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Simple Summary: We reanalyzed a publicly available breast cancer proteomics dataset consisting of
122 human tumor samples using a scalable cloud computing workflow. By doing so, we were able
to search these files against millions of known human sequence variants and hundreds of common
post-translational protein modifications, thereby demonstrating the power of cloud computing to
address proteomic data in a true biological context. We identified thousands of relevant sequence
variants and PTMs, indicating that the original studies may have only scratched the surface of the
true value of the CPTAC studies completed to date. We present the results of this reanalysis in a
searchable web interface for community analysis and validation.

Abstract: The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the
most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of
proteomic data analysis is still performed using software housed on desktop computers which limits
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the number of sequence variants and post-translational modifications that can be considered. The
original CPTAC studies limited the search for PTMs to only samples that were chemically enriched
for those modified peptides. Similarly, the only sequence variants considered were those with
strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we
utilized unbiased protein databases containing millions of human sequence variants in conjunction
with hundreds of common post-translational modifications. Using these tools, we identified tens
of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated
peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically
enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants
reported by the original proteogenomics study, without the need for sample specific next-generation
sequencing. Finally, we report fivefold more somatic and germline variants that have an independent
evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC
proteomic data with cloud computing, we present an openly available and searchable web resource
of the highest-coverage proteomic profiling of human tumors described to date.

Keywords: cloud computing; proteomics; CPTAC; proteogenomics; post-translational modifications;
tumor proteomics; cancer

1. Introduction

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) was established to
perform in-depth proteomic analysis of tumor tissues previously analyzed by the Cancer
Genome Atlas Program (TCGA) as well as independent tumor samples. Today, CPTAC
has completed in-depth analysis of hundreds of patient samples with thousands of highly
fractionated liquid chromatography mass spectrometry (LCMS) experiments available
for public access. With multiplexed labels, each experiment can possess its own internal
quality controls allowing both superior inter-batch and intra-batch quantitative analyses.
The methods for analyzing CPTAC data have evolved over time and have been rigorously
described throughout their evolution. That LCMS-based proteomics can achieve interlabo-
ratory reproducibility when sample handling and processing are rigorously controlled has
been the demonstration of a powerful contribution of CPTAC to the proteomics commu-
nity [1]. Furthermore, by directly analyzing samples from TCGA, CPTAC developed an
ideal environment for the combination of proteomic and genomic data. The application
of “proteogenomics” to these datasets has demonstrated how complementary these tech-
nologies can be when used in tandem. The systematic presence of somatic mutations in
breast cancer was established in some of the earliest completed breast cancer genomes [2].
The ultimate effects of these mutations have been elusive until recently when a CPTAC
proteogenomic study revealed interplay between these mutations and dysregulation in
central phosphorylation signaling cascades [3]. A recent work has shown this is not limited
to breast cancer as demonstrated by the proteomic prioritization of somatic copy number
variations reported in a CPTAC proteogenomic analysis of colon cancer [4]. While these
studies have demonstrated the power of proteomic and genomic technologies when uti-
lized in tandem, they have inadvertently highlighted the weaknesses of these independent
workflows when performed in isolation using traditional software [3,5].

Unlike genomic and transcriptomic data analysis, the majority of proteomic data
analysis is performed using software designed for and executed on desktop personal
computers [6], although large studies do utilize high-performance servers (but still the
same software). Proteomic data continue scaling in both breadth and overall depth, with
many of today’s instruments achieving true sequencing speeds approaching 100 Hz, nearly
10-fold more than the best technology in 2015 [7,8]. Today, shotgun proteomics can rou-
tinely achieve proteomic coverage at a comparable depth within similarly comparable
timeframes as multiplexed transcriptomics [9–11]. While desktop PC architecture may have
been suitable for thorough interrogation of LCMS data generated at 1 Hz, the only way to
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process today’s data is through a series of compromises to limit the overall search space [12].
We have recently described the use of a scalable cloud computing workflow using the
modern search engine Bolt for the reanalysis of proteomic data [6,13]. While other solutions
for proteomic analysis through cloud computing exist today, these largely require the
skills of a dedicated bioinformatician to execute successfully [14]. Bolt utilizes a client-side
graphical user interface similar to those of desktop search engines that handles all steps of
data parsing, uploading, downloading and visualization, with no input necessary from the
end user. With the scalable cloud backend of Bolt, we can analyze LCMS files from any
instrument vendor with the use of vast libraries containing millions of human sequence
variants. In addition, Bolt can be used to simultaneously search for hundreds of common
human post-translational modifications (PTMs) by pulling more computational space from
the cloud. These searches are either impractical or simply impossible to complete using
desktop computers and/or traditional search engines and limit the biological relevance of
proteomic data analysis [13]. In 2020, OptysTech was awarded an NCI contract through
program 75N91020C00011 to evaluate the post-translational modifications present and cur-
rently unidentified in the existing CPTAC data. We applied Bolt to reanalysis of one recent
CPTAC breast cancer study that was evaluated with thorough proteogenomic analyses [15].
We report 802,820 peptide IDs across the 425 RAW files, which is an increase of 53% over the
default CRDC pipeline IDs, and provide a simple web interface for community evaluation
of these IDs along with the annotated spectral evidence. We also report that this is the most
comprehensive study ever performed on breast cancer tumor samples, identifying 96% and
87% of high-confidence peptides from previous unfractionated and fractionated studies
despite completely different sample preparation and instrumentation. We observed that
tens of thousands of post-translational modifications were readily observed in this dataset
without the need for chemical enrichment. These results are further supported by the
identification of the same phosphorylated peptides in the phospho-enriched samples from
the original study. Furthermore, by considering a compiled database of approximately
3.6 million human genomic sequence variants along with PTMs, we demonstrate that
proteomic data can be analyzed independently of genomics to identify sequence variants
with high confidence. In this analysis, Bolt successfully identified the majority of peptide
variants described in the original analysis while adding nearly five times more novel pep-
tide variants. An independent manual analysis was utilized to provide further confidence
to the identification of these novel peptide isoforms. The end results presented here by
combining the value of CPTAC data with cloud computing matching the curated human
sequence libraries amount to the single most comprehensive proteomic characterization of
human tumors described to date.

2. Materials and Methods
2.1. Protein Databases Utilized in this Study

Table 1 summarizes all the protein sequences utilized in this study.

Table 1. A summary of the protein sequences utilized in this study.

Protein Database Number of Protein Sequences Version/Date/Source

Human SwissProt;
Canonical + isoforms 42,414 UniProt, September, 2019

Human UniProt Trembl 53,211 UniProt, September, 2019
Common contaminants 269 cRAP database (gpm.org)
Known somatic variants
(missense + nonsense) 2,537,773 February, 2020 (Lazar Lab) [16]

Known population variants
(dbSNP) 1,042,598 dbSNP, July, 2020

2.2. Data Used in This Study

All the data were downloaded from NCI Data Commons, (https://pdc.cancer.gov/
pdc/study, 15 September 2021) using the identifier PDC000120. Tumor samples were taken
from 125 patient samples, and adjacent normal tissue samples from 18 patients were used

https://pdc.cancer.gov/pdc/study
https://pdc.cancer.gov/pdc/study
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as control material. Three tumors were rejected due to low-quality RNAseq data, and so
the proteomic analysis was performed on 122 tumors. TMT-10plex labeling was performed
on all the samples, with 131 channels used as a reference pool constructed from 40 tissue
samples (normal and tumor). In total, there are 425 TMT-10plex-labeled RAW files [15].

2.3. Description of the Bolt Parameters Utilized in This Study

Search engine Bolt utilizes a proteoform variant database of approximately 3.6 million
sequences and 450 mass modifications encompassing all currently known common human
post-translational modifications and mass shifts of single amino acid substitutions resulting
from missense mutations. Table 1 summarizes the various databases used to create the
proteoform database utilized in this study (Bolt directly combined them into a single
database and removed redundancy). Bolt was run on a cloud server with 128 GB RAM and
40 CPU cores. While we used the Microsoft Azure cloud platform, this could be deployed
on any other cloud platform or even on an in-house server. All the spectra were searched
with ± 20 ppm mass tolerance for both precursor and product ions to match the original
study parameters. In addition, one terminal partially tryptic cleavage event was allowed,
along with four missed cleavage sites. The total search time was ~20 days, approximately
1 h per file.

2.4. Custom Genomic Data analysis of Nine Patient Samples

Whole exome sequencing (WES) and RNAseq .bam files were downloaded using
dbGAP-controlled access for all the nine tumor and normal samples belonging to the
02CPTAC TMT plex files. In this analysis, the pooled control channel was ignored. These
datasets were already aligned to the hg38 reference, and the index file (.bai) was also
available on dbGAP. For each peptide variant identified by Bolt, a custom script was used
to identify the hg38 genomic coordinate of the single nucleotide variant (SNV) that resulted
into the single amino acid variant (SAAV). For some peptides, this translated into multiple
possibilities due to homology of protein sequences. When this occurred all coordinates
were utilized. Approximately 5% of the SAAVs lacked the appropriate genomic coordinates
for calculation and could not be used in this reanalysis. A custom script was used to search
for evidence of the variant peptides in each of the WES and RNAseq .bam files using six-
frame translation around ± 10 nucleotide residues from the identified genomic coordinate
of the SNV. Some peptides were initially mapped at the exon/intron boundary. Only the
part of the peptide piece that contains the SAAV and is contained fully in one exon was
used for search evidence. This custom script reports the total count of the observations of
the variant peptide observed across all the 18 WES and nine RNAseq .bam files.

2.5. CPTAC Data Pipeline Used to Compare the Proteogenomic Results

All the 122 tumor samples were analyzed using WES on both tumor and matched
normal samples. The MuTect software was utilized on the WES data for detection of
somatic SNVs by comparing the tumor WES to the matched normal WES data. These steps
were then followed by (a) copy number characterization employing AllelicCapSeg and
ABSOLUTE and (b) variant rescue, annotation and filtering including deTiN including
the MAF Panel of Normals (PoN) filter for filtering false-positive germline variants and
common artifacts from somatic mutation calls. The proteogenomic database tool QUILTS
v3.0 was then used to incorporate the germline and somatic nonsynonymous SNVs into a
protein sequence database for each patient [17]. The resulting databases were combined into
a single file along with the RefSeq human protein database. This resulting file is referred
to in this text as the patient-specific database. This database contained 179,768 sequences
derived from genomic SNV evidence. In the first search, all the spectra were searched
against just the RefSeq human database at 1% FDR, with the unmatched spectra searched
against the patient-specific database using Spectrum Mill. All the spectra were searched
with ± 20 ppm mass tolerance for precursor and product ions and were fully tryptic with
four missed cleavage sites. Static modifications were carbamidomethylation of cysteine
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and TMT10 labeling of lysine. Allowed variable modifications for whole proteome datasets
were acetylation of protein N-termini, oxidized methionine, TMT10 labeling of peptide
N-termini, deamidation of asparagine, hydroxylation of proline in proteo-genomic (PG)
motifs, pyroglutamic and pyro-carbamidomethylation. The final SNV IDs were filtered
by 1% FDR, length > 7 and spectral count > 2 TMT10 plexes for low-confidence hits. In
total, this led to identification of 3444 single amino acid variants (SAAVs). The TMT ratio
was then calculated for each PG event by first removing all entries with < 50% precursor
purity and then taking the median of all the entries for those SNVs that explain that PG
event. The ratios for all the PG events for a patient were then standardized by subtracting
the centering factor and dividing by the scaling factor of the protein-level TMT ratios for
that patient derived from the results of the RefSeq-only search.

2.6. CRDC Data Pipeline Used to Compare PTM/Proteomics Results

The default CRDC/PDC pipeline processes all PDC data and makes the peptide/protein
results available on the PDC portal. This pipeline uses the MS-GF+ search engine on the
RefSeq database. Partially tryptic peptides and oxidized methionine were allowed in the
search parameters.

2.7. Construction of the Bolt CPTAC Web Portal

Web portal is hosted on AWS (http://www.optystech.com/bolt.html, accessed on
15 September 2021) and utilizes the Angular stack. Besides the various protein and peptide
annotations, this portal displays the annotated MS/MS spectrum from the Bolt viewer and
also integrates with a previously published MS/MS spectra annotation tool, IPSA [18].

3. Results and Discussion
3.1. Peptide IDs with Bolt

Bolt identified a total of 802,820 peptide IDs across the 425 RAW files at 1% FDR,
comprising 17.2 million spectra. They corresponded to 545,533 unique peptide sequences.
In contrast, the CRDC pipeline identified 525,467 peptide IDs (494,900 unique peptide
sequences) on these 425 RAW files. From Bolt’s unique results (453,779), approximately
85% were due to the expanded search space (large set of PTMs and variants). Figure 1A,B
shows the Venn diagram comparing these results. Taking two peptide hits as a threshold
to identify a protein, Bolt identified 14,110 proteins from SwissProt Canonical compared to
13,187 identified by CRDC (Figure 1C shows the Venn diagram comparing the results at
the protein level, with at least two unique peptide IDs). As Bolt considers a vast search
space, which is inclusive of the search space of CRDC’s search, we would expect it to find
almost all high-confidence peptide IDs from CRDC. Figure 1D shows the distribution of
the CRDC’s reported q-value for all its unique IDs as well as those that are common with
Bolt. As expected, most of the unique IDs of CRDC are lower-scoring, with less than 10%
of IDs having high confidence. Figure 1E plots the same distribution for the Bolt’s reported
q-value for the unique IDs and the common IDs. In contrast with Figure 1C, almost 60% of
the unique IDs from Bolt are high-confidence. Thus, not only did Bolt report 53% more
peptide IDs; the majority of these unique IDs were also high-confidence. Overall, the
CRDC pipeline annotated ~27% of the acquired MS/MS spectra, and Bolt annotated ~40%
of all the MS/MS spectra (Supplementary Figure S1), which also shows that there is still
a vast number of unannotated MS/MS spectra. Figure 1F shows the sequence coverage
improvement (%) by Bolt for the SwissProt Canonical proteins compared to CRDC, where
we report a coverage increase for 86% of the proteins compared to the decrease for 11% of
the proteins. The instances where Bolt reported more than 70% coverage increase appear
to be from the database differences (CRDC uses RefSeq, whereas Bolt uses both SwissProt
and RefSeq). To the best of our knowledge, Bolt results are the largest collection of peptides
reported from patient tumor samples for any cancer. The entire data are available for
downloading as a Supplementary Materials File S1.

http://www.optystech.com/bolt.html
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Figure 1. A comparison of Bolt peptide IDs to the original analysis. (A) Venn diagram comparing the total number of
peptide IDs between the Bolt search results and the CRDC’s search results. (B) Venn diagram comparing the total number
of unique peptide sequences between the Bolt search results and the CRDC’s search results. (C) Venn diagram comparing
the total number of SwissProt protein IDs with at least two peptides between the Bolt search results and the CRDC’s search
results. (D) Distribution of q-values of the CRDC’s unique vs. common peptide results. (E) Distribution of q-values of the
Bolt’s unique vs. common peptide results. (F) Distribution of the protein sequence coverage increase by Bolt compared
to CRDC.

3.2. Evaluation of the Protein Sequencing Depth

To get a sense of completeness of the data, we compared the Bolt’s peptide results
at the peptide sequence level from this study with four other studies. Tyanova et al.
studied 40 tumor samples with fractionation and a super SILAC sample made with cell
lines, leading to 360 RAW files [19]. Tang et al. studied 65 breast tumors and 53 adjacent
noncancerous tissues with extensive fractionation, leading to 118 RAW files [20]. Gomig
et al. studied primary breast tumors, axillary metastatic lymph nodes and contralateral and
adjacent breast tissues from seven patients, leading to 69 RAW files [21]. Lawrence et al.
studied 20 breast cancer cell lines and four primary breast tumors, leading to 450 RAW
files [22]. Table 2 presents the percentages of the Bolt’s overlap for each of these studies. In
our comparisons, the Bolt result from this study identified 96% of the peptide IDs from the
study that did not perform fractionation (PXD012431). When we compared the Bolt results
to the studies that performed extensive fractionation, Bolt identified approximately 80%
of the total peptide sequences, and 87% of the peptide sequences reported at 0.1% FDR
(PXD005692). To put this in perspective, Bolt reported 86% overlap with the CRDC’s results
on this study data, which we consider a remarkable result as these global studies used
very different sample preparation techniques, instruments and data processing strategies.
We conclude that the extensive fractionation procedures employed by CPTAC provide a
comprehensive picture of the tumor environment.
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Table 2. Bolt results compared with various other breast cancer studies whose data are publicly
available. The percentages of peptide IDs common between each study and the data presented here
are reported.

PRIDE Identifier Type FDR Number of
Fractions

Total
Peptide IDs

Percentage
Identified by Bolt

PXD009766
Tumor 1% 6 164935 77

Tumor +
SuperSILAC 1% 6 218107 70

PXD005692
Tumor 1% 17 101781 81

Tumor 0.1% 17 70936 87

PXD012431 Tumor 1% 0 23483 96

PXD013455
Cell lines 1% 5 58305 69

Tumor 1% 5 90336 78

Another interesting result came from comparing the Bolt results to the studies that
analyzed cell lines (PXD013455 and PXD009766), where we found approximately 70%
overlap, highlighting the diverse expression profiles of cell lines and growing tumors noted
by others [23–25].

3.3. Comparison with Proteogenomic Analysis

Next, for the proteogenomic comparison, we listed the Bolt’s peptide variant results
and compared them to the CPTAC study. Bolt identified a total of 20,433 variant peptide
IDs across the 425 RAW files by searching against the 7+ million database and all possible
SAAVs. In comparison, the CPTAC study identified 3444 variant peptide IDs by searching
against 179,768 somatic variant genomic sequences (patient-specific database). The CPTAC
study then further filtered their results by filtering for those peptides that were observed
in more than two TMT plexes (for low confidence) and with the length greater than 7.
Using the same filters, Bolt reported 6991 variant peptides and the CPTAC study reported
1411 variant peptides. Figure 2A shows a Venn diagram comparing both of these sets of
peptide IDs, whereby the Bolt’s list already contains 82% of the CPTAC IDs. If we consider
only the CPTAC’s high-scoring IDs, then the comparison with Bolt improves to a total
of 90% identification overlap. Figure 2B shows the CPTAC’s score distribution for all
its peptide IDs categorized into three groups: peptide IDs that were also found by Bolt
(blue), peptide IDs that were matched to different spectra by Bolt (red) and peptide IDs
that were not reported by Bolt (green). We reported different spectrum match by Bolt as a
separate category as many such matches appear to be due to the accurate assignment of
the monoisotopic precursor mass (off by 1 Da). In these cases, the manual analysis shows
a split with Bolt and Spectrum Mill, each making correct and incorrect identifications.
Figure 2C demonstrates the q-value distribution of the Bolt’s IDs that are unique as well
as common with the original analysis, broken into three categories: COSMIC, dbSNP and
novel missense, showing that most of these are high-confidence.

The protein ERBB2 was highlighted by the authors as a protein of particular interest.
Both the Bolt results and the CPTAC study identified the mutation P8T Isoform C. In
addition, Bolt uniquely reported a peptide for the mutation P699L, which is a known
COSMIC variant (COSM4476768). BCAS1 is another important protein for which we
reported a similar observation. Both the Bolt results and the original analysis identified
the mutation Q24K, but Bolt uniquely identified the additional mutations E356K (known
COSMIC, COSM6403973), T270S (known population variant, rs182640580) and N76D
(novel missense).
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Figure 2. Comparing Bolt and CPTAC pipeline’s variant peptide IDs. (A) Venn diagram comparing the overall results
between Bolt and CPTAC. (B) Spectrum Mill score distribution for the CPTAC’s peptide IDs that were also found by Bolt
(blue), the peptide IDs that were matched to different spectra by Bolt (red) and the peptide IDs that were not reported by
Bolt (green). (C) Distribution of q-values of the Bolt’s IDs that are unique as well as common with CPTAC, categorized into
three categories: COSMIC, DbSNP and novel missense.

3.4. Evaluation of Discrepancies between the Bolt Results and the Original Analysis

We investigated these IDs in greater detail to determine why they were not identified
using the CPTAC pipeline. Bolt’s 6991 peptide variants corresponded to 5422 unique
variant events, which occur when multiple peptide sequences covering the same SAAV are
clustered. We first filtered for those IDs that are present in the 02CPTAC TMT-plex which
are all from 9 specific patient tumors samples. By doing so, we identified 3242 peptide IDs
corresponding to 2595 variant events. We then searched for these variant peptide events
in the raw genomic data from these 9 samples: 18 WES .bam files and nine RNAseq .bam
files. The genomic copy number observed for these 2595 variant events in all of these 27
WES/RNAseq files is plotted in Figure 3. Figure 3A plots the distribution of the 1040 variant
events that are from COSMIC and are not reported by the CPTAC study, and 3(b) plots
the distribution of the 393 variant events that are from COSMIC and are also reported by
the CPTAC study. This distribution clearly shows that most of the proteogenomic events
reported by CPTAC had a high copy number and were also observed both with WES and
RNAseq, whereas the IDs that are unique to Bolt have a generally lower copy number and
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were not universally observed with both WES and RNAseq. Figure 3C,D describes plots of
the same data for dbSNP variants with 696 events unique to the Bolt search results, with
153 Bolt events that were in common with the original analysis. Although it generates
a similar observation to the COSMIC plots, one marked difference is that Figure 3C has
a large number of variants that were common to both WES and RNAseq and were not
reported by CPTAC. This is an expected result as the CPTAC proteogenomic pipeline
ignored population variants while generating the protein database. Figure 3E plots the
distribution of the 314 novel missense variant events identified by Bolt, and this distribution
has even lower copy numbers compared to COSMIC and dbSNP distributions.

Figure 3. Distribution of the copy numbers observed with WES and RNAseq for the Bolt variant peptide IDs from the
02CPTAC TMT plex. The x-axis in all the plots is the genomic sequence copy number. (A) COSMIC variants that were not
present in the CPTAC study; (B) COSMIC variants that were also identified in the CPTAC study; (C) dbSNP variants that
were not present in the CPTAC study; (D) dbSNP variants that were also identified in the CPTAC study; and (E) novel
missense variants that were not present in the CPTAC study. For all the plots, blue shows the copy number for the peptide
IDs that were observed only in the WES data, red shows the copy number for the peptide IDs that were observed only in the
RNAseq data and green shows the WES copy number for the peptide IDs that were observed with both WES and RNAseq.
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3.5. Validation of Bolt IDs

To build confidence in the unique Bolt IDs, we performed an unbiased manual ver-
ification of peptide IDs with the assistance of researchers from the well-respected Don
Hunt Laboratory at the University of Virginia [26]. In this analysis, we evaluated two
peptides from each of the three categories, COSMIC, dbSNP and novel missense, that were
identified in one RAW file. Bolt reported high-confidence q-values for each of these six
peptides along with having a discriminatory ion that explains the site of mutation. None of
these had been identified by the original analysis due to a low copy number from WES and
RNAseq. Supplementary Table S1 lists these six peptides along with their proteomics and
genomics annotation information, and Supplementary Figure S2 also shows the spectra for
each of these six peptides. After manual sequencing, the Hunt Laboratory confirmed the
IDs for each of these six peptides matching the Bolt results. As this was an independent
and unbiased test, this helped provide additional confidence in the Bolt variant IDs in the
absence of strong genomic evidence.

For quantitation, we first filtered all the variant IDs to those that we believed would
yield robust quantitation. Variant events were only retained if they were observed in at
least 10 TMT plexes with the further restriction that the corresponding protein had at
least one canonical peptide observed. We employed two quantitation strategies. The first
approach featured complete TMT-10plex quantitation for all these filtered variant events,
where a variant event was considered significant if it had a TMT ratio greater than an
arbitrary cutoff of 1.5 or less than 0.5. The normal sample TMT plexes were not used for
any calculations in this strategy. The second strategy was spectral counting-based, where a
variant event was considered significant if it was observed in at least 14 out of the total
15 tumor TMT plexes with a precursor ion with ≤50% isolation interference. Furthermore,
the variant was required to be unobserved in either of the two control TMT sets, plex 14 and
plex 15. The total number of variant events observed with these two strategies are listed in
Supplementary Table S2. Given that both these quantitation strategies produced a relatively
small list and also because the two strategies are so different in their approach, there was
no overlap between the results of these two protein lists. The results show that there were
many variant events reported uniquely by Bolt that present a stronger expression in the
tumor samples compared to the control. Another methodology to evaluate these peptide
variants is to look at their mutation load that they present in the various tumor vs. normal
samples. Figure 4 plots the number of total variant events observed for each TMT plex
categorized by tumor (plexes 1–13, 16 and 17) vs. normal (plexes 14 and 15). Both the
set of COSMIC mutations uniquely identified by Bolt and the ones common with CPTAC
provided clear discrimination between the tumor vs. normal sets. The other variants, both
dbSNP and novel missense, appeared to be similar between the two sets.

Next, we investigated the modifications reported by Bolt. Figure 5A shows the various
categories of the Bolt’s peptide IDs in the various TMT plexes. Blue bars represent the tumor
TMT plexes and the two orange bars represent the control TMT plexes (14-plex and 15-plex).
As expected, the canonical entries, fully tryptic and partially tryptic peptides account for
the majority of the peptides, followed by peptides with various chemical modifications and
sequence variants. One chemical modification was surprisingly common: hydroxylamine
labeling of D, E and M amino acids, and this seems to be an artifact of the TMT quenching
step. In fact, we observed this modification in 6% of the total peptides, whereas methionine
oxidation was observed for only 5% of the total peptides. Thus, we need to be mindful of
this modification when searching in TMT datasets. Figure 5B shows the various biological
modifications observed for the different TMT plexes. In both Figure 5A and B, the peptide
count is lower for control TMT plexes compared to tumor TMT plexes for almost all peptide
classes. We believe this is an artifact of data handling as the original study also reported
quantification issue with the control plexes. Next, we utilized the same quantitation
strategies used for the variant study. We reported 22 modified peptides that were observed
in at least 10 TMT plexes and had a normalized protein TMT ratio of 1.5 or more. This list
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contains five phosphorylated peptides. We also reported 73 modified peptides that were
observed in at least 14 tumor TMT plexes and none of the two control TMT plexes.

Figure 4. Mutation load of various TMT plexes for the different categories of variant events.

Figure 5. Distribution of various Bolt peptides for each TMT plex. Blue represents tumor TMT
plex, and orange bars represent control TMT plexes in different categories: (A) canonical, chemical
modification, sequence variant; (B) different biological modification categories.
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Overall, Bolt identified 9149 phosphorylated peptides in the 122 tumor samples, and
7037 (77%) peptides out of those were also identified in the separate and independent CP-
TAC phospho-enriched tumor sample study. If we limit ourselves to those phosphorylated
peptides that were observed in more than two TMT plexes, Bolt identified 4132 phosphory-
lated peptides, 3837 (93%) out of which were also identified in the phospho-enriched study.
We believe this is a remarkable result as this suggests that these are high-confidence and
abundant phosphorylated peptides that can be monitored even without additional sample
enrichment. All the five of the previously mentioned phosphorylated peptides that Bolt
reported as observed in at least 10 TMT plexes and having a TMT ratio of 1.5 or more were
also reported in the enrichment study.

The list of modified and variant peptides identified in this study is available at
http://www.optystech.com/bolt.html, accessed on 15 September 2021. To the best of our
knowledge, this is the first such proteomic analysis portal which not only provides high-
level annotations, but also the matching details such as MS/MS spectra annotations. This
portal is also integrated with a previously published MS/MS annotation tool, IPSA [18].
Furthermore, it allows users to filter by different classes of modifications and peptide
variants.

4. Conclusions

The future is bright for the proteomic technology. This may be most clearly demon-
strated today with the recent proteomics screens leading to the development of the first
inhibitors of mutant KRAS proteins [27–29]. With annual increases in proteomics sequenc-
ing depth and corresponding speed of analysis, clinical applications and personalized
diagnostics are moving from theory to reality [30–32]. Today, hardware advances are not
yet being matched with comparable advances in data processing. We hope that the results
presented herein demonstrate a further proof of concept of the true power of proteomics
when paired with modern and scalable cloud computing.

We report sequence variants observed at the peptide level that are at the very low
end of copy numbers from whole exon sequencing and RNA sequencing datasets. This
is largely unsurprising today given the mounting evidence, including the results in the
original CPTAC study re-evaluated here, that peptide abundance has little to no correlation
with transcript abundance or copy number [33]. Current workflows typically rely on
quality filters that are ultimately affected by the relative copy numbers of each transcript
or genomic read [34]. We report herein the first evidence that proteomic data can be
searched independently in a truly global manner to identify sequence variants that are
transcribed and translated. We also observe that these variants have the expected mutation
load discriminatory power between tumor and healthy samples. While we have manually
validated a few of these, large-scale verification is not currently feasible for the millions of
peptides identified in studies of this size. We do acknowledge that some of these could
be false positives, but it is important to note that there are disagreements between WES
and RNAseq as well [34,35]. If proteomics is considered with equal latitude, this will only
result in the identification of new unique variants. If some of these variants prove to be
biologically relevant and/or differentially expressed, then manual or secondary verification
would be performed as a matter of course [36].

We also report identification of tens of thousands of post-translational modifications
in these unenriched samples, which demonstrates the depth of biologically relevant data
that can be mined from global proteomic data today. Modified peptides have the po-
tential to be biomarkers of interest and the only limitation in their analysis consists in
bioinformatic challenges.

We report five phosphorylated peptides that significantly altered expression levels in
the tumor samples and were also observed in the phospho-enriched samples. In addition
to biological modifications, we also report a technical artifact which was a result of the use
of hydroxylamine reagent for TMT quenching. We report more hydroxylamine-modified
peptides than those with methionine oxidation, demonstrating that any TMT study should

http://www.optystech.com/bolt.html
http://www.optystech.com/bolt.html
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consider hydroxylamine artifacts in their search parameters. The final takeaway of this
large collaborative study must be that there is tremendous unexplored depth of potential
biological findings hiding in plain sight in well-executed global proteomic studies such as
those being performed by the researchers of the CPTAC initiative.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13205034/s1, Figure S1: Annotated vs. unannotated MS/MS spectra compared between
(a) CRDC pipeline and (b) Bolt search result, Figure S2: Spectra of the selected 6 peptides, Table S1: Six
peptides along with their proteomics and genomics annotation information, Table S2: Number of
variant events that show significant fold-change by TMT ratio or by spectral count and observed in
at least 10 TMT-plexes. File S1. Bolt results.
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