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Abstract
Many real-world phenomena can be represented as dynamic graphs, i.e., networks that
change over time. The problem of dynamic graph summarization, i.e., to succinctly
describe the evolution of a dynamic graph, has been widely studied. Existing methods
typically use objective measures to find fixed structures such as cliques, stars, and
cores. Most of the methods, however, do not consider the problem of online summa-
rization, where the summary is incrementally conveyed to the analyst as the graph
evolves, and (thus) do not take into account the knowledge of the analyst at a spe-
cific moment in time. We address this gap in the literature through a novel, generic
framework for subjective interestingness for sequential data. Specifically, we itera-
tively identify atomic changes, called ‘actions’, that provide most information relative
to the current knowledge of the analyst. For this, we introduce a novel information
gain measure, which is motivated by the minimum description length (MDL) princi-
ple. With this measure, our approach discovers compact summaries without having
to decide on the number of patterns. As such, we are the first to combine approaches
for data mining based on subjective interestingness (using the maximum entropy prin-
ciple) with pattern-based summarization (using the MDL principle). We instantiate
this framework for dynamic graphs and dense subgraph patterns, and present DSSG,
a heuristic algorithm for the online summarization of dynamic graphs by means of
informative actions, each of which represents an interpretable change to the connec-
tivity structure of the graph. The experiments on real-world data demonstrate that our
approach effectively discovers informative summaries. We conclude with a case study
on data from an airline network to show its potential for real-world applications.
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1 Introduction

Many real-world phenomena, including interactions between people (e.g., social
media, e-mail), web browsing, transport and logistics operations, and asset manage-
ment, can be modelled in terms of the relationships between entities. That is, the
corresponding data can be naturally represented as a network or graph, where vertices
represent the entities and edges represent their relationships. When these relationships
change over time, the graphs are called dynamic graphs.

The problem of static graph summarization has been widely studied, e.g., to effi-
ciently store large volumes of data (Navlakha et al. 2008); improve query efficiency
(LeFevre and Terzi 2010); visualize large graphs (Koutra et al. 2014); and provide
high-level descriptions (Goebl et al. 2016). Some of the popular methods rely on com-
pression (Koutra et al. 2014), aggregation of vertices/edges (LeFevre and Terzi 2010),
or finding meaningful patterns (Goebl et al. 2016).

The need to incorporate the temporal dimension has led to the introduction of
the problem of dynamic graph summarization. Lately, this problem has gained much
attention.Here, the focus is onfinding aminimal set of temporal structures that describe
a dynamic network or graph. A typical way to achieve this is by considering a dynamic
network as a sequence of static graph states/snapshots (Sun et al. 2007; Shah et al. 2015;
Adhikari et al. 2017) and subjecting those to static graph summarization methods.
Such sequences of static graphs, constructed by segmenting a dynamic graph into
different states, can be referred to as sequential data. For instance, themethod proposed
by Shah et al. (2015), namely TimeCrunch, extends VoG, a method for static graph
summarization by Koutra et al. (2014). It creates a summary by stitching together the
graph structures found in different snapshots while minimizing the global description
length of the dynamic network. TimeCrunch uses a predefined vocabulary of graph
structures, including cliques, stars, cores, and bipartite cores.

Most existing methods, however, do not consider the problem of subjective online
summarization, where the summary is iteratively and incrementally conveyed to the
analyst as the graph evolves. In that, the analyst is progressively updated on all changes
up to the current state of the network, relative to his/her prior knowledge. This problem
has two key characteristics that differentiate it from posthoc summarization and there-
fore require a different approach. First, at any state, it is only possible to use data that
has been observed until this very moment; it is impossible to use parts of the dynamic
graph that lie in the future. Second, each change that is observed and communicated
to the analyst should be relative to what that analyst already knows about the graph.

One motivation for such an approach comes from airline network analysis, where
vertices represent airports and (directed) edges represent operating flights or routes
between two airports. As the edges in an airline network change with time, it can be
considered as a dynamic network. Here, an analyst may be interested in learning the
informative changes, for example, as to how the traffic load is changing in real-time
between different airports. An airline schedule is generated based on comprehensive
knowledge on air traffic load management (Bazargan 2016). Hence, a domain analyst
maywell have prior knowledge/expectation at the block-hour level, of the total number
of routes operated by an airline, total number of flights, number of unique routes from
each airport, or even the densely connected set of airports.However, delays are a reality,
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as the schedules are not necessarily robust enough to perfectly factor and accommodate
them. Hence, a compact and subjective online summarization bears real-time utility
for airliners. It is critical to note that the application and utility of this approach is not
limited to airline domain but spans across many other real-world scenarios, including
evolving co-authorship network, co-actor network, and interaction network.

Our first significant contribution is the introduction of a novel, generic framework
for subjective interestingness for sequential data. For this, we build on previous work
byDeBie (2011), who first introduced a formalization of subjective interestingness for
exploratory datamining, inwhich the analyst’s prior beliefs aremodelled as constraints
and a background distribution—representing the current knowledge of the analyst—
is derived using the maximum entropy principle. The novelty of our framework for
sequential data is two-fold. First, the patterns that we define, called ‘actions’, represent
atomic changes to the data that provide information relative to the current knowledge of
the analyst. Second,we introduce anovel informationgainmeasure that ismotivatedby
theminimumdescription length (MDL)principle (Grünwald 2007).With thismeasure,
our approach can automatically discover compact summaries without having to decide
on the number of patterns. As such, we are the first to combine approaches for data
mining based on subjective interestingness (using the maximum entropy principle)
with pattern-based summarization (using the MDL principle).

Our second significant contribution is the instantiation of this generic framework
for dynamic graphs. As van Leeuwen et al. (2016) instantiated subjective interest-
ingness for dense subgraph discovery from (static) graphs, indeed we here build on
their results. The concrete actions that we define, include add, remove, update,
shrink, split, and merge. An instance of each of the action types is presented
in Fig. 1a–f, for a toy example depicting an evolving airline network. Each of these
actions adds, updates, and/or removes one or more dense subgraphs to/in/from the
current summary, represented by set Cs for each state s. The set Cs comprises of the
analyst’s prior beliefs (represented by B) and the dense subgraphs as patterns (repre-
sented by Pi). In Fig. 1a–f, we indicate the initial summary CI

s and final summary CF
s

after performing the actions in each state. By iteratively communicating these actions
to the analyst, the analyst learns about the relevant changes in the graph (as shown
in Fig. 1g) relative to what they already know. The use of our information measure
ensures that we always communicate actions that provide more information about the
data than that is required to describe the patterns and corresponding actions, effectively
making sure that the analyst always gains information.

Our third and final significant contribution is DSSG, a heuristic algorithm for the
online summarization of dynamic graphs by means of iteratively discovering actions.
Guided by the information gain criterion, it always considers all possible types of
actions but only returns that action that provides the largest gain.

The remainder of the paper is organized as follows. The relevant literature is sum-
marized in Sect. 2, followed by notation and preliminaries in Sect. 3. Our framework
for subjective interestingness for sequential data and its online summarization is pre-
sented in Sects. 4.1 and 4.2, respectively, leading to the introduction of the problem of
online summarization of dynamic graphs in Sect. 4.3. In this context, the DSSG algo-
rithm is presented in Sect. 5. The experimental results on publicly available real-world
datasets are discussed in Sect. 6, followed by a case study in the airline domain in
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(a) (b) (c) (d) (e) (f)

(g)

Fig. 1 Toy example showcasing an evolving graph over six states (S1-S6), as summarized by background
information B and patterns P1-P5′. (a-f) In each state s the initial and final summary are represented by CI

s
andCF

s , respectively; (g) Patterns P1-P5
′ and corresponding add/merge/shrink/split/update/remove actions

can be used to summarize the six consecutive states of the dynamic graph as depicted in a–f

Sect. 7. Important features of the proposed framework, key observations, limitations
and future scope are discussed in Sect. 8, after which we conclude in Sect. 9.

2 Related work

We divide the relevant literature into the following categories: static graph mining;
static graph summarization; dynamic graph mining; and dynamic graph summariza-
tion. The dynamic graph summarization category is most closely related to our work;
we discuss the other categories for completeness.

Static graph mining Dense subgraph mining is a well-researched problem. The
terms cliques, quasi-cliques (Abello et al. 2002; Matsuda et al. 1999), k-cores (Sei-
dman 1983), k-plex (Seidman and Foster 1978), kD-cliques (Luce 1950) and k-club
(Mokken 1979) in static graphs have been systematically defined and explored in the
literature. Recent work on identifying quasi-cliques includes Tsourakakis et al. (2013);
Veremyev et al. (2016), while Wu and Hao (2015) summarize all methods for solving
the maximum clique problem. Although these measures to identify graph structures
are objective, van Leeuwen et al. (2016) argued that the interestingness of each graph
structure or pattern is subject to prior information in most applications. On similar
lines, Bendimerad et al. (2020) defined subjectively interesting attributed subgraphs.
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In line with ideas given by van Leeuwen et al. (2016) and Bendimerad et al. (2020),
we also consider the analyst’s prior beliefs.

Another popular sub-category of static graph mining is clustering or partitioning of
the graph. Most of those methods focus on discovering splits, cuts, or partitions in a
graph to identify different regions or communities of interest using spectral partition-
ing (Alpert et al. 1999), min-max cut (Ding et al. 2001), minimum cut trees (Flake
et al. 2004), betweenness measures (Newman and Girvan 2004), or modularity max-
imization (Newman 2006). These methods cover the graph as a whole, while pattern
mining in graph data restricts the knowledge discovery to some areas of interest.

Static graph summarizationThe idea of static graph summarization is to compress
a graph (Navlakha et al. 2008; Koutra et al. 2014) or aggregate nodes/edges in a graph
(LeFevre and Terzi 2010; Toivonen et al. 2011; Goebl et al. 2016). It is found to
improve query efficiency (LeFevre and Terzi 2010), speed up clustering algorithms
(Toivonen et al. 2011), effectively compress a graph dataset (Navlakha et al. 2008),
and provide better visualization (Koutra et al. 2014) of a graph dataset. Koutra et al.
(2014) describe a graph by identifying structures using a predefined vocabulary of
graph structures such as stars, full and near cliques, full and near bipartite cores,
and chains, which minimizes the total encoded length of the graph along with the
model (based on theminimumdescription length principle). Another popular objective
of static graph summarization is to find influential dynamics in a network through
patterns (Goebl et al. 2016). These patterns provide a high-level description of a
graph and are considered relevant and informative in the case of real datasets such
as social networks, where information propagation is an essential characteristic of
the data. Cook and Holder (1994) subjectively summarize a graph by providing a
hierarchical description of structural regularities guided by the background knowledge
in terms of rules, including compactness, connectivity, coverage and other types of
domain-dependent rules. Similar to our proposed approach, the authors also combine
the concept of minimum description length with background knowledge. However, we
model background knowledge using constraints and the maximum entropy principle.

Dynamic graphmining This category coversmethods that identify temporal graph
patterns in a dynamic network. Rozenshtein et al. (2017) study interaction networks
to find dense and temporally compact patterns. The authors introduce the k-Densest
episode identification problem on temporal graphs (Rozenshtein et al. 2018), where an
episode is defined as a pair of a time interval and a subgraph. Galimberti et al. (2018)
propose the idea of maximal span-cores and span-cores decomposition of temporal
networks.

Dynamic graph summarization This category is different from dynamic graph
mining: graph summarization methods identify structures and evolution that provide
a succinct description of a network, while graph mining methods identify all possible
patterns in the network. As our proposed method fits this category, Table 1 shows an
overview of both existing methods and ours; we will elaborate on this comparison in
the last paragraph of this section.

GraphScope (Sun et al. 2007) was one of the very first methods that focused on
summarizing temporal graphs. It partitions the graph into bipartite cores and cliques.
Simultaneously, by detecting the change in encoding cost of graph segment upon
presentation of a new graph with the evolution in the state, segments are identified.
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Com
2 (Araujo et al. 2014) identifies temporal edge-labelled communities in a graph

and uses the minimum description length (MDL) principle with Canonical Polyadic
(CP) or PARAFAC decomposition. TimeCrunch (Shah et al. 2015) also uses the
MDL principle to summarize a temporal graph. The authors identify graph struc-
tures, using the vocabulary of graph structures given by Koutra et al. (2014), along
with their corresponding temporal presence in terms of one-shot, periodic, flicker-
ing, and ranged. Adhikari et al. (2017) summarize a dynamic network by aggregating
nodes into supernodes and time pairs into ‘super time’. This method creates a flat-
tened graph (static) after aggregation. Each of these methods concerns an instance of
MDL-based dynamic graph compression (either lossy or lossless), but none of them
directly summarizes how a dynamic graph changes and evolves.

Various methods in the literature have directly or indirectly addressed the prob-
lem of summarizing the evolution of a dynamic graph. You et al. (2009) captures
repeated addition and removal of subgraphs between two consecutive graph snapshots
in a dynamic graph. Scharwächter et al. (2016) proposed to find frequent structural
changes, such as triadic closure and homophilic rewiring, in the form of evolution
rules.Ahmed andKarypis (2015) summarize graph evolution by capturing co-evolving
relational motifs, which occur when all or a majority of the occurrences of a relational
pattern—or motif—evolve similarly over time. Robardet (2009) proposed to capture
the evolution of isolated pseudo-cliques over time by means of a sequence of five
temporal events, including formation, dissolution, growth, diminution and stability.

Similarly, Ahmed and Karypis (2012) proposed to epitomize an evolving graph by
identifying Evolving Induced Relational States (EIRS). The authors defined EIRS as
a sequence of Induced Relational States (IRS), which are a set of vertices that remain
connected by similar edges having the same direction and label for several consecutive
snapshots (based on a threshold). In EIRS, the time interval of each IRS cannot overlap
with other IRS andhas several or at least a certain number of commonvertices. Lin et al.
(2011) focus on discovering evolving communities by analyzing the dynamic inter-
actions between vertices by representing the multi-dimensional and multi-relational
characteristics as a relational hypergraph called a ‘metagraph’. Another recent method
based on TimeCrunch (Shah et al. 2015) that aims to capture the evolution of graph
structures is given in the preliminary work by Saran and Vreeken (2019). They capture
evolving graph patterns by capturing dynamic events such as growth, split, merge, and
change in structure type (e.g., from clique to star) of a pattern. Based on their charac-
teristics, these methods can be referred to as methods for discovering evolving graph
patterns.

All methods mentioned in this category thus far are defined for a ‘fixed’ dynamic
graph, i.e., over a fixed time interval, and not for a ‘streaming’ dynamic graph that
is generated on-the-fly and should also be analysed on-the-fly, where the summary
should change upon the presentation of a new snapshot of a graph. In otherwords, these
methods do not support online summarization. Recent methods for online dynamic
graph summarization, discussed next, include Tang et al. (2016); Khan and Aggarwal
(2016); Qu et al. (2016); Tsalouchidou et al. (2020).

Tang et al. (2016) and Khan and Aggarwal (2016) generate a graphical sketch
of a dynamic graph, aggregating vertices and edge weights, which is updated after
each snapshot of a graph sequence. These graphical sketches are useful to improve the
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efficiency of graph-based queries. Qu et al. (2016) summarize a diffusion network, i.e.,
a dynamic graph where information propagates with time, by discovering spreading
trees (n-ary) as cascades, which grows with a change in state. Recently, Tsalouchidou
et al. (2020) proposed the Scalable Dynamic Graph summarization Method (SDGM)
to generate an online summary by extending the static graph summarization approach
of LeFevre and Terzi (2010). Although these methods provide online summarization,
they do not summarize informative state-to-state relative changes in a dynamic graph.
That is, they do not provide incremental summaries, where each relative change in the
structure of the graph is summarized and communicated to the analyst step by step.

To bridge this gap in the literature, we consider the problem of discovering infor-
mative changes in a streaming dynamic graph in an incremental manner. As we are
interested in finding all informative changes, we require our method to automatically
determine the number of returned patterns. To this end we propose to identify sub-
graphs that maximally deviate from the current knowledge of the analyst. For this we
build on the notion of subjective interestingness proposed by De Bie (2011). To the
best of our knowledge, we are the first to consider the problem of subjective, incremen-
tal, online graph summarization. This is corroborated by the qualitative comparison in
Table 1, which shows the relevant characteristics for all dynamic graph summarization
methods discussed in this section.

Since we propose to summarize a dynamic graph by means of dense patterns, we
will adapt TimeCrunch (Shah et al. 2015) and SDGM (Tsalouchidou et al. 2020) to
establish two baseline methods for empirical comparison in Sect. 6.

3 Preliminaries

This section defines the notation adopted in this paper, and briefly describes the two
most closely relatedworks onwhichwebuild in this paper. These are (1) the framework
for FORmalizing Subjective Interestingness in Exploratory Data mining (FORSIED)
introduced by De Bie (2011), and instantiated for different types of data and patterns;
and (2) the work on Subjective interestingness of SubGraph patterns (SSG) in static
graphs by van Leeuwen et al. (2016).

3.1 Data and notation

A rectangular dataset is a matrix D ∈ D
M×N , where the dimension of the dataset

is given by M × N and D is the domain of an individual cell. A (simple) graph is
denoted as G = (V , E), where V is a set of vertices and E is a set of edges such that
u, v ∈ V for each edge (u, v) ∈ E . Its adjacency matrix is a rectangular dataset and
hence, represented by D ∈ D

|V |×|V |, where D = {0, 1}.
A dynamic (rectangular) dataset DT changes with time, where T is the timespan

of the dataset. This time interval can be segmented into several consecutive intervals,
where each interval t = (tb, t f ) ⊂ T represent a state s, such that tb is the begin
time and t f is the finish time. For any two consecutive states, s and s + 1, time t fs is
equal to time tbs+1. Thus, a sequence of snapshots D1, . . . ,DS is observed, indexed by
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state s ∈ {1, . . . , S}, where S is the total number of states. Note that, in a sequence of
snapshots, each Ds is a static rectangular dataset, such that Ds ∈ D

M×N . We refer to
such a sequence of snapshots as sequential data.

A dynamic graph, denoted GT = (V , ET ), is a graph in which each edge is present
for a given period within time interval T , i.e., ET is the set of edges that occur in time
interval T . More specifically, each e = (u, v, tb, t f ) ∈ ET defines an edge u, v ∈ V
that appears at start time tb and continues to exist until it disappears at finish time t f .
Again, the time interval T can be segmented into several intervals, as seen earlier for
dynamic datasets. This assumption implies that each t ⊂ T defines a static state s of
the dynamic graph, that is essentially a (simple) graph: each edge either exists or not.
We denote the dynamic graph projected to its graph corresponding to a fixed time t by
Gs , and its corresponding adjacency matrix by Ds ∈ D

|V |×|V |, such that D = {0, 1}.
Hence, a dynamic graph, GT can be represented as a sequential dataset DT , with
a sequence of static graph snapshots G1, . . . ,GS and a corresponding sequence of
adjacency matrices D1, . . . ,DS .

Notably, even when time is not discrete, one can easily discretize it by segmenting
it into equal-length intervals (e.g., seconds, minutes, …). As we will see, the length of
these intervals determines the granularity at which the approach will identify changes
in the data. For instance, in the airline case, it is implausible that (relevant) changes
will occur within seconds or even minutes, hence, it may be reasonable to segment
time in hours.

3.2 Subjectively interesting patterns in static graphs

Informally, the FORSIED framework (De Bie 2011) defines subjective interestingness
of a pattern as the information it provides with regard to the analyst’s expectations
(or prior knowledge), normalized by its complexity. Given a dataset D, the analyst’s
background distribution P∗, is the distribution that maximizes entropy, is given by

P∗ = argmax
P(D)

−
∑

D∈D
P(D) log(P(D)), (1)

s.t.ED∈D[ fi (D)] =
∑

D∈D
P(D) fi (D) = ci ,∀i, (2)

∑

D∈D
P(D) = 1. (3)

The set of constraints enforced in Eq. 2 is presented in a generalized form, where
each constraint Bi ∈ B is a pair consisting of a function fi over D—as properties of
the data—and a corresponding constant ci , i.e., Bi = ( fi , ci ). The set of constraints B
represents the analyst’s prior knowledge or expectations on the data. The exact type(s)
of constraints and their interpretation depends on the type and nature of the dataset D.

Next, the interestingness of a pattern θ is defined as the ratio of the pattern’s self-
information (denoted SI) to its description length (denoted DL). Self-information
is the negative log-probability that the pattern is present in the data, i.e., − log(P(θ ∈
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D)), while description length is the number of bits required to describe or communicate
the pattern to the analyst.

Instantiating these generic concepts for dense subgraph patterns in static graphs, van
Leeuwen et al. (2016) defined interestingness I of a static graph pattern, θ = (W , kW ),
denoting a vertex set W having kW edges, as1

I [(W , kW )] = SI [(W , kW )]

DL [(W , kW )]
=

nW · KL
(
kW
nW

||pW
)

|W | · log
(
1−q
q

)
+ |V | · log

(
1

1−q

) , (4)

where nW is the number of possible edges in subgraph W , q is a hyperparameter
representing the ‘expected’ probability of a random node to be present in W , and pW
is the probability of the subgraph occurring given background distribution P∗. The
latter probability is computed as pW = 1

nW

∑
u,v∈W pu,v , where pu,v is the probability

that an edge between vertices u and v exists as given by P∗.
Iterative learning The framework above can be motivated by the observation that
compression equates learning (Grünwald 2007): in order to learn as much as possible
about the data, the implicit goal of the analyst is to (internally) represent the data using
as few bits as possible. This observation implies minimizing − log P∗(D), i.e., the
length of the data encoded by the background distribution. This can be accomplished
by changing the analyst’s knowledge onD. Here, change in the analyst’s knowledge on
D implies that a new set of constraintsC corresponding to each discovered patternmust
be constructed, which is used to update the background distribution P∗. Specifically,
when a graph pattern is discovered, a constraint is added to ensure that the updated
expectations of the analyst conform with the actual number of edges. For instance,
when a graph pattern (W , kW ) is presented to the analyst, a new constraint CW =
( fW , kW ) is added to C, where fW is a function over W vertices which counts the
number of edges, i.e., fW (D) = ∑

u,v∈W ,u<v D[u, v], and kW is the actual number
of edges in the vertex-induced subgraph of W vertices. Notably, the solution to the
following problem provides the updated background distribution (van Leeuwen et al.
2016):

P∗′ = argmin
P

∑

D

P(D) log

(
P(D)

P∗(D)

)
, (5)

s.t.
∑

D

P(D) fW (D) ≥ kW , (6)

∑

D

P(D) = 1. (7)

Hence, the analyst can learn everything about the data by iteratively discovering the
most interesting pattern and updating the background distribution after each iteration.

1 All logarithms in this paper are to the base 2.
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4 Proposed approach

In this section, we introduce our novel framework for subjective interestingness for
sequential data, which extends the FORSIED framework but also incorporates crucial
changes. We introduce the problem of subjective summarization of sequential data,
and to solve this problemwepropose themethod of online summarization of sequential
data. Finally, we instantiate this generic problem for dynamic graphs.

4.1 Subjective interestingness for sequential data

Given a sequential dataset DT , we consider the setting where an analyst is interested
in learning informative patterns about the data as the snapshots unfold in an online
fashion. As with static data, the analyst may have prior beliefs about the data already
before the first snapshot—these are represented by a set of constraints B.

When the snapshot corresponding to the first state is analyzed, we aim to find a com-
pact set of constraints, i.e., patterns, that—together with the prior beliefs—minimize
the negative log-probability of the data, given the implied background distribution. To
avoid finding either too many or too complex patterns, we draw inspiration from the
minimum description length principle (Grünwald 2007) and use a two-part code to
balance the goodness of fit of the data with the complexity of the constraint set. More
precisely, we aim to find a new set of constraints C1 with corresponding background
distribution P∗

1 that minimizes − log P∗
1 (D1) + L(C1), where L is a function that

computes the encoded length for any given set of constraints. It is of note that we
require an additional set of constraints C1 other than the existing set of constraints B
to achieve the optimal (feasible) solution of the above problem. The set of constraints
C1 is used to ensure that the knowledge mined by the discovered patterns is reflected
in the background distribution P∗

1 .
For any consecutive snapshot, we now want to adapt what the analyst has learned

before; by only providing the analyst with information about changes that have
occurred in the data since the previous state, he requires minimal effort, and we obtain
a minimal summary. Given the previous, this implies that—for each snapshot s after
the first—we need to find a set of constraints Cs with corresponding background dis-
tribution P∗

s that minimizes − log P∗
s (Ds) + L(Cs |Cs−1), where L is a function that

computes the encoded length for any given set of constraints given another set of
constraints; i.e., smaller changes require fewer bits.

With the given discussion, we formally introduce the following problem statement.

Problem 1 (Subjective Summarization of Sequential Data) Given a sequential dataset
DT , i.e., sequence of snapshots D1, . . . ,DS, and prior beliefs B, find:

– for D1: a set of constraints C1 that minimizes − log P∗
1 (D1) + L(C1), where P∗

1
is computed using constraints B ∪ C1;

– forDs , with s ∈ {2, . . . , S}: a set of constraintsCs that minimizes− log P∗
s (Ds)+

L(Cs |Cs−1), where P∗
s is computed using constraints B ∪ Cs .
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4.2 Online summarization of sequential data

Apart from the fact that optimally solving each iteration of Problem 1 would require
to consider a very large search space, i.e., that of all possible constraints sets, we do
not want to present unordered sets of constraints to the analyst: this would very likely
overwhelm the analyst and therefore cause confusion. Instead, we prefer to present
atomic changes to C to the analyst one by one, as is also done in the framework for
static data. We will therefore now derive an approach that heuristically approximates
Problem 1 by iteratively looking for the largest changes and communicating those to
the analyst immediately.

After each atomic changeα, also called action, the set of constraintsC is updated to a
new setC′, and hence the backgrounddistribution P∗ is updated accordingly.α reduces
the negative log-probability of the data by updating the background distribution, and
we define this reduction as Information Content, IC.

Definition 1 (Information Content) Given an action α, and constraint setsC (original)
and C′ (updated), we define the information content of α, denoted by IC, as the
difference between the length of the data encoded by the background distributions
specified by constraint sets C and C′:

IC(α) = IC(C′|C) = − log P∗
C(D) − (− log P∗

C′(D)
)

= log P∗
C′(D) − log P∗

C(D),
(8)

where P∗
X is the MaxEnt probability distribution given a set of constraints X (i.e.,

using Eqs. 1–3).

An action on C can be categorized as one of the following:

1. Addition of a new constraint C , i.e., C′ = C ∪ {C},
2. Deletion of a constraint C , i.e., C′ = C\{C},
3. Update of an already present constraint C ∈ C, i.e., replacing C with a constraint

C ′, and hence C′ = C\{C} ∪ {C ′}.
Definition 2 (Description Length) The description length of an action α, denoted
DL(α), is defined as the (minimum) number of bits required to encode the changes
in the set C when communicated to the analyst.

Remark 1 Given a set of constraintsCs−1, letA be an ordered set of actions performed
on Cs−1 to get an updated set Cs , then the encoded length L of Cs is computed as:

L(Cs |Cs−1) =
∑

α∈A
DL(α). (9)

We now have two different quantities associatedwith each atomic change α, i.e., IC
andDL. Maximizing IC and minimizingDL leads to our overall goal of minimizing
− log P∗

s (Ds) + L(Cs |Cs−1). Thus, we discount IC with DL and perform the action
with maximal difference at each step. We call this difference information gain and
denote it by IG.
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Definition 3 [Information Gain] Let α be an action that transforms a given set of
constraints C into an updated set C′. Then, the information gain IG on performing α

on C is given by

IG(α) = IC(α) − DL(α). (10)

The process of online summarization begins with the initialization of background
distribution P∗

B using the prior belief(s)B that an analyst may have. At the start of state
1, no patterns have been discovered yet, i.e., C1 = ∅, which implies P∗

B∪C1
= P∗

B.
Then patterns with maximum IG (Eq. 10) are discovered iteratively and for each
such pattern a corresponding constraint C is added to C1 and hence the background
distribution P∗

B∪C1
is updated (using Eqs. 5–7). Note that C1 is initially an empty set,

thus the only action that can be performed on C1 is the addition of a new pattern.
The process continues until no feasible action can be performed on set C1. Here, a
feasible action is any action which satisfies a user-provided criteria, for example, to
be in agreement with the MDL principle an action α it is recommended default that α
is feasible if IG(α) > 0. The process then moves to the following state. For any state
s (except state 1), Cs is initialized to the final Cs−1 and P∗

Cs
to the final P∗

Cs−1
. This is

followed by iterative actions on Cs with maximal IG, until no feasible action can be
performed.

4.3 Online summarization of dynamic graphs

The concept of subjective summarization of sequential data can be directly adapted
to dynamic graphs by segmenting such a graph into a sequence of static graph snap-
shots (see Sect. 3.1). By making the data type more specific, however, we can also
instantiate the other components of the generic framework—e.g., actions, prior beliefs,
constraints, and description length—with more precise definitions. As discussed ear-
lier, a graph pattern, θ = (W , kW ) is a subgraph of W ⊂ V vertices that is connected
by kW edges. Thus, by definition a graph pattern is connected, i.e., there exists a path
from every vertex to every other vertex. Note that, sincewe consider graph patterns, the
definition of constraints follows the discussion in Sect. 3.2. Following, we introduce
the following problem statement as an instance of Problem 1.

Problem 2 (Subjective Summarization of Dynamic Graphs) Given a dynamic graph
GT consisting of a sequence of snapshots G1, . . . ,GS, with Ds the corresponding
adjacency matrix for a state s and prior beliefs B, solve Problem 1 such that each
pattern in every set Cs is a connected subgraph pattern.

As discussed previously, optimally solving Problem 2 requires to consider a very
large number of possible constraint sets. Similarly, we heuristically address Problem 2
by iteratively communicating atomic changes, or actions, having maximal IG to the
analyst. Based on the properties of a graph pattern and possible structural changes, we
now formalize six specific types of actions which we use to communicate changes on
graph data, as initially depicted in Fig. 1.

The add action communicates a newly discovered subjectively dense subgraph
pattern. In Fig. 1a, two patterns, P1 and P2, are identified and added in state S1. A
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remove action deletes a pattern that no longer holds in the current state, i.e., when the
pattern is no longer connected and/or its density decreases substantially. An example
is shown in Fig. 1f, where a sparse pattern P5′ is removed in state S6—removing a
constraint is informative when it has a positive IC.

The other actions are update, merge, shrink, and split, which all represent
modifications of constraint(s) already present in C. When the density of a pattern
corresponding to an existing constraint increases, this is communicated via update.
Thus, a constraint C = ( fW , kW ) ∈ C is replaced by a similar but updated con-
straint C ′ = ( fW , k′

W ). In Fig. 1e, pattern P5 is updated to pattern P5′ in state S5,
when its density increases compared its density in state S4 (Fig. 1d). By applying a
merge action, two previous patterns are merged to form one new pattern. That is,
two constraints Ci = ( fWi , kWi ),C j = ( fW j , kWj ) ∈ C are replaced by a single new
constraintC ′ = ( fWi∪Wj , kWi∪Wj ), such that the resulting pattern of verticesWi ∪ Wj

is connected. An instance is presented in Fig. 1b, where two patterns, P1 and P2, are
merged to create a new pattern P3 in S2.

Actions shrink and split either reduce an existing constraint or decompose
one into multiple constraints. A constraint is shrunk when the density of a pattern
decreases with the evolution of the graph (see Fig. 1c, where pattern P3 shrinks to
form pattern P3′ in state S3). Similarly, a constraint can be decomposed into multiple
new constraints if the pattern corresponding to an original constraint consists of two
or more connected components (see Fig. 1d, where pattern P3′ splits into two new
patternsP4 and P5 in state S4). Inshrink, the original constraintC = ( fW , kW ) ∈ C
is replaced by a new reduced constraint C = ( fW ′ , kW ′) such that W ′ ⊂ W . In
split, on the other hand, a constraint C = ( fW , kW ) ∈ C is replaced by M new
constraints, C1 = ( fW1 , kW1), . . . ,CM = ( fWM , kWM ), such that W1, . . . ,WM ⊂ W
and Wi ∩ Wj = ∅,∀i, j ∈ {1, . . . , M}.

The different conditions that must be satisfied for each of the six types of actions
to be applicable are summarized in Table 2.

Next, the formulation of information content IC and description lengthDL of each
action type is summarized in Table 3. We extend the abstract definition of description
length given in the previous section (Definition 2). The description length of an action
is the summation of two parts, the first of which encodes the type of action, represented

Table 2 Conditions that must be met to perform an action α on a constraint C present in constraint set C,
with initial pattern θi , resultant pattern θ f and density function ρ (defined as the ratio of the number of
edges to the maximum possible number of edges in a graph)

Type of α is C ∈ C? ρ(θi ) increases? ρ(θi ) decreases? is θi connected? is θ f connected?

Add ✗ — — — ✓

Remove ✓ ✗ ✓ ✗ —

Update ✓ ✓ ✗ ✓ ✓

Shrink ✓ ✗ ✓ ? ✓

Split ✓ ✗ ✓ ✗ ✓

Merge ✓ ? ✗ ✓ ✓

✓: true, ✗: false, ?: may or may not be true, —: not applicable
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Table 3 Shown are the formulation of Information Content (IC) and Description Length (DL) for each
defined atomic change, α

α IC DL

Add log P∗
C∪C (D) − log P∗

C(D) Ta + Tc + Tp

Remove log P∗
C\C (D) − log P∗

C(D) Ta + Tb
Update log P∗

C\C∪C ′ (D) − log P∗
C(D) Ta + Tb + Tc′

Shrink log P∗
C\C∪C ′ (D) − log P∗

C(D) Ta + Tb + Tc′ + Td + Te
Merge log P∗

C\{Ci ,C j }∪C ′ (D) − log P∗
C(D) Ta + 2 × Tb + Tc′

Split log P∗
C\C∪{C1,...,Cτ }(D) − log P∗

C(D) Ta + Tb + T f + Tg + Th + Ti

Ta = log(l), Tb = log(|C|), Tc = LN (nW − kW + 1), Tc′ = LN(nW ′ − kW ′ + 1),
Td = LN(|�|), Te = log(|W |) + log(|W | − 1) · · · + log(|W | − |�| + 1), T f = log(M),
Tg = LN(|W1|) + · · · + LN(|WM |)), Th = log(|W |) + log(|W | − 1) + · · · + log(|W | − x + 1)
where x = |W1 ∪ · · · ∪ WM |, Ti = LN(nW1 − kW1 + 1) + · · · + LN(nWM − kWM + 1),
Tp = |W | log (q) + (|V | − |W |) log (1 − q)

by t ype(α), and the second of which encodes the details, represented by details(α).
For all quantities where the upper limit is not known, we use the universal integer code
(Rissanen 1983), which is given by LN(n) = log(2.865064)+ log(n)+ log log(n) . . .

and sums over all positive terms. If the upper limit is known then we use the uniform
code (Grünwald 2007), given by log(n). Note that all logarithms are to base two.

In the description length of α, to describe the type of action we use the uniform
code over all possible action types as there is no priority or bias towards any action.
Thus,DL(t ype(α)) = Ta = log(l), as we require− log 1

l bits. Here, l = 6 as we have
defined six action types above. The computation of DL(details(α)) for each action
type is shown in Table 3. That is, details(add) is the summation of the number of
bits required to describe the set of vertices (Tp = DL[(W , kW )], see Eq. 4), and the
number of edges in the corresponding vertex-induced subgraph. Instead of describing
the number of edges in a subgraph,we describe the number of edges short in a subgraph
when compared to a clique of same number of vertices. That is, for a subgraph having
W vertices, nW is the maximum number of edges possible between W vertices, and
kW is the number of edges, then we describe the difference between nW and kW ,
given by Tc. Thus, a dense subgraph with high number of edges would have smaller
description length, which favours discovery of dense subgraph patterns. Note that, the
hyperparameter ‘q’ in Tp can be used to influence the size of pattern (see Sect. 3.2).

In remove, update, shrink, and split, the index of the constraint to be
removed is communicated in Tb bits. Similarly, in case of merge the index of two
constraints are communicated in 2 × Tb bits. Since we only consider the merge of
two constraints at a time, the term LN(|2|) is omitted. In addition, for all the actions
except remove the information about the edges is communicated in Tc′ bits. In case of
shrink, terms Td and Te indicate the number of bits required to describes the number
of vertices removed from the original pattern and the removed vertices, respectively.
In split, the number of resulting constraints is described in T f bits, each constraint
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in Tg bits, vertices in each constraint in Th bits, and information about edges in each
component using Ti bits.

Lemma 1 For an action α, which updates a set of constraintsC toC′, IC(α) as defined
in Definition 1 is equal to

IC(α) = log P∗
C′(R) − log P∗

C(R), (11)

where R is a submatrix of D given by R = D[W1, . . . ,WM ;W1, . . . ,WM ], such that
W is the set of M vertices covered by the affected constraint(s),2 Cα .

Proof The proof is straightforward, however, for completeness we provide the follow-
ing details. In Eq. 8, log P∗

X (D) = ∑
i, j∈V log P∗

X (Di j ) is the sum over all pairs of
vertices. These pairs can be categorized into three groups, which are (1) both vertices
lie inW , (2) neither of the vertices lie inW , and (3) either (but not both) of the vertices
lie in W . It is only in the first case that the probability is updated on performing the
action α, while the rest of the probability terms remains unchanged and hence, these
terms cancel out each other, i.e., log P∗

C′(Di j ) = log P∗
C(Di j ). Thus, the result follows.

��
By virtue of Lemma 1, we come up with the following result.

Theorem 1 The complexity of computing information content IC of an action α is
O(|W |2), where W is the set of vertices included in Cα .

Proof The proof follows Eq. 11which is sumover all pair of vertices, (i, j) : i, j ∈ W .
Hence, this requires a complexity of O(|W |2). ��

As discussed above, we solve Problem 2 by iteratively performing that action (of
one of the six types defined above) with maximal IG. Thus, we introduce the problem
of online summarization of dynamic graphs (Problem 3). Hence, we heuristically
unfold Problem 2 by iteratively solving Problem 3 at each step.

Problem 3 (Online Summarization of Dynamic Graphs) Given the current state s,
graph snapshot Gs, corresponding adjacency matrix Ds , and current constraint set
Cs , perform that action ‘α’ from the set of all possible actions having maximal infor-
mation gain IG, such that the pattern(s) obtained after performing ‘α’ are connected
subgraph(s).

4.4 Additional details

Prior beliefs We consider two different types of prior beliefs to constitute the set B,
which are direct adaptations of the beliefs proposed by van Leeuwen et al. (2016), as
follows:

2 The affected constraints Cα are those constraints (both original and updated) that are affected by action
α. That is, if α transforms C to C′ the Cα is defined to be all constraints in either C or C′ that are not in
both C and C′
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1. Belief-c: In this case, we model the analyst’s knowledge about the total number
of edges in the initial snapshot of the data. In other words, the analyst has prior
knowledge about the relative edge density of the graph dataset. Solving Eqs. 1–
3, De Bie (2011) showed that P∗ turns out to be product of independent Bernoulli
distributions for each random variable au,v and is given by

P∗(D) =
∏

u<v

exp((2 · λ) · au,v)

1 + exp(2 · λ)
. (12)

This distribution is best represented as a matrix P∗ ∈ [0, 1]|V |×|V | with row and
column indices indicating the vertices, such that pu,v = exp(2·λ)

1+exp(2·λ)
= ρ(G0)

suggests the probability of au,v = 1, i.e., an edge between vertex u and v.
2. Belief-i: Similarly, here, the user possesses a belief about the individual degree of

each vertex in a snapshot of the data. The maximum entropy distribution turns out
to be a similar product of independent Bernoulli distributions, given as

P∗(D) =
∏

u<v

exp((λu + λv) · au,v)

1 + exp(λu + λv)
, (13)

where pu,v = exp(λu+λv)
1+exp(λu+λv)

is the probability of random variable au,v = 1.

Updating the background distribution When a pattern θ = (W , kW ) is discovered
(through action add), a constraint C = ( fW , kW ) is added to the set C, and P∗ is
updated using Eqs. 5–7 (van Leeuwen et al. 2016), where the updated P∗ is given as

P∗(D) =
∏

u<v

p′
u,v

au,v · (
1 − p′

u,v

)1−au,v , (14)

where

p′
u,v =

{
exp(λu+λv+λW )

1+exp(λu+λv+λW )
if u, v ∈ W ,

exp(λu+λv)
1+exp(λu+λv)

otherwise .
(15)

Thus, for all pairs (u, v) : u, v ∈ W a unique Lagrangian multiplier, λW is
introduced (using the bisection method) upon updating the background distribu-
tion. Similarly, if multiple constraints are present in C, then p′

u,v is computed as
exp(λu+λv+∑

C∈C:u,v∈W λW )

1+exp(λu+λv+∑
C∈C:u,v∈W λW )

. Hence, it is efficient to store only the Lagrangian multi-

pliers and compute the probability whenever required.
If a remove action is performed then the corresponding Lagrangian multiplier is

removed from the list to update the background distribution. Similarly, for all other
actions, first the corresponding Lagrangian multiplier(s) to the original constraint(s)
are removed and then using Eqs. 5–7, new Lagrangian multiplier(s) are computed.
Hence, this is an efficient way to update the background distribution.
Feasibility constraint In order to provide the user with a concise summary we
introduce a feasibility constraints to limit the number of actions performed in each
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state. That is, we consider an action feasible if the information gain is positive, i.e.,
IG(α) > 0. Although, it may be altered as per user preference, this choice is motivated
by MDL principle and ensures that an action always provide more information about
the data than that it costs to describe the action.

5 The DSSG algorithm

In this section, we introduce an algorithm called DSSG, of which the step by step
procedure is outlined in Algorithm 1. DSSG is a heuristic approach to solve Problem 2
thatworks in an iterativemanner, solving Problem3 in each step. The overall procedure
of DSSG can be summarized as follows.

DSSG starts with an initial graph snapshot G0, an initial set of constraints B (as the
analyst’s prior belief), and a set of constraint C (which is usually ∅ initially). Given
this, the maximum entropy distribution P is then computed (Line 2). For each state
s (Line 3) actions are performed iteratively to solve Problem 3 (Lines 5–10). The
process continues until no action can be performed (Line 14). Each performed action
consists of an update of the background knowledge (updating P and C) followed by
communication of the performed action B, to the analyst (Line 12). An example can be
seen in Fig. 1, where in each state the initial and final (represented by superscript I and
F respectively) set of constraints is represented byC (indexed by subscript s ∈ [1, T ]).

The feasibility constraint comes into effect while searching for the best action to be
performed in each step (Line 11). The overall best action with the maximal value of
IG is selected and returned. If the best action violates the feasibility constraint, then
null is returned and the process continues with the next graph snapshot.

The EvaluateAdd procedure is used to discover the best new subgraph pattern
with maximum IG, which is a complex problem. This can be realized by the fact
that the discovery of new pattern requires the evaluation of all possible 2|V | candidate
subgraphs. Hence, we use a hill climber based search algorithm (SearchPattern,
see Algorithm 2) based on the SSG algorithm (van Leeuwen et al. 2016), which is
proposed for finding a subjective interesting subgraph in a static graph. This algorithm

Algorithm 1 DSSG
1: procedure DSSG(GT , C, B)
2: Compute Maximum Entropy Distribution for G0 given B as P
3: for each Gs ∈ GT do  here GT is a sequence of static graphs (snapshots)
4: repeat
5: A ← EvaluateAdd(Gs , P)

6: R ← EvaluateRemove(Gs , P,C)

7: U ← EvaluateUpdate(Gs , P,C)

8: S ← EvaluateShrink(Gs , P,C)

9: M ← EvaluateMerge(Gs , P,C)

10: T ← EvaluateSplit(Gs , P,C)

11: B ← GetBestAction(A, R,U, S,M, T)  Returns action with max. IG
12: if B �= ∅ then
13: Update C and P using B and Communicate B to the analyst

14: until B �= ∅  Move to next snapshot if nothing is to be learned
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Algorithm 2 Find the most interesting pattern for addition
1: procedure SearchPattern(Gs , P , H∗, I∗)
2: H ← H∗, I ← i∗
3: for u ∈ Neighbors(H ,Gt )\W do  try if adding a vertex increases I
4: W ′ ← W ∪ {u}, I ′ ← IG(add)

5: if I ′ > I then
6: W ← W ′, I ← I ′, H ← (W ′, kW ′ )
7: if I > I∗ then
8: return SearchPattern(Gs , P , H , I )
9: else
10: for u ∈ W do  try if removing a vertex increase I
11: W ′ ← W\{u}, I ′ ← IG(add)

12: if I ′ > I then
13: W ← W ′, I ← I ′, H ← (W ′, kW ′ )
14: if I > I∗ then
15: return SearchPattern(Gs , P , H , I )
16: else
17: return (H∗, I∗)  If nothing increases I∗ return the found graph pattern

starts with a seed pattern H∗ and recursively adds (Line 3–6) or removes (Line 10–13)
vertices to find a pattern with a maximal value of IG. This search stops if neither a
vertex can be added nor removed (Line 17). To ensure the connectedness constraint,
while adding vertices only vertices neighboring to vertices present in the pattern are
checked (Line 3). As this hill climber is likely to suffer from convergence to local
optima, we independently run the Algorithm 2 for a list of seed patterns (van Leeuwen
et al. 2016) and select the single best pattern as search result. Further, note that the
computational cost of naïvely computing IG(add) at each step of the hill climber
would be prohibitive, as it would require to compute a new Lagrangian multiplier to
update the background distribution at each step. As this is the same problem as van
Leeuwen et al. (2016) faced, we also adapt the same solution. That is, information
content IC of a pattern θ = (W , kW ), as defined in Eq. 8, is approximated by

IC(add) ≈ SI(θ) = nW · KL
(
kW
nW

||pW
)

. (16)

We empirically show that Eq. 16 is an adequate approximation of Eq. 8 in Fig. 2.
To obtain Fig. 2, we created a random graph of 20 vertices using the Barabási-Albert
model and computed the values ofSI (Eq. 16) and IC (Eq. 8) of all possible connected
subgraphs, considering the two types of prior belief as discussed in Section 4.4. It is
observed that for all candidate subgraphs (and for both types of prior belief) the value
of SI is always less than or equal to IC. Although they are not exactly equal, the
correlation r = 0.9999 (in Fig. 2a) and r = 0.9948 (in Fig. 2b) are high enough to
suggest that SI can be successfully used as proxy for IC, as is also argued by van
Leeuwen et al. (2016).Moreover, computingSI is clearlymuch faster than computing
IC, as it does not require updating the background distribution at each step. Hence,
this allows to discover surprisingly densely connected graph patterns from snapshots
of the graph in an efficient way.
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Fig. 2 Plots of IC versus SI of all connected subgraphs of a Barabási–Albert random graph of 20 vertices
(Color figure online)

Algorithm 3 Find a candidate shrink pattern
1: procedure ShrinkPattern(H∗, P , I∗)
2: for u ∈ W do
3: W ′ ← W\{u}, I ′ ← IG(α)

4: if I ′ > I then
5: W ← W ′, I ← I ′, H ← (W ′, kW ′ )
6: if I > I∗ then
7: return ShrinkPattern(H , P , I )
8: else
9: return (H∗, I∗)

EvaluateRemove and EvaluateUpdate are used to evaluate each constraint in
C to, either remove or update a constraint, respectively. In these procedures, each
constraint in C is independently evaluated by computing the corresponding IG. To
compute IC (as in Table 3), we update the background distribution assuming that the
action would take place. Of note, the update in the background distribution is rolled
back after evaluation of each constraint. Both of these method return the respective
constraint with maximal IG.

Similarly,EvaluateMerge returns two constraints (inC) or patterns which, when
merged, result in a connected graph pattern with maximal IG.

EvaluateShrink is used to evaluate each constraint in C for shrink and the
reduced constraint with maximal IG is returned. To shrink a pattern or constraint, we
use the procedure ShrinkPattern (Algorithm 3), which recursively removes vertices
(Line 2–7) until no increase in IG is observed (Line 9).

EvaluateSplit is used find the constraint which produces maximal IG upon
split. Note that, a new pattern that is the result of split may shrink in a next
iteration; hence we also evaluate a possible reduction of each resulting pattern upon
split using procedure ShrinkPattern. Thus, EvaluateSplit contains two parts:
(1) first the different connected components in the original pattern are identified (each
component acts as a new pattern or constraint), and (2) then each new pattern is
evaluated for shrink.
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Complexity In a single iteration of DSSG, six different procedures are executed
sequentially; hence, we discuss the complexity of each procedure. TheEvaluateAdd
procedure runs the hill climber SearchPattern independently, k times for k different
seeds. In each iteration of this hill climber, the computation of IG is the most compu-
tationally expensive part, with time complexity ofO(|W |2) (from Theorem 1), where
W is the set of vertices in a pattern. This hill climber is a direct adaptation of SSG
and van Leeuwen et al. (2016) showed that this complexity can be reduced toO(|W |).
Hence, if the number of neighbors in Algorithm 2 is (let’s say) N , then each itera-
tion takes O(N |W |). Thus, the worst-case complexity of running SearchPattern

becomes O(IN |W |), assuming that the hill climber runs for at most I iterations.
In the other procedures, to evaluate each constraint in C requires the computation

of IG, which takes O(|W |2) (from Theorem 1). Note that computing the Lagrangian
multiplier corresponding to a revised constraint in C requires to run the bisection
method, which has a complexity of O(n|W |2). In this, n is the number of iterations
required, computed as log ε0

ε
, where ε is the given error or tolerance and ε0 is the

initial bracket size. Thus, the other procedures have a complexity of O(n|W |2).
Given that the complexity of the overall algorithm strongly depends on the actual

number of iterations, which cannot be computed in advance, we will instead mention
empirical runtimes in the experiment section.

6 Experiments and results

In this section, we will demonstrate the efficacy of the proposed framework and cor-
responding algorithm, DSSG, by means of quantitative (Sect. 6.3) and qualitative
(Sect. 6.5) results on seven publicly available real-world datasets (Sect. 6.1). We also
compare the proposed method to baselines based on two recent methods for dynamic
graph summarization (Sect. 6.4).

6.1 Datasets

In this section, we will use the following seven publicly available datasets, also sum-
marized in Table 4.

High- School Interaction
3: This dataset has a total timespan of 5days. In all

9h of interaction is available per day, except for the first day with 5h, and the total
timespan is segmented into 41 different states of 1h each.

Workplace Interaction
3: This is an interaction network of employees at a

workplace. It has a total timespan of 10 working days, where interactions for 9h are
available for each day, except for the first day where 10h of interactions are available.
It is segmented into 91 different states of 1h each. Although the interactions are
instantaneous in nature, an edge exists for each interaction which occurred in a state
(snapshot).

3 source: http://www.sociopatterns.org/.
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Table 4 Datasets along with some of their properties. Type indicates if the dataset is a Directed (D) or
Undirected (U) graph, |V | is the total number of nodes in the graph, |ES | is the total number of unique
edges without timestamp, |ET | is the total total number of unique edges with timestamp, T is the total time
period for which the edges in the graph are considered, t is the time period covered by each individual state,
and |S| is the total number of states considered for each dataset

Dataset Type |V | |ES | |ET | T t |S|
High- School U 327 5818 20,448 5days 1h 41

Workplace U 217 4274 11,730 10days 1h 91

MathOverFlow U 24,818 187,978 231,465 6.5years 1 quarter 26

Reuters U 7403 105,343 159,977 66days 1day 66

TheMovieDB U 8292 236,691 249, 324 10years 1year 10

DBLP U 27,400 83,509 98,330 10years 1year 10

WebClicks D 80,306 90,435 231,055 22days 1day 22

MathOverFlow
4: This network captures the communication between users on

the MathOverFlow website. A timestamped undirected edge exists between two users
if one user answers another user’s question, comments on another user’s question, or
comments on another user’s answer to any question. The dataset has a total duration
of 2560days. Here we consider a total timeperiod of 6.5years, segmented into 26
states of 1 quarter (3months) each. The lifespan of any edge is considered to be three
months, i.e., an edge disappears 3months after the time it appeared in the network.

Reuters Terror Network
5: This dataset containswords that are present in each

news article following the 9/11 terror attack.We build a network of words (as vertices)
with a link between them (undirected edge) wherever they appear in the same article.
The total time period considered is 66days, with segments (snapshots) of 1day each.
In each state, the snapshot of the network contains all the words (and edges between
them) if they appeared in any news article published on that day.

TheMovieDB: A network of actors (vertices) is considered, with an edge corre-
sponding to a co-acted movie. The data is fetched using the TheMovieDB API.6 The
time period of the network is from year 2009 to 2016, and is segmented into 8 states of
1 year each. All movies in the 8 year time period having actors with popularity score
more than 2 are included. Each snapshot contains edges corresponding to movies
released in the same year.

DBLP:This is a co-author network, created using theDBLP7 data of all publications
in top-20 Machine Learning and Data Mining conferences8 over a period of 10years.
The dataset is segmented into 10 states of 1year each, adding an edge between two
authors if they have co-authored at least one publication in the given year.

WebClicks: A network of click requests (directed edges) is created from referrer
host to target host (nodes) for the time period between 1November 2009 to 22 Novem-

4 Source: https://snap.stanford.edu/data/sx-mathoverflow.html.
5 Source: http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm.
6 Source: https://www.themoviedb.org/documentation/api.
7 Source: https://dblp.uni-trier.de/.
8 source: https://scholar.google.co.in/citations?view_op=top_venues&hl=en&vq=eng.
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ber 2009. To prune the data,9 we only consider edges with more than 25 requests in
a day. Also, the network is segmented into 22 states of 1day each. That is, the edge
remains only for 1day, given that at least 25 requests were made from referrer host to
target host.

6.2 Experimental setup

The prior belief for each of the datasets, except for the TheMovieDB dataset, used in
this paper is type belief-c. For TheMovieDB type belief-i is used.

Since, we use an adaptation of the hill climber given by van Leeuwen et al. (2016),
we fix the following parameters as suggested by the same article.

1. The parameter ‘q’ used in computation of the description length of pattern (see
Table 3) is fixed at 0.01.

2. We use the ‘interestingness’ based ‘TopK’ seeding strategy with k = 10.

The experiments are executed on an AppleMacbook Pro 2018, with 2.3GHzQuad-
Core IntelCore i5 processor and8GBsofRAM.The source code andbinaries ofDSSG,
implemented in Python, are available for download at https://github.com/skkapoor/
MiningSubjectiveSubgraphPatterns.

6.3 Quantitative analysis

In this subsection, we demonstrate the performance of the proposed method on
the above mentioned datasets. We evaluate the results in terms of (1) the type of
actions performed in each state, (2) the number of patterns (or constraints) required to
summarize each state, (3) the densities of the patterns found in each state, (4) the ratio of
the vertices covered by the patterns in the dataset in each state, and (5) the compression
ratio between the encoding cost of the data given the initial background distribution and
given the final background distribution in each state. We also showcase the feasibility
of the proposed approach by presenting the time taken for online summarization of
all states in each graph dataset. Table 5 presents the results and summarizes the set of
found patterns for each dataset by the proposed method.

Number of patterns required to summarize each state We observe the lowest
median number of patterns, i.e., 5 forWorkplace andmost, i.e., 62, forDBLP. This is
expected asWorkplace has the smallest number of vertices andDBLP has the second
most number of vertices among all considered datasets. However,WebClicks has the
largest number of vertices but surprisingly very few patterns are found to summarize
each state ranging between 2 and 7. This is because WebClicks is sparsely dense
with the number of unique edges |Es | almost equal to number of vertices |V | (see
Table 4). For TheMovieDB, a high number of patterns are observed in the summary
of each state as TheMovieDB is a relatively dense dataset.

We also observe that the patterns found covers a high number of vertices despite
of performing only limited actions. The largest coverage of 58.41% is observed for
HighSchool and smallest of 0.49% inDBLP. In case ofWebClicks, reasonable cov-

9 Source: http://carl.cs.indiana.edu/data/websci2014/web-clicks-nov-2009.tgz.
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Table 5 Properties of the found set of patterns (or constraints) Cs in each state s. Minimum, median, and
maximum value of each property is shown among all states in each dataset, where the number of constraints
in each state is shown by |Cs |; total number of performed actions in each state by |A|; difference in two
sets of constraints (Cs−1 and Cs ) in terms of the number of edges added and removed covered by patterns
in either set by 	C; overall changes in the dataset between two consecutive states (s − 1 and s) in terms of
number of edges added and removed by 	s ; average of the average density of all the patterns in Cs by ρ̄;
compression ratio by CR; and coverage, i.e., the fraction of vertices of the dataset covered by all patterns
combined. Runtime (in seconds) is the time required to process all states of the dataset, i.e., to obtain a
complete solution of Problem 2

DataSet |Cs | |A| 	C 	s ρ̄ CR (%) Coverage (%) Runtime

High- school

Min 6 6 60 326 0.4104 0.47 10.70 307

Median 14 12 250 819 0.6247 8.01 28.13

Max 22 16 755 1247 0.7600 25.01 58.41

Workplace

Min 1 1 5 35 0.5176 0.36 2.16 96

Median 5 5 50 193 0.7000 1.23 3.23

Max 11 11 626 997 1.0000 36.44 28.57

MathOverFlow

Min 1 1 4151 8223 0.0070 0.63 2.59 74,849

Median 10 7 6147 16,703 0.0179 4.38 10.22

Max 23 17 14,138 24,292 0.1226 46.20 12.56

Reuters

Min 5 1 177 322 0.0353 0.16 2.20 79,049

Median 18 11 796 3827 0.2630 5.44 4.71

Max 32 27 6550 13,494 0.6693 19.50 16.52

TheMovieDB

Min 2 9 3725 22,145 0.0062 12.79 6.07 18,908

Median 27 45 6379 42,586 0.3125 21.82 10.93

Max 118 118 15,556 74,499 0.9968 48.30 17.62

WebClicks

Min 2 1 345 7959 0.6208 1.03 2.19 14,576

Median 6 2 539 11,759 0.6814 2.41 3.58

Max 7 3 3384 12,751 0.7104 18.50 4.24

DBLP

Min 10 10 462 4125 0.6207 7.49 0.49 72,548

Median 62 68 3599 16,705 0.6814 9.28 2.53

Max 142 160 6604 29,704 0.7104 11.51 5.13

erage in the range of 2.19%− 4.24% is observed. Hence, we conclude that depending
upon the size and density of a dataset, our method adequately identifies the number
of patterns required summarize each state of a dynamic graph.

Number and type of actions performed We observe that the number of actions
(|A|) performed in each state is consistent with number of changes taking place in
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Fig. 3 The fraction of each type of action used to summarize each dataset (Color figure online)

the network upon evolution from one state to another (i.e., total number of new edges
added and old edges removed, shown by 	S). That is, when 	S is smaller, a smaller
value of |A| is observed, and vice versa. For example, in Reuters only 1 action is
performed when changes in the network are small, i.e., a total of 322 edges are either
added or removed, and 27 actions are performed when the changes are much larger,
i.e., 13,494 edges either appeared or disappeared from the network. The fraction of
each type of action performed can be seen in Fig. 3. It is found that add and remove
are the two most frequently performed actions, whereas the other types of actions
depend on the nature of evolution of the network. It is seen that update is performed
only for the High- School network. For WebClicks, no merge or split actions
are observed. Hence, the type of actions carried out are dependent on the topology of
the network and the nature of evolution, to which our proposed algorithm effectively
adapts itself.

Quality of patterns We assess the identified patterns through average density10 ρ

and compression ratios CR.11 Minimizing the encoding cost of the data is only one
part of our objective, and we use it to signify the information contained in the patterns:
the higher the compression ratio, the more information about the data is provided by
the patterns. The maximum compression ratio is observed for TheMovieDB, which
is 48.30%, and the minimum of 0.16% is obtained for Reuters. This is accompanied
by the observed high values for the average of the average densities of all identified
patterns, including the minima of 0.0062 and 0.0070 in case of TheMovieDB and
MathOverFlow respectively, which are also higher than the average densities of
snapshots of the data. Thus, our method finds subjectively dense and informative
patterns.

We also observe for TheMovieDB where a more sophisticated belief, i.e., belief-
i is used. That is, the background distribution closely represents a snapshot of the
dataset, and with the change of state, any action would results in high compression
ratios, which is also observed in Table 5.

Quality of actions performed We next investigate the sequential approach taken
in Problem 3. From the nature of the problem, it is expected that with each performed

10 For a graph G = (V , E), ρ = |E |
|V |∗(|V |−1) (directed) or = 2∗|E |

|V |∗(|V |−1) (undirected).
11 CR is 1 minus the ratio of the encoding cost (number of bits, computed as − log2 P(D)) of the data
given the initial background distribution and given the final background distribution.
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(a) (b)

Fig. 4 Codelength (blue solid line) versus average of the average densities of patterns in set Cs (orange
dashed dotted line) versus state s. The vertical dashed lines indicates the change of state and the horizontal
axis represent from left to right all iterations, where a series of actions is performed for each consecutive
state (Color figure online)

action, the codelength of the data should decrease and the average of average densities
of identified set of patterns should increase. This is confirmed by Fig. 4, where the
codelength is found to be always decreasing and the density is mostly increasing for
the DBLP and TheMovieDB networks. We also observe in Table 5, that there is
a correlation between changes captured by the actions (i.e, 	C ) and changes in the
overall state (i.e.,	S) compared to the previous state. For TheMovieDB, we observed
a relatively larger value of 	C , i.e., 15,556, when 	S is also large, i.e., 74,499; for
Workplace we observed smaller value of 	C , i.e., 5, when 	S is smaller, i.e., 35.
Therefore, the actions capture the changes in the graph state appropriately.

Runtime analysis Last, we discuss the (computation) time taken to run the experi-
ment for each dataset. This is comprised of various factors, including the time required
to compute the background distribution, executing the hill climber with different num-
ber of seeds to discover patterns, creating a candidate list for each type of atomic
change to be performed, and updating the background distribution. In Table 5, the
factors visibly affecting runtime are the size and density of a dataset, and the number
of segments considered in a dataset. Overall, the maximum runtime of 79,049s, which
is approximately 22h for Reuters, appears practical. However, this could be further
reduced upon optimization and parallelization of the proposed algorithm. Also note
that all experiments have been run on a standard laptop.

6.4 Comparison with baselinemethods

In Sect. 2 (and specifically in Table 1) we have described in detail how DSSG differs
from existing methods for dynamic graph summarization, i.e., it solves a (slightly yet
crucially) different problem. Specifically, unlike other methods DSSG summarizes a
dynamic graph by discovering state-to-state relative changes in the form of evolving
patterns and incrementally updates the analyst’s knowledge after each graph snapshot.
To empirically demonstrate that DSSG provides good solutions to this problem, we
here compare its results to those obtained by two baseline methods adapted from
TimeCrunch (TC) (Shah et al. 2015) and Scalable Dynamic Graph summarization
Method (SDGM) (Tsalouchidou et al. 2020).
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Baseline methods Next we describe how we adapt TC and SDGM to match our
problem setting. For TC, at each state s we compute two summaries using TC, for
(1) graph sequence G1, . . . ,Gs−1, and (2) graph sequence G1, . . . ,Gs−1,Gs . The
difference between the two resulting summaries is the incremental information com-
municated to the analyst using two action types, namelyadd, to communicate patterns
that appeared in state s, and remove, to communicate patterns present in state s − 1
but not in s. These actions are encoded as with DSSG (see Table 3), except that the
number of action types is two. SDGM provides a summary after each state, hence for
SDGM we use the same two action types and encoding to communicate the changes
between each two consecutive summaries.

As neither TCnor SDGMconsiders prior knowledge, for consistency in comparison
we start from the same initial background distribution as for DSSG. The background
distribution is updated after each action, exactly as in our approach (Eqs. 5–7, 14).
Whereas our approach automatically selects the number of patterns needed to sum-
marize the changes, TC and SDGM do not. For TC we set the (maximum) number of
actions,12 to be the number of patterns found by DSSG in each state. For SDGM,13

we choose the maximum number of patterns among all states by DSSG as the number
of supernodes in each dataset, as it identifies a preset number of supernodes while
producing a summary in each state. Note that providing this information from DSSG
is potentially favorable to TC and SDGM.

Evaluation criterion The objective of our main problem, i.e., Problem 2, is to
minimize− log P∗

Cs
(Ds)+L(Cs |Cs−1) for each state s of a dynamic graph. Hence, we

assess the theremethods using this function as ameasure. For simplicity, we denote the
number of bits required to encode a graph snapshot Ds given background distribution
P∗
Cs
, i.e., − log P∗

Cs
(Ds), by L(Ds), and the number of bits required to encode all

atomic changes, i.e., L(Cs |Cs−1), byDL. In the following, we use superscripts I and
F to represent respectively the Initial and Final values of a state. Apart from absolute
values, we also investigate the difference between these initial and final values, which
is equivalent to the total IG achieved by performing all actions found for a state s, as
given by

IG =

⎛

⎜⎜⎝

LI (Ds )︷ ︸︸ ︷
− log PCI

s
(Ds) +

=0, as CI
s=CF

s−1︷ ︸︸ ︷
L(CI

s |CF
s−1)

⎞

⎟⎟⎠ −
⎛

⎜⎝
LF (Ds )︷ ︸︸ ︷

− log PCF
s
(Ds) +L(CF

s |CF
s−1)

⎞

⎟⎠

= log PCF
s
(Ds) − log PCI

s
(Ds)

︸ ︷︷ ︸
IC

− L(CF
s |CF

s−1)︸ ︷︷ ︸
DL

.

ResultsStartingwithFig. 5f, depicting overall compressionbymeans of normalized
LF (Ds) +DL over all states, we observe that DSSG yields lower (=better) values for

12 As recommended in Shah et al. (2015) we fix the Jaccard similarity threshold to 0.5.
13 Tsalouchidou et al. (2020) suggests choosing a high number of microclusters compared to the number
of supernodes, therefore, the number of microclusters is chosen as 10 times the required number of supern-
odes/clusters. The required window size is set to 2, to take into consideration only the previous state while
summarizing each state.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Each subfigure shows the distribution of values over all states, for a component of the evaluation
criterion, for six datasets and all three methods. Each measure is normalized by setting the maximum
absolute value observed for a dataset by any of the methods to one (Color figure online)
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four datasets; TC has better results forWorkplace andDBLP. This shows that DSSG
generally succeeds in finding better solutions to the overall problem, with TC often
close and occasionally better. If we now turn our attention to the results for IG in
Fig. 5e, we observe that DSSG is the only method that always finds actions having
positive information gain. For Workplace, where TC seemed to perform better on a
high level, TC finds patterns that provide negative information gain—which conflicts
our problem statement, and therefore the results are suboptimal from the perspective
of our problem.

For DBLP, however, TC performs better than DSSG with regard to both LF (Ds)+
DL and IG. We therefore investigate the individual components of IG, i.e., L I (Ds),
LF (Ds), IC, andDL, in Fig. 5a–d respectively. In Fig. 5a, b, we see that the encoded
sizes of the data at the start and end of each state are (logically) very similar to each
other, but they are also quite similar to those in Fig. 5f: the size of the data is a relatively
large part of the total compressed size. The (normalized) encoded sizes of the data
obtained by DSSG are typically smaller than those obtained by the other methods.

When we study the distributions of information content in Fig. 5c, we observe that
both DSSG and TC succeed in identifying patterns with high information content. The
high IC values for TC come at the cost of higher values for DL though: Figure 5d
shows that the description lengths required to communicate the patterns are larger for
TC than for DSSG—also for DBLP. Given that the same encoding is used for TC as for
DSSG, and the number of patterns is fixed for TC, this means that the patterns found
by TC are larger and often—but not always—less informative. (Also, note that DSSG
is able to employ other action types, enabling compact yet informative summaries.)
SDGM clearly solves a (very) different problem than DSSG, as it finds patterns with
both low information content and large description lengths.

In summary, we conclude that when we adapt TC and SDGM for the problem that
we consider in this paper, they perform less well than DSSG. TC finds summaries
that are similarly informative yet more complex than those of DSSG. SDGM, on the
other hand, generally finds complex summaries that are far less informative than those
identified by the other methods. We would like to stress that this should not come as
a surprise though, and should certainly not disqualify either TC or SDGM: they have
been designed to solve other problems than DSSG. The above results demonstrate
that our problem and approach are indeed different from those considered by TC and
SDGM, corroborating our proposed approach.

6.5 Qualitative analysis

In this subsection, we discuss how the summary created by our proposed approach can
be meaningful to a domain expert. Since we provide a summary of the changes in a
dataset, the effectiveness of the discovered patterns can be assessed by the information
captured in the sets of patterns and the actions performed on them. We analyze the
results14 obtained for DBLP and TheMovieDB.

14 In the following figures, graphs are shown such that the text size of a vertex label is proportional to its
degree. That is, if vertex degree is higher then text size is larger and vice versa.
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(a) Y2010: Add ‘A’ & ‘B’.
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(b) Y2011: Shrink ‘A’ & ‘B’; Merge ‘A’ & ‘B’
to ‘C’.
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(c) Y2012: Shrink ‘C’.

Henry G. Goldberg

Alex Memory

William T. Young

Brad Rees

Robert Pierce

Daniel Huang

Matthew Reardon

David A. Bader

Edmond Chow

Joshua Jones

Vinay Bettadapura

Oguz Kaya

Anita Zakrzewska

Erica Briscoe

Mary McGlohon

Leman Akoglu

Rudolph Louis Mappus IV

Robert McColl

Lora WeissCharalampos E. Tsourakakis

Jed Irvine

U. Kang

David D. Jensen

Jay Yoon Lee Lisa Friedland
Amanda Gentzel

Duen Horng Chau

B. Aditya Prakash

Alona Fyshe

Evangelos E. Papalexakis

Partha P. Talukdar

Nicholas D. Sidiropoulos

Tom M. Mitchell

Xinran Xu
Ching-Hao Mao

Chung-Jung Wu

Kuo-Chen Lee

Tien-Cheu Kao

Brian Gallagher

Brian Murphy

Hanghang Tong

Tobias Kötter

Michael R. Berthold

Danai Koutra

Eric P. Xing

Irfan A. Essa

Robson L. F. Cordeiro
Fan Guo

Donna S. Haverkamp

James H. Horne
Ellen K. Hughes

Gunhee Kim

Agma J. M. TrainaCaetano Traina Jr.

Nikou Günnemann

Philip S. Yu

Ana Paula Appel

Ananthram Swami

Prithwish Basu

Jure Leskovec

Shubhomoy Das

Thomas G. Dietterich

Andrew Emmott

Abhimanu Kumar

Qirong Ho

James Abello

Tina Eliassi-Rad

Nishchal Devanur

Wenwu Zhu

Peng Cui

Shiqiang Yang

Alex Beutel

Ted E. Senator

Keith Henderson

Koji Maruhashi

Meng Jiang

Stephan Günnemann
Miguel Araujo

Alan Fern

Neil Shah

Yasushi Sakurai

Ashwin Sridharan

Mukund Seshadri

Sridhar Machiraju

Brendan Meeder

Tudor Dumitras

Fei Wang

Christos Faloutsos

Manuel Gomez-Rodriguez

Lei Li

Spiros Papadimitriou

Oded Green

Pattern C
Pattern D

(d) Y2013: Add ‘D’.
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(e) Y2014: Split ‘D’ to ‘E’ & ‘F’; Add ‘G’;
Merge ‘F’ & ‘G’ into ‘H’.
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(f) Y2015: Split ‘H’ to ‘I’ & ‘J’; Remove ‘E’;
Shrink ‘C’; Merge ‘J’ & ‘C’ into ‘K’.

Fig. 6 Shown is the evolution of patterns in theDBLP network fromYear 2010 to 2015 (Color figure online)

DBLP For the DBLP graph, we discuss one of the various captured chains of
subgraph patterns, which demonstrates the evolution of the communities of 92 authors
centered mainly around Christos Faloutsos from Year 2010 to 2015. This evolution is
shown in Fig. 6. Initially (Fig. 6a) in Year 2010, two surprisingly dense communities
shown as pattern ‘A’ and ‘B’ are discovered,whereChristos Faloutsos is a common link
between the two communities. These two different communities have been condensed
in the following year and merged to form a single community, shown as pattern ‘C’
(Fig. 6b) with Christos Faloutsos and U Kang being some of the prominent names.
This collaboration network shrinks the next year (Fig. 6c). In Year 2013 another
very densely connected set of authors is discovered, shown as pattern ‘D’ in Fig. 6d.
Surprisingly, in the subsequent year, this set of authors got split into two different
communities of three authors each, i.e., Lisa Friedland, David D. Jensen and Amanda
Gentzel and Christos Faloutsos, Jay Yoon Lee and Danai Koutra. However, the latter
set of authors got merged with a newly discovered densely connected set of authors
centered around Christos Faloutsos and Evangelos E. Papalexakis, shown by pattern
‘H’ in Fig. 6e. Finally, in year 2015 the two different communities where Christos
Faloutsos is the common link, i.e., pattern ‘C’ and a part of pattern ‘H’, merge to
form one community with Neil Shah starting the collaboration with Leman Akoglu
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Fig. 7 Shown is the evolution of patterns in TheMovieDB network from Year 2012 to 2017 (Color figure
online)

and others. In short, we captured how the community around one author with a large
number of collaborations evolve over time.

TheMovieDB In this network, we discussed the discovered evolution of different
patterns or communities of 1019 actors from Year 2012 to 2017, as shown in Fig. 7.
For each found pattern, we also find the associated genres using the hypergeometric
test. A genre is considered to be significant if the p-value after Bonferroni Correction
(with factor 19) is less than 1e−1. During the Year 2012, two patterns ‘A’ and ‘B’ are
discovered (Fig. 7a). Pattern ‘A’, with significant genres Action and Comedy, includes
vertices such as LiamNeeson, Josh Pence, David Gyasi and Nick Holder, all with high
vertex degree. Pattern ‘B’ comprises of Sally Field andLee Pace as high degree vertices
and has Adventure and Fantasy as significant genres. In Year 2013, Pattern ‘A’ splits
into 8 resulting patterns (‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’). This suggests that these
8 patterns represents 8 different communities of actors. Surprisingly, among these 8
patterns (which are all non-overlapping disjoint patterns), 6 patterns (excluding ‘F’
and ‘G’) got merged to form Pattern ‘S’ only after pattern ‘K’ is discovered (Fig. 7b).
Hence, it is found that the actors of the pattern ‘C’, ‘D’, ‘E’, ‘H’, ‘I’ and ‘J’ are
indirectly connected through the actors in pattern ‘K’. Some of the notable actors of
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pattern ‘S’ include James Badge Dale, Kyle Chandler, Kirsten Dunst and Will Smith.
Pattern ‘S’ has Romance, Crime and Western as the three significantly associated
genres. Pattern ‘S’ is decomposed into 12 different patterns in Year 2014 (Fig. 7c).
All the 12 resulting patterns have different significantly associated genres such as,
Action with pattern ‘T’, Science Fiction with ‘U’, Documentary with ‘W’, Fantasy
with ‘X’, Animation and Family with ‘Y’ and ‘AE’, War with ‘Z’ and ‘AD’, Crime
with ‘AA’, Drama with ‘AB’ and Comedy with ‘AC’. Most of the patterns disappear
in the following two years, i.e., 2015 and 2016, except patterns ‘T’ and ‘AE’. In Year
2017, pattern ‘AE’ merges with a newly discovered pattern ‘AF’, resulting in pattern
‘AG’. Thus, pattern ‘T’ and ‘AG’ are observed in Year 2017 (Fig. 7d). Some of the
prominent actors in pattern ‘T’ are Sylvester Stallone, Lady Gaga, Ben Kingsley and
Alison Brie. Pattern ‘AG’ includes actors like Dustin Hoffman and OprahWinfrey and
has Animation, Fantasy and Adventure as significant genres.

This case presents how the collaboration between actors evolves over time. The
genres which are significantly associated to each pattern implies that our algorithm
successfully identifies different and evolving subgroups (or communities) in the net-
work.

7 Case study: airline flight network

To explore how the proposed approach and algorithm could be used in a real-world
scenario, we now present a case study on the US flight network.15 Flight networks are
typical examples of dynamic graphs that one would like to analyze on the fly, e.g., to
detect and monitor delays as early as possible.

Dataset We use the scheduled and actual flight operating data for the month of
January 2017, with 298 airports (considered as vertices) and 450,017 flights operated
in that month. The dataset has features such as scheduled departure and arrival time,
along with actual departure and arrival time, for each flight. Using these features we
create two types of networks: (1) in a scheduled flight network, a directed edge for a
given time interval is included from origin to destination airport if at least one flight
was scheduled to depart or arrive in that interval; (2) in an actual flight network, a
directed edge is included between two airports if at least one flight actually departed
or arrived in that interval.

For either type of network we create 31 independent instances, one for each day
of January 2017. Each network is segmented into 20 sequential snapshots, or states,
of 1h each (from 0400 h to 2400h, all converted to UTC -7). The motivation behind
choosing 1h as the length of a snapshot is that airliners manage their operations in
blocks of 1h duration each. For simplicity, we do not consider cancelled flights in this
case study.

ApproachWeuseDSSG to independently summarize both the scheduled and actual
flight network. In both the cases, we assume the analyst to have a prior belief on the
number of routes scheduled to be operated from each airport in the initial snapshot
(i.e., the total number of airports from where at least one flight is arriving and the

15 Source: https://www.transtats.bts.gov/.
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(a) (b)

Fig. 8 Actions (and their types) throughout the day as found by DSSG on the scheduled and actual flight
networks of two days (Color figure online)

total number of airports to where at least one fight is departing). We then inspect the
resulting summaries.

Summaries As the data is large and dynamic, visualizing all patterns or the com-
plete summary at once is not practical. Instead, Fig. 8 visualizes the sequence of
actions identified by our method on a given flight network, to provide a high-level
overview—or fingerprint—of the summary. Such fingerprints can then be compared
to spot deviations between the scheduled and actual dynamic networks.

Comparing summaries An analyst could investigate the discovered patterns (as
shown in Sect. 6.5), but here we first investigate the differences between the obtained
summaries, to learn about unexpected events (here: delays) causing the observed
network to differ from the expected network. For illustrative purposes, we use the
scheduled network of day 14, and actual networks of days 14 and 21.

Inspecting the fingerprints in Fig. 8 shows that the actual flight network of day 14
behaves differently from both the scheduled flight network of day 14 (Fig. 8a) and the
actual flight network of the same day one week later (Fig. 8b). For example, in the
initial snapshot (0400–0500h) in Fig. 8a, the prior distribution sufficiently described
the scheduled flight network of day 14 and hence no new patterns are discovered. In
the actual flight network of that day, however, two patterns are discovered for that
snapshot. A closer look at the data reveals that this is caused by flights that operated
either ahead of time or delayed. In Fig. 8b, similar observations can be made for the
actual flight networks for two days exactly on week apart. To further investigate the
causes of deviations, an analyst could inspect the patterns and actions. DSSG provides
a sequence of actions (descending by IG) that an analyst could learn from, especially
when supported by an environment for interactive data and pattern exploration (see
Discussion).

Inspecting patterns To further understand the differences between the flight net-
works,we consider two typical block hours, i.e., 1400–1500 and 1500–1600h. Figure 9
shows the top 5 patterns16 with regard to information content (IC) and for the same
three different networks as above. Note that this means that we only show patterns
that are newly discovered or revised in the current state.

16 An analyst could of course visualize all actions or patterns in the summaries, but we only show the top
5 patterns for reasons of space and clarity.
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Fig. 9 The top 5 patterns with regard to information content discovered from each respective flight network.
Color coding: the pattern with highest information content is shown in red, followed in order by magenta,
green, blue, and orange. Labels indicate airport codes (Color figure online)

From Fig. 9a we observe that, for the scheduled flight network of day 14 during
1400–1500h, four out of the five patterns are star-shaped, with hub airports. In the first
pattern (shown in red)MSP is the hub, with flights departing for airports such as ATW,
LNK and MEM. Similarly, patterns 2 (magenta) and 4 (blue) have SNA and ORD as
hubs, respectively. Pattern 3 (green) has STL and EWR as hubs, where flights are
departing, and two other airports, OMA and OAK, where flights are arriving. These
patterns indicate that a large number of flights are scheduled to depart from hubs like
MSP, SNA, ORD and STL, while flights are expected to arrive at OAK and OMA.
Finally, pattern 5 is a connected set of airports including SFO, XNA, ORD and SCE.
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In the actual flight network for the same timeslot in Fig. 9c, the most informative
pattern is a set of densely connected airports including SLC, DEN, LAS, and SEA
(shown in red). The second pattern (magenta) is similar to themost informative pattern
found in the scheduled network (red in Fig. 9a), with MSP as hub. Patterns 3, 4, and 5
are also star-shaped, with hubs SLC, JAX, and SEA respectively. Upon investigating
the underlying data we find that patterns 1 and 3 comprise flights having a combined
positive delay (flights departing and/or arriving late) of 1083min and 23min, respec-
tively. This is a relevant discovery, as 1083min is a large combined delay and pattern 1
was not found in the scheduled data. For pattern 2, which we did find in the scheduled
network, no positive delay is observed (instead we find a combined negative ‘delay’
of roughly 9min, which is very moderate). For patterns 4 and 5 negative delays are
observed. Similar observations can be made for the block hour in Fig. 9c, d.

The fingerprints of Fig. 8b already suggested that the actual flight networks of days
14 and 21 differ, and this is confirmed by the different top 5 patterns shown in Fig. 9e,
f. Interestingly, none of these patterns is present in either the scheduled or actual flight
network of day 14, and these patterns are also found to correspond to substantial
positive and/or negative delays.

Together, these observations indicate that by comparing the summaries and patterns
discovered by DSSG, an analyst can learn about sets of connected airports where
structural operational deviations from the schedule occurred, which often resulted in
delays. As such, this case study served to illustrate how our approach could be used
in a real-world scenario where online and incremental analysis of structural changes
in dynamic graphs can render valuable insights.

8 Discussion

We propose a framework for summarizing sequential datasets in an online setting.
We define information gain using both the maximum entropy principle and minimum
description length principles. This measure enables not only to quantify the infor-
mativeness of a pattern, but also of the proposed actions (or atomic changes) in our
framework, which enables to capture the evolution in a graph by evolving patterns.
The proposed generic framework for subjective summarization of sequential data can
be further instantiated for different types of evolving datasets, such as event sequence
databases. In this paper, we instantiated the proposed generic framework for dynamic
(simple) graphs.

This work focuses on the discovery of an online summary of dynamic graphs,
by iteratively identifying actions with maximum information gain. The summary of
a dynamic network contains a set of subgraph patterns (or constraints) along with
captured changes in those (chains of) patterns over time. The findings from the exper-
iments performed on different networks indicate that (1) the generated summaries are
informative with regard to the analyst’s prior knowledge about the data, with relatively
high observed compression ratios; (2) the sets of subgraph patterns identified to sum-
marize the networks are found to be relatively dense; and (3) the discovered evolving
patterns provide an informative sequence that can be further inspected and analyzed.
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Also, with the proposed measures of information gain and information content, we
show in the airline case study that our method can be used to rank the found patterns.

We observe during the experiments that a pattern might appear regularly or spo-
radically in different snapshots of a dynamic network. This leads to a situation where
our method learns and forgets the same pattern multiple times. However, on each
occasion, our method treats the same pattern as newly acquired knowledge. It would
be interesting to identify these instances while summarizing a network over time. A
way to address this limitation could be to label each subgraph pattern and explore the
similarity between two subgraph patterns. Thus, similar to TimeCrunch (Shah et al.
2015), the periodicity of a pattern could be explored. Another limitation of our work
is the consideration of prior belief of the analyst. In this setting, we only consider that
the analyst has prior knowledge on the initial snapshot and is interested in observing
the changes in the network. A different setting may consider that the analyst knows
about the different snapshots of the network.

One future opportunity includes improving the scalability of the proposed frame-
work. The runtime of the proposed algorithm is currently higher than the two methods
used to compare the summaries provided byDSSG, including TimeCrunch (Shah et al.
2015) and SDGM (Tsalouchidou et al. 2020). Notably, the other two methods have a
highly optimized implementation using parallel and distributed computing capabili-
ties. For now, DSSG sequentially executes multiple procedures, including the number
of independent seed runs of the hill climber. These procedures are highly independent
and could be executed simultaneously. Hence, DSSG has several inherent features
which may allow a parallelized implementation. This would significantly reduce the
runtime and improve the scalability of the algorithm. Another future opportunity
includes the development of a tool based on the proposed framework, for interac-
tive visualization and exploration of changes identified in a dynamic network. This
tool would further provide a user-friendly platform for analysts to learn how a network
evolves with time.

9 Conclusion

We presented the novel problem of subjective summarization of sequential data in an
online manner. As a specific instance of this generic problem, online summarization
of dynamic graphs was introduced. We presented a framework to solve this problem,
which has been built on the existing ideas related to maximum entropy principle,
the minimum description length principle, and subjectively interesting subgraph pat-
terns. We then introduced an efficient algorithm, called DSSG, which is followed
by extensive experiments on real-world datasets. Through experimental results, we
demonstrated the effectiveness of the proposed algorithm. The generated summaries
are found to be informative with regard to the analyst’s prior knowledge about the data.
We conclude this from the observed substantial compression ratios and the fact that
compression equates learning. We have also found different sequences of patterns,
which evolved over time in a network. We also presented a case study and demon-
strated a potential use of the proposed method in the airline domain. Comparison of
two different summaries of the airline network, using the scheduled and the actual
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flight data, revealed potentially informative events. As a part of future work, it would
be interesting to extend the proposedmethod to incorporate a feature to capture period-
icity of the patterns; another is to extend this method to multigraphs, weighted graphs,
and attributed graphs. Finally, as a part of our ongoing/future work, we aim to develop
a tool for interactive visualization and exploration of the found patterns.
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