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Cortical atrophy is a common manifestation in Parkinson’s disease (PD), particularly in
advanced stages of the disease. To elucidate the molecular underpinnings of cortical
thickness changes in PD, we performed an integrated analysis of brain-wide healthy
transcriptomic data from the Allen Human Brain Atlas and patterns of cortical thickness
based on T1-weighted anatomical MRI data of 149 PD patients and 369 controls.
For this purpose, we used partial least squares regression to identify gene expression
patterns correlated with cortical thickness changes. In addition, we identified gene
expression patterns underlying the relationship between cortical thickness and clinical
domains of PD. Our results show that genes whose expression in the healthy brain is
associated with cortical thickness changes in PD are enriched in biological pathways
related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, DNA
damage responses, and ER-Golgi traffic. The associated pathways were highly related
to each other and all belong to cellular maintenance mechanisms. The expression of
genes within most pathways was negatively correlated with cortical thickness changes,
showing higher expression in regions associated with decreased cortical thickness
(atrophy). On the other hand, sumoylation pathways were positively correlated with
cortical thickness changes, showing higher expression in regions with increased cortical
thickness (hypertrophy). Our findings suggest that alterations in the balanced interplay
of these mechanisms play a role in changes of cortical thickness in PD and possibly
influence motor and cognitive functions.

Keywords: cortical thickness, neurodegenerative diseases, neuroimaging data, imaging-genetics, gene
expression analysis

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of
dopaminergic and non-dopaminergic neurons in the brain and peripheral and autonomic nervous
system (Hirsch et al., 2012). Cortical atrophy occurs during the later disease stages and has
been associated with cognitive decline, including executive, attentional, memory, and visuospatial
deficits (Aarsland et al., 2017; Wilson et al., 2019). Although MRI studies of patient brains have
tried to link regional cortical atrophy to clinical features of the disease (Rosenberg-Katz et al., 2016;
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Wang et al., 2016; Chen et al., 2017; Li et al., 2018; Zheng et al.,
2019), little is known about the pathobiology that underlies the
selective cortical vulnerability in PD.

Analyzing the transcriptome in vulnerable cortical regions
may aid in better understanding the underlying molecular
mechanisms of atrophy in PD. Although gene expression data
of human post-mortem PD brains is available, most findings
relate to studies that focused only on one or few coarse brain
regions (Oerton and Bender, 2017). To perform whole brain
analysis of both gene expression and imaging data, studies turn
to the Allen Human Brain Atlas (AHBA), a high resolution gene
expression atlas covering the entire brain of six adult donors
without any history of neurological disorders (Hawrylycz et al.,
2015; Arnatkevičiūtė et al., 2019). The AHBA has been combined
with functional MRI data of PD patients and revealed that the
regional expression of MAPT, but not SNCA, correlated with the
loss of regional connectivity (Rittman et al., 2016). Using a similar
approach, correlations were identified between a cortical atrophy
pattern and the regional expression of 17 genes implicated in
PD (Freeze et al., 2018). Although both studies used spatial
transcriptomics to explore gene expression across the whole
brain, they only analyzed the expression of a limited set of
genes that are of interest to PD, e.g., those that are known as
genetic risk factors.

To investigate the relationship between high dimensional
genome-wide expression patterns and imaging data, multivariate
analysis methods are required. Partial least squares (PLS)
regression has been used to perform simultaneous analysis of
brain-wide gene expression from the AHBA and neuroimaging
data of adolescents, healthy adults, and Huntington’s disease
patients (Vértes et al., 2016; Whitaker et al., 2016a; McColgan
et al., 2018). The PLS approach allows the linking of multiple
predictor variables (genes) and multiple response variables
(imaging features) and deals with multicollinearity by projecting
variables to a smaller set of components that are maximally
correlated between both datasets. Thus, PLS is an attractive
model to identify gene expression patterns associated with
imaging features.

Here, we exploited PLS regression to find transcriptomic
signatures that are related to changes in cortical thickness (CT)
in PD. MRI data was obtained from patients and age-matched
controls to find CT changes across all cortical regions. Gene
expression samples from healthy donors in the AHBA were
anatomically mapped to the cortical regions to find brain-wide
gene expression patterns predictive of the CT changes observed
in PD patients. In addition, we assessed the relationships between
CT and clinical scores in PD patients and used a second
PLS model to find expression patterns associated with these
relationships across all cortical regions. With these models we
address three research questions: (1) Which cortical regions show
CT changes in PD, (2) Which genes and biological pathways
show expression patterns associated with these regional changes,
and (3) Which molecular mechanisms underlie the relationships
between CT and clinical scores in PD. To answer these questions,
we explored the whole transcriptome in cortical regions of
the healthy brain to find expression signatures predictive of
imaging features in PD.

MATERIALS AND METHODS

MRI Data Acquisition
MRI images of 149 PD patients (mean age = 64.8 years; 65.7%
male) were obtained from a cross-sectional cohort study and
is part of the “PROfiling PARKinson’s disease” (PROPARK)
study (de Schipper et al., 2017; Supplementary Table 1).
PD patients were recruited from the outpatient clinic for
Movement Disorders of the Department of Neurology of the
Leiden University Medical Center and nearby university and
regional hospitals. All participants fulfilled the United Kingdom
Parkinson’s Disease Society Brain Bank criteria for idiopathic
PD (Gibb and Lees, 1988); written consent was obtained from
all participants. The Medical Ethics Committee of the LUMC
approved the study. Three-dimensional T1-weighted anatomical
images were acquired on a 3 Tesla MRI scanner (Philips Achieva,
Best, Netherlands) using a standard 32-channel whole-head coil.
Acquisition parameters were: repetition time = 9.8 ms, echo
time= 4.6 ms, flip angle= 8◦, field of view 220× 174× 156 mm,
130 slices with a slice thickness of 1.2 mm with no gap between
slices, resulting in a voxel size of 1.15 mm× 1.15 mm× 1.20 mm.

Three−dimensional T1−weighted images from 369 controls
(mean age = 65.7 years; 48.1% male) were acquired in a
different cohort (Altmann-schneider et al., 2012), where all
imaging was performed on a whole body 3 Tesla MRI scanner
(Philips Medical Systems, Best, Netherlands), using the following
imaging parameters: TR = 9.7 ms, TE = 4.6 ms, FA = 8◦,
FOV = 224 × 177 × 168 mm. The anatomical images covered
the entire brain with no gap between slices resulting in a nominal
voxel size of 1.17 × 1.17 × 1.4 mm. Acquisition time was
approximately 5 min.

Cortical Thickness Changes in
Segmented Cortical Regions
Cortical thickness in cortical regions of PD patients and controls
was determined using cortical parcellation implemented in
FreeSurfer version 5.3.0 (Fischl and Dale, 2000). The FreeSurfer
algorithm automatically parcellates the cortex and assigns a
neuroanatomical label to each location on a cortical surface
model based on probabilistic information. The parcellation
scheme of the Desikan–Killiany atlas was used to divide the cortex
into 34 regions per hemisphere (Desikan et al., 2006).

To assess CT changes between patients (149) and controls
(369), a two-tailed t-test assuming unequal variances was applied
in SPSS Statistics version 23. P-values were corrected for multiple
testing across 68 cortical regions using the Benjamini-Hochberg
(BH) method. A two-tailed t-test was also used to assess CT
differences between the left and right hemisphere for each one of
the 34 cortical regions, with P-values being BH-corrected across
the 34 cortical regions.

Clinical Scores
All patients underwent standardized assessments, and an
evaluation of demographic and clinical characteristics
(de Schipper et al., 2017). MDS-UPDRS is a clinical rating
scale consisting of four parts: (I) Non-motor Experiences of
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Daily Living; (II) Motor Experiences of Daily Living; (III) Motor
Examination; and (IV) Motor Complications (Goetz et al., 2008).
UPDRSTOTSCR is the total score of all four parts. The SENS-PD
scale is a composite score of non-dopaminergic symptoms (van
der Heeden et al., 2016), LED is the levodopa equivalent dose
(Tomlinson et al., 2010), and MMSE is the mini-mental state
examination (Folstein et al., 1975).

Relationship Between Cortical Thickness
and Clinical Scores
We used CT data and clinical scores from 149 PD patients
to determine the relationships between CT and clinical
domains. We selected nine clinical features with numeric (non-
nominal) values for which scores were available for 82–123
patients: AGEONSET, SENSPDSC, MDS_UPDRS_3, MMSE,
LED, MDS_UPDRS_1, MDS_UPDRS_2, MDS_UPDRS_4, and
UPDRSTOTSCR (Supplementary Figure 1).

The correlation between CT and the scores of each clinical
feature individually was determined across patients by applying
linear regression. To obtain maximum correlation, separate
linear regression models were used for each combination of a
region and clinical feature:

CTi = α+ β1K j + β2Age+ ε (1)

where CTi is the CT of one region i across patients, Kj is the score
of one clinical feature j across patients. Age is taken into account
to correct for the age of patients. α is the background term, β1 is
the regression coefficient for Kj, β2 is the regression coefficients
for Age, and ε is the residual. The regression coefficient β1 was
used to determine the relationship between CT and clinical
domain scores, and assessed for statistical significance where
P-values were BH-corrected for 34 regions and nine clinical
features (t-test, H0: β1 = 0, P < 0.05).

Mapping Transcriptomic Data to Cortical
Regions
We downloaded normalized gene expression data from the
Allen Human Brain Atlas (AHBA1), a microarray data set
of 3,702 anatomical brain regions from six non-neurological
individuals [5 males and 1 female, mean age 42, range 24–57 years
(Hawrylycz et al., 2015)]. Preprocessing steps are described in
Supplementary Methods. To analyze the transcriptome in the
cortical regions, we used the mapping of AHBA samples to
cortical regions in neuroimaging data proposed in Arnatkevičiūtė
et al. (2019), where they applied Freesurfer on T1 MRIs of
the six donors in the AHBA to segment the cortical regions
according to the Desikan-Killiany atlas. AHBA samples were
mapped to 34 cortical regions from the left hemisphere, since
for only two out of six brains samples were collected from both
hemispheres and for four brains they only sampled from the left
hemisphere. By only analyzing the left hemisphere, we assumed
that there are small to no differences in gene expression between
the left and right hemisphere (Hawrylycz et al., 2015). Samples
were assigned to a segmented cortical region when their MNI

1http://human.brain-map.org/

coordinates corresponds to a voxel within a parcel, including
samples that are up to 2 mm away from any voxel in the parcel.
In total 1,284 samples from the AHBA were assigned to the 34
cortical regions.

Partial Least Squares (PLS) Model-1 and
Model-2
We used PLS regression (R-package pls 2.7) to find gene
expression patterns across the 34 cortical regions that are
predictive of gray matter atrophy and possibly their relationship
to scores of nine clinical domains (Supplementary Methods).
PLS regression and principal component analysis regression are
both methods where the original measurements are projected
to latent variables to study the data in reduced dimensions
(Figure 1A). PLS, however, projects variables from each dataset to
latent variables such that they are maximally correlated between
two datasets X and Y (Figure 1B). In this study, the predictor X is
a gene expression matrix of 34 regions (n) in the left hemisphere
and all 20,017 genes (m) and is used to predict imaging variables
(p) in the same set of 34 cortical regions. For each cortical
region and each gene, expression levels were averaged across
samples that fall within that cortical region and then averaged
across the six donors from the AHBA, such that the input
matrix of predictor variables contains one expression value for
every gene per cortical region. We implemented two PLS models
(Figure 1C): one single-response PLS model, model-1, to predict
CT changes, measured as the t-statistics of 1CT between PD
patients and controls, and one multi-response PLS model, model-
2, to predict the correlation between CT and clinical scores in PD
patients, measured as the t-statistics of the coefficients β1 in Eq. 1.

Pathway Enrichment
Pathway enrichment analysis was done using gene set enrichment
analysis (GSEA) and 2,225 pathways from the Reactome database
in ReactomePA R-package version 1.28. Genes were ranked based
on their weights to each PLS component; R in Eqs. 5 and 6 in
Supplementary Methods. Pathways were significant when the
FDR-adjusted P < 0.05.

Data and Code Availability
Transcriptomic data from the AHBA is available at http://human.
brain-map.org/. All scripts were run in R version 4 and can be
found online at https://github.com/arlinkeo/pd_pls.

RESULTS

Cortical Thickness Changes Between
Parkinson’s Disease Patients and
Controls
We analyzed CT changes between PD patients and healthy
controls (1CT) as a measure for gray matter loss (Figure 1C).
Each of the 68 cortical regions from both hemispheres was
assessed, for which 1CT was statistically significant in 10
cortical regions (t-test, BH-corrected P < 0.05; Figure 2A and
Supplementary Table 2). The lateral occipital cortex showed
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FIGURE 1 | Principal of partial least squares regression (PLS). (A) Principal component analysis (PCA) and PLS project measurements to a new latent space. Unlike
PCA, PLS tries to find a latent space that is maximally correlated with another measurement y from dataset Y on the same samples. (B) The first latent component
t1 of dataset X is maximally correlated with the first latent factor u1 of dataset Y . T and U scores determine the outer relations of individual datasets in the model.
The coefficient β determines the inner relation between both datasets X and Y in the model (more details in Supplementary Methods). (C) In PLS model-1, we
used regional gene expression as input to predict the regional t-statistics of 1CT. Given the PLS model, R in Eqs. 5 and 6 in Supplementary Methods is used as
gene weights. In PLS model-2, we used the same input to predict the t-statistics of correlation coefficients β1 of clinical features from Eq. 1.

decreased CT in patients compared to controls in both the
left hemisphere and right hemisphere. The left caudal anterior
cingulate, right isthmus cingulate, and right pericalcarine also
showed decreased CT in patients. Cortical regions with increased
CT in patients included the pars opercularis from both the left
hemisphere and right hemisphere, the right rostral middle frontal
cortex, right temporal pole, and right superior temporal cortex.
In general, we observed more decreased CT (atrophy) in caudal
regions of the cortex compared to rostral regions that showed
increased CT (hypertrophy).

Cortical Thickness Changes Between
Hemispheres in Parkinson’s Disease
Clinical symptoms appear asymmetrical at disease onset with
the left hemisphere being more susceptible to degeneration
than the right (Claassen et al., 2016). To assess whether this
asymmetry is reflected also in the observed atrophy patterns,
we compared the CT between the left and right hemisphere for
each of the 34 cortical regions in PD patients. We found six
cortical regions that showed significant hemispheric differences
(BH-corrected P < 0.05; Figure 2B and Supplementary Table 3).
For five out of six significant regions, CT was indeed smaller
in the left hemisphere compared to the right: banks of superior
temporal sulcus, entorhinal cortex, temporal pole, medial
orbitofrontal cortex, and lateral occipital cortex. For the lateral
orbitofrontal cortex, the CT was larger in the left hemisphere
compared to the right.

Gene Expression Patterns Predictive of
Cortical Thickness Changes in
Parkinson’s Disease Patients
To identify the molecular mechanisms underlying CT changes
in PD, we integrated the imaging features with brain-wide gene
expression profiles from the AHBA (Figure 1C). Using PLS

model-1 (see section “Materials and Methods”), the expression
of all 20,017 genes in 34 brain regions from the left hemisphere
was used as predictor variables and we used the t-statistics
of 1CT between PD patients and controls in the 34 regions
(Supplementary Table 2) as a single response variable. The
number of AHBA samples varied between 0 and 92 for
each one of the six brain donors and 34 cortical regions
(Supplementary Table 4).

The PLS components that explain maximum covariance
between the input space and the response variable are derived
from successively deflated predictor and response matrices.
Hence, the first component of the predictor matrix, component-
1, has maximum covariance with the first component of the
response matrix, and the second component of the predictor
matrix, component-2, has maximum covariance with the second
component of the response matrix, etc. Since PLS model-1 has
a single response variable, component-1 of the response matrix
is equal to a scaled version of the single response variable.
As such, we only examined PLS component-1 of the predictor
matrix (additional checking with leave-one-out cross-validation
showed that the optimal number of components is indeed one,
Supplementary Figure 2).

The scores of PLS component-1 of the predictor variables
(genes) showed a caudal-to-rostral expression pattern
(Figure 3A) that was correlated with CT changes in PD
brains (Figure 3B), i.e., gene expression of PLS component-1
was high in caudal regions associated with atrophy and low in
regions associated with hypertrophy. The Pearson correlation
between the PLS component-1 scores of the predictor variables
(gene expression) and the response variable (t-statistics of 1CT)
was 0.58, and explained 20.5% of the variance in gene expression
and 34.2% of the variance in CT changes. Cortical atrophy was
highest in the lateral occipital cortex and related to high PLS
component-1 scores. The pericalcarine showed the highest PLS
component-1 score. These results showed that the expression
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FIGURE 2 | t-Statistics of cortical thickness changes (1CT) across cortical regions. (A) CT was assessed between PD patients and healthy controls. Higher
t-statistics (red) indicate a larger CT in controls compared to the CT in patients and thus corresponds to cortical atrophy. (B) CT in the left hemisphere compared to
the right hemisphere in PD patients. Higher t-statistics (red) indicate a larger CT in the right hemisphere compared to the left hemisphere and thus corresponds to
cortical atrophy in the left hemisphere. P-values are BH-corrected and significant regions (P < 0.05) are labeled.

profiles of a weighted combination of genes can be predictive of
CT changes in PD.

Functionality of Genes Predictive of
Cortical Thickness Changes
A PLS component of the predictor variables is a linear
combination of weighted gene expression. We used the
gene weights of PLS component-1 to perform GSEA analysis
and revealed significant enrichment of 90 pathways, which were
among others involved in DNA damage checkpoints, stabilization
of p53, regulation of apoptosis, mitochondrial translation,
and SUMOylation of chromatin organization proteins
(Supplementary Table 5). High overlap of genes between
the enriched pathways suggested that these functional processes
are highly related to each other (Supplementary Figure 3).

Significant pathways are either positively or negatively
correlated with CT changes based on the median weight of genes

within pathways. Out of the 90 pathways that were significantly
enriched, three pathways were positively correlated with the
t-statistic of 1CT. These included SUMOylation of chromatin
organization proteins, signaling by cytosolic FGFR1 fusion
mutants, and class C/3 (Metabotropic glutamate/pheromone
receptors). Higher mean expression of genes within these three
pathways is related to cortical atrophy (higher t-statistics of
1CT); as apparent in the lateral occipital cortex (Figure 3C
and Supplementary Figure 4). The positive correlation also
indicates that a lower expression of these pathways is related to
cortical hypertrophy (lower t-statistics of 1CT). We found 87
negatively correlated pathways (median gene weight < 0). These
pathways seem to play a role in the mitochondrial regulation of
mitosis as we found pathways for mitochondrial translation, the
regulation of mitotic cell cycle, p53-(in)dependent DNA damage
checkpoints, and the degradation of mitotic proteins, such as
cyclins A, and D. In general, the mean expression of genes in
the negatively correlated pathways was high in cortical regions
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FIGURE 3 | Transcriptional signatures to predict t-statistics of 1CT between PD patients and controls in PLS model-1. (A) PLS component-1 scores of predictor
variables (gene expression) visualized in cortical regions (lateral and medial view of the left hemisphere). (B) Regression fit of the latent predictor variable, PLS
component-1 scores, with the single response variable, CT changes in PD measured as the t-statistics of 1CT between PD patients (149) and controls (369) across
the 34 cortical regions. (C) Mean expression of genes in the top 30 significant pathways (rows) across cortical regions (columns). A complete heatmap with all
significant pathways is given in Supplementary Figure 4. The correlation between transcriptomic signatures and CT changes in PD across cortical regions is
predicted by the gene weights for PLS component-1 shown in boxplots for each pathway where the median weight is either negative or positive. Negatively
correlated pathways show high gene expression in regions with low t-statistics of 1CT and gene expression decreases in regions with higher t-statistics of 1CT. In
our analysis, negative t-statistics correspond to increased CT (cortical hypertrophy) and positive t-statistics of 1CT correspond to decreased CT (cortical atrophy).
Positively correlated pathways show low expression in regions with low t-statistics of 1CT and expression increases in regions with higher t-statistics of 1CT.
* = APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfaction of the cell cycle checkpoint. ** = APC/C:Cdh1 mediated degradation of Cdc20 and
other APC/C:Cdh1 targeted proteins in late mitosis/early G1.

that showed hypertrophy, such as the pars opercularis or the
entorhinal cortex.

Relationships Between Clinical Scores
and Cortical Thickness
Next, we set to understand the relationship between CT in
34 cortical regions and clinical scores of PD patients. Linear
regression was used to predict clinical scores from CT across
patients and obtain regression coefficients, β1, for each cortical

region and clinical domain (Eq. 1). We assessed the t-statistics
of the regression coefficients instead of the coefficients β1
themselves (H0: β1 = 0) (Figure 4). Negative t-statistics showed
that most combinations of cortical regions and clinical features
are negatively correlated. For all clinical features, higher scores
also indicate more severe symptoms, except for MMSE scores
where lower scores indicate more severe symptoms, and thus
showed positive relationships with CT. In most regions, age at
onset (AGEONSET) also showed positive relationships with CT,
indicating that age at onset has an effect on the loss of CT. While
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FIGURE 4 | Relationship between clinical scores and CT across PD patients. Linear regression was used to predict clinical scores from CT across at most 123 PD
patients (Supplementary Figure 1). Separate models were used for each clinical feature (row) and cortical region (column) to obtain regression coefficients, see
Eq. 1. The heatmap shows the two-sided t-statistics of the regression coefficient when tested for H0: β1 = 0. Regions (columns) are clustered based on complete
linkage of the Euclidean distance of the t-statistics of β1.

these general interpretations apply to most cortical regions, some
regions showed different relationships with CT. For example, CT
in the rostral anterior cingulate is negatively related to age at
onset, and positively related to MDS-UPDRS 4 scores.

Genes Predictive of Relationships
Between Clinical Scores and Cortical
Thickness
With PLS model-2, we examined gene expression patterns that
are predictive of the relationship between CT and clinical scores
measured as t-statistics of the correlation coefficients β1 in
Eq. 1 (Figure 1C). We selected the first two PLS components
for further analysis, which explained 36% of the variance
of the predictor variables and 37% of the variance of the
response variables (Supplementary Figure 5). PLS component-
1 scores of the predictor variables showed a ventral-to-dorsal
gene expression pattern (Figure 5A) that is correlated with
the PLS component-1 scores of the response variables (Pearson
r = 0.76, Figure 5B). The dorsal regions include the postcentral
gyrus which is part of the primary somatosensory cortex. PLS
component-2 scores of the predictor variables showed a caudal-
to-rostral gene expression pattern (Pearson r = 0.56, Figure 6A)
that is correlated with the PLS component-2 scores of the response
variables (Figure 6B). Moreover, we assessed PLS component-
3 (Pearson r = 0.76 between the predictors and response
variables), which additionally explained 9% variance of the
predictor variables and 11% variance of the response variables.
However, further analysis revealed there were no enriched
pathways for component-3 limiting the functional interpretation
of this component.

Partial least squares component-1 and component-2 of
the predictor variables showed 144 and 230 significantly

enriched pathways, respectively, with 54 overlapping pathways
between the two components (Supplementary Tables 6, 7).
Both components showed a cluster of related pathways
involved in anterograde and retrograde transport between
Golgi and endoplasmic reticulum (ER), and asparagine
N-linked glycosylation (Supplementary Figures 6, 7). Other
pathways that overlapped between the two components
included macroautophagy, mitochondrial translation,
mitochondrial biogenesis, mitochondrial protein import,
DNA damage/telomere stress induced senescence, oxidative
stress induced senescence, and protein localization.

Furthermore, PLS component-1 showed enrichment of
pathways involved in tRNA and rRNA processing in the nucleus
and mitochondrion, voltage-gated potassium channels, uptake
and actions of bacterial toxins, and interleukin signaling.
PLS component-2 showed strong enrichment of neutrophil
degranulation, DNA replication, p53-(in)dependent DNA
damage response, and chaperonin-mediated protein folding,
and tubulin folding. Notably, the gene expression pattern of
PLS component-2 was also associated with several sumoylation
pathways and pathways involved in mitotic cell cycles and the
degradation of mitotic proteins (Supplementary Table 7).

The enriched pathways for PLS component-1 and component-
2 either showed negative or positive median gene weights that
inform about the sign of the correlation between genes within
a pathway and the PLS component score of the response
variables (Figures 5C, 6C and Supplementary Figures 8, 9).
For example, the expression of genes within pathways relating
to mitochondrial processes increases for higher PLS component-
1 scores of the response variables. We further assessed PLS
component-1 and component-2 scores of the predictor variables
and their correlation with each individual response variable,
which are the clinical features and their relationship with CT in
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FIGURE 5 | Transcriptional signatures of PLS component-1 in PLS model-2 predictive of the relationship between cortical thickness (CT) and clinical scores. (A) PLS
scores for PLS component-1 of the predictor variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-statistic of β1 in
Eq. 1). Axes show the percentage of explained variance for each component; r indicates the Pearson correlation. (C) Mean expression across cortical regions
(columns) of genes in the top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in Supplementary Figure 8. * = Respiratory
electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.

PD patients (Figure 7). The rostral-to-dorsal expression pattern
of PLS component-1 is highly predictive of the relationship
between CT and MMSE score in patients (Pearson’s r = 0.71).
Thus, pathways associated with PLS component-1 may play
an important role in cognitive circuits, which seems to be
apparent based on their expression in the postcentral gyrus,
but also the entorhinal cortex. PLS component-2 scores showed
low correlations with the clinical features and their relation
with CT across cortical regions, and suggests weak associations
between the expression patterns of PLS component-2 and the
response variables.

DISCUSSION

To examine the selective vulnerability of brain regions to PD,
we explored PLS regression to find correlations between gene
expression signatures across the healthy brain and cortical
thinning patterns in PD brains. PLS regression is a suited
method to identify relationships between gene expression and
neuroimaging data, especially when the number of predictor
variables (genes) are highly interdependent or multi-collinear,
which is the case for gene expression data. This was shown before
by earlier studies (Vértes et al., 2016; Whitaker et al., 2016b;
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FIGURE 6 | Transcriptional signatures of PLS component-2 in PLS model-2 predictive of the relationship between cortical thickness (CT) and clinical scores. (A) PLS
scores for PLS component-2 of the predictor variables (gene expression) and (B) its correlation with PLS component-1 of the response variables (t-statistic of β1 in
Eq. 1). Axes show the percentage of explained variance for each component; r indicates the Pearson correlation. (C) Mean expression across cortical regions
(columns) of genes in the top 30 significant pathways (rows). A complete heatmap with all significant pathways is given in Supplementary Figure 9.

McColgan et al., 2018) and we show here that PLS can also be
used to identify molecular signatures that are relevant to PD,
namely, we found genes that participate in different pathways
involved in cellular maintenance mechanisms. By mapping genes
to latent components, genes with similar expression patterns
are grouped and can be explored to better understand their
collective behavior and their relationship with structural changes
in the PD brain. In our study, we found a caudal-to-rostral gene
expression pattern that was correlated with CT changes in PD
(PLS model-1); cortical atrophy was found in caudal regions while
rostral regions showed cortical hypertrophy. This transcriptional
signature was highly enriched for genes in biological pathways
associated with mitochondrial translation and mitotic cell cycle

regulation. We also found a ventral-to-dorsal and caudal-to-
rostral gene expression pattern that was correlated with the
relationship between CT and clinical domains of PD (PLS model-
2). Both transcriptional signatures were associated with similar
pathways, including macroautophagy and Golgi-ER trafficking,
and may be involved in the effect of CT on clinical scores, namely
MMSE scores for cognitive assessment.

The CT analyses between disease conditions and hemispheres
in patients revealed cortical regions that are susceptible to
atrophy. Cortical atrophy in PD commonly occurs asymmetrical,
with a preference for the left hemisphere, particularly in the
early disease stages (Brück et al., 2004; Mak et al., 2014;
Pereira et al., 2014; Claassen et al., 2016). Here, we showed
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FIGURE 7 | Correlations between PLS model-2 component-1 and component-2 scores of the predictor variables and individual response variables. Each plot
shows the correlation between the predictor variables of gene expression (x-axis) and the response variables which are the relationships between CT and scores of a
clinical feature across cortical regions (y-axis). On top of each plot, the Pearson correlation and the Y-loadings (Q in Eqs. 4 and 8) are shown; both values tell
something about the sign (−/+) and magnitude (high/low) of the correlation. Each point or sample is one of the 34 cortical regions. Regions are labeled for those
with minimum or maximum value along one of the axes.

that five out of six regions with significant CT changes
between hemispheres, indeed revealed more atrophy in the left
hemisphere. Two cortical regions that showed significant changes
between patients and controls, also showed changes between
the left and right hemisphere. Our findings are in line with
those of a previous study showing that cortical atrophy in PD
most prominently affects the lateral occipital cortex, particularly
in the left hemisphere (Freeze et al., 2018). The temporal pole
showed hypertrophy in patients compared to controls, which
was only significant in the right hemisphere. However, our
analysis between hemispheres of PD brains suggests that the
left temporal pole is more susceptible to CT loss than the right
hemisphere. The remaining regions that were susceptible to CT
changes showed atrophy in either the left or right hemisphere;
however, differences between hemispheres in patients could not
be confirmed. All 10 regions that were different between patients
and controls, except the pericalcarine, were earlier identified as
part of two structural covariance networks that were related to

gray matter atrophy in the same PD dataset as in this study (de
Schipper et al., 2017). Overall, we observed atrophy in caudal
regions, which earlier has been associated with late stage PD
(Claassen et al., 2016).

With our findings of the PLS models we interpret gene
expression patterns of the healthy brain in relation to imaging
features observed in PD. The six adult donors of the AHBA
had no known neuropsychiatric or neuropathological history
(Hawrylycz et al., 2012), however, it is unknown whether these
individuals could have developed neurodegenerative diseases
later in life. The observed spatial gene expression patterns
reflect the physiological conditions in the adult healthy brain
and are informative of important molecular mechanisms that
are vulnerable in PD. The biological pathways found for PLS
model-1 were closely related as they shared many similar
genes. These interrelated pathways suggest a strong functional
relationship between molecular processes involving mitotic cell
cycle, mitochondrial translation, transport between ER and Golgi,
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FIGURE 8 | Schematic overview of the balance between biological pathways and their influence on CT across cortical brain regions. The big arrow indicates the
caudal-to-rostral (red-to-blue) or rostral-to-caudal (blue-to-red) change in CT across cortical brain regions of PD patients with red indicating decreased CT (atrophy)
in caudal regions and blue indicating increased CT (hypertrophy) in rostral regions. Genes within pathways associated with sumoylation showed that the expression
of these genes within the pathways increases from rostral to caudal regions. Other biological pathways that were correlated with CT changes in PD included
regulation of mitotic cell cycle, mitochondrial translation, DNA damage responses, and ER-Golgi traffic, and the involved genes showed decreasing expression
patterns from rostral to caudal regions (or increasing from caudal to rostral regions). All enriched pathways shared many common genes and were generally
associated with cellular maintenance mechanisms. Literature studies suggest that these biological pathways may be involved in the pathobiology of PD through their
interaction with genetic risk variants.

DNA damage checkpoints, and sumoylation. We found that
differential regulation of these molecular processes across the
brain was associated with CT changes observed in PD. Similar
pathways were found in PLS model-2 with multiple response
variables corresponding to the relationships between CT and nine
clinical domain scores in PD.

There is evidence that impaired cell cycle control plays a role
in the pathogenesis of neurodegenerative diseases. In healthy
conditions, differentiated neuronal cells become quiescent cells
that cannot re-enter the cell cycle, however, in neurodegenerative
diseases they are reactivated which is associated with increased
cell death (Bonda et al., 2018). Cell cycle checkpoints are
controlled by cyclins that guide the cell from one phase to
the next phase and its expression can induce cell cycle re-
initiation (Walton et al., 2019). Here, we found that regional
expression of pathways associated with the degradation of cell
cycle proteins in healthy conditions were negatively correlated
with CT changes in PD, i.e., higher expression was associated
with cortical hypertrophy in rostral regions such as the pars
opercularis and temporal pole. Reversely, we observed low
expression of protein degradation pathways in caudal regions that
were associated with atrophy, and therefore suggests that regions
with low expression are more vulnerable to improper degradation
of cell cycle proteins leading to cell cycle initiation. This indicates
that regions with low expression of such essential pathways are
predisposed to neurodegeneration.

We found that the expression of several pathways associated
with DNA replication and p53-(in)dependent DNA damage
responses and checkpoints were correlated with CT changes.

DNA replication during the S-phase may control the survival
of post-mitotic cells by DNA repair mechanisms or apoptosis
followed by DNA damage, which seems to be the case in
neurodegenerative diseases (Tokarz et al., 2016). Furthermore,
DNA damage response signaling can be modulated by tumor
suppressor p53 and may also contribute to apoptosis in aging
and age-related neurodegenerative disorders (Mohammadzadeh
et al., 2019). These pathways showed similar expression patterns
as those associated with the mitotic cell cycle, and therefore a
lower expression of these DNA damage response pathways in
caudal regions is related to cortical atrophy in PD.

Similar caudal-to-rostral expression patterns were found for
pathways associated with mitochondrial translation. Increased
risk for PD has been associated with mutations in SNCA, PARK2
(parkin), PINK1, DJ-1, and LRRK2 which have been linked to
mitochondrial function and oxidative stress (Yan et al., 2013).
PINK1 and parkin mediates clearance of damaged mitochondria
by mitophagy and may therefore influence mitotic cell cycle
progression (Sarraf et al., 2019). PINK1 also regulates both
retrograde and anterograde axonal transport of mitochondria
via axonal microtubules (Liu et al., 2012). The interaction
between PINK1 and parkin is likely involved in mitochondrial
quality control mechanisms, where anterograde transport of
damaged mitochondria is reduced and retrograde transport is
enhanced for elimination by mitophagy in the neuronal cell body
(Lionaki et al., 2015).

A cluster of pathways involved in ER-Golgi traffic were
found enriched for PLS model-2 component-1 and component-
2, and involved both ER-to-Golgi anterograde and Golgi-to-ER
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retrograde transport. Component-1 showed a ventral-to dorsal
gene expression pattern that was associated with higher
correlations between CT and clinical scores, namely, the
mental state of PD patients and the performance of motor
functions. The pathways involved in ER-Golgi traffic were
notably high expressed in the postcentral gyrus which contains
the somatosensory cortex that is known for its role in processing
sensory information and the regulation of emotion (Kropf
et al., 2019). Our results suggest that genes in ER-Golgi
traffic pathways are important for cognitive functions controlled
by the postcentral gyrus. Genes involved in ER-Golgi vesicle
trafficking have the ability to modify α-synuclein toxicity in
yeast (Cooper et al., 2006). Moreover, fragmentation to the Golgi
apparatus has been associated with the accumulation of aberrant
proteins in neurodegenerative diseases, including α-synuclein
(Fan et al., 2008). A study in yeast models has showed that
α-synuclein expression modulates ER stress signaling response
and inhibits viral infections and viral replication (Beatman
et al., 2016). We found several pathways associated to HIV
and influenza infections that were correlated to the relationship
between CT and clinical scores. Another pathway that shared
overlapping genes with those involved in ER-Golgi traffic was
asparagine N-linked glycosylation, which is a biochemical linkage
important for the structure and function of proteins. The
N-glycosylated proteins are synthesized essentially in the ER and
Golgi through sequential reactions and aberrant glycolysation
of proteins may lead to inflammation and mitochondrial
dysfunction in PD and consequently to a cellular overload of
dysfunctional proteins (Videira and Castro-Caldas, 2018).

We found that the expression of genes involved in
sumoylation of chromatin organization proteins was correlated
with CT changes, i.e., higher expression within caudal brain
regions, such as the pericalcarine and the lateral occipital cortex,
was associated with greater atrophy in PD. Therefore, higher
activity of sumoylation events may play a role in the regional
vulnerability to neurodegeneration observed in PD. On the other
hand, lower expression of these pathways, such as in the pars
opercularis, was associated with hypertrophy in rostral regions,
suggesting that lower expression of sumoylation pathways
has a protective effect. Additionally, the higher expression of
sumoylation pathways was associated with higher correlations
between CT and clinical scores as projected by PLS component-
2 in model-2. Sumoylation involves small ubiquitin-like modifier
(SUMO) proteins that increase in response to cellular stress,
such as DNA damage and oxidative stress, and can promote
α-synuclein aggregation and Lewy body formation (Bologna
and Ferrari, 2013; Eckermann, 2013; Rott et al., 2017). Several
proteins associated with inherited forms of PD are targets
modified by SUMO regulating mitochondrial processes, these
include α-synuclein, DJ-1, and parkin (Guerra de Souza et al.,
2016). Sumoylation has been associated with several diseases,
including cancers, cardiac diseases, and neurodegenerative
diseases (Yang et al., 2017). In cancer, sumoylation mediates
cell cycle progression and plays an essential role during mitosis
(Eifler and Vertegaal, 2015). SUMO seems to promote cell death
mediated by the p53 tumor suppressor protein, which may
be responsible for the cell death of dopaminergic neurons in

PD (Eckermann, 2013). Our findings are in support of these
hypotheses, and further suggest that sumoylation is important in
specific cortical regions that are atrophic in PD, such as the lateral
occipital cortex.

Spatial gene expression data from PD brains are limited in the
number of brain donors and brain regions, which is mainly due to
the limited availability of well-defined post-mortem PD patients.
Therefore, we used healthy gene expression from the AHBA to
perform unbiased whole brain and whole transcriptome analysis.
Gene expression for all the six healthy adult donors in AHBA was
only available for the left hemisphere. Therefore, this study was
restricted to the analysis of the left hemisphere when combining
gene expression with MRI data. Furthermore, it is generally
assumed that gene expression changes with age, however, due to
the limited number of brain donors in the AHBA, age-related
differences in gene expression were not taken into account. In
addition, MRI data from the patient and control groups were
collected from different studies in separate cohorts and were age-
matched, but the difference in the percentage of men in was not
taken into account. In addition, the different scanner parameter
settings were used in both studies. However, both datasets were
processed with FreeSurfer which is a widely used tool to reliably
measure thickness of gray matter in the cerebral cortex and
was shown to be robust to variations in scanner platforms,
sequence parameters, scan sessions, scanner manufacturer, and
field strength (Fischl, 2012). Brain volumetric measurements by
FreeSurfer have also been shown to be reproducible between
different scanners in multiple sclerosis (Guo et al., 2019) and
in vivo assessments of cortical thickness from MRI are similar to
histological examinations of cortical thickness (Scholtens et al.,
2015). Furthermore, an Alzheimer’s disease study showed that
FreeSurfer competed with manual measurements and encourages
the use of FreeSurfer in clinical practice (Clerx et al., 2015).
Finally, to determine whether genes and pathways truly have
predictive power of imaging features, both PLS models need to
be validated with an independent imaging cohort of PD patients.

Imaging cohorts of PD patients are generally quite
heterogeneous because PD is a complex disorder with a wide
spectrum of symptoms that vary substantially across patients.
To better understand the different forms of PD, previous
neuroimaging-genetics studies have grouped PD patients based
on the presence of a genetic mutation associated with PD, e.g.,
LRRK2 and GBA (van der Vegt et al., 2009; Weingarten et al.,
2015), however, PD diagnosis cannot be confirmed based on
genetic mutations. It is nowadays based on clinical observations,
but true diagnosis can only be confirmed by pathological
examination when patients are diseased. Therefore, it should be
noted that patients with different forms of PD cannot be clearly
distinguished based on clinical manifestations, genetic overlap or
neuroimaging findings.

The 34 brain regions defined by the Desikan-Killiany atlas
consist of different volumes and also differ in the number of
gene expression samples that fall within a brain region. Since
PLS requires the same number of samples for the predictor and
response datasets, the transcriptomic and neuroimaging data
was processed such that both datasets had an equal number of
samples, which are the 34 brain regions. For the transcriptomic
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data this meant that the expression for one brain region was based
on the average expression of all samples that fall within the brain
region. For the neuroimaging data, the CT reported by FreeSurfer
is the average CT for a brain region given its volume. Because
volume and sample size can affect these estimates, the average
gene expression and average CT, the sample size can also affect the
correlations predicted by the PLS model. Finally, our PLS models
also do not account for the number of subjects used in this study.
Future studies may improve in applying machine learning models
that are better fitted to the data to find statistical associations that
are more relevant to the disease being studied.

CONCLUSION

We set out to find biological explanations for the selective
regional vulnerability in PD. For this purpose, we applied PLS to
assess the healthy transcriptome across the whole brain and find
correlations with cortical thickness changes in PD, which can be
observed as atrophy and hypertrophy patterns in neuroimaging
data. Previous PD studies analyzed gene expression in only
few brain regions due to the limited availability of PD donors,
however, we made use of the AHBA to study the healthy
transcriptome across the whole brain at a high resolution. We
found genes that point toward pathways involved in cellular
maintenance mechanisms that are well known in PD and
other neurodegenerative diseases, but here we show that these
pathways are differently regulated across brain regions. More
specifically, sumoylation pathways showed opposite expression
patterns across the brain compared to pathways associated
with the regulation of mitotic cell cycle, p53-(in)dependent
DNA damage response, mitochondrial translation, and ER-
Golgi trafficking (Figure 8). In addition, multiple genes and
biological pathways identified in this study have been associated
to PD before, however, their relationship with cortical thickness
and clinical features was previously not known. Also, similar
pathways were identified that were associated with the severity
of clinical symptoms in PD, which could be a consequence of
cortical atrophy or hypertrophy. All identified pathways were
highly interconnected as shown by the number of shared genes
and suggest a balanced interplay between sumoylation events
and the other molecular mechanisms that seem to be important
in controlling CT in different cortical regions. We believe that
these particular pathways are interesting for further research to
better understand the shared molecular mechanisms between the
multiple pathways that are involved in PD progression. With our
multivariate PLS approach we were able to combine multiple data
modalities to provide meaningful new insights into the selective
vulnerability of brain regions to PD.
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