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Statistical correction for measurement error in epidemiologic studies is possible, provided that information
about the measurement error model and its parameters are available. Such information is commonly obtained
from a randomly sampled internal validation sample. It is however unknown whether randomly sampling the
internal validation sample is the optimal sampling strategy. We conducted a simulation study to investigate
various internal validation sampling strategies in conjunction with regression calibration. Our simulation study
showed that for an internal validation study sample of 40% of the main study’s sample size, stratified random and
extremes sampling had a small efficiency gain over random sampling (10% and 12% decrease on average over
all scenarios, respectively). The efficiency gain was more pronounced in smaller validation samples of 10% of the
main study’s sample size (i.e., a 31% and 36% decrease on average over all scenarios, for stratified random and
extremes sampling, respectively). To mitigate the bias due to measurement error in epidemiologic studies, small
efficiency gains can be achieved for internal validation sampling strategies other than random, but only when
measurement error is nondifferential. For regression calibration, the gain in efficiency is, however, at the cost of
a higher percentage bias and lower coverage.

internal validation sample; measurement-error correction; regression calibration; substitute exposure
measurement

Abbreviations: MCSE, Monte Carlo standard error; NEO, Netherlands Epidemiology of Obesity; VAT, visceral adipose tissue;
WC, waist circumference.

Preferred (or gold standard) measurements in large epi-
demiologic studies can be expensive, time consuming, inva-
sive, or burdensome. These measures therefore are often
replaced by simpler measures (less invasive, cheaper, faster),
which are then assumed to correlate highly with the pre-
ferred measure. For example, consider studies of visceral
adipose tissue (VAT) showing that higher values of VAT are
associated with higher values of insulin resistance (1, 2).
Measurement of VAT involves magnetic resonance imaging
(MRI) scans. Alternatively, measurement of waist circum-
ference (WC), which requires only a measuring tape, can
provide a proxy measure of VAT (3). Nevertheless, the sub-
stitute measurements (e.g., WC) are not perfectly correlated
with the gold standard (e.g., VAT) and, consequently, the

substitute measurement can be viewed as an error-prone sub-
stitute for the gold standard.

Several methods have been developed to adjust for the
bias in estimators of exposure-outcome associations when
an exposure is measured with error (4–12). Despite the
abundance of literature on methodology for measurement-
error correction, its application is still rare (13, 14). Of the
measurement error–correction methods in use, regression
calibration is among the most common in epidemiologic
research (15), possibly because of its relative simplicity and
the ability to implement it in many situations (4, 7, 16, 17).
Regression calibration relies on information about the rela-
tionship between the error-prone and the preferred (or gold
standard) measurement (i.e., the measurement error model
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and its parameters). This relationship can be estimated using
an internal validation sample, a subset of the main study
including individuals for whom both the error-prone substi-
tute and gold standard measurement are available.

Several regression calibration methods have been pro-
posed. In linear models, examples include standard and
validation regression calibration (see, for example, Carroll
et al. (7)) as well as efficient regression calibration by
Spiegelman et al. (18). The efficiency of these different
regression calibration methods has been compared in sim-
ulation studies (for an example, see Thurston et al. (19)).
Nonetheless, no studies have been conducted to investigate
what internal-validation sampling strategy (e.g., random,
stratified random, or extremes sampling) in conjunction with
regression calibration provides the most efficient estimate of
the corrected exposure-outcome association. The efficiency
of regression calibration depends on the efficiency of the
estimation of the calibration model, which might hypothet-
ically be improved by sampling. for example, the extremes,
assuming linear calibration models.

In the present study, we aimed to compare different sam-
pling strategies for the internal validation sample in com-
bination with different regression calibration methods to
correct for the bias in exposure-outcome associations caused
by measurement error. First, we introduce the Netherlands
Epidemiology of Obesity (NEO) study and illustrate 3 dif-
ferent internal-validation sample sampling strategies. We
then present a simulation study contrasting the finite sample
properties of different sampling strategies of the internal
validation sample in conjunction with regression calibration,
motivated by the analysis of the NEO data. We conclude with
a discussion of our results.

CASE STUDY: VISCERAL ADIPOSE TISSUE MEASURES
AS REPLACEMENT FOR WAIST CIRCUMFERENCE
MEASURES

The NEO study is a large prospective observational cohort
designed to investigate the pathways that lead to obesity-
related diseases and conditions (20). Men and women aged
45–65 years with a self-reported body mass index of 27 or
higher, living in the greater area of Leiden (in the West of
the Netherlands), were eligible to participate in the NEO
study. In addition, all inhabitants aged 45–65 years from one
municipality (Leiderdorp) were invited, irrespective of their
body mass index, to represent the general population.

A cross-sectional analysis of the association between
VAT and insulin resistance was conducted in the subset
of individuals that originated from the Leiderdorp subco-
hort of the NEO study. VAT depots were quantified by
means of magnetic resonance imaging in a subsample of 668
(40%) individuals. These 668 individuals were randomly
selected among the individuals who had no contraindication
to undergo magnetic resonance imaging. WC was measured
midway between the border of the lower costal margin and
the iliac crest in all individuals. In this illustrative exam-
ple we make 2 simplifying assumptions: 1) we consider
WC measures as the error-prone substitute measure of the
exposure of interest (i.e., VAT), and 2) we assume that
WC is independent of insulin resistance given VAT and

Z VAT Insulin Resistance

WC

Measurement Error

Figure 1. Assumptions of our motivating example.Error-prone waist
circumference (WC) measures used as a substitute measure to
estimate the association between visceral adipose tissue (VAT) and
insulin resistance, confounded by Z (e.g., age, sex, total body fat).

the confounding variables Z (i.e., nondifferential measure-
ment error). These 2 assumptions are summarized in the
causal diagram in Figure 1. Violation of the nondifferential
measurement error assumption can lead to bias in both
the regression calibration and internal validation analyses,
under the circumstances explained in Results below. For
the assessment of insulin resistance, the homeostatic model
assessment of insulin resistance was used as fasting glu-
cose (in mmol/L) × fasting insulin (in μ/L)/22.5. Of the
668 selected individuals, 19 were excluded from analysis
because they used glucose-lowering therapy, and 1 addi-
tional patient was excluded because of a very low fasting
blood glucose concentration. This resulted in including 648
individuals in our analysis. There were 22 missing values in
the selected variables for analysis, which were imputed once
(single imputation), using multivariate imputation through
chained equations using the package mice, version 3.8.0
(21), with standard settings from the statistical software R
(R Foundation for Statistical Computing, Vienna, Austria)
(22). The association between VAT and insulin resistance
was adjusted for the potential confounding variables age,
sex, ethnicity, educational level, smoking status, alcohol
consumption, total body fat, and physical activity, as well
as for hormonal use and menopausal status in women. We
refer to de Mutsert et al. (2) for further details on the
assessment of all variables used in this study. Measures
of VAT, WC, and total body fat were standardized, and
measures of insulin resistance were log transformed. The
effect sizes were derived from a linear regression analysis
and expressed as percentage differences in outcome per
standard deviation VAT.

After adjustment for confounding, insulin resistance was
27% higher (95% confidence interval: 19, 35) per stan-
dard deviation VAT (54 cm2). Alternatively, insulin resis-
tance was 30% higher (95% confidence interval: 18, 43)
per standard deviation WC (12 cm), with adjustment for the
same potential confounders as the association between VAT
and insulin resistance. Under the assumptions depicted in
Figure 1, the difference in these 2 estimates can be explained
by the measurement error in WC as a measure of VAT.

Testing sampling strategies in a resampling study

To illustrate sampling strategies for an internal validation
sample in combination with regression calibration to correct
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for measurement error, a resampling study was performed
using data of the 648 individuals from the Leiderdorp cohort
among whom both VAT and WC measures were taken. Five
hundred new data sets were created by sampling from the
648 individuals with replacement. In each of the 500 resam-
pled data sets, the association between VAT and insulin resis-
tance was estimated (referred to as the reference analysis). In
addition, WC measurements were considered as a proxy for
VAT and used to estimate the association between VAT and
insulin resistance (referred to as the uncorrected analysis).
Both analyses were adjusted for the same confounders as
the original analysis presented above.

Next, 260 individuals (approximately 40% of 648) were
included in the internal validation sample. This 40% was
chosen to resemble the percentage of individuals for whom
VAT depots were quantified of the whole Leiderdorp subco-
hort of the NEO study (i.e., in 668 individuals of the 1,670
individuals). The internal validation sample was sampled by
using one of the following 3 sampling strategies: 1) ran-
dom, 2) extremes, or 3) stratified random. The VAT mea-
sures of all individuals who were not selected in the internal
validation sample were removed. In each of these data
sets, the association between VAT and insulin resistance
was estimated by using only the information from the 40%
of individuals included in the internal validation sample
(internal-validation-sample–restricted). Next, the VAT mea-
surements available in the internal validation sample were
used to correct for the measurement error in the association
between WC and insulin resistance in 3 ways: 1) standard
regression calibration, 2) validation regression calibration,
or 3) efficient regression calibration.

For each sampling strategy and each regression calibra-
tion method, the mean of the 500 effect estimates was
calculated and corresponding 95% confidence intervals were
constructed based on the empirical standard errors. All anal-
yses were adjusted for the above-mentioned potential con-
founders.

Sampling strategies and regression calibration methods.
Figure 2 shows a visualization of the 3 sampling strategies
used in this study. The internal validation sample was sam-
pled: 1) randomly, 2) by grouping individuals according to
tenths of the range of the measured WC values and sam-
pling 26 individuals from each stratum (stratified random
sampling), or 3) from the 130 individuals with the lowest
and 130 with the highest measured WC values (extremes
sampling). For stratified random sampling, when one of the
strata contained less than 26 individuals, all individuals of
this stratum were included in the internal validation sample.
Subsequently, more than 26 individuals were sampled from
the remaining strata, by equally distributing the shortage
of individuals in the strata with fewer individuals among
the strata with more individuals. We hypothesized that by
sampling the extremes or by stratified random sampling, a
linear relationship between WC and VAT could be estimated
more efficiently in the internal validation set. By increasing
the efficiency of the estimation of the linear relationship
between WC and VAT, the efficiency of regression calibra-
tion was expected to increase simultaneously.
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Figure 2. Visualization of different internal validation sample sam-
pling strategies in the Leiderdorp cohort of the Netherlands Epi-
demiology of Obesity study, the Netherlands, 2008–2012. A) Visceral
adipose tissue (VAT) measures are obtained at random (independent
of waist circumference (WC)); B) VAT measures are obtained strati-
fied randomly (stratified for strata of WC); and C) VAT measures are
obtained in the individuals with the lowest and highest WC measures.
The black points indicate the individuals included in the internal
validation sample and the gray points the excluded individuals. The
VAT measures and WC measures are standardized.
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Table 1. Estimated Association Between Visceral Adipose Tissue and Insulin Resistancea in the Leiderdorp Cohort, Netherlands Epidemiology
of Obesity Study, 2008–2012

Sampling Strategy

Analytical Method Random Stratified Random Extremes

Effect Sizeb, % 95% CI Effect Sizeb, % 95% CI Effect Sizeb, % 95% CI

IVS restricted 26 14,40 20 9,33 18 7,31

Standard RC 67 24,126 60 25,105 59 24,104

Efficient RC 31 20,44 26 15,38 25 14,37

Validation RC 32 20,45 25 14,38 22 11,34

Abbreviations: CI, confidence interval; IVS, internal validation sample; RC, regression calibration.
a Using different methods to correct for the measurement error when visceral adipose tissue measures were replaced by waist circumference

measures.
b Derived from β coefficients from linear regression analyses and expressed as percentage difference in outcome measure per standard

deviation VAT; the effect size found in the reference analysis was 27% (95% CI: 19, 35), the effect size found in the uncorrected analysis was
30% (95% CI: 18, 43).

Three regression calibration methods were applied:
1) standard regression calibration, 2) validation regression
calibration and 3) efficient regression calibration. Standard
regression calibration and validation regression calibration
are linear regressions where insulin resistance is regressed
on a corrected version of the error-prone WC measures and
the confounding variables. Standard regression calibration
replaces the error-prone WC measures with the predicted
mean of VAT given WC and the confounding variables.
Validation regression calibration replaces the error-prone
WC measures with the predicted mean of VAT given WC
and confounding variables for individuals not included in
the internal validation sample. For the individuals included
in the internal validation sample, the error-prone WC
measurements are replaced by their VAT measurements.
Efficient regression calibration takes the inverse variance–
weighted mean of the effect estimate of the internal-
validation-sample–restricted analysis (see above) and the
standard regression calibration analysis. Further technical
details (including standard error estimation) can be found in
the Web Appendix 1 (available at https://doi.org/10.1093/
aje/kwab114).

Results. The results of the resampling study are shown in
Table 1. In the uncorrected analysis, where WC was used to
estimate the association between VAT and insulin resistance,
the association between VAT and insulin resistance was
overestimated compared with the reference analysis (30%
vs. 27%). When the internal validation sample was sampled
randomly, the internal-validation-sample–restricted analy-
sis concurred with the reference analysis (26% vs. 27%).
However, the standard regression calibration approach over-
estimated the association between VAT and insulin resis-
tance severely in comparison with the reference analysis
(67% vs. 27%). When the internal validation sample was
sampled stratified randomly or by sampling the extremes,
the internal-validation-sample–restricted analysis underesti-
mated the association between VAT and insulin resistance

in comparison with the reference analysis (20% and 18%,
respectively, vs. 27%). In comparison, the standard regres-
sion calibration analysis, again, severely overestimated the
association between VAT and insulin resistance (60% and
59% for stratified random and extremes sampling, respec-
tively, vs. 27%). Further, our results suggest that stratified
random and extremes sampling improve the estimates of
efficient regression calibration and validation regression cal-
ibration, given that they appear to be closer to the reference
analysis in comparison with random sampling, but this might
be a chance finding due to cancelation of effects. Efficient
and validation regression calibration are pooled averages
of the underestimated association in the internal-validation-
sample–restricted analysis and the overestimated association
in the standard regression calibration analysis. Specifically,
the results of the standard regression calibration analysis are
clearly biased for all sampling strategies, and we therefore
expect the results of the efficient and validation regression
calibration analyses to be biased as well.

The results of our empirical example seem to indicate that
only the internal-validation-sample–restricted analysis with
a random sampling strategy concurs with the reference anal-
ysis. These results were not expected and can be explained
by the fact that the measurement error in WC might depend
on insulin resistance, given that WC measures also provide
a proxy for subcutaneous fat, which in turn is associated
with insulin resistance. Consequently, the assumption of
nondifferential measurement error is violated. Particularly,
to recover without bias the exposure-outcome association
under study, regression calibration relies on the assumption
that the measurement error is nondifferential. Furthermore,
the internal-validation-sample–restricted analysis is biased
when the internal validation sample is obtained by sam-
pling stratified randomly or extremes. In this case, sampling
stratified randomly or by the extremes introduced collider
stratification bias, because inclusion in the internal valida-
tion sample is dependent on WC (depicted in the directed
acyclic graph in Figure 3). Consequently, the relationship
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Z VAT Insulin Resistance

WC

Measurement Error

S

Figure 3. Collider stratification bias due to differential measure-
ment error. Introduction of collider stratification bias when the data
are observed (S) depending on the error-prone waist circumfer-
ence (WC) measures with differential measurement error in a study
estimating the association between (VAT) and insulin resistance,
confounded by Z (e.g., age, sex, total body fat).

between VAT and insulin resistance is expected to be biased.
Although sampling the internal validation sample other than
randomly provides results that do not concur with the ref-
erence analysis here, general conclusions based on this
empirical example are not warranted, which motivated our
simulation study.

Simulation study

A simulation study was conducted to evaluate the finite-
sample properties of the different internal-validation-sample
sampling strategies combined with regression calibration.
The sample size and the values of the parameters of the data-
generating mechanisms were similar to those estimated in
the NEO subcohort described above.

Generating data. Data sets were generated with a sample
size of 650. The following data-generating mechanisms
were used to generate data on sex, age, total body fat (TBF),
VAT, WC, and insulin resistance (IR):

sex ∼ Bern (0.5), age ∼ Unif (45, 65) ,
TBF | sex, age ∼ N (−2 + sex + 0.01 × age, 0.5) ,

VAT = 0.4 − 2 × sex + 0.01 × age + 0.9

× TBF −
(

6λ ×
√

0.5
6λ

)
+ ε, ε ∼ Gamma

(
6λ,

√
0.5
6λ

)
,

WC | VAT ∼ N
(
0.8 × VAT, τ2

)
, and

IR | VAT, sex, age, TBF ∼ N
(
0.5 + β

× VAT − 0.5 × sex + 0.01 × age + 0.3 × TBF, 0.3
)
.

The estimand of this simulation study is the conditional
effect of VAT on insulin resistance (i.e., β) and was set to
0.2. The parameters τ and λ were varied in different data-
generation scenarios of our simulation study. The variance
of the measurement error (i.e., τ) was varied according to
the explained variance of WC given VAT (hereafter referred
to as R2). Values for R2 were set to 0.2, 0.4, 0.6, 0.8,
and 0.9; corresponding values for τ can be found in Web
Table 1a in Web Appendix 2. For reference, the R2 of the
linear model of VAT and WC was approximately 0.6 in the
NEO data. The above data-generating mechanism for VAT

allowed changing the skewness of the residual errors while
keeping the mean and variance of the marginal distribution
constant. The skewness of the residual errors of VAT, ε (here-
after referred to as skewness), was varied by changing λ.
Values for the skewness were set to: 0.1, 1, 1.5, and 3;
corresponding values for λ can be found in Web Table 1b in
Web Appendix 2. Additionally, we changed the distribution
of WC | VAT by using the square root of VAT instead of VAT
to generate WC, in what was called the nonlinear scenario.
R2, the skewness, and linearity were varied in a full-factorial
design (i.e., 5 × 4 × 2 = 40 scenarios). For each scenario,
5,000 data sets were generated.

Model estimation and performance measures. In each
generated data set, we applied the 3 sampling strategies
(i.e., random, extremes, and stratified random sampling)
and the 5 analyses (i.e., uncorrected, internal-validation-
sample restricted, and the 3 regression calibration analyses).
Standard errors were calculated using standard software or
by using the multivariate delta method; see details in Web
Appendix 1. Subsequently, Wald-based confidence intervals
were constructed. Performance of the different analytical
methods was evaluated in terms of bias, mean squared
error (MSE), proportion of 95% confidence intervals that
contain the true value of the estimand (coverage), empirical
standard deviation of the estimated treatment effects, and
square root of mean model-based variance of the estimated
treatment effect. Monte Carlo standard errors (MCSE) were
calculated for all performance measures (23), using the R
package rsimsum, version 0.9.0 (24). All code used for the
simulation study is publicly available (25).

Sensitivity analyses. Two sensitivity analyses were con-
ducted. First, to assess the sensitivity of our results to the size
of the internal validation sample, we changed the percentage
of individuals included to 10%, 25%, and 50%. Second, in
our empirical example, it was seen that the performance
of the 3 regression calibration analyses was generally poor.
We hypothesized that this was possibly due to differential
measurement error in the WC measures. Differential mea-
surement error occurs when WC depends on the outcome
insulin resistance, conditional on VAT and the confounding
variables (see Web Appendix 1 for further details). To eval-
uate the impact of differential measurement error, a scenario
was added by replacing the conditional distributions of WC
and insulin resistance with:

WC | VAT ∼ N
(
θ × VAT + τ × U, τ2

)
and

IR | VAT, sex, age, TBF ∼ N
(
0.5 + β × VAT − 0.5

× sex + 0.01 × age + 0.3 × TBF + √
0.3 × U, 0.3

)
,

where U is a random variable with a Bernoulli distribution
with mean 0.5. This scenario is an example of differential
measurement error, because the distribution of the error-
prone WC is dependent on the outcome insulin resistance
via a third variable U, considered unmeasured. Here, τ was
set equal to 0.44 (corresponding to an R2 of 0.8 in the main
study), the skewness of the residual errors of VAT was 0.1,
and the estimand (β) was again 0.2.
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Figure 4. Nested loop plot of the percentage bias in the analysis
ignoring measurement error, a simulation based on the Netherlands
Epidemiology of Obesity study, the Netherlands, 2008–2012. Solid
line, linear measurement error model; dashed line, nonlinear mea-
surement error model. Order from outer to inner loops: Skewness of
the residual errors of the gold standard measure (S, 3 levels, increas-
ing); R2 of the measurement error model (4 levels, increasing).

Results

For brevity, here we do not show results of the scenarios
where R2 was equal to 0.9 or where skewness was equal to 1
(all results are presented in Web Figures 1–4 and Web Tables
2–9 in Web Appendix 3). The results of these parameter
values did not contribute to the main comparisons made
because the results of R2 equal to 0.9 were similar to R2

equal to 0.8 and the results of skewness equal to 1 were
similar to skewness equal to 1.5. Further, because the focus
of this work is the comparison between the 3 sampling strate-
gies, we focus here on the performance of the 3 sampling
strategies in the internal-validation-sample–restricted anal-
ysis and validation regression calibration. We chose to focus
on validation regression calibration because this appears to
be the standard method when applying regression calibration
when there is an internal validation sample. The results of
the sampling strategies using efficient regression calibration
and standard regression calibration can be found in Web
Appendix 3.

Figure 4 shows the percentage bias in the uncorrected
analysis. In the uncorrected analysis, the association
between VAT and insulin resistance was severely under-
estimated (bias ranging from −92% to −22%). The per-
centage bias decreased when R2 increased, and the bias
in the uncorrected analysis was slightly higher when the
measurement error model was nonlinear compared with a
linear model. The skewness of the residual errors of VAT
had no bearing on bias.

Efficiency in terms of mean squared errors. Figure 5
shows the mean squared errors for the internal validation
sample restricted analysis with an internal validation sample
of 40% and 10% of the main study’s sample size. Smaller
mean squared errors were seen for stratified random and
extremes sampling compared with random sampling for
both samples sizes of the internal validation data. For the
internal validation sample of 40% of the main study’s
sample size, the percentage decrease in mean squared error
was 19% and 24% on average, for stratified and extremes
sampling, respectively; MCSE < 0.0001. For the internal
validation sample of 10% of the main study’s sample size,
the percentage decrease in mean squared error was 36%
and 41% decrease on average, for stratified and extremes
sampling, respectively; MCSE < 0.0005. Most notably,
mean squared errors decreased further for both stratified
random and extremes sampling when the residuals error of
VAT were more skewed.

Figure 6 shows the mean squared errors for validation
regression calibration with an internal validation sample of
40% and 10% of the main study’s sample size. For the
internal validation sample of 40% of the main study’s sample
size, mean squared errors were smaller for stratified random
and extremes sampling compared with random sampling,
with a 10% and 12% decrease on average, respectively;
MCSE < 0.0001. For the internal validation sample of
10% of the main study’s sample size, mean squared errors
were found to be smaller for stratified random and extremes
sampling compared with random sampling, with a 31% and
36% decrease on average, respectively; MCSE < 0.0005.
The gain in efficiency was greatest for higher levels of
skewness.

In a comparison between the internal validation restricted
analysis and validation regression calibration, mean squared
errors were generally smaller for validation regression
calibration compared with the internal-validation-sample–
restricted analysis (compare Figures 5 and 6). The difference
was more pronounced for high values of the R2 and a
validation sample of 10% of the main study’s sample size.

Bias and coverage. Table 2 shows percentage bias and
coverage of the internal validation restricted and the valida-
tion regression calibration analysis with an internal valida-
tion sample of 40% of the main study’s sample size. For the
internal-validation-sample–restricted analysis, all 3 different
sampling strategies recovered the association between VAT
and insulin resistance, with bias close to 0%. Additionally,
coverage was close to the nominal level of 95% for all 3 sam-
pling strategies. For the validation regression analysis and
a randomly sampled internal validation sample, percentage
bias was close to 0%. Contrary to random sampling, strat-
ified random and extremes sampling introduced bias in the
association under study, which was greater for higher levels
of the skewness and the R2. Coverage was close to the nomi-
nal level of 95% for random sampling. For stratified random
and extremes sampling, coverage was close to the nominal
level of 95% for all but the following 3 scenarios: There
was undercoverage (stratified, 91.5% and 91.9%; extremes,
90.1% and 90.1%) in the linear setting when skewness was
equal to 3.0 and R2 was 0.6 or 0.8, respectively. Additionally,
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Figure 5. Nested loop plot of the mean squared errors in the analysis restricted to the internal validation sample for the 3 different sampling
strategies, a simulation based on the Netherlands Epidemiology of Obesity study, the Netherlands, 2008–2012. A) Linear measurement error
model and an internal validation sample of 40% of the main study; B) nonlinear measurement error model and an internal validation sample
of 40% of the main study; C) linear measurement error model and an internal validation sample of 10% of the main study; and D) nonlinear
measurement error model and an internal validation sample of 10% of the main study. Order from outer to inner loops: Skewness of the residual
errors of the gold standard measure (S, 3 levels, increasing); R2 of the measurement error model (4 levels, increasing).

there was undercoverage (stratified, 90%; extremes, 91.3%)
in the nonlinear setting when the skewness was equal to 3.0
and R2 was 0.8.

Table 3 shows the percentage bias and coverage of the
internal validation restricted and validation regression cal-
ibration analysis with an internal validation sample of 10%
of the main study’s sample size. For the internal-validation-

sample–restricted analysis and all 3 sampling strategies,
percentage bias and coverage were both close to levels of 0%
and 95%, respectively. For validation regression calibration,
the association between VAT and insulin resistance was
biased in most scenarios. Percentage bias in the associa-
tion under study ranged between –5.0% and 7.2% when
skewness was equal to 0.1. When skewness was equal to 1.5
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Figure 6. Nested loop plot of the mean squared errors in the analysis using validation regression calibration to correct for the measurement
error for the 3 different sampling strategies, a simulation based on the Netherlands Epidemiology of Obesity study, the Netherlands, 2008–2012.
A) Linear measurement error model and an internal validation sample of 40% of the main study; B) Nonlinear measurement error model and
an internal validation sample of 40% of the main study; C) Linear measurement error model and an internal validation sample of 10% of the
main study; and D) Nonlinear measurement error model and an internal validation sample of 10% of the main study. Order from outer to inner
loops: Skewness of the residual errors of the gold standard measure (S, 3 levels, increasing); R2 of the measurement error model (4 levels,
increasing).

or 3.0, percentage bias ranged between –24.5% and 10.2%.
Since the association under study was biased in almost all
scenarios, the effect estimate was undercovered for most
scenarios, and increasingly when residual errors were more
skewed, because bias was greater in these settings. For ran-
dom sampling, the association under study was undercovered

with levels ranging between 82.7% and 92.9%. For stratified
random and extremes sampling, coverage was close to the
nominal level of 95% when skewness was equal to 0.1 (rang-
ing between 92.5% and 95.4%). When skewness was equal
to 1.5 or 3.0, the effect estimate was generally undercovered
with levels ranging between 62.9% and 94.6%.
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Table 4. Percentage Bias According to Sampling Strategy in the Estimated Association Between Visceral Adipose Tissue and Insulin
Resistance in Case of Differential Measurement Errora

Percentage Bias According to Sampling Strategyb, %

Analytical Method
Random Stratified Random Extremes

IVS restricted 0 10 30

Standard RC 76 75 75

Efficient RC 42 45 46

Validation RC 35 36 36

Abbreviations: IVS, internal validation sample; RC, regression calibration.
a Simulation based on the Netherlands Epidemiology of Obesity study, the Netherlands, 2008–2012.
b The percentage bias in the uncorrected analysis was 25%, Monte Carlo standard error < 0.001 for all analyses.

The results for the internal-validation-sample–restricted
analysis and validation regression calibration with an inter-
nal validation sample composed of 25% of the main study
can be found in Web Appendix 3.

Differential measurement error. Table 4 shows that differ-
ential measurement error can cause bias in the association
between VAT and insulin resistance. The internal-validation-
sample–restricted analysis using internal validation data that
is sampled randomly recovered the association under study
with percentage bias equal to 0%. The internal-validation-
sample–restricted analysis using stratified random or ex-
tremes sampling was biased in both cases, with percentage
bias equal to 10% and 30%, respectively. The different
regression calibration analyses were all biased, independent
of how the internal validation sample was sampled.

DISCUSSION

This study investigated 3 internal validation sampling
strategies (random, stratified random, and extremes sam-
pling) in conjunction with regression calibration to correct
for measurement error in a continuous covariate. Our simu-
lation study showed a small efficiency gain in terms of mean
squared error of stratified random and extremes sampling
over a random sampling strategy for the internal-validation-
sample–restricted and regression calibration analyses but
only when measurement error was nondifferential. For
regression calibration, this gain in efficiency was at the cost
of higher percentage bias and lower confidence interval cov-
erage. We therefore recommend that, in general, regression
calibration using randomly sampled validation samples are
preferable over stratified or extremes sampled samples.

Three different regression calibration methods (i.e., stan-
dard, efficient, and validation) and an internal-validation-
sample–restricted analysis were tested in our simulation
study. The internal-validation-sample–restricted analysis
and validation regression calibration showed the best overall
performance in terms of percentage bias and confidence
interval coverage of the true effect. Furthermore, validation

regression calibration had the same efficiency as efficient
regression calibration under strong correlations between the
exposure and outcome. These findings are consistent with
the work by Thurston et al. (19). What is more, a slight un-
dercoverage of the confidence intervals was found for the
efficient regression calibration approach.

In addition, our simulation study showed a gain in effi-
ciency of validation regression calibration over the internal-
validation-sample–restricted analysis. The gain in efficiency
is more pronounced when the R2 of the measurement error
model is high and for smaller validation samples (e.g., 10%
of full sample). Intuitively, the validation sample–restricted
analysis uses information about the gold standard measure-
ment but only for those individuals in whom it was mea-
sured (i.e., the internal validation sample). For regression
calibration, however, information about all individuals is
used, which tends to increase the efficiency, compared with
the restricted analysis. However, the efficiency is negatively
affected by the uncertainty in the correction factor that
needs to be estimated from the internal validation sample.
The relative gain in efficiency for regression calibration
compared with an analysis of the gold standard measurement
only (restricted to the validation sample) depends on the
correlation between the gold standard and the error-prone
measurement (15), as well as the appropriateness of para-
metric assumptions made for regression calibration.

Related work on internal validation studies can be found
in the field of psychology, often referred to there as “2-
method designs” or “planned missing data designs.” These
terms were recently suggested by Rioux et al. (26) for
epidemiologic research. Graham et al. (27) studied the
cost-effectiveness of 2-method designs and concluded that,
in comparison with an analysis restricted to the internal
validation sample, the 2-method design can yield lower
standard errors for testing associations using structural
equation modeling. In particular, the benefit of the design
can be enormous when there is a large cost difference be-
tween the error-prone and the gold standard measures and
effect sizes are small.

Regression calibration is one approach to correct for
measurement error. Other methods for measurement-error
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correction include multiple imputation for measurement
error (8), simulation-extrapolation (9), Bayesian methods
(5), and methods based on maximum likelihood estimation
(28). Earlier simulation studies have been conducted
comparing multiple imputation for measurement error and
regression calibration. These studies showed that, in general,
multiple imputation for measurement error produced less-
biased estimates than regression calibration but can have
larger variances (8, 29, 30). Simulation-extrapolation was
originally designed to correct for measurement error that is
random, which the measurement error in our case study was
not. Adaptations have been made to also allow for systematic
measurement error (31).

In our motivating example, regression calibration per-
formed poorly. This was likely caused by violation of the
nondifferential measurement error assumption that regres-
sion calibration relies on and it signifies the importance of
this assumption. WC measures might contain differential
measurement error, because WC measures also provide a
proxy for subcutaneous fat, which in turn is associated with
insulin resistance. In our simulation study, where measure-
ment error was known to be nondifferential or differential,
regression calibration performed well (nondifferential mea-
surement error) or poorly (for differential measurement
error), which further adds to our suspicion that differential
measurement error might have affected the results of the
motivating example.

Nondifferential measurement error is a strong assumption
and might be unlikely in practice (32). Our motivating
example signifies the importance of this assumption for
measurement-error correction and illustrates that when mea-
surement error is differential, 1) regression calibration is not
an appropriate method for measurement-error correction,
and 2) nonrandom internal validation sampling strategies
introduce collider stratification bias (see Figure 3). In the
situation where differential measurement error is assumed,
alternative methods for measurement-error correction can be
used—for example, multiple imputation for measurement
error (8) and regular multiple imputation methods (33–35).
Future research could investigate whether nonrandom vali-
dation sample strategies improve the efficiency of multiple
imputation methods for measurement-error correction.

Large epidemiologic studies could consider using internal
validation samples when a gold standard measurement is
expensive, time consuming, or burdensome. Our publicly
available code (25), provides an opportunity for careful plan-
ning of a sampling strategy, including the size of the inter-
nal validation sample, and the choice between an analysis
restricted to the internal validation sample or application of
regression calibration. The code can be adapted to accom-
modate situations other than those studied here.

In summary, our study showed that there appears to be
little added value to stratified random or extremes sampling
in internal validation studies to correct for measurement
error. Regression calibration, if nondifferential measurement
error can be assumed, was shown to be an effective approach
to correct analyses for measurement error. When handled
with care, application of regression calibration can improve
efficiency of epidemiologic studies with internal validation
samples.
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