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Entanglement in symmetric quantum states and the theory of copositive ma-
trices are intimately related concepts. For the simplest symmetric states, i.e.,
the diagonal symmetric (DS) states, it has been shown that there exists a
correspondence between exceptional (non-exceptional) copositive matrices and
non-decomposable (decomposable) entanglement witnesses (EWs). Here we
show that EWs of symmetric, but not DS, states can also be constructed from
extended copositive matrices, providing new examples of bound entangled sym-
metric states, together with their corresponding EWs, in arbitrary odd dimen-
sion.

Entanglement and symmetry lie at the heart of quantum theory. Symmetries reflect funda-
mental laws of Nature and are intrinsically present in systems of physical interest. More-
over, states possessing some symmetry, typically admit a simplified mathematical descrip-
tion as compared to the one of generic states, a fact that usually translates into a more
feasible way of characterizing their properties.

Quantum correlations are an intrinsic property of composite systems. Entanglement,
in particular, is regarded as the most significant feature of quantum physics, not only
because it provides unique insights into the fundamental principles of our physical world,
but also because it represents a resource that allows to perform several tasks that would
be, otherwise, impossible.

Since the birth of quantum information theory, huge efforts have been devoted to
characterize and quantify entanglement (see e.g. [1]). Along the years, it has become
clear that entanglement characterization is a challenging task. Moreover, it cannot be
quantified by a unique measure. The exception lies in (bipartite) pure entangled states
where it is trivial to determine if the state is entangled and entanglement entropy is the
unique measure needed. Interestingly, in the asymptotic limit, for a sufficient number
of copies of the system, the entanglement entropy measures the resource interconversion
capacity between different pure states, within the paradigm of local operations and classical
communication [2]. However, already in the case of bipartite mixed states, two of such
measures are needed in order to quantify this interconversion rate: the entanglement of
formation and the entanglement of distillation.

A closely related, although inherently different, approach is the characterization of en-
tangled states independently of any measure or their usefulness for a specific task. This
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problem has been shown to be, in general, NP-hard [3]. However, partial characterization
has been achieved by means of criteria that provide necessary, but not sufficient, condi-
tions to determine if a given state is entangled or not. The most powerful of such criteria,
formulated in terms of linear positive maps, is the positivity under partial transposition
(PPT) [4], which is the paradigmatic example of a positive, but not completely positive,
map. States that do not fulfill the PPT criterion are entangled but the converse is not
true, except for few cases. In this regard, quantum maps and their associated entangle-
ment witnesses (EWs), provide the strongest criteria for entanglement characterization: a
quantum state is entangled if, and only if, there exists an EW that detects it [5–7]. Cru-
cially, in order to characterize entanglement in states that do not break the PPT criterion
(PPT entangled states or PPTES), it is necessary to construct non-decomposable EWs [8].
Interestingly, EWs have been shown to provide also a measure of entanglement which is
upper and lower bounded by other entanglement measures [9].

Nowadays, it is still unclear whether, in general, the problem of entanglement char-
acterization remains equally hard for systems displaying some symmetries [5, 10–12]. A
possible approach in this direction is to investigate if, and how, symmetries can help to
construct EWs for such systems.

In this work, we focus on the entanglement characterization of permutationally invari-
ant systems and, more specifically, on the class of the so-called symmetric states. These
provide a natural description for sets of indistinguishable particles, i.e., bosons. To this
aim, we derive a method to construct specific EWs for such states using the theory of
copositive matrices. As shown previously by some of us [13], the characterization of en-
tanglement for some particularly simple symmetric states that are mixtures of projectors
on symmetric states, also called DS states, can be recast as the problem of checking mem-
bership to the cone of the so-called completely-positive matrices or to its dual, the cone
of copositive matrices. The equivalence between these two problems allows to establish
a correspondence between entanglement characterization for DS states and non-convex
quadratic optimization [13]. In particular, it provides a very efficient method to detect
states that are PPT entangled. Here, we further extend this mapping by constructing
EWs that detect symmetric PPTES that are not DS. First, we derive under which condi-
tions a copositive matrix leads to an EW for symmetric states. Then, we show explicitly
how to derive, from such copositive matrices, both decomposable and non-decomposable
EWs. Finally, we use these EWs to generate several families of symmetric PPTES. It is
important to remark that, to the best of our knowledge, there are not known examples of
non-decomposable EWs for generic symmetric states. The very few examples of symmet-
ric PPTES in the literature[11], have been found numerically using weaker entanglement
criteria like, e.g., the range criterion applied to edge states[8, 14–18]. Our work thus, offers
a complementary approach to the study of entanglement characterization in symmetric
states. The paper is organized as follows: in Section 1, we introduce basic concepts con-
cerning the definition and properties of symmetric states in Cd ⊗ Cd, and the mapping
between copositive matrices and EWs. In this section, we review as well some of our pre-
vious results for DS states [13] that represent the starting point of our work. In Section 2,
we show how to derive decomposable and non-decomposable EWs for symmetric states
from copositive matrices and provide some explicit constructive examples. In Section 3,
we focus on symmetric, but not DS, PPTES, showing the existence of PPTES in arbitrary
dimensions and introducing examples of such states in different dimensions (d = 3, 4, 5, 7).
Finally, in Section 4 we summarize our findings, present some conjectures derived from our
analysis and list some open questions for further research.
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1 Basic concepts
We start by introducing the notation used throughout the manuscript along with some
basic concepts and definitions regarding symmetric states, entanglement witnesses and
copositive matrices.

1.1 Symmetric states
Henceforth, we focus on bipartite systems. Let H = Cd ⊗ Cd, be the finite dimensional
Hilbert space of two qudits, and B(H) the set of its bounded operators. The symmetric
subspace S ⊂ H, is the convex set formed by the (normalized) pure states |ΨS〉 ∈ H that are
invariant under the exchange of parties. Symmetric states can be mapped to spin systems
and, moreover, they span the subspace of maximum spin in the Schur-Weyl representation.
The so-called Dicke states form a convenient basis of the symmetric subpace, i.e., S ≡
span{|Dij〉}, where |Dij〉 = |Dji〉 ≡ (|ij〉 + |ji〉)/

√
2 for i 6= j, |Dii〉 ≡ |ii〉 and {|i〉}d−1

i=0 is
an orthonormal basis of Cd. Note the reduced dimensionality of the symmetric subspace,
i.e., dim(S) = d(d + 1)/2 < d2. In an abuse of language we denote symmetric quantum
states, ρS ∈ B(S), as the convex hull of projectors onto pure symmetric normalized states,
i.e., ρS =

∑
k p

(k)
S |Ψ

(k)
S 〉 〈Ψ

(k)
S |, with p

(k)
S ≥ 0,

∑
k p

(k)
S = 1 and |Ψ(k)

S 〉 =
∑

ij c
(k)
ij |Dij〉,

c
(k)
ij ∈ C.
Thus, any ρS ∈ B(S) is a positive semidefinite operator (ρS � 0) with unit trace (Tr(ρS) =
1), fulfilling ΠSρSΠS = ρSΠS = ΠSρS = ρS , where ΠS = 1

2(1 + F ) is the projector onto
the symmetric subspace and F =

∑d−1
i,j=0 |ij〉〈ji| is the flip operator. Using the Dicke basis,

symmetric quantum states can be compactly expressed as follows:

Definition 1.1. Any bipartite symmetric state, ρS ∈ B(S), can be written as

ρS =
∑

0≤i≤j<d
0≤k≤l<d

(
ρkl

ij |Dij〉 〈Dkl|+ h.c.
)
, (1)

with ρkl
ij ∈ C. Notice that, due to the symmetry of the Dicke states, it holds that ρkl

ij =
ρkl

ji = ρlk
ij = ρlk

ji ∀i, j, k, l.

Convex mixtures of projectors onto Dicke states are denoted as diagonal symmetric (DS)
states, since they are diagonal in the Dicke basis. They form a convex subset of S and are
particularly relevant for our analysis.

Definition 1.2. Any DS state, ρDS ∈ B(S), is of the form

ρDS =
∑

0≤i≤j<d

pij |Dij〉 〈Dij | , (2)

with pij ≥ 0, ∀ i, j and
∑

ij pij = 1.

Lemma 1.1. Every symmetric state, ρS ∈ B(S), can be written as the sum of a DS state,
ρDS, and a traceless symmetric contribution, σCS, which contains all coherences between
Dicke states, i.e.,

ρS = ρDS + σCS =
∑

0≤i≤j<d

pij |Dij〉 〈Dij |+
∑
ij

∑
kl

(i,j)6=(k,l)

(
αkl

ij |Dij〉 〈Dkl|+ h.c.
)
, (3)

with αkl
ij ∈ C and αkl

ij = (αij
kl)∗.
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1.2 Separability, EWs and copositivity
Definition 1.3. A bipartite symmetric state ρS ∈ B(S) is separable (not entangled) if it
can be written as a convex combination of projectors onto pure symmetric product states,
i.e.,

ρS =
∑

i

pi |eiei〉 〈eiei| , (4)

with pi ≥ 0,
∑

i pi = 1 and |ei〉 =
∑

i e
(k)
i |k〉, where e

(k)
i ∈ C and {|k〉}d−1

k=0 is an orthonor-
mal basis in Cd. If a decomposition of this form does not exist, then ρS is entangled.

Figure 1: Pictorial representation of the set of bipartite symmetric separable states DS (Sym) embedded
into the set of bipartite separable states. The cylinder represents the separable set D. The discontinuous
(red) line corresponds to the extremal points (of the form |e, f〉) generating the set and the continuous
(blue and green) lines corresponds to the respective boundaries (necessarily requiring description as
density matrices with rank > 1 but not maximal). Both the separable and the symmetric separable sets
share extremal points of the form |e, e〉, here represented by the black dots.

We denote by D, the compact set of separable quantum states and by DS , its analogous
symmetric counterpart, which is also compact (see Fig.1). As a consequence of the Hahn-
Banach theorem, the set DS admits also a dual description in terms of its dual cone, PS ,
defined as the set of the operators W fulfilling

PS = {W = W † s.t 〈W,ρ〉 ≥ 0 , ∀ρS ∈ DS} , (5)

where 〈W,ρ〉 ≡ Tr(W †ρ) is the Hilbert-Schmidt scalar product.

Definition 1.4. A Hermitian operator, W ∈ PS, is an entanglement witness (EW) of
symmetric states if, and only if, it satisfies the following properties:

1. Tr(WρS) ≥ 0, ∀ ρS ∈ DS ,

2. There exists at least one symmetric state ρS such that Tr(WρS) < 0 .

Notice that, by definition, the set of separable symmetric states, DS , satisfies the inclusion
DS ⊂ D, but P ⊂ PS , where P is the dual cone of the convex set D, i.e.,

P = {W = W † s.t. 〈W,ρ〉 ≥ 0 , ∀ρ ∈ D} . (6)
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In other words, any EW acting on H that detects an entangled state belongs to PS ,
but the converse is not necessarily true (see Fig.2).

Figure 2: Pictorial structure of the quantum states in Cd ⊗ Cd for d > 5. Each set contains the sets
displayed inside. The colored region (green) represents the set of symmetric states (SYM). Note that,
while for d > 5 there exist diagonal symmetric (DS) states that are PPT-entangled, as represented
in the figure, for d < 5 all PPT-entangled DS state are necessarily separable (SEP) (see the text for
details).

EWs are either decomposable or non-decomposable.

Definition 1.5. An EW, W , is said to be decomposable (non-decomposable) if it can
(cannot) be written as

W = P +QTB , (7)

with P,Q � 0. Here TB ≡ 1A ⊗ T denotes the partial transposition w.r.t. subsystem B,
where T stands for the usual matrix tranposition.

It is easy to show that non-decomposable EWs are the only candidates to detect PPT
entanglement. In fact, given a PPTES ρ, for any decomposable EW W , it is

Tr(Wρ) = Tr(Pρ) + Tr(QTBρ) = Tr(Pρ) + Tr(QρTB ) ≥ 0 , (8)

where we have used the properties of the trace and the positive semidefiniteness of the
operators P and Q.
In particular from Def.(1.5) it follows that a EW is non-decomposable iff it detects at least
one PPTES.

Remarkably, despite the apparent simplicity of the symmetric subspace due to its re-
duced dimensionality (d(d + 1)/2 instead of d2), entanglement characterization remains,
in general, an open problem. For generic symmetric states, sparsity is preserved when the
state is expressed in the computational basis but it is lost when the partial transposition
is performed. However, for DS states, the corresponding partial transpose remains highly
sparse and can be reduced to an associated matrix, Md(ρDS), of dimensions d × d, while
generically ρTB

S is a matrix of dimension d2 × d2.

Definition 1.6. The partial transpose of every ρDS ∈ B(S) has the form

ρTB
DS = Md(ρDS)

⊕
0≤i 6=j<d

(pij/2) , (9)
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where Md(ρDS), which arises from the partially transposed matrix of a DS state in the
computational basis, is defined as the d× d matrix with (non-negative) entries

Md(ρDS) :=


p00 p01/2 · · · p0,d−1/2
p01/2 p11 · · · p1,d−1/2
...

... . . . ...
p0,d−1/2 p1,d−1/2 · · · pd−1,d−1

 . (10)

As shown in previous works [13, 19], deciding if a DS state ρDS is separable, is equivalent
to check the membership of Md(ρDS) to the cone of completely positive matrices CPd, i.e.,
the cone formed by those d × d matrices Ad that admit a decomposition of the type
Ad = BBT , where B is a d × k matrix, for some k > 1, with Bij ≥ 0, Bij ∈ R. Thus,
if ρDS is separable, then its associated matrix of Eq.(10) must satisfy Md(ρDS) = BBT

[19]. This correspondence can be recast, equivalently, in the dual cone of CPd, i.e., in the
cone COPd of copositive matrices. As a result, copositive matrices act effectively as EWs
for DS states. Below we provide the definition of a copositive matrix together with some
properties that will be useful in the following.

Definition 1.7. A real symmetric matrix, H, is copositive if, and only if, ~xTH~x ≥ 0, ∀~x ≥
0 component-wise.

It is easy to see that the diagonal elements of a copositive matrix must be non negative,
i.e., Hii ≥ 0, while negative elements Hij must fulfill

√
HiiHjj ≥ −Hij . Clearly, every

positive semidefinite matrix is also copositive but the converse is, generically, not true. In
fact, testing membership to the cone of copositive matrices is known to be a co-NP-hard
problem [20]1, and only for d ≤ 4, copositivity can be assessed analytically [21, 22].

Finally, among copositive matrices, we distinguish extreme and exceptional copositive
matrices that stand out for their impossibility to be decomposed.

Definition 1.8. A d× d copositive matrix H is said to be extreme if H = H1 +H2 with
H1, H2 copositive, implies H1 = aH,H2 = (1− a)H for all a ∈ [0, 1].

Definition 1.9. A d × d copositive matrix H is said to be exceptional if, and only if, H
cannot be decomposed as the sum of a positive semidefinite matrix (PSDd), and a sym-
metric entry-wise non-negative matrix (Nd), i.e., H ∈ COPd \ (PSDd +Nd)

Remarkably, it has been shown that for d < 5 there are no exceptional copositive matrices,
meaning that, in this case, COPd = PSDd +Nd [23]. In Fig.3 we illustrate, schematically,
the relation between the aforementioned classes of copositive matrices.

1The co-NP problems are the complementary of the decision problems in NP.
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Figure 3: Pictorial representation of the cone of copositive COPd and the cones PSDd and Nd. The
striped region has been overmagnified for clarity and represents the convex hull of the cones PSDd and
Nd, denoted as PSDd +Nd. Note that exceptional copositive matrices exist only for d > 5 (green).
Extremal copositive matrices lie at the border of the cone COPd.

2 Copositive matrices as EWs
Using the above definitions we can now show which copositive matrices lead to EWs.
We prove explicitly how to construct a decomposable (non-decomposable) EW from a
non-exceptional (exceptional) copositive matrix. Since decomposable EWs cannot detect
bound entanglement, one is tempted to believe that separability in the symmetric subspace
is equivalent to the analysis of exceptional copositive matrices. However, as we shall see
later, this is not necessarily the case, and non-exceptional copositive matrices also play
a relevant role in detecting bound entanglement. Our findings are summarized in the
following theorems.

Theorem 2.1. Each copositive matrix H =
∑d−1

i,j=0Hij |i〉〈j|, with at least one negative
entry Hmn = Hnm < 0 (m 6= n), leads to an EW on S of the form W = (Hext)TB =∑d−1

i,j=0Hij |ij〉〈ji|.

Proof. (i) We extend H to the symmetric subspace as Hext =
∑d−1

i,j=0Hij |i〉 〈j| ⊗ |i〉 〈j|,
and denote W = (Hext)TB . It is straightforward to show that Tr(WρS) ≥ 0 for all
ρS ∈ DS since 〈ee|W |ee〉 = 〈ee∗|Hext|ee∗〉 =

∑
ij |ci|2Hij |cj |2 = ~xTH~x ≥ 0, for every

state |e〉 =
∑d−1

i=0 ci |i〉, where ci ∈ C, and {|i〉}d−1
i=0 is orthonormal basis of Cd.

(ii) The diagonalization of W shows that its eigenvectors are {|ii〉 , |ψ±ij〉 = (|ij〉 ±
|ji〉)/

√
2}, with corresponding eigenvalues {Hii,±Hij}, i.e.,

W = (Hext)TB =
d−1∑
i=0

Hii |ii〉 〈ii|+

+
d−1∑
i<j

Hij |ψ+
ij〉 〈ψ

+
ij | −

d−1∑
i<j

Hij |ψ−ij〉 〈ψ
−
ij | ,

(11)

where |ψ+
ij〉 = |Dij〉 and |ii〉 = |Dii〉. Notice that the d(d−1)/2 eigenvectors corresponding

to the projectors |ψ−ij〉 〈ψ
−
ij |, are orthogonal to the symmetric subspace and, therefore, can
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be discarded by projecting on the symmetric subspace (S).

WS = ΠSWΠS =
d−1∑
i=0

Hii |Dii〉 〈Dii|+
d−1∑
i<j

Hij |Dij〉 〈Dij | . (12)

Finally, since copositivity requires that Hii ≥ 0 ∀i, WS is an EW iff at least one of the
remaining eigenvalues is negative, i.e., if H has at least one negative element Hmn =
Hnm < 0 for some m 6= n. It is now trivial to see that WS indeed detects, at least, the
entangled state |ψ+

mn〉 since Tr(WS |ψ+
mn〉 〈ψ+

mn|) = Hmn < 0. To conclude, if WS is an
EW in the symmetric subspace, so it is W given by Eq. (11).

Theorem 2.2. If H = HN +HPSD (i.e., H is non-exceptional) with at least one negative
element, then W = ΠS

(
Hext
N
)TB ΠS + ΠS

(
Hext
PSD

)TB ΠS = ΠS

(
Hext
N
)TB ΠS +

(
Hext
PSD

)TB is
a decomposable EW. The converse is also true, that is, if WS = ΠS(Hext)TB ΠS = P+QTB

with P,Q � 0, then H = HN +HPSD.

Notice that it is always possible to decompose a copositive matrix in such a way that
the semidefinite positive part Hext

PSD is symmetric.

Proof. ⇒. Assume that H = HN + HPSD, with HN ∈ N , HPSD ∈ PSD and Hmn =
Hnm < 0. Then (HPSD)mn = (HPSD)nm < 0 by construction and (Hext

PSD)TB � 0,
but ΠS

(
Hext
N
)TB ΠS � 0. The operator W = ΠS

(
Hext
N
)TB ΠS +

(
Hext
PSD

)TB is a de-
composable EW: (i) 〈e, e|W |e, e〉 ≥ 0 because H is copositive, (ii) W has at least one
negative eigenvalue associated to the negative element (HPSD)mn, (iii) W is decom-
posable since it can be written as W = P + QTB with P = ΠS

(
Hext
N
)TB ΠS � 0 and

Q = ΠSH
ext
PSDΠS = Hext

PSD � 0.
⇐ Since W = ΠS

(
Hext

)TB ΠS is an EW, there exists at least one negative ele-
ment of H, Hmn = Hnm < 0. We construct Q = Hmm|mm〉〈mm| + Hnn|nn〉〈nn| +
Hmn(|mn〉〈mn| + |nm〉〈nm|). By construction Q is symmetric and is Q /∈ N , QTB � 0
and Q � 0, where the last inequality holds because copositivity of H implies

√
HmmHnn ≥

−Hmn. Hence, we can identify Q = Hext
PSD. Now, define P = ΠS(

∑
i,j 6=m,nHij |ij〉〈ji|)ΠS ,

which can be expressed as P =
∑

i,j 6=m,nHii|ii〉〈ii|+
∑

i,j 6=m,n(Hij/2)(|ij〉〈ji|+ |ij〉〈ij|+
|ji〉〈ji| + |ji〉〈ij|). Clearly P � 0, P ∈ N , so that P = ΠS(Hext

N )TB ΠS and H =
HN +HPSD.

Let us illustrate Theorem 2.2 by considering the following copositive matrix in d = 3

H =

1 1 1
1 1 −1
1 −1 1

 . (13)

A possible decomposition of H = HPSD + HN , with HPSD ∈ PSD3 and HN ∈ N3, is
given by:

HPSD =

0 0 0
0 1 −1
0 −1 1

 , HN =

1 1 1
1 0 0
1 0 0

 . (14)

The associated EW W = P +QTB , with P = ΠS(Hext
N )TB ΠS , and Q = Hext

PSD reads

Accepted in Quantum 2021-09-24, click title to verify. Published under CC-BY 4.0. 8



P = 1
2



2 0 0
0 1 0
0 0 1

0 0 0
1 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 1 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0


, Q =



0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 −1
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 −1 0

0 0 0
0 0 0
0 0 1


,

but the resulting EW, W ′ = P ′ +Q′TB , detects exactly the same states in the symmetric
subspace.

The link between non-exceptional copositive matrices and decomposable EWs extends
also to exceptional copositive matrices and non-decomposable EWs in the symmetric sub-
space.

Theorem 2.3. Associated to each exceptional copositive matrix H (i.e., H ∈ COP \
(PSD + N )) with at least one negative entry, there is a non-decomposable EW, W =
(Hext)TB , able to detect symmetric PPTES.

Proof. For any H ∈ COP \ (PSD + N ), H always admits a decomposition of the form
H = HN + H?, where HN is a non-negative symmetric matrix and H? has at least one
negative eigenvalue but is not positive semidefinite. The associated EW W = P + QTB

with P = ΠS(Hext
N )TB ΠS and Q = Hext

? , is a non-decomposable EW since P � 0 but
Q � 0. The operator W = (Hext)TB is also a non-decomposable EW.

Corollary 2.1 (From [13]). Since for d < 5 every copositive matrix is not exceptional
(i.e., H = HPSD +HN ), all EWs of DS states in d = 3 and d = 4 are decomposable.

The above corollary rephrases the fact that PPT criterion is necessary and sufficient
to assess separability for bipartite DS states ρDS ∈ B(Cd ⊗ Cd) for d < 5.

3 Symmetric PPTES
Let us briefly summarize what we have seen so far. The fact that each DS state, ρDS ∈
B(Cd⊗Cd), is associated to a matrixMd(ρDS) (see Eq.(10)), allows to reformulate the prob-
lem of entanglement characterization as the equivalent problem of checking the membership
of Md(ρDS) to the cone of completely positive matrices CPd. Equivalently, according to
the dual formulation, any entangled state ρDS is detected by an EW W which can be con-
structed from a copositive matrixH. PPT entangled diagonal symmetric states (PPTEDS)
can only be detected by non-decomposable EWs, which correspond to exceptional coposi-
tive matrices. Since for d < 5, all copositive matrices H are of the form H = HPSD+HN ,
all EWs defined asW = (Hext)TB are necessarily of the formW = P +QTB , with P,Q � 0,
meaning that for d < 5 there are not PPTEDS.

However, for d > 5, this is not the case, since there exist exceptional copositive matrices,
i.e., H /∈ PSDd + Nd. Thus, detecting entanglement of ρDS in d ≥ 5, is equivalent to
checking membership of the corresponding copositive matrix H ∈ COPd \ (PSDd +Nd),
which is, in general, a co-NP-hard problem [20].

What can we say about symmetric PPTES ρS that are not DS? In this section, we
tackle the problem of entanglement detection for generic states ρS ∈ B(Cd⊗Cd) in arbitrary
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dimension d. Following the argument given above, we split our analysis in two different
scenarios, namely when d ≥ 5 and d < 5. Remarkably, even outside of the DS paradigm,
we find that copositive matrices lie at the core of non-decomposable EWs for symmetric
PPTES in arbitrary dimensions.

3.1 Symmetric PPTES in d ≥ 5
The fact that for d ≥ 5 there exist exceptional copositive matrices with at least one negative
entry which lead to non-decomposable EWs in S, implies that (i) such EW can detect a
PPTEDS, and (ii) the same EW is able to detect other symmetric, but not DS, PPTES
"around" it.

Theorem 3.1. Let ρDS be a PPTEDS. Then any symmetric state ρS = ρDS + σCS, such
that ρTB

S ≥ 0, is PPT entangled.

Proof. Since ρDS is a PPTEDS state there exists an exceptional copositive matrix H
and an associated non decomposable EW W such that Tr(WρDS) < 0. It follows that
Tr(WρS) = Tr(W (ρDS + σCS)) = Tr(WρDS) = Tr(HMd(ρDS)) < 0, so that ρS is PPT
entangled.

The paradigmatic example of an exceptional copositive matrix in d = 5, is the so-called
Horn matrix [24] which is the matrix associated to the quadratic form ~xTH~x = (x1 +x2 +
x3 + x4 + x5)2− 4x1x2− 4x2x3− 4x3x4− 4x4x5− 4x5x1 . Exceptional copositive matrices
of the Horn type, HH, can be generated for any odd d ≥ 5 [25], and are of the form

HH =



1 −1 1 1 · · · · · · 1 1 1 −1

−1 1 −1 1 . . . . . . 1 1 1

1 −1 1 −1 1 . . . 1 1

1 1 −1 1 −1 . . . . . . 1
...

. . . 1 −1 1 . . .
...

...
. . . . . . . . . . . . . . .

...

1 . . . . . . 1 −1 1 1

1 1 . . . . . . −1 1 −1 1

1 1 1 . . . 1 −1 1 −1
−1 1 1 1 · · · · · · 1 1 −1 1



. (15)

Since the HH is exceptional and has negative entries, it leads to a non-decomposable EW
W = (Hext)TB , that can be used to detect PPTEDS in any odd dimension d ≥ 5. Moreover,
due to Th.(3.1), by adding suitable coherences to such states, the same EW can be used
to certify PPT-entanglement also in whole families of symmetric states. Below we provide
one of these families.

Corollary 3.1. Given a PPTEDS state, ρDS, any symmetric state of the form ρS =
ρDS + σCS, with σCS =

∑
i<j(αij |Dii〉 〈Djj |+ h.c.) and |αij | ≤ pij

2 is PPT-entangled.
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Proof. The state, ρS , and its partial transpose, ρTB
S , can be cast as

ρS = M̃d(ρS)
⊕
i<j

pij

2

(
1 1
1 1

)
, (16)

ρTB
S = Md(ρDS)

⊕
0≤i<j<d

(
pij/2 αij

α∗ij pij/2

)
, (17)

with

M̃d(ρS) =


p00 α01 · · · α0,d−1
α∗01 p11 · · · α1,d−1
...

...
... . . .

α∗0,d−1 α∗1,d−1 · · · pd−1,d−1

 ,

Md(ρDS) =


p00 p01/2 · · · p0,d−1/2
p01/2 p11 · · · p1,d−1/2

...
...

... . . .
p0,d−1/2 p1,d−1/2 · · · pd−1,d−1

 .

Positive semidefiniteness of ρS
TB implies |αij | ≤ pij

2 , so that the state ρS , generated
from a PPTEDS state, remains PPT-entangled – since it is detected by the same non-
decomposable EW – as long as the coherences respect the condition |αij | ≤ pij

2 .

A further connection between copositive matrices and EWs appears when considering
extreme copositive matrices. For instance, let us consider the (generalized) Horn matrix
HH of Eq.(15), and the so-called Hoffmann-Pereira matrix HHP [25, 26], which, besides of
being exceptional, is also extreme. For d = 7, such copositive matrices take the form

HH =



1 −1 1 1 1 1 −1
−1 1 −1 1 1 1 1

1 −1 1 −1 1 1 1
1 1 −1 1 −1 1 1
1 1 1 −1 1 −1 1
1 1 1 1 −1 1 −1
−1 1 1 1 1 −1 1


, (18)

HHP =



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1


. (19)

Let us inspect the action of both matrices, HH and HHP , on a DS state ρDS ∈ B(C7⊗C7),
described by its associated M7(ρDS) (see Eq.(10)):

Md(ρDS) =



1 1 0 0 0 0 1/8
1 2 1 0 0 0 0
0 1 2 1 0 0 1/4
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1

1/8 0 1/4 0 0 1 1


. (20)
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It can be easily checked that Tr(HHPMd(ρDS)) = Tr(
(
Hext
HP
)TB ρDS) = −1

4 . Since both
HH and HHP are exceptional copositive matrices, WHP =

(
Hext
HP
)TB and WH =

(
Hext
H
)TB

are non-decomposable EWs, so that ρDS is a PPT entangled.
In contrast, Tr(HHMd(ρDS)) = Tr(WHρS) = 0, indicating that HH fails to detect this

state. Moreover, as stated by Th.(3.1), WHP = (Hext
HP)TB , detects, as well, many other

states around the state given by Eq.(20). Given the relationship between non-decomposable
EWs and exceptional matrices, we conjecture that extremality in the copositive cone cor-
respond to optimality in the set of EWs. In other words, copositive matrices that are both
extreme and exceptional lead to optimal non-decomposable EWs in the sense of [6]. We
complete this subsection with the following theorem regarding extreme copositive matrices
(see Fig.3)

Theorem 3.2. Let H be an extreme copositive matrix with at least one negative eigenvalue,
and at least one negative element Hij < 0. Then H must be exceptional.

Proof. H cannot belong to neither HP SD nor to HN and, while it is extremal, it cannot be
a combination of their elements as well. A more detailed proof can be found in Appendix B.

3.2 Symmetric PPTES in d < 5
In what remains, we are interested in symmetric PPTES of the form ρS = ρDS + σCS

where ρDS is separable, so that Tr(HMd(ρDS)) ≥ 0 for all copositive matrices H. More-
over, since for d < 5, every copositive matrix is non-exceptional, i.e., H = HN + HPSD,
the corresponding witness W = (Hext)TB will always be decomposable. For this reason,
coherences are needed to create PPTES in low dimensional systems. Here we show that
such states symmetric PPTES can nevertheless be detected by EWs which are of the form
WS = W+WCS , that is by adding to the decomposable EW,W , a convenient off-diagonal,
symmetric contribution WCS which reads the coherences of ρS .

For the sake of simplicity, we hereby consider symmetric states of the form

ρS = ρDS + σCS =
∑
ij

pij |Dij〉 〈Dij |+
∑

i 6=j 6=k

(αijk |Dii〉 〈Djk|) + h.c. , (21)

with pij ≥ 0 ∀i, j ,
∑
pij = 1 and αijk ∈ C.

Indeed, in this case, both ρS and ρTB
S can be cast as a direct sum of matrices, which

highly simplifies our analysis. For instance, for d = 3, ρS and ρTB
S are of the form

ρS =


p02
2 α p02

2
α∗ p11 α
p02
2 α∗ p02

2

⊕
p00 β β
β∗ p12

2
p12
2

β∗ p12
2

p12
2

⊕


p01
2

p01
2 γ

p01
2

p01
2 γ

γ∗ γ∗ p22

 , (22)

ρTB
S = Md(ρDS)⊕


p01
2 α β
α∗ p12

2 γ
β∗ γ∗ p02

2

⊕


p02
2 β γ
β∗ p01

2 α
γ∗ α∗ p12

2

 , (23)

where we have defined, for easiness of reading, α ≡ α120 = α102, β ≡ α012 = α021 and γ ≡
α201 = α210. Such structure, which corresponds to a particular direct sum decomposition
of the total Hilbert space, bears similitude with the so-called circulant states [27].

In order to investigate the existence of PPTES we focus on edge states, since their
low-dimensional ranks allow for a simpler analysis. By using a notation common in the
literature, we say that an edge state ρS is of type (p, q) if p = r(ρS) and q = r(ρTB

S ) are
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the ranks of ρS and ρTB
S , respectively. While symmetric states in d = 3 are, generically, of

type (6, 9), PPT-entangled edge states must have lower ranks. When dealing with states
of the form of Eq.(21), we have found numerically that at least two coherences must be
considered. For instance, we can set γ = 0 and choose α and β in such a way to lower
the value of (p, q). Indeed, a direct inspection of Eqs.(22)-(23), shows that, by setting
|α|2 = p11p02/2 and |β|2 = p02(p01p12 − 2p02p11)/4p12, it is possible to attain a state of
type (5, 7). Now, starting from a copositve matrixH, we can construct a non-decomposable
EW of the form

WS = ΠS(Hext)TB ΠS +
∑

i 6=j 6=k

W i
jk |Dii〉 〈Djk|+ h.c. , (24)

where the coefficients W i
jk can be chosen to be real.

Let us illustrate the above results by providing some explicit examples. We first consider
the symmetric edge PPTES provided in [11]. The state is of the form in Eq.(21) for d = 3
(i.e., of the form in Eq.(22)), obtained from the DS state ρDS with parameters p00 =
0.22, p11 = 0.234/3, p22 = 0.183, p01 = 0.176, p02 = 0.167/3, p12 = 0.254 and coherences
α = 0.167/3, β = −0.059/

√
2, γ = 0. Its entanglement was previously certified in [11] by

means of the PPT symmetric extension proposed in [28]. With the aid of the same method
[29], we can derive as well the corresponding non-decomposable EW W via semidefinite
programming. The associated copositive matrix, H, is easily obtained from the properly
symmetrized EW, i.e., WS = ΠSWΠS , and has the form

H ≈

 0.003 10.39 100.57
10.39 59.31 −21.02
100.57 −21.02 14.22

 , (25)

while the coefficients W i
jk are given by W 1

02 = 23.20 and W 0
12 = −37.40. If we restrict to

the DS part of the state ρS , it is trivial to check that Tr(HMd(ρDS)) ≥ 0. This is by no
means a surprise, since for DS states, in d < 5, the PPT condition implies separability.
For this reason, the coherences provided by the term σCS are necessary to induce the PPT
entanglement. Remarkably, one can vary the value of the coherences α and β to obtain
other symmetric PPTES as certified by the EW, i.e., Tr(WSρS) < 0. In fact, the EW WS

can be used to derive families of PPT entangled states obtained by adding to the state ρS

any coherent contribution σCS of the form of Eq.(22) that preserves the positivity of both
the state and its partial transpose. Indeed, also in the case γ 6= 0, as long as the conditions
ρS ≥ 0 and ρTB

S ≥ 0 hold, the same non-decomposable EW WS , is able to detect, for
suitable values of its entries W i

jk, a whole family of PPTES of the form of Eq.(22), as
depicted in Fig.4.
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Figure 4: The PPT entangled states detected by WS of Eq.(24) with coefficients |W 1
02| =

23.20, |W 0
12| = −37.40 (dark orange) as compared to the whole family of PPT states ρS of Eq.(22)

with p00 = 0.22, p11 = 0.234/3, p22 = 0.183, p01 = 0.176, p02 = 0.167/3, p12 = 0.254 (light orange).

Figure 5: The PPT entangled states detected byWS of Eq.(24) with coefficients |W 1
02| = 4595

191 , |W
0
12| =

6114
113 (dark orange) as compared to the whole family of PPT states ρS of Eq.(22) with p00 = p11 =
p12 = 1848

7625 , p22 = 464
7625 , p01 = 231

1525 , p02 = 462
7625 (light orange).

In Fig.5, we display a new example of a symmetric PPTES ρS of the form of Eq.(22),
found by semidefinite programming. Also in this case, we have found a non-decomposable
EW WS of the form of Eq.(24), with coefficients W 1

02 = 4595
191 and W 0

12 = −6114
113 and whose

associated copositive matrix is given by

H =

 1/172 1009/151 11025/68
1009/151 1803/22 −5829/65
11025/68 −5829/65 1224/7

 . (26)

Similarly, we can use the same procedure to derive families of PPT entangled symmet-
ric states for d = 4. In this case, we have found, numerically, that at least three different
coherences of the form of Eq.(21) are needed in order to get a low-dimensional PPT entan-
gled edge state. To the best of our knowledge, there are no explicit examples of symmetric
PPT entangled states in d = 4. We provide an example in Appendix A together with the
non-decomposable EW that detects it and its associated copositive matrix.
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4 Conclusions
In this work we have studied the connection between EWs and copositive matrices, showing
how this class of matrices can be effectively used to detect entanglement in bipartite sym-
metric states. First, we have proved that non-decomposable (decomposable) EWs can be
derived from exceptional (non-exceptional) copositive matrices. Second, we have tackled
the problem of the entanglement detection for two symmetric qudits. In this context, our
analysis has shown that, on the one hand, for dimension d ≥ 5, it is possible to certify
bound entanglement in any family of symmetric states constructed by adding coherences
to a PPTEDS state. Indeed, we have provided the explicit expression of a symmetric
PPTES in d = 7, along with the exceptional matrix that detects it. On the other hand, for
dimension d < 5, every copositive matrix is not exceptional, so that a different approach is
needed in order to construct a non-decomposable EW. Nevertheless, we have shown that,
also in this case, an EW of this type can be derived from a not exceptional copositive matrix
by adding suitable coherent-like contributions. Indeed, we conjecture that any symmetric
PPTES of two qudits can be detected by a non-decomposable EW of the form of Eq.(24).
Our conjecture seems to be well grounded as pointed out by the several examples we have
found of symmetric PPTES detected with this method, both for d = 3 and d = 4 (see
Appendix A for further details).

A A symmetric PPTES in d = 4
Here we present an explicit example of a PPTES ρS = ρDS + σCS of the form of Eq.(21)
for d = 4. The state is given by: i) a DS state ρDS with p00 = p02 = p03 = p11 = p22 =
172+16

√
2

1817 , p01 = p13 = 32+172
√

2
1817 , p11 = p12 = p23 = 86+8

√
2

1817 , p33 = 721−440
√

2
1817 ; and ii) a

coherence term σCS with α = p00, β = −p01/2 and γ = p01/4.
Again, to certify its entanglement we have used the symmetric extension [29], which

provides a non-decomposable EW, WS , via semidefinite programming. Such EW is of the
form of Eq.(24), with coefficients W 0

23 = 6526
321 ,W

1
03 = −1896

107 ,W
2
13 = − 549

1238 and has an
associated copositive matrix

H =


21/3590 9425/1571 4853/464 1111/28

9425/1571 1293/88 2122/145 220/323
4853/464 2122/145 6/5951 1355/3014
1111/28 220/323 1355/3014 862/7403

 . (27)

Let us observe that, despite the fact that H of Eq.(27) does not have any negative matrix
element, the corresponding EW has nevertheless a negative eigenvalue. This observation
makes clearer, once more, the fact that, in d < 5, differently from the case d ≥ 5, the
possibility to detect a PPTES relies exclusively on a convenient choice of the coherences
W i

jk.

B An alternative proof of Theorem 3.2
Proof. Since H is an extreme copositive matrix, it only admits the trivial decomposition
H = H1 + H2 with H1 = aH and H2 = (1 − a)H copositive, for every a ∈ [0, 1]. Let
H = HPSD+HN where HPSD is a positive semidefinite matrix and HN is a non-negative
matrix. We are left with three possibilities: i) H1 = HPSD and H2 = HN , ii) H1 = HN
and H2 = HPSD, iii) H = H1 +H2 = HN . i) Since H has at least one negative eigenvalue,
the same holds true also for H1 = aH, so that H1 is not positive semidefinite. ii) An
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analogous consideration on H2 leads to the same conclusion also in this case, so that H is
exceptional. iii) H = H1 +H2 = HN . Since H has at least one negative entry Hij < 0 it
cannot be a non-negative matrix.
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