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Abstract

Background

We previously described the association between rare ADAMTS13 single nucleotide vari-

ants (SNVs) and deep vein thrombosis (DVT). Moreover, DVT patients with at least one rare

ADAMTS13 SNV had a lower ADAMTS13 activity than non-carriers.

Aims

To confirm ADAMTS13 variants association with DVT and reduced plasma ADAMTS13

activity levels in a larger population. To investigate the role of VWF and F8 variants.

Methods

ADAMTS13, VWF and F8 were sequenced using next-generation sequencing in 594 Italian

DVT patients and 571 controls. Genetic association testing was performed using logistic

regression and gene-based tests. The association between rare ADAMTS13 variants and

the respective plasmatic activity, available for 365 cases and 292 controls, was determined

using linear regression. All analyses were age-, sex- adjusted.

Results

We identified 48 low-frequency/common and 272 rare variants. Nine low-frequency/com-

mon variants had a P<0.05, but a false discovery rate between 0.06 and 0.24. Of them, 7

were found in ADAMTS13 (rs28641026, rs28503257, rs685523, rs3124768, rs3118667,

rs739469, rs3124767; all protective) and 2 in VWF (rs1800382 [risk], rs7962217 [protec-

tive]). Rare ADAMTS13 variants were significantly associated with DVT using the burden,

variable threshold (VT) and UNIQ (P<0.05), but not with C-ALPHA, SKAT and SKAT-O

tests. Rare VWF and F8 variants were not associated with DVT. Carriers of rare ADAMTS13

variants had lower ADAMTS13 activity than non-carriers (ß -6.2, 95%CI -11,-1.5). This

association was stronger for DVT patients than controls (ß -7.5, 95%CI -13.5,-1.5 vs. ß -2.9,

95%CI -10.4,4.5).
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Conclusions

ADAMTS13 and VWF low-frequency/common variants mainly showed a protective effect,

although their association with DVT was not confirmed. DVT patients carrying a rare

ADAMTS13 variants had slightly reduced ADAMTS13 activity levels, but a higher DVT risk.

Rare VWF and FVIII variants were not associated with DVT suggesting that other mecha-

nisms are responsible for the high VWF and FVIII levels measured in DVT patients.

Introduction

Deep vein thrombosis (DVT) is a common life-threatening thrombotic disorder caused by the

shift of the hemostatic equilibrium toward the blood clot formation. DVT along with pulmo-

nary thromboembolism constitute venous thromboembolism (VTE), which is characterized

by an annual incidence of 2–3 per 1000 individuals [1]. Part of DVT events is explained by a

strong genetic component that includes the deficiencies of natural anticoagulants proteins

(antithrombin, protein C and protein S), factor V Leiden (FVL), prothrombin G20210A muta-

tion, fibrinogen gamma chain C10034T mutation [2]. The dissemination and improvement of

new sequencing approaches including genome-wide association studies (GWAS) along with

meta-analyses of GWAS data, led to the identification of new loci which mainly refer to genes

involved in the hemostatic pathways [3, 4]. However, these genetic risk factors contribute to

explain only 50–60% of DVT genetic hereditability [5–7]. Our group previously reported the

results obtained using DNA next-generation sequencing (NGS) to evaluate the role of the dis-

integrin and metalloprotease with thrombospondin type 1 motif, number 13 (ADAMTS13)

and von Willebrand factor (VWF) genes which encode two proteins involved in the mainte-

nance of the equilibrium between hemostasis and thrombosis. In particular, we showed that

DVT patients had an excess of rare ADAMTS13 single nucleotide variants (SNVs) compared

with controls. Moreover, DVT patients carrying at least one rare SNV showed a lower

ADAMTS13 activity than non-carrier patients [8]. The functional effect of these variants has

been evaluated by performing in vitro expression studies, which confirmed a reduction of

ADAMTS13 activity for 3 out of 9 variants (p.V154I, p.D187H and p.R421C) [9].

Based on this background, we aimed to confirm our previous results which suggested an

association between rare ADAMTS13 variants and DVT (odds ratio [OR] 4.8; 95% confidence

interval [CI] 1.6–15.0) [8]. To this purpose, a total of 594 Italian DVT patients and 571 controls

were sequenced using NGS. Then, the association between carrier-ship of a rare ADAMTS13
variant and ADAMTS13 activity levels was evaluated. The study also focused on VWF and F8
due to the strong role of the respective encoded proteins in the maintenance of hemostasis and

thrombosis equilibrium and because increased VWF and FVIII levels have been already

described as associated with an increased DVT risk [10].

Materials and methods

Study population

We selected Italian DVT patients from those referred to the Angelo Bianchi Bonomi Hemo-

philia and Thrombosis Center in Milan (Italy) between 2006 and 2016. Briefly, the selection

criteria included: (i) objective diagnosis of DVT of the lower limbs (i.e., by compression ultra-

sonography or venography); (ii) idiopathic DVT defined by the absence of cancer, surgery or

immobilization; (iii) normal levels of the natural anticoagulant proteins antithrombin, protein
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C and protein S; (iv) absence of FVL or prothrombin G20210A mutations. Controls, matched

with cases for age (+/- 5 years) and sex were recruited among friends and partners who accom-

panied patients to the Center, agreed to be tested for thrombophilia and had wild-type FVL

and prothrombin G20210A genotypes [9].

ADAMTS13 activity, previously measured using the FRET-VWF73 assay [11], was available

in 365 DVT patients and 292 controls [12]. The study was approved by the Ethics Committee

of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico. All study subjects were

aware of the content of this study and gave a written informed consent.

Next generation sequencing, quality control and data analyses

NGS experiments were performed in two stages. For 298 DVT cases and 298 controls, the cod-

ing region, intron-exon boundaries, and 3’ and 5’ untranslated regions (UTRs) of ADAMTS13,

VWF and F8 were sequenced as part of a larger panel as previously reported [13]. Briefly, a

multiplexed NGS (Human Genome Sequencing Center, Baylor College of Medicine, Houston,

USA) was performed using unique barcode-sequencing tags, to create library pools of 8–20

samples, which were captured and sequenced in parallel using the Illumina HiSeq 2000

sequencing platform (Illumina, San Diego, USA). Reads were mapped to reference genome

GRCh37/hg19 by use of the Burrows–Wheeler aligner (BWA)-MEM, resulting in BAM files

per sample [13].

A second NGS panel (Illumina, San Diego, USA) limited to the coding region, intron-exon

boundaries, and 3’ and 5’ untranslated regions (UTRs) of ADAMTS13, F8 and VWF was subse-

quently designed to increase our study population by sequencing additional 296 cases and 273

controls. The sequences were aligned to the same reference genome (GRCh37/hg19) using the

BWA-MEM algorithm. Picard and GATK tools were applied to sort index and recalibrate the

BAM files of the individual subjects. Then, BAM files obtained from both sequencing panels

underwent variant calling, performed using Haplotype Caller (GATK). The single gVCF files

were assembled in a unique file and the variants were filtered according to the guidelines

reported by the Broad Institute (https://software.broadinstitute.org/gatk/best-practices/). Vari-

ants’ annotation was performed using wANNOVAR (http://wannovar.wglab.org/). A further

quality control was performed using KGGSeq (http://grass.cgs.hku.hk/limx/kggseq/), exclud-

ing variants with an average reading depth < 10, Phred score < Q30 and Hardy-Weinberg

equilibrium P < 1.0 E-04. Variants were divided on the basis of their minor allele frequency

(MAF) in low-frequency/common (MAF� 1%) and rare (MAF < 1%).

Statistical analysis

Continuous variables were described as median and interquartile range (IQR), whereas cate-

gorical variables were reported as counts and percentages. ADAMTS13 activity, von Willeb-

rand factor antigen (VWF:Ag) and factor VIII coagulant activity (FVIII:C) levels in DVT

patients and controls were compared using the non-parametric Mann-Whitney test. P-

values< 0.05 were considered statistically significant. Low-frequency and common variants

were individually analyzed using a logistic regression model age- and sex- adjusted and consid-

ering a model of additive inheritance with PLINK (http://zzz.bwh.harvard.edu/plink/contact.

shtml). Results were reported as OR with the corresponding 95% CI. The False discovery rate

(FDR) was used to correct for multiple testing and variants with an FDR < 0.25 were further

considered. Rare variants were analyzed using seven different cumulative association tests

based on different analytical approaches: (i) unidirectional tests which include burden [14],

variable threshold (VT [15]), UNIQ [16] and SUMSTAT tests [17]; (ii) bi-directional variance-

component tests which allow different variants effects (neutral/deleterious) such as C-ALPHA
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[18] and the Sequence Kernel Association Test (SKAT [19]); and (iii) a combination of both

unidirectional and bi-directional variance-component tests, represented by SKAT-O [20]. All

gene-based association tests were performed with the PLINK/SEQ suite (https://atgu.mgh.

harvard.edu/plinkseq/) and adjusted for age and sex [14].

The association between rare ADAMTS13 variants and ADAMTS13 activity levels was eval-

uated using linear regression models adjusted for age and sex, by considering: (i) all variants

identified in ADAMTS13; (ii) the variants potentially affecting ADAMTS13 activity such as

missense mutations, frameshift mutations, deletions and insertions; (iii) the variants poten-

tially affecting ADAMTS13 activity also predicted as damaging by CADD algorithm

(score > 20) [21]. The analyses were performed in all individuals with an available measure-

ment of ADAMTS13 activity, then stratifying by case-control status. Results were reported as

beta coefficients with 95% CI. Statistical analyses were performed using the statistical software

R, release 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Baseline characteristics of the study population, which include 594 cases and 571 controls, are

reported in Table 1. About 60% of DVT patients were women with a mean age of 47 years,

similar to controls. DVT patients showed higher median VWF:Ag (169% vs. 115%;

P< 0.0001) and FVIII:C (148% vs. 113%, P< 0.0001) plasma levels than controls (Table 1).

ADAMTS13 activity, available in 365 DVT patients and 292 controls, was slightly reduced in

DVT patients than controls (94% vs. 98%, respectively; P = 0.02) [12].

NGS identified a total of 320 variants distributed in the ADAMTS13, VWF and F8. These

SNVs were mainly localized in the coding regions (77.5%) and introns (16%), whereas only

6.5% was found in the UTRs of sequenced genes. Forty-eight low-frequency/common variants,

all missense, were distributed as follows: 18 in ADAMTS13, 27 in the VWF and 3 in the F8 (S1

Table). Of 272 rare variants (MAF < 1%), 210 were localized in exons and included 126 mis-

sense, 80 synonymous mutations, 1 in-frame insertion, 2 in-frame deletions and 1 frameshift

mutation, whereas the remaining 62 variants were found in introns and UTRs. Seventy out of

272 variants were referred as novel because not present in dbSNP or other databases. The com-

plete list of rare variants is reported in the S2 Table.

Table 1. Baseline characteristics of the study population.

DVT Patients Controls P �

N 594 571 -

Age (years), mean (SD) 47 ± 15 45 ± 14 -

Female sex, n (%) 328 (57) 313 (55)

ADAMTS13 activity (%), median (IQR)a 94 (81–108) 98 (86–112) P = 0.02

VWF antigen, median (IQR)b 169 (136–209) 115 (87–148) P < 0.0001

FVIII coagulant activity, median (IQR)c 148 (124–173) 113 (93–137) P < 0.0001

Time from acute event (months), median (IQR) 9 (3–32) - -

Patients treated at sampling time, n (%)d 174 (48) - -

a Available in 365 cases and 292 Controls.
b Available in 342 cases and 247 controls.
c Available in 330 cases and 292 Controls.
d Warfarin (n = 81), low molecular weight heparin (n = 54), Rivaroxaban (n = 25), unfractionated heparin (n = 6), Fondaparinux (n = 5), Apixaban (n = 1).

� Mann-Whitney test was performed. P values < 0.05 were considered statistically significant.

https://doi.org/10.1371/journal.pone.0258675.t001

PLOS ONE ADAMTS13 gene and deep vein thrombosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0258675 October 18, 2021 4 / 12

https://atgu.mgh.harvard.edu/plinkseq/
https://atgu.mgh.harvard.edu/plinkseq/
https://doi.org/10.1371/journal.pone.0258675.t001
https://doi.org/10.1371/journal.pone.0258675


A total of 89 rare variants were found in ADAMTS13 and spanned across the gene. Of

them, 48 were found in DVT patients, 28 in controls and 13 were found in both. Of the

remaining 183 rare variants, 149 were in VWF and 34 in F8. Rare VWF and F8 variants were

homogeneously distributed among cases and controls (93 vs. 105 for VWF; 17 vs. 20 for F8). A

total of 3 tri-allelic variants were identified (n = 1 in ADAMTS13 and n = 2 in VWF).

Low-frequency/common variants

The QQ plot of the observed P-values vs. the expected distribution showed a signal inflation

due to high the linkage disequilibrium of variants (Fig 1). Of 48 low-frequency/common

SNVs, 9 showed a P< 0.05, but an FDR between 0.06 and 0.24 after correction for multiple

testing (Table 2). Seven out of these 9 SNVs were located in ADAMTS13 and two in the VWF.

None of the 3 SNVs identified in F8 were found to be associated with DVT. Low-frequency/

common ADAMTS13 variants showed a protective effect on DVT onset, with size effect esti-

mates ranging from an OR 0.53 to 0.82. ADAMTS13 SNVs rs3124768, rs3118667 and rs739469

showed the same OR of 0.78, explained by the high linkage disequilibrium among them (r2

between 0.74 and 1 for each combination). Similar results were found for ADAMTS13 SNVs

rs28641026 and rs28503257, which were associated to DVT with an OR of 0.53 (r2 = 1). VWF

Fig 1. Quantile-quantile plot. P-value distributions referred to the 48 low-frequency/common variants (MAF� 1%)

identified in Italian DVT patients and matched controls sequenced by next-generation sequencing.

https://doi.org/10.1371/journal.pone.0258675.g001
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SNV rs1800382 had a strong association with DVT (OR 3.26, 95% CI 1.18–8.98; P = 0.02),

whereas the rs7962217 had a protective effect on disease onset (Table 2).

Rare variants

The association between rare variants and DVT was assessed using different gene-based tests

and results are summarized in Table 3. Because these tests consider the variant position, the

three tri-allelic variants are not included in the count herein reported. ADAMTS13 SNVs

(n = 88) were found to be associated with DVT using the burden test (P = 0.02), VT (P = 0.03),

and UNIQ (P = 0.04), but not with C-ALPHA, SUMSTAT, SKAT tests and SKAT-O

(P> 0.05). Both burden and VT tests remained significant after performing a restriction anal-

ysis on potentially damaging variants (n = 45; P = 0.02 and P = 0.04, respectively). The same

results were obtained by restricting the analysis to the 15 potentially damaging ADAMTS13
variants also predicted to be damaging by CADD > 20 (burden, P = 0.003; VT, P = 0.005).

SKAT-O showed a significant association after restriction analyses to potentially damaging

variants (P = 0.05) and potentially damaging variants with CADD > 20 (P = 0.008).

None of these tests showed an association between rare VWF variants and DVT, neither

considering all identified variants nor by performing a restriction analysis on potentially dam-

aging variants. SKAT and SKAT-O showed a significant association after restriction analysis

to VWF potentially damaging variants with a CADD > 20. Rare F8 variants were not associ-

ated with DVT, even after restriction analyses (Table 3).

Association between rare ADAMTS13 SNVs and ADAMTS13 activity levels

This part of the study was performed by selecting sequenced cases and controls (n = 365 and

n = 292, respectively) who had available ADAMTS13 activity levels, measured by the

FRET-VWF73 assay. The association between the presence of at least one rare ADAMTS13
variant and the related protein activity levels was assessed using linear regression adjusted for

Table 2. Low-frequency and common variants associated with DVT.

Gene rsID Chr Position Class Ref. Allele/ Risk

allele

Amino Acid

Position

MAF Risk allele (Cases/

Controls)

OR (95%CI) a P FDR

ADAMTS13 rs28641026 9 136314952 exonic C/T p.V970V 0.02/0.04 0.53 (0.31–

0.89)

0.02 0.15

ADAMTS13 rs28503257 9 136319589 exonic G/A p.A1033T 0.02/0.04 0.53 (0.31–

0.89)

0.02 0.15

ADAMTS13 rs685523 9 136310908 exonic C/T p.A900V 0.07/0.10 0.74 (0.55–

0.99)

0.05 0.24

ADAMTS13 rs3124768 9 136304497 exonic G/A p.T572T 0.43/0.50 0.78 (0.67–

0.92)

0.003 0.06

ADAMTS13 rs3118667 9 136291063 exonic T/C p.A140A 0.36/0.43 0.78 (0.66–

0.92)

0.003 0.06

ADAMTS13 rs739469 9 136298729 intronic C/G . 0.43/0.49 0.78 (0.67–

0.92)

0.004 0.06

ADAMTS13 rs3124767 9 136308542 exonic T/C p.G760G 0.45/0.50 0.82 (0.69–

0.97)

0.02 0.15

VWF rs1800382 12 6128388 exonic C/T p.R1399H 0.01/0.001 3.26 (1.18–

8.98)

0.02 0.15

VWF rs7962217 12 6061559 exonic C/T p.G2705R 0.05/0.07 0.67 (0.47–

0.95)

0.03 0.16

Chr, chromosome; Ref. allele, Reference allele; MAF, Minor allele frequency; OR–odds ratio; 95% CI–confidence interval; FDR–false discovery rate; age/sex adjusted.

https://doi.org/10.1371/journal.pone.0258675.t002
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age and sex. The first analysis was performed by considering together patients and controls

carriers for rare ADAMTS13 variants (Table 4). Carriers of at least one rare variant (n = 71)

showed reduced ADAMTS13 activity levels compared with non-carriers (n = 586; β -6.2, 95%

CI -11, -1.5; P = 0.01). The association became stronger considering those variants potentially

affecting ADAMTS13 activity (missense mutations, frameshift mutations, deletions and inser-

tions [n = 33; β -11.0, 95% CI -18.0, -4.3; P = 0.001]) or variants potentially affecting

ADAMTS13 activity with a CADD > 20 (n = 13; β -28, 95% CI -39.0, -18.0; P < 0.001). Sec-

ondly, we considered patients and controls, separately (Table 4). The association for patients

was similar to that of the main analysis for each category of variants evaluated, with the highest

association for those variants with CADD > 20 (n = 13; β -25.9, 95% CI -36, -16; P < 0.001).

Conversely, no association was found in controls (n = 28; β -2.9, 95% CI -10.4, 4.5; P = 0.4).

Discussion

In the last years, the role of the ADAMTS13 gene as a genetic risk factor for both arterial and

venous thrombosis has been explored. Different authors reported the existing link between

ADAMTS13 variants and stroke or other cardiovascular diseases [22, 23], whereas our group

was the first to describe an excess of rare ADAMTS13 variants in a small group of 94 DVT

patients and 98 controls. Furthermore, we showed that patients carrying at least one rare

ADAMTS13 variant had lower ADAMTS13 activity levels than non-carriers [8].

Table 3. The association between ADAMTS13, VWF and FVIII rare variants and DVT assessed using different gene-based tests.

Rare variants Potentially Damaging a mutations CADD > 20

Gene N Test P I N Test P I N Test P I

ADAMTS13 88 b BURDEN 0.02 0.001 45 b BURDEN 0.02 0.001 15 BURDEN 0.003 0.0003

VT 0.03 0.003 VT 0.04 0.004 VT 0.005 0.0003

UNIQ 0.04 0.003 UNIQ 0.08 - UNIQ 0.09 0.006

SUMSTAT 0.18 0.003 SUMSTAT 0.30 0.004 SUMSTAT 0.18 0.0003

C-ALPHA 0.14 0.003 C-ALPHA 0.11 0.004 C-ALPHA 0.09 0.0003

SKAT 0.19 - SKAT 0.15 - SKAT 0.09 -

SKAT-O 0.06 - SKAT-O 0.05 - SKAT-O 0.008 -

VWF 147 b BURDEN 0.21 0.019 72 b BURDEN 0.31 0.032 35 b BURDEN 1 0.200

VT 1 0.024 VT 0.64 0.008 VT 1 0.005

UNIQ 1 0.200 UNIQ 1 0.200 UNIQ 1 0.200

SUMSTAT 0.5 0.024 SUMSTAT 0.30 0.008 SUMSTAT 0.08 0.005

C-ALPHA 0.26 0.024 C-ALPHA 0.10 0.008 C-ALPHA 0.06 0.005

SKAT 0.13 - SKAT 0.06 . SKAT 0.02 -

SKAT-O 0.23 - SKAT-O 0.14 - SKAT-O 0.04 -

F8 34 BURDEN 0.71 0.167 11 BURDEN 1 0.200 3 BURDEN 0.83 0.200

VT 1 0.167 VT 1 0.005 VT 0.38 0.174

UNIQ 0.7 0.167 UNIQ 1 0.200 UNIQ 0.83 0.200

SUMSTAT 0.71 0.167 SUMSTAT 0.08 0.005 SUMSTAT 0.54 0.043

C-ALPHA 0.86 0.167 C-ALPHA 0.06 0.010 C-ALPHA 0.46 0.130

SKAT 0.64 - SKAT 0.36 - SKAT 0.35 -

SKAT-O 0.81 - SKAT-O 0.31 - SKAT-O 0.47 -

P, P value based on permutation. I, proportion of null replicates for which the best test statistic was tied. All tests were adjusted for age and sex.
a Potentially damaging mutations include missense mutations, frameshift mutations, deletions and insertions. N, number of variants analysed. VT, variable threshold.
b Analyses have been done by considering variant position. Therefore, the tri-allelic variant identified in ADAMTS13 and VWF genes (n = 1 and n = 2, respectively)

were not included in the count. The complete list of annotated variants is reported in the S2 Table.

https://doi.org/10.1371/journal.pone.0258675.t003
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In the present study, we aimed to confirm our previous results in a larger population of 594

Italian DVT patients and 571 controls, focusing on ADAMTS13 along with VWF and F8

genes. We found a total of 320 variants which included 272 rare and 48 low-frequency/com-

mon variants mainly located in ADAMTS13 and VWF, whereas those in F8 were only a few.

Similar to our previous study, DVT patients showed an excess of rare ADAMTS13 variants

than controls (61 vs. 41). These variants spanned across the gene, without highlight clusters

[8]. A total of 15 rare SNVs were predicted as potentially damaging with CADD score> 20 (S2

and S4 Tables). Of them, 2 have already been identified in our previous studies and their effect

on ADAMTS13 activity was confirmed by in vitro expression studies [9]. In addition, 1 DVT

patient carrying the p.P1218C mutation showed an ADAMTS13 activity slightly below the

normal range (42% vs. 45%).

The association between rare variants and DVT was tested using different cumulative asso-

ciation methods [14–20]. All rare ADAMTS13 variants were associated with DVT using the

burden and VT tests and the association was maintained even after restriction analyses to

potentially damaging variants or potentially damaging variants with CADD > 20. The restric-

tion analyses results were also confirmed by SKAT-O, a powerful method that combines the

assumptions of unidirectional and bi-directional variance- component methods. Differently,

UNIQ showed a significant association only when used to test all rare ADAMTS13 variants,

whereas SUMSTAT never showed any association. These inconsistencies can be related to the

limits of the tests used. Indeed, both UNIQ and SUMSTAT have lower mean power than bur-

den and VT tests [24]. The finding of an association with burden and VT (unidirectional

methods), but not with C-ALPHA and SKAT (bi-directional variance- component methods)

are probably due to an excess of deleterious variants. Indeed, burden and VT tests are most

powerful when the majority of rare variants have the same “unidirectional” effect (i.e., deleteri-

ous), whereas SKAT and C-ALPHA are mostly powered when both neutral and deleterious

variants are present [18, 19, 24].

DVT patients carrying at least one rare ADAMTS13 variant showed a reduction of

ADAMTS13 activity levels, which was more pronounced considering variants predicted to be

Table 4. Association between rare ADAMTS13 variants and ADAMTS13 activity levels in the whole population and after stratifying on case-control status.

Carriers Non-carriers Linear Regression a

Variant Class All, n ADAMTS13 Activity (%) All, n ADAMTS13 Activity (%) ß (95% CI) P

All rare 71 91 (80–106) 586 96 (84–109) -6.2 (-11.0, -1.5) 0.01

Potentially damaging b 33 89 (71–100) 624 96 (84–109) -11.0 (-18.0, -4.3) <0.001

CADD > 20 13 63 (58–81) 644 96 (84–109) -28.0 (-39.0, -18.0) <0.001

Variant Class Cases, n ADAMTS13 Activity (%) Cases, n ADAMTS13 Activity (%) ß (95% CI) P

All rare 43 90 (72–98) 322 95 (81–108) -7.5 (-13.0, -1.5) 0.014

Potentially damaging b 24 82 (60–94) 341 94 (82–108) -14.5 (-22.0, -6.8) <0.001

CADD > 20 13 63 (58–81) 352 94 (82–108) -25.9 (-36.0, -16.0) <0.001

Variant Class Controls, n ADAMTS13 Activity (%) Controls, n ADAMTS13 Activity (%) ß (95% CI) P

All rare 28 98 (85–112) 264 98 (86–111) -2.9 (-10.4, 4.5) 0.4

Potentially damaging b 9 100 (86–114) 283 98 (86–111) -2.4 (-10.0, 15.0) 0.7

CADD > 20 0 - 292 98 (86–111) - -

Analyses have been performed by considering at first all carriers of at least one rare ADAMTS13 variant and then by dividing carriers in DVT patients (cases) and

controls. ADAMTS13 activity (expressed as percentage) was reported as median and interquartile range. Linear regression results were reported as beta coefficients (ß)

and 95% confidence intervals (CI).
a The model was adjusted for age and sex.
b Potentially damaging mutations include missense mutations, frameshift mutations, deletions and insertions.

https://doi.org/10.1371/journal.pone.0258675.t004
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damaging (ß -25.9%, 95% CI -36.0, -16.0), in agreement with our previous study [8]. Con-

versely, controls carrying at least one rare ADAMTS13 variant showed a slight and non-statis-

tically significant reduction of ADAMTS13 activity levels compared with non-carriers.

Unfortunately, none of the 5 controls carrying a rare potentially damaging variant with

CADD > 20 had available plasma samples. As final step, to exclude that the association was

biased by additional factors such as ADAMTS13 consumption during DVT event or drug

administration, we repeated the analyses considering the 167 DVT cases whose plasma sample

were collected� 3 months from the acute event and/or not during anticoagulant therapy con-

firming our results (S3 Table).

The use of cumulative tests to assess the association between rare VWF variants and DVT

did not show any association by considering all rare VWF variants or by restricting the analysis

to potentially damaging variants. Only SKAT and SKAT-O showed a significant association

after restriction to potentially damaging variants with CADD > 20. These results were unex-

pected as both methods should be optimal to test a mix of neutral and deleterious variants (i.e.,

before restriction analyses). However, the negative results obtained with the other methods,

independently from the group of variants tested, led us to exclude an association between rare

VWF variants and DVT. These findings, together with the absence of rare F8 variants associ-

ated with DVT, led us to speculate that the increased VWF and FVIII levels measured in DVT

patients could be due to other mechanisms such as the presence of mutations in regulatory

regions or other genes involved in the VWF clearance [25–27].

Differently from our previous study, we identified 9 low-frequency/common variants

potentially associated with DVT (P< 0.05) as the adjustment for multiple testing resulted in a

high FDR (between 0.06 and 0.24). Of them, 7 were previously reported as ADAMTS13 poly-

morphisms and showed a protective effect. This was partially explained considering that two

groups of SNVs were in high linkage disequilibrium and showed the same association signal

([rs28641026, rs28503257; OR 0.53, 95% CI 0.31–0.89] and [rs3124768, rs3118667, rs739469;

OR 0.78, 95% CI 0.67–0.92]). The effect of these SNVs was previously evaluated using in vitro
expression studies (with the exception of the intronic variant rs739469) and none of them

showed a severe reduction of ADAMTS13 activity levels [28, 29].

The remaining 2 SNVs localized in VWF, showed opposite effects and inconsistencies with

previous reported studies. The rs1800382 showed the strongest association with DVT (OR

3.26, 95% CI 1.18–8.98), whereas it was previously described in VWD patients as responsible

for a collagen type IV binding defect, hence resulting in a prolonged bleeding time instead of a

thrombotic effect [30]. However, we cannot exclude that rs1800382 is in linkage disequilib-

rium with another VWF defect located in a region not covered by our study design, such as

deep intronic or regulatory regions. The rs7962217 showed a protective effect. Nevertheless, its

role is still uncertain because reported as associated with increased Factor VIII coagulant activ-

ity levels, but not with VWF antigen levels in a larger cohort of non-European Americans and

African-Americans subjects [31]. Of the low-frequency/common variants identified, only

three were located in F8 and none of them was associated with DVT. This was in agreement

with previous findings, demonstrating that increased FVIII levels were not due to the presence

of common polymorphisms in F8 [32].

This study could suffer from some limitations such as the relatively small sample size. How-

ever, the choice of striking criteria finalized to exclude the DVT patients who already had

known genetic (e.g., FV Leiden and prothrombin G20210A mutations) or environmental risk

factors for DVT, contributed to magnify the power. A second limitation could be related to the

sequencing approach that was focused on the coding regions avoiding the identification of var-

iants potentially located in the regulatory or intronic regions. Third, ADAMTS13 activity mea-

surements were available for a part of the enrolled subjects. Finally, we cannot assume the
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generalizability of our findings in other different populations, as commonly reported in

genetic studies.

In conclusion, rare ADAMTS13 variants were associated with an increased risk for DVT.

We confirmed that patients carrying a rare ADAMTS13 variant had lower ADAMTS13 activity

levels than non-carriers. These findings support the hypothesis that rare ADAMTS13 variants

may increase the DVT risk thru a mechanism that includes the reduction of ADAMTS13 activ-

ity. Conversely, 8 out of 9 top SNVs with low/common frequency showed a protective effect,

although their association with DVT needs to be confirmed. Rare VWF and F8 variants were

not associated with DVT risk, suggesting that the increased plasma VWF and FVIII levels are

caused by other mechanisms.
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