features in 
this work (Tylenda et al. 2009; Bütün et al. 2016). Recent 
work has suggested that the use of topological features in 
supervised learning can outperform more complex features 
learned from a lower dimensional representation of the tem-
poral network (Ghasemian et al. 2020). Section 4 provides 

further details on this concept. These topological features 
are provided to a supervised link prediction classifier. Many 
different classification algorithms are known to work well in 
link prediction. Commonly used classifiers include logistic 
regression (Potgieter et al. 2007; O’Madadhain et al. 2005), 
support vector machines (Al Hasan et al. 2006; Öczan A, 
Öğüdücü 2017), k-nearest neighbours (Al Hasan et al. 2006; 
Bütün et al. 2018, 2016), and random forests (Öczan A, 
Öğüdücü 2017; Bütün et al. 2016, 2018; Ghasemian et al. 
2020; de Bruin et al. 2021, 2020). We report performances 
using the logistic regression classifier. This classifier pro-
vides the following benefits, (1) it allows intuitive explana-
tion on how each instance is classified (Bishop 2013), (2) the 
classifier is relatively simple and hence interpretable (Mol-
nar 2020), (3) the classifier scales well to larger networks, 
and (4) good results are achieved without any parameter 
optimisation (O’Madadhain et al. 2005).

To sum up, in contrast to earlier works on temporal link 
prediction, which has been applied on only a handful net-
works (Bliss et al. 2014; Öczan and Öğüdücü 2015; Potgi-
eter et al. 2007; Bütün et al. 2016, 2018; Da Silva Soares 
and Prudencio 2012; Güneş et al. 2016; Öczan A, Öğüdücü 
2017; Tylenda et al. 2009; O’Madadhain et al. 2005; Soares 
and Prudêncio 2013; Muniz et al. 2018; Romero et al. 2020), 
we apply link prediction on a structurally diverse set of 
26 large-scale, real-world networks. We aim to do so using 
a generic, scalable and interpretable approach.

3  Preliminaries

This section starts by describing the notation used through-
out this paper in Sect. 3.1. In Sect. 3.2, we explain the vari-
ous network properties and measures used in this work. 
Finally, in Sect. 3.3 we formally describe the temporal link 
prediction problem.

3.1  Notation

An undirected, temporal network H[t�,t��](V ,EH) consists 
of a set of nodes V and edges (or, equivalently, links) 
EH =

{
(u, v, t) ∣ u, v ∈ V ∧ t� ≤ t ≤ t��

}
 that occur between 

timestamps t′ and t′′ . Networks with discrete events, where 
multiple events can occur between two nodes, can be seen 
as a multigraph, where multi-edges exist: links between the 
same two nodes, but with different timestamps (Gross et al. 
2013). In this work, removal of edges is not considered, 
since this information is not available for most temporal 
networks.

A static representation of the underlying network 
is needed for the comparison between static and tem-
poral features (see Sect.  4). This static, simple graph 
G[t�,t��](V ,EG) with edges (u, v) ∈ EG is obtained from the 
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temporal network H[t�,t��] by considering all edges that 
occur between t′ and t′′ , collapsing the multi-edges into a 
single edge. The number of nodes (also called the size) of 
the graph is n = |V| and the number of edges is m = |EG| . 
For convenience in later definitions, � (u) is the set of all 
neighbours of node u ∈ V  . The size of this set, i.e. |� (u)| , 
is the degree of node u.

3.2  Real‑world network properties and their 
measures

Several properties exist that characterise the global struc-
ture of a network (Barabási 2016). These properties guide 
us in the exploration of how structure relates to the perfor-
mance of a temporal link prediction algorithm. Below we 
discuss four of the main properties. Each of the properties 
is defined on the static underlying graph G[t�,t��].

• Density The density of a network is calculated by divid-
ing the number of edges by the total number of possi-
ble edges, i.e. 2m∕n(n − 1) . For networks of the same 
size, higher density means that the average degree of 
nodes is higher, which has implications for the overall 
structural information available to the link prediction 
classifier.

• Diameter The diameter, sometimes called the maxi-
mum distance, is the largest distance observed between 
any pair of nodes. This property, together with density, 
captures how well-connected a network is.

• Average clustering coefficient The average clustering 
coefficient is the overall probability that two neigh-
bours of a randomly selected node are linked to each 
other. The average clustering coefficient is given by 

where Lu represents the number of edges between the 
neighbours of node u. In real-world networks, and in par-
ticular social networks, often highly clustered networks 
are observed.

• Degree assortativity It is often observed that nodes do 
not connect to random other nodes, but instead connect 
to nodes that are similar in some way. For instance, 
in social networks degree assortativity is observed, 
meaning that nodes often connect to other nodes with 
a similar degree. We can measure the degree assortativ-
ity of a network, by calculating the Pearson correlation 
coefficient, � , between the degree of nodes at both ends 
of all edges (Newman 2002). In case low degree nodes 
more frequently connect with high degree nodes, the 
obtained value is negative.

C =
1

n

∑

u∈G

2Lu

|� (u)|
(
|� (u)| − 1

) ,

3.3  The goal of a supervised link prediction model

The goal of a supervised link prediction model is to predict for 
unconnected pairs of nodes in the temporal network H[tq=0,tq=s]

 
whether they will connect in an evolved interval [tq=s, tq=1] 
where q marks the q-th percentile of observed timestamps in 
the network and 0 < s < 1 . Hence, timestamps tq=0 and tq=1 
mark the time associated to the first and last edge in the net-
work, respectively. Moreover, timestamp tq=s marks the time 
used to split the network into two intervals. The examples pro-
vided to the supervised link prediction model are pairs of 
nodes that are not connected in [tq=0, tq=s] . For each example 
(u, v) in the dataset, a feature vector x(u,v) and binary label y(u,v) 
is provided to the supervised link prediction model. The label 
for each pair of nodes (u, v) is y(u,v) = 1 when it will connect 
in [tq=s, tq=1] and y(u,v) = 0 otherwise. Because parameter s 
determines the number of considered nodes, it affects the class 
imbalance encountered in the supervised link prediction; val-
ues close to 1, results in a larger number of node pairs to con-
sider, while limiting the number of positives.

The features used in the supervised link prediction model 
are only allowed to use information of network H[tq=0,tq=s]

 , pre-
venting any leakage from nodes that will connect in the 
evolved time interval [tq=s, tq=1] . Note that the temporal infor-
mation contained in the network is used for two purposes; (1) 
it allows to split the network into two temporal intervals and 
(2) it is used in feature engineering to model temporal 
evolution.

4  Approach

This section explains the features used towards a supervised 
temporal link prediction. We start with an explanation of the 
different sets of features used in this study in Sect. 4.1. In par-
ticular, in step 2 of Sect. 4.1.2, we present a novel and intuitive 
approach to incorporate information on past interactions in the 
case of discrete event networks. In Sect. 4.2, we discuss the 
supervised link prediction model.

4.1  Features

In this subsection, we explain three types of features used. 
First, in Sect. 4.1.1 static topological features are provided. 
Second, temporal topological features are given in Sect. 4.1.2. 
The node activity features are specified in Sect. 4.1.3.

4.1.1  Static topological features

We use four common static topological features, which 
together form the feature vector for each candidate pair of 
nodes (u, v). These features are computed on the static graph 
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G underlying the temporal network considered, as defined in 
Sect. 3.1. Below we define each of them.

Common Neighbours (CN) The CN feature is equal to the 
number of common neighbours of two nodes.

Adamic-Adar (AA) The AA feature considers all common 
neighbours, favouring nodes with low degrees (Adamic and 
Adar 2003).

Jaccard Coefficient (JC) The JC feature is similar to the CN 
feature, but normalises for the number of unique neighbours 
of the two nodes.

Preferential Attachment (PA) The PA feature takes into 
account the observation that nodes with a high degree are 
more likely to make new links than nodes with a lower 
degree.

4.1.2  Temporal topological features

Straightforward temporal extensions to topological features 
have been proposed in the literature (Tylenda et al. 2009; 
Bütün et al. 2018). Our method extends these approaches 
to also capture past interactions in case of aforementioned 
discrete event networks. The construction of these features 
then requires three steps, namely: 

A. Temporal weighting.
B. The proposed approach of past event aggregation.
C. Computation of weighted topological features.

The resulting feature vector for a given pair of nodes, after 
applying the three steps, consists of all possible combina-
tions of 3 different temporal weighting functions (linear, 
exponential, square root), 8 different past event aggregations 
(see below under B) and 4 different weighted topological 
features (CN, AA, JC, PA). Thus, for discrete event networks 
the feature vector is of length 3 ⋅ 8 ⋅ 4 = 96 and for networks 
with persistent relationships it is of length 3 ⋅ 4 = 12 . 

A: Temporal weighting The topological features need 
weighted edges (step C), while the networks used in this 
study have edges with an associated timestamp. In the 
temporal weighting step, we obtain these weights in a 

(1)CNstatic(u, v) = |� (u) ∩ � (v)|

(2)AAstatic(u, v) =
∑

z∈� (u)∩� (v)

1

log ||� (z)||

(3)JCstatic(u, v) =
|� (u) ∩ � (v)|
|� (u) ∪ � (v)|

(4)PAstatic(u, v) = |� (u)| ⋅ |� (v)|

procedure described by Tylenda et al. (2009). The defini-
tions of the temporal weighting functions are provided in 
Eqs. (5)–(7). In these definitions, a numeric timestamp t 
is converted to a weight w. Note that tmin and tmax denote 
the earliest and latest observed timestamp over all edges 
of the considered network. 

 In Fig. 1 the behaviour of the different weighting func-
tions is shown, when applied to the DBLP network (Ley 
2002). It is further described in Sect. 5. The exponential 
weighting function (Eq. 6) assigns a higher weight to 
more recent edges than the linear (Eq. 5) and square root 
(Eq. 7) functions. In contrast, the square root function 
assigns higher weights to older edges in comparison to 
the linear and exponential functions. When weights of 
older edges become close to zero, these edges are dis-
carded by the weighted topological features. To prevent 
that edges far in the past are discarded completely, we 
bound the output of each weighting function between a 
positive value l and 1.0 (l stands for lower bound).

B: Past event aggregation In case of networks with dis-
crete events, each multi-edge has an associated weight 
after the previous temporal weighting step. To allow 
the weighted topological features to be computed, we 

(5)wlinear = l + (1 − l) ⋅
t − tmin

tmax − tmin

(6)wexponential = l + (1 − l) ⋅
exp

(
3

t−tmin

tmax−tmin

)
− 1

e3 − 1

(7)wsquare root = l + (1 − l) ⋅

√
t − tmin

tmax − tmin

Fig. 1  The mapping of the three different weighting functions for the 
entire DBLP network
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need to obtain a single weight for each node pair, cap-
turing their past activity. Here we propose to aggregate 
all past events using eight different aggregation func-
tions. All eight functions use as input a set containing 
all the weights of past events. The following functions 
are used: (1) the zeroth, (2) first, (3) second, (4) third, 
(5) fourth quantile and the (6) sum, (7) mean, and (8) 
variance of all past weights. By means of these sum-
mary statistics, we aim to capture the fact that depending 
on which network is considered, it may matter whether 
interaction took place very often, far away in the past, or 
very recent. These aggregation functions aim to capture 
different temporal behaviours. The quantile functions 
bin the set of weights, which is a common step in feature 
engineering. Taking the sum, mean, variance of the set 
of weights, allow the model to capture also more com-
plex trends. An example of these complex trends, is the 
so-called bursty behaviour, which is often observed in 
real-world data (Barabási 2005).

C: Weighted topological features In Eqs.  (8)–(11), the 
weighted topological features are presented, which 
are taken from Bütün et al. (2018). In these equations, 
wtf(u, v) denotes the weight obtained for a given pair of 
nodes (u, v) after edges have been temporal weighted 
and, in case of networks with discrete events, events 
have been aggregated. 

4.1.3  Node activity features

The goal of the node activity features is to capture node-
centred temporal activity. To this end, we create the node 
activity features in the following three steps: (1) temporal 
weighting, (2) aggregation of node activity, and (3) com-
bining node activity. These steps are explained below. The 
feature vector for a given pair of nodes consists of all com-
binations of three different temporal weighting functions, 
seven different aggregation functions applied to the node 
activity, and four different combinations of the node activ-
ity. This results in a feature vector of length 3 ⋅ 7 ⋅ 4 = 84 . 

(8)

AAtemporal(u, v) =
�

z∈� (v)∩� (y)

wtf(u, z) + wtf(v, z)

log
�
1 +

∑
x∈� (z) wtf(z, x)

�

(9)CN temporal(u, v) =
∑

z∈� (u)∩� (v)

wtf(u, z) + wtf(v, z)

(10)JCtemporal(u, v) =
�

z∈� (u)∩� (v)

wtf(u, z) + wtf(v, z)
∑

x∈� (u) wtf(u, x) +
∑

y∈� (v) wtf(v, y)

(11)PAtemporal(u, v) =
∑

a∈� (x)

wtf(u, x) ⋅
∑

b∈� (y)

wtf(v, y)

(1) Temporal weighting The temporal weighing procedure 
is the same as used in feature engineering of the tem-
poral weighted topological features (see Sect. 4.1.2).

(2) Aggregation of node activity For each node, the set 
of weights from all edges adjacent to the node under 
investigation is collected. To obtain a fixed feature 
vector for each node, the set of weights is aggregated 
using the following functions: (1) the zeroth, (2) first, 
(3) second, (4) third, (5) fourth quantile and the (6) 
sum and (7) mean of the node activity vector (here the 
variance of all node weights is suppressed). Similar to 
the engineering of the temporal topological features, 
these aggregations are used to capture different kinds 
of activity that a node may exhibit. In particular, nodes 
are known to show bursty activity patterns in some net-
works (Hiraoka et al. 2020).

(3) Combining node activity To take the activity, obtained 
in the previous two steps, of both nodes under consid-
eration into account, we use four different combina-
tion functions. These four functions are the (1) sum, (2) 
absolute difference, (3) minimum, and (4) maximum. 
By doing this, we obtain the node activity feature vec-
tor.

4.2  Supervised link prediction

The features discussed in Sect. 4.1 serve as input for a super-
vised machine learning model that predicts whether or not 
a pair of currently disconnected nodes will connect in the 
future (see Sect. 3.3).

Here we use the logistic regression classifier. It was cho-
sen because of its simplicity, overall good performance on 
this type of task and its explainability (see Sect. 2). We did 
not consider optimisation of any set of parameters, because 
that is considered outside the scope of the current paper.

In theory, a number quadratic in the number of nodes (i.e. 
the node pairs) could be selected as input for the classifier, 
with positive instances being node pairs that connect in the 
future, resulting in a significant class imbalance. To counter 
this problem and at the same time limit the computation 
time needed to train the model, we reduce the number of 
node pairs given as input to the classifier by the following 
two steps.

First, a well-known step is to select only pairs of nodes 
that are at a specific distance of each other (Lichtenwalter 
and Chawla 2012). Given the large sizes of networks used 
in this study, we limit the selection to only include pairs 
of nodes that are at distance two. Second, we sample with 
replacement from the remaining pairs of nodes a total of 
10,000 that will connect (positives) and 10,000 that will 
not connect in the future (negatives). By doing this, we 
obtain a balanced set of examples which does not require 
any further post-processing, and can be used directly by 
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the classifier. The training set for the logistic regression 
classifier is obtained by means of stratified sampling, tak-
ing 75% of all examples. The remaining instances are used 
as a test set. Because we do not optimise any parameters of 
the logistic regression classifier, no validation set is used.

Analogously to previous work Divakaran and Mohan 
(2020) we measure the performance of the classifier on the 
test set by means of the Area Under the Receiver Operat-
ing Characteristic Curve (AUC). The AUC only considers 
the ranking of each score obtained for each pair of nodes 
provided to the logistic regression classifier. The AUC 
does not consider the absolute value of the score. This 
makes the measured performance robust to cases where 
the applied threshold on the scores is chosen poorly. An 
AUC of 0.5 signals random behaviour, i.e. no classifier 
performance at all. A perfect performance is obtained 
when the AUC is equal to 1, which is highly unlikely in 
practical settings.

5  Data

In this work, we use a structurally diverse and large col-
lection of in total 26 temporal networks. The networks can 
be categorised into the three different domains, namely 
social, information, and technological networks. The 
distinction of networks in these three domains are taken 
from other network repositories. In Table 1 some common 
structural properties of these datasets are presented (see 
Sect. 3.2 for definitions). It is apparent from Fig. 2, which 
shows the relation between the number of nodes and edges 
for each of the 26 datasets, that the selected networks span 
a broad range in terms of size. Also, for each network it 
is indicated whether the edges marks persistent relation-
ships or discrete events. In the latter case, the network has 
a multigraph structure, which requires preprocessing as 
discussed in Sect. 4.1.2. We observe seventeen networks 
showing degree disassortative behaviour, meaning that 
high degree nodes tend to connect to low degree nodes 
more frequently. The other nine networks show the oppo-
site behaviour. We do not observe any significant relation 
between the domain of a network and its degree assortativ-
ity, or any other global property of the network.

A total of 21 networks were obtained from the Konect 
repository (Kunegis 2013), four networks from SNAP 
(Leskovec and Krevl 2014) and one from AMiner (Zhuang 
et al. 2013). The last column in Table 1 provides a refer-
ence to the work where each network is first introduced. 
Any directed network is converted to an undirected net-
work by ignoring the directionality. In originally signed 
networks, we use only positive edges.

6  Experiments

In Sect. 6.1 we start with the experimental setup. Then, the 
structure of this section follows the four contributions of this 
work. In Sect. 6.2 the performance of temporal link predic-
tion on 26 networks is assessed. Section 6.3 continues with 
the analysis of the relation between structural network prop-
erties and the performance in temporal link prediction. In 
Sect. 6.4, we show the results of our methodological contri-
bution to temporal link prediction in networks with discrete 
events. We finish in Sect. 6.5 with a comparison between 
node-centred and edge-centred temporal behaviour.

6.1  Experimental setup

In Sect. 3.3, the procedure to obtain examples and labels 
that serve as input for the classifier have been explained. In 
this procedure, we need to determine the value s for each 
network. Commonly, around two thirds of the edges are used 
for extraction of features (Lichtenwalter et al. 2010; Bütün 
et al. 2018, 2016; Al Hasan et al. 2006) and hence we choose 
s =

2

3
.

In the feature engineering of the temporal topological and 
node activity features, the first step is to temporally weight 
each edge. In Sect. 4.1.2, step 1, parameter l is introduced to 
prevent the discarding of old edges in the temporal weight-
ing procedure. Based on earlier work (Tylenda et al. 2009), 
we set l = 0.2 , giving a minimal weight to links far away in 
the past, while still sufficiently discounting these older links.

In this work, we use four sets of features. These feature 
sets, indicated by capital Roman numerals, are as follows. 

 I Static topological (as defined in Sect. 4.1.1).
 II-A Temporal topological (as defined in Sect. 4.1.2).

Fig. 2  The number of nodes and edges of the networks used in this 
paper. The horizontal and vertical axes have logarithmic scaling
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 II-B Temporal topological without past event aggregation 
(as defined in Sect. 4.1.2, skipping step 2 and using 
only the last occurring event).

 III Static topological + node activity (Sect. 4.1.2 + 
Sect. 4.1.3).

It is common practice to standardise features by subtract-
ing the mean and scaling the variance to unit. The logis-
tic regression classifier provided in the Python scikit-learn 
package (Pedregosa et al. 2011) is used. Although the goal 
of this paper is not to extensively compare machine learn-
ing classifiers, in Appendix A2, results on the performance 
in terms of AUC obtained using two other commonly used 
classifiers, being random forests (Pedregosa et al. 2011) 
and XGBoost (Chen and Guestrin 2016) are presented. For 
almost all datasets, similar relative performance is observed. 
The code used in this research, is available at http:// github. 
com/ gerri tjand ebruin/ snam2 021- code. It uses the Python 
language and the packages NetworkX (Hagberg et al. 2008) 

for network analysis, scikit-learn (Pedregosa et al. 2011) 
for the machine learning pipeline, and the Scipy ecosystem 
(Virtanen et al. 2020) for some of the feature engineering 
and statistical tests. The C++ library teexGraph (Takes and 
Kosters 2011) was used to determine the diameter of each 
network. The package versions, as well as all dependencies, 
can be found in the aforementioned repository.

6.2  Improvement of prediction performance 
with temporal information

We examine whether temporal information improves the 
overall prediction performance. Baseline performance is 
obtained by ignoring temporal information, using only static 
topological features (feature set I). In contrast, temporal top-
ological features (feature set II-A) are used to obtain the per-
formance of link prediction utilising temporal information.

The results of this comparison are presented in Table 2 
and in Fig. 3. They clearly indicate that using temporal 

Table 1  Networks used in this work

The following abbreviations are used in the columns; D.a. degree assortativity, A.c.c average clustering coefficient, Diam. diameter. In the col-
umn ‘domain’, Technological is abbreviated to Tech. and Information to Inf

Label Domain Edge type Nodes Edges Density D.a. A.c.c. Diam.

Rado Social Persistent 167 82,927 2 ⋅ 10−1 0.15 0.59 5 Michalski et al. (2011)
UC Inf. Persistent 899 33,720 2 ⋅ 10−2 0.10 0.07 6 Opsahl (2013)
EU Social Persistent 986 332,334 3 ⋅ 10−2 0.05 0.41 7 Yin et al. (2017)
Dem Social Persistent 1891 39,264 2 ⋅ 10−3 − 0.15 0.21 8 Wikileaks (2016)
bitA Social Event 3683 22,650 2 ⋅ 10−3 − 0.15 0.17 10 Kumar et al. (2017)
bitOT Social Event 5573 32,029 1 ⋅ 10−3 − 0.15 0.16 14 Kumar et al. (2017)
chess Inf. Event 6050 21,163 1 ⋅ 10−3 0.36 0.05 13 Kunegis (2013)
HepTh Inf. Persistent 6798 290,597 9 ⋅ 10−3 0.08 0.77 11 Leskovec et al. (2007)
HepPh Inf. Persistent 16,959 2,322,259 8 ⋅ 10−3 0.17 0.61 8 Leskovec et al. (2007)
Condm Social Persistent 17,218 88,090 4 ⋅ 10−4 0.29 0.64 19 Lichtenwalter et al. (2010)
SX-MO Social Persistent 24,818 506,550 6 ⋅ 10−4 − 0.05 0.31 9 Paranjape et al. (2017)
D-rep Social Event 30,398 87,627 2 ⋅ 10−4 0.02 0.01 12 De Choudhury et al. (2009)
Rbody Tech. Persistent 35,010 265,491 2 ⋅ 10−4 0.03 0.18 11 Kumar et al. (2018)
Rtit Tech. Persistent 53,018 510,787 1 ⋅ 10−4 − 0.01 0.18 17 Kumar et al. (2018)
FB-w Social Event 55,387 335,708 2 ⋅ 10−4 − 0.02 0.12 16 Viswanath et al. (2009)
FB-l Social Event 55,387 335,708 2 ⋅ 10−4 0.22 0.12 16 Viswanath et al. (2009)
Enron Social Persistent 87,273 1,148,072 8 ⋅ 10−5 0.22 0.12 14 Klimt and Yang (2004)
loans Inf. Event 89,269 3,394,979 8 ⋅ 10−4 − 0.04 0.00 8 Redmond and Cunningham (2013)
trust Social Event 114,467 717,667 9 ⋅ 10−5 − 0.07 0.13 14 Richardson et al. (2003)
Wiki Social Persistent 116,836 2,917,785 3 ⋅ 10−4 − 0.06 0.36 10 Brandes et al. (2009)
D-v Inf. Event 139,409 3,018,197 3 ⋅ 10−4 − 0.21 0.14 4 Hogg and Lerman (2012)
SX-AU Social Persistent 159,316 964,437 4 ⋅ 10−5 − 0.10 0.11 13 Paranjape et al. (2017)
SX-SU Social Persistent 194,085 1,443,339 4 ⋅ 10−5 − 0.08 0.12 12 Paranjape et al. (2017)
D-f Social Event 279,374 1,729,983 4 ⋅ 10−5 − 0.05 0.09 18 Hogg and Lerman (2012)
AMin Social Persistent 855,165 23,787,273 9 ⋅ 10−6 0.16 0.61 22 Zhuang et al. (2013)
DBLP Social Persistent 1,824,701 29,487,744 5 ⋅ 10−6 0.15 0.63 23 Ley (2002)

http://github.com/gerritjandebruin/snam2021-code
http://github.com/gerritjandebruin/snam2021-code
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information improves the prediction performance of new 
links, i.e. performance reported in column ‘II-A’ is always 
higher than that in ‘I’. So, every single network shows better 
performance when temporal topological features are used. 
The average improvement in performance is 0.07 ± 0.04 
(± standard deviation). For some networks, performance 
improves considerably more when temporal information is 
used in prediction. For example, the loans network has a 
mediocre baseline performance of 0.79, but a high perfor-
mance of 0.95 is observed when temporal information is 
employed. This improvement in performance can be related 
to the structure of the network. Hence, in the next section 
the relation between the structural properties of networks 
and the performance in temporal link prediction is explored.

6.3  Structural network properties and link 
prediction performance

In this section, we examine which structural properties are 
associated to high link prediction performance. In Fig. 4, the 
Pearson correlations between the performance in (temporal) 
link prediction and various structural network properties (see 

Table 2  Performance obtained 
in (temporal) link prediction, 
using the following sets of 
features; static topological 
(I), temporal topological with 
(II-A) and without (II-B) past 
event aggregation, and static 
topological + node activity (III)

Label Domain Edge type Nodes (n) AUC 

I II-A II-B III

Rado Social Multi 167 0.864 0.921 0.852 0.902
UC Information Multi 899 0.731 0.893 0.744 0.873
EU Social Multi 986 0.839 0.873 0.811 0.849
Dem Social Multi 1891 0.920 0.944 0.919 0.938
bitA Social Simple 3683 0.868 0.945 0.945 0.940
bitOT Social Simple 5573 0.821 0.947 0.947 0.939
chess Information Simple 6050 0.665 0.735 0.735 0.736
HepTh Information Multi 6798 0.757 0.835 0.776 0.819
HepPh Information Multi 16,959 0.828 0.879 0.834 0.868
Condm Social Multi 17,218 0.688 0.760 0.706 0.728
SX-MO Social Multi 24,818 0.859 0.944 0.909 0.933
D-rep Social Simple 30,398 0.837 0.866 0.866 0.865
Rbody Technological Multi 35,010 0.880 0.905 0.854 0.890
Rtit Technological Multi 53,018 0.903 0.931 0.906 0.925
FB-w Social Simple 55,387 0.762 0.809 0.809 0.788
FB-l Social Simple 55,387 0.762 0.803 0.803 0.775
Enron Social Multi 87,273 0.847 0.912 0.873 0.909
loans Information Simple 89,269 0.786 0.947 0.947 0.946
trust Social Simple 114,467 0.889 0.936 0.936 0.937
Wiki Social Multi 116,836 0.864 0.936 0.896 0.939
D-v Information Simple 139,409 0.933 0.941 0.941 0.939
SX-AU Social Multi 159,316 0.937 0.970 0.959 0.970
SX-SU Social Multi 194,085 0.921 0.965 0.946 0.961
D-f Social Simple 279,374 0.891 0.926 0.926 0.924
AMin Social Multi 855,165 0.725 0.849 0.804 0.816
DBLP Social Multi 1,824,701 0.704 0.826 0.743 0.786

Fig. 3  Performance of the link prediction classifier for the 26 differ-
ent networks
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Sect. 3.2) are presented. While most properties show at best 
modest correlation with the link prediction performance, we 
observe a significant negative correlation between the degree 
assortativity of a network and the prediction performance of 
new links using static topological features ( p = 3 ⋅ 10−6 ) and 
temporal topological features ( p = 5 ⋅ 10−7 ). This means that 
strong disassortative behaviour in networks, where nodes 
of low degree are more likely to connect with nodes of high 
degree, show better performance in link prediction. The rela-
tion between degree assortativity and the link prediction per-
formance is shown in more detail in Fig. 5. The observed 
negative correlation might be explained as follows. In real-
world networks, low degree nodes typically largely outnum-
ber the high degree nodes. However, nodes with a degree 
that by far exceeds the average degree, so-called hubs, are 
also relatively often observed in real-world networks (Bara-
bási 2016). In degree dissortative networks, the numerous 
low degree nodes by definition connect more frequently with 
hubs than with other low degree nodes. For these low degree 
nodes, the preferential attachment feature will provide higher 
scores for candidate nodes having a high degree. Therefore, 
the supervised model can use this information in a straight-
forward manner to obtain a better performance.

To confirm the relation between the degree assortativity 
and temporal link prediction performance of a network, we 
conducted additional experiments. By performing assor-
tative and dissassortative degree-preserving rewiring, we 
further substantiate the claim that disassortative networks 
indeed show higher link prediction performance. Detailed 
results can be found in Appendix A1.

In Fig. 5 we observe that the temporal topological features 
show an even stronger correlation ( � = −0.82 ) than the static 

topological features ( � = −0.78 ). A possible explanation is 
that the temporal features are able to determine with higher 
accuracy which nodes will grow to active hubs, linking to 
many low degree nodes, whereas this information would 
be lost in a static network representation. This observation 
provides additional evidence that the temporal topological 
features are likely capturing relevant temporal behaviour.

6.4  Enhancement of performance with past event 
aggregation

To assess how networks with discrete events should be dealt 
with in temporal link prediction, we use two different sets 
of features. The first set of features (II-A) is constructed 
with past event aggregation, which allows to make fully use 
of information contained in all discrete events. The second 
set of features (II-B) considers only the last occurring edge 
between two nodes, thereby ignoring any past events. For 
networks with persistent edges, the two sets of features yield 
the same results, because the networks do not contain past 
events. The performance obtained with these two different 
sets of features is reported in Table 2. In Fig. 6, we show the 
difference between the two performances of the networks 
with discrete events in more detail. From this figure, we 
learn that these networks all show better performance when 
past events are aggregated using the various aggregation 
functions. This result is interesting more broadly for link 
prediction research, as the derived feature modification steps 
can be inserted into any topological network feature aiming 
to capture the similarity of nodes in an attempt to predict 
their future connectivity.

Fig. 4  Correlations between network properties and the performance 
in a supervised classifier learned only with static topological features 
(feature set I) and with temporal topological features (feature set II-A)

Fig. 5  Degree assortativity and performance in a supervised classifier 
for each network, learned only with static topological features (feature 
set I) and temporal topological features (feature set II-A). The lines 
indicate the relation between the degree assortativity of the network 
and the performance of the classifier
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Interestingly, when looking in more detail at the per-
formance improvement by past event aggregation for 
each discrete event network, we observe large differences. 
On the one hand, we observe networks with only minor 
improvement when past events are aggregated. For exam-
ple, the Condense matter (scientific) collaboration network 
(Condm.) shows only a minor improvement of 0.706–0.760 
AUC. A possible explanation is that temporal information 
of discrete events has only limited use, since it takes time to 
come to a successful collaboration. On the other hand, the 
UC Irvine message network (UC), shows a major improve-
ment in AUC from 0.744 to 0.893. This might be caused by 
the more variable nature of messages, which takes only a 
short time to establish. In that case, the feature set with past 
event aggregation might provide higher scores to pairs of 
nodes that are both actively messaging.

6.5  Comparison of node‑ and edge‑centred 
temporal link prediction

In the experiments performed so far, we used temporal topo-
logical features to assess temporal link prediction perfor-
mance. These features assume edge-centred temporal behav-
iour. In the experiments below, we compare the performance 
of the edge-centred features (feature set II-A) with features 
that assume node-centred temporal behaviour (feature set 
III). The results of both feature sets are presented in Table 2 
and in more detail in Fig. 7. We observe a strong correlation 
( � = 0.92 , p = 0.009 ) between the obtained performances 

using the two sets of features on all 26 networks. This find-
ing suggests that the temporal aspect of most networks can 
be modelled by using either node-centred or edge-centred 
temporal features.

However, for the four information networks the perfor-
mance of the node-centred features seems to be higher than 
the edge-centred features. This finding hints that in infor-
mation networks temporal behaviour may be node-centred. 
Given the low number of information networks available in 
this study, further research should be conducted to a larger 
set of information networks to verify this finding.

A note of caution is due here since we analyse the tempo-
ral link performance only on pairs of nodes at a distance of 
two; different findings may be observed whether the findings 
still hold when more global features of node similarity are 
used. Notwithstanding this limitation, the study shows that 
both node- and edge-centred features in supervised temporal 
link predictions are able to achieve a high performance.

7  Conclusion and outlook

In this paper, the aim was to perform a large-scale empirical 
study of temporal link prediction, using a wide variety of 
structurally diverse networks. Moreover, we aimed to dem-
onstrate the benefit of past event aggregation, allowing to 
take the rich interaction history of nodes into account in 
predicting their future linking activity. This study resulted 
in four findings.

Fig. 6  Performance obtained in temporal link prediction, using tem-
poral topological features without (feature set II-B, x-axis) and with 
(feature set II-A, y-axis) past event aggregation

Fig. 7  Performance obtained in temporal link prediction, using node-
centred features (feature set III, x-axis) and edge-centred features 
(feature set II, y-axis)
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First, performance in supervised temporal link predic-
tion is consistently higher when temporal information is 
taken into account. Second, the performance in temporal 
link prediction appears related to the global structure of 
the network. Most notably, degree disassortative networks 
perform better than degree assortative networks. Third, the 
newly proposed method of past event aggregation, is able to 
better model link formation in networks with discrete events. 
It substantially increases the performance of temporal link 
prediction. The derived feature modification steps can be 
inserted into any topological feature, potentially improving 
the performance of any supervised (temporal) link prediction 
endeavour. Fourth, we showed that in four information net-
works, features capturing node activity, together with static 
topological features, outperform features that consider edge-
centred temporal information, suggesting that the temporal 
mechanisms in these networks reside with the nodes.

A natural next step of this work is to analyse even bigger 
temporal networks, or networks originating from different 
domains. It appears that publicly available networks from 
other domains, such as biological, economic and transporta-
tion networks, typically do not contain temporal information 
(Ghasemian et al. 2020). However, it would be interesting 

to investigate whether findings presented in this paper also 
hold for these types of networks. In addition, it is evident 
that there is an advantage to taking temporal information 
into account when performing supervised link prediction 
on temporal networks. It could be interesting to see whether 
such temporal information also benefits prediction perfor-
mance in other machine learning tasks on networks, such as 
node classification (Hamilton et al. 2017).

Appendix

Appendix A1: Relation degree assortativity 
and temporal link prediction performance

To further assess the relation between degree assortativity 
and temporal link prediction performance, as derived from 
the empirical results in Sect. 6.3, we conducted additional 
experiments. By means of simulation, we modified a number 
of network datasets from Table 1 using assortative and disas-
sortative degree-preserving rewiring, following an approach 
similar to the one proposed in Van Mieghem et al. (2010). 
In particular, we aim to retain the local clustering properties 

Table 3  Assortatvity of all 
networks after rewiring, for 
disassortative rewiring (up 
to − 100%) and assortative 
rewiring (up to 100%) for each 
of the network datasets in 
Table 1

Label − 100% − 80% − 60% − 40% − 20% 0% 20% 40% 60% 80% 100%

Rado 0.01 0.01 0.07 0.09 − 0.00 0.15 0.14 0.18 0.16 0.09 0.19
UC − 0.05 − 0.03 − 0.02 0.01 0.06 0.10 0.14 0.17 0.18 0.21 0.23
EU 0.23 0.16 0.36 0.34 0.15 0.05 0.12 0.11 0.10 − 0.18 − 0.11
Dem − 0.21 − 0.21 − 0.16 − 0.14 − 0.14 − 0.15 − 0.06 − 0.00 0.06 0.09 0.13
bitA − 0.25 − 0.24 − 0.22 − 0.19 − 0.17 − 0.15 − 0.10 − 0.04 0.01 0.10 0.22
bitOT − 0.23 − 0.22 − 0.20 − 0.17 − 0.16 − 0.15 − 0.11 − 0.07 − 0.02 0.04 0.14
chess − 0.17 − 0.14 − 0.05 0.04 0.18 0.36 0.52 0.62 0.69 0.74 0.78
HepTh − 0.18 − 0.13 − 0.08 − 0.03 0.03 0.08 0.18 0.31 0.46 0.57 0.61
HepPh − 0.11 − 0.07 − 0.02 0.04 0.10 0.17 0.26 0.35 0.43 0.48 0.52
Condm − 0.04 0.00 0.05 0.11 0.20 0.29 0.42 0.53 0.59 0.62 0.63
SX-MO − 0.24 − 0.21 − 0.17 − 0.13 − 0.09 − 0.05 0.02 0.09 0.16 0.22 0.29
D-rep − 0.19 − 0.16 − 0.12 − 0.08 − 0.04 0.02 0.13 0.29 0.46 0.56 0.64
Rbody − 0.11 − 0.09 − 0.06 − 0.03 0.00 0.03 0.07 0.10 0.12 0.13 0.15
Rtit − 0.11 − 0.09 − 0.07 − 0.05 − 0.04 − 0.02 0.04 0.09 0.14 0.14 0.13
FB-w − 0.12 − 0.09 − 0.06 − 0.00 0.08 0.22 0.43 0.61 0.71 0.77 0.81
FB-l − 0.12 − 0.09 − 0.06 − 0.00 0.08 0.22 0.43 0.61 0.71 0.77 0.81
Enron − 0.14 − 0.11 − 0.09 − 0.07 − 0.05 − 0.04 0.01 0.03 0.06 0.08 0.09
loans − 0.20 − 0.17 − 0.14 − 0.12 − 0.09 − 0.07 − 0.02 0.06 0.22 0.47 0.61
trust − 0.26 − 0.23 − 0.19 − 0.14 − 0.09 − 0.01 0.13 0.33 0.52 0.64 0.70
Wiki − 0.08 − 0.08 − 0.07 − 0.06 − 0.06 − 0.06 − 0.04 − 0.03 − 0.02 − 0.01 0.00
D-v − 0.27 − 0.26 − 0.24 − 0.23 − 0.21 − 0.21 − 0.20 − 0.16 − 0.06 0.13 0.31
SX-AU − 0.25 − 0.22 − 0.20 − 0.17 − 0.13 − 0.10 − 0.06 − 0.01 0.03 0.08 0.13
SX-SU − 0.16 − 0.15 − 0.13 − 0.11 − 0.10 − 0.08 − 0.05 − 0.03 − 0.00 0.03 0.07
D-f − 0.13 − 0.12 − 0.10 − 0.09 − 0.07 − 0.05 0.02 0.18 0.47 0.64 0.71
AMin 0.01 0.03 0.05 0.07 0.11 0.16 0.21 0.24 0.28 0.30 0.33
DBLP 0.01 0.03 0.05 0.07 0.11 0.15 0.21 0.26 0.30 0.33 0.36
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by not selecting two edges at random, but rather selection 
two edges that are close to each other, ensuring that not too 
many triangles and therewith clustering is destructed, as this 
is a determining feature in link prediction.

The procedure, which we repeat for a certain number 
of times (explained below), consists of the following five 
steps. First, an edge (u, v) is randomly selected. Second, 
we randomly select a node x from the neighbourhood of u. 
Third, we sample a node y that is connected to x, but not 
to u or v. At this time, pairs of nodes (u, v) and (x, y) are 
connected while the link (v, y) is absent. The fourth step is 
to determine from the pairs of nodes (u, v), (v, y) and (x, y) 
which node pair has a maximum difference in degree. Step 
five is the actual rewiring of edges. There can be three out-
comes from step 4, (a) node pair (v, y) has the maximum 
difference in degree and there is no gain in assortativity by 
rewiring any edges, (b) node pair (u, v) has the maximum 
difference in degree and by moving all edges (recall, there 
can be multiple links between two nodes) between (u, v) to 
(v, y) the assortativity is increased, and (c) node pair (x, y) 
has the maximum difference in degree and by moving all 
edges between (x, y) to (v, y) the assortativity is increased. In 

case we want to perform dissassortative degree-preserving 
rewiring, we consider in step four and five the node pair with 
the lowest difference in degree. The five steps are repeated, 
with increments of 0.2m from the original network up to m 
of the edges that gets a chance to rewire.

The degree assortativity values of the rewired networks 
can be found in Table 3. We observe that for degree disas-
sortative rewiring, a larger performance is attained than for 
assortative rewiring, strengthening our result from Sect. 6.3. 
This finding is further explored in Table 4, in which we list 
the percentual increase in performance for both disassor-
tativity and assortativity rewired datasets. In all cases, we 
observe higher performance for disassortativity rewired 
networks.

Appendix A2: Choice of classifier

As described in Sect. 2, many classifiers are known to work 
well in link prediction. We used the logistic regression 
classifier in this work, for reasons of interpretability and 
explainability, as further discussed in Sect. 2. In Table 5, 

Table 4  Performance (in AUC) 
for the rewired networks as 
reported on in Table 3

Label − 100% − 80% − 60% − 40% − 20% 20% 40% 60% 80% 100%

Rado − 0.074 − 0.107 − 0.106 − 0.096 − 0.103 − 0.131 − 0.126 − 0.136 − 0.138 0.024
UC − 0.311 − 0.266 − 0.270 − 0.356 − 0.297 − 0.312 − 0.388 − 0.373 − 0.303 − 0.083
EU − 0.061 − 0.119 − 0.088 − 0.084 − 0.074 − 0.070 − 0.106 − 0.067 − 0.107 − 0.109
Dem − 0.152 − 0.162 − 0.134 − 0.171 − 0.105 − 0.130 − 0.124 − 0.123 − 0.169 − 0.021
bitA − 0.259 − 0.243 − 0.267 − 0.280 − 0.245 − 0.309 − 0.373 − 0.413 − 0.390 − 0.052
bitOT − 0.252 − 0.263 − 0.264 − 0.308 − 0.325 − 0.376 − 0.395 − 0.353 − 0.371 − 0.014
chess − 0.317 − 0.349 − 0.368 − 0.377 − 0.410 − 0.406 − 0.403 − 0.281 − 0.382 0.036
HepTh − 0.142 − 0.189 − 0.202 − 0.234 − 0.276 − 0.248 − 0.249 − 0.220 − 0.177 − 0.020
HepPh − 0.162 − 0.193 − 0.208 − 0.213 − 0.226 − 0.234 − 0.201 − 0.177 − 0.137 − 0.034
Condm − 0.243 − 0.252 − 0.269 − 0.294 − 0.344 − 0.273 − 0.263 − 0.252 − 0.243 − 0.095
SX-MO − 0.161 − 0.167 − 0.179 − 0.187 − 0.178 − 0.205 − 0.212 − 0.194 − 0.200 − 0.015
D-rep − 0.416 − 0.445 − 0.506 − 0.586 − 0.332 − 0.233 − 0.202 − 0.187 − 0.167 − 0.006
Rbody − 0.162 − 0.169 − 0.187 − 0.178 − 0.182 − 0.219 − 0.220 − 0.243 − 0.248 0.015
Rtit − 0.136 − 0.124 − 0.132 − 0.144 − 0.132 − 0.156 − 0.191 − 0.198 − 0.188 0.031
FB-w − 0.240 − 0.250 − 0.239 − 0.239 − 0.242 − 0.251 − 0.273 − 0.291 − 0.326 0.084
FB-l − 0.246 − 0.253 − 0.257 − 0.244 − 0.232 − 0.236 − 0.266 − 0.291 − 0.325 0.096
Enron − 0.165 − 0.171 − 0.177 − 0.191 − 0.188 − 0.211 − 0.214 − 0.228 − 0.200 0.004
loans − 0.347 − 0.413 − 0.459 − 0.333 − 0.300 − 0.230 − 0.215 − 0.229 − 0.265 − 0.024
trust − 0.198 − 0.215 − 0.216 − 0.253 − 0.246 − 0.300 − 0.301 − 0.264 − 0.205 0.012
Wiki − 0.003 − 0.211 − 0.218 − 0.243 − 0.296 − 0.446 − 0.407 − 0.378 − 0.336 − 0.029
D-v 0.097 − 0.011 − 0.019 − 0.044 − 0.073 − 0.077 − 0.047 − 0.047 − 0.043 0.017
SX-AU − 0.276 − 0.281 − 0.279 − 0.280 − 0.287 − 0.408 − 0.440 − 0.445 − 0.468 − 0.005
SX-SU − 0.244 − 0.265 − 0.272 − 0.309 − 0.302 − 0.389 − 0.397 − 0.408 − 0.392 − 0.002
D-f − 0.170 − 0.202 − 0.227 − 0.263 − 0.292 − 0.325 − 0.295 − 0.278 − 0.213 0.012
AMin − 0.278 − 0.292 − 0.292 − 0.310 − 0.320 − 0.385 − 0.337 − 0.375 − 0.372 − 0.095
DBLP − 0.335 − 0.331 − 0.330 − 0.358 − 0.361 − 0.431 − 0.357 − 0.443 − 0.427 − 0.046
mean − 0.202 − 0.229 − 0.237 − 0.253 − 0.245 − 0.269 − 0.269 − 0.265 − 0.261 − 0.012
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we provide, for each of the datasets as introduced in Table 1, 
the performance in terms of AUC obtained using two other 
commonly used classifiers, being random forests (Pedregosa 
et al. 2011) and XGBoost (Chen and Guestrin 2016), with 
default parameters. For almost all datasets, similar relative 
performance is observed.
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