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Abstract: We present a new, general approach to gauge theory on principal G-spectral
triples, where G is a compact connected Lie group. We introduce a notion of vertical
Riemannian geometry for G-C∗-algebras and prove that the resulting noncommuta-
tive orbitwise family of Kostant’s cubic Dirac operators defines a natural unbounded
K K G-cycle in the case of a principal G-action. Then, we introduce a notion of principal
G-spectral triple and prove, in particular, that any such spectral triple admits a canonical
factorisation in unbounded K K G-theory with respect to such a cycle: up to a remainder,
the total geometry is the twisting of the basic geometry by a noncommutative super-
connection encoding the vertical geometry and underlying principal connection. Using
these notions, we formulate an approach to gauge theory that explicitly generalises the
classical case up to a groupoid cocycle and is compatible in general with this factorisa-
tion; in the unital case, it correctly yields a real affine space of noncommutative principal
connections with affine gauge action. Our definitions cover all locally compact classical
principal G-bundles and are compatible with θ -deformation; in particular, they cover
the θ -deformed quaternionic Hopf fibration C∞(S7

θ )←↩ C∞(S4
θ ) as a noncommutative

principal SU(2)-bundle.
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What is noncommutative gauge theory? Fromone perspective, it should be the direct gen-
eralisation of the differential-geometric framework of principal connections on smooth
principal bundles to a suitable category of noncommutative manifolds: when applied to
noncommutative differential geometry in terms of noncommutative algebras endowed
with noncommutative differential calculi, this results in the theory of principal comod-
ule algebras and strong connections as pioneered by Brzeziński–Majid [24] and Hajac
[56]. By contrast, Connes has proposed a radically different vision, the spectral action
principle [33]: gauge theory should emerge from the spectral action as noncommutative
Einstein–Hilbert action on spectral triples as noncommutative spinmanifolds. However,
the full noncommutative de Rham calculus of a spectral triple poses computational and
conceptual difficulties [58, Sect. 12.3], while the spectral action framework uses almost-
commutative spectral triples, in particular, to access the adjoint bundle without invoking
the underlying principal bundle at all [29]. As a result, these two approaches appear to
be practically irreconcilable.

Since Connes’s general framework [36] of noncommutative Riemannian geometry
via spectral triples is applicable well beyond the context of the spectral action principle,
a rich literature has nonetheless emerged from the gap between these two approaches.
On the one hand, the θ -deformed quaternionic Hopf fibration C∞(S7

θ ) ←↩ C∞(S4
θ ) of

Landi–Van Suijlekom [74] readily lends itself to the construction of noncommutative
instantons [72,73]; however, these can only be constructed implicitly in terms of a con-
sistent choice of Hermitian connection on the various noncommutative associated vector
bundles. On the other hand, Dąbrowski–Sitarz [42], together also with Zucca [38], have
developed an extensive theory of noncommutative Riemannian principal U(1)-bundles
with noncommutative principal connections in terms of spectral triples; however, its
index-theoretic implications have hitherto remained completely elusive. In both cases,
the lack of a cohesive theory of noncommutative principal connections on noncom-
mutative principal bundles within the theory of spectral triples presents a fundamental
theoretical obstacle—it is also the very first obstacle to putting the framework of strong
connections on principal comodule algebras and the spectral action principle on a theo-
retical level footing.

In this work, we generalise the differential-geometric framework of principal connec-
tions and global gauge transformations on smooth principal bundles to noncommutative
Riemannian geometry via spectral triples in amanner explicitly compatiblewith its inter-
play of noncommutative differential calculus, noncommutative spectral geometry, and
noncommutative index theory. Following Brain–Mesland–Van Suijlekom’s pioneering
analysis [20] of the noncommutative principal U(1)-bundles C∞(T2

θ )←↩ C∞(T1) and
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C∞(S3
θ )←↩ C∞(S2), we use the technical framework of unbounded K K -theory. First

developed by Baaj–Julg [11] and Kučerovský [70] as a technical tool for computations
in Kasparov’s K K -theory [67], it readily accommodates Connes’s general procedure
[35, Sect. 6.1, 6.3] for twisting spectral triples by a connection on an arbitrary finitely
generated projectivemodule. However, it has only come to full fruition in the last decade.

The main novel geometric ingredient of this renewal, as pioneered by Mesland [80]
and Kaad–Lesch [63], is the introduction of module connections compatible with the
data of unbounded K K -cycles, thereby facilitating an explicit geometric calculation of
the Kasparov product in the noncommutative setting while providing a noncommutative
generalisation ofQuillen’s superconnection formalism [89] as developed byBismut [15].
This development has allowed for the direct introduction into the realm of unbounded
K K -theory of such geometric tools as geodesic completeness [79], localisation [64],
locally bounded perturbations [47], and homotopies [46,66], all of which will be used
extensively in this work. The relevance of unbounded K K -theory to a context such
as ours has recently been confirmed by work of Kaad–Van Suijlekom on Riemannian
spinC submersions [65], of Forsyth–Rennie on TN -equivariant spectral triples [52], and
ofMesland–Rennie–Van Suijlekom on curvature for abstract noncommutative fibrations
[78]. Our results, however, are independent of theirs.

Overview of Results

We begin in Sect. 1 by studying the orbitwise intrinsic geometry and index theory of
noncommutative topological principal G-bundles. More precisely, let (A, α) be a G-
C∗-algebra whose G-action α is principal in the sense of Ellwood [49], and let ρ be
a vertical metric, i.e., a G-invariant positive-definite inner product on the dual of the
Lie algebra g of G valued in the self-adjoint elements of Z(M(A))G , which we view
as a noncommutative orbitwise bi-invariant vertical Riemannian metric. We construct a
canonical G-equivariant unbounded K K -cycle (A1;α, L2

v(Vρ A), cW ( /Dg,ρ); L2
v(Vρα))

modelled on Kostant’s cubic Dirac element [69] that encodes the orbitwise intrinsic
geometry induced by ρ and defines, independently of the choice of ρ, a noncommutative
(twisted) wrong-way class for A ←↩ AG à la Connes [32] and Connes–Skandalis [37] in
G-equivariant K K -theory. This cycle can be interpreted as a noncommutative orbitwise
family of Kostant’s cubic Dirac operators for the noncommutative principal G-bundle
A ←↩ AG induced by the vertical Riemannian metric ρ, and it yields a G-equivariant
generalisation of earlier constructions [28,52,99] to the case where G is non-Abelian,
ρ has non-trivial transverse dependence, and no vertical spinCcondition is assumed.

Next, in Sect. 2, we study the orbitwise extrinsic geometry, basic geometry, and
index theory of noncommutative Riemannian principal G-bundles. As a technical pre-
liminary, we introduce a flexible framework of G-correspondences (A, X, S,∇;U )
inspired by [63,79,80], consisting of G-equivariant unbounded K K -cycles (A, X, S)
equipped with a compatible G-representation U and a Hermitian connection ∇. A G-
correspondence can be viewed as a G-equivariant noncommutative correspondence à
la Connes–Skandalis [37] equipped with a G-equivariant noncommutative supercon-
nection à la Bismut [15]. Our setup covers non-compact, complete noncommutative
geometries, merging the results of [79] with those in [47,64] to arrive at a definition of
correspondence that is flexible enough to cover all our examples.

We now define a principal G-spectral triple to be a G-spectral triple (A, H, D;U )
for a principal G-C∗-algebra (A, α) together with a vertical metric ρ, vertical Clifford
action c : g∗ → L(H) with respect to ρ, and locally bounded remainder Z satisfying
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certain conditions, including a version of Hajac’s strong connection condition [56];
we view (A, H, D;U ; ρ, c; Z) as encoding a noncommutative Riemannian principal
G-bundle. Given (ρ, c), there is a non-trivial canonical candidate for the remainder,
which is required in the commutative case and confirms the remainders observed by
Brain–Mesland–Van Suijlekom [20] and Kaad–Van Suijlekom [65]. We can now write

D − Z = Dv + Dh[Z ],
where the vertical Dirac operator Dv , which is modelled on the cubic Dirac operator,
encodes the orbitwise intrinsic geometry, while the horizontal Dirac operator Dh[Z ]
encodes:

1. the orbitwise extrinsic geometry via the resulting orbitwise shape operator T [Z ];
2. the basic geometry (in the absence of any vertical spinC assumption) via the resulting

basic spectral triple (VρAG, H G , DG [Z ]);
3. the noncommutative principal connection via a canonical Hermitian connection ∇0,

whose construction follows from a more general result in Appendix B that links the
strong connection condition from the algebraic theory of principal comodule algebras
to the analytic theory of Hermitian connections.

This decomposition, in turn, yields a factorisation of (A, H, D;U ) in G-equivariant
unbounded K K -theory up to the explicit remainder Z :

(A, H, D − Z;U )
∼= (A, L2

v(Vρ A), cW ( /Dg,ρ); L2
v(Vρα); ∇0) ̂⊗VρAG (VρAG, H G , DG[Z ]; id).

This can be interpreted as a realising the total geometry as the twisting of the basic
geometry by a noncommutative superconnection encoding the vertical geometry and
principal connection. Moreover, when the adjoint representation of G lifts to Spin and
(A, H, D;U ) is even, this factorisation implies that the G-equivariant index of D must
vanish, thereby (partially) generalising a result of Atiyah–Hirzebruch [10] in the spirit
of Forsyth–Rennie [52].

At last, in Sect. 3, we address the most basic concepts of mathematical gauge theory:
principal connections, global gauge transformations, and the gauge action of the latter
on the former. We begin with a novel account of the commutative case, which leverages
a result of Prokhorenkov–Richardson [88] to re-express Atiyah’s characterisation [8] of
principal connections in relation to G-equivariant Dirac bundles on the total space of a
Riemannian principal G-bundle. This, in turn, permits us to define the following for a
suitable principal G-spectral triple (A, H, D0;U ; ρ, c; Z):

1. itsAtiyah spaceAt of noncommutative principal connections, which is themetrizable
space of all operators D, such that (A, H, D;U ; ρ, c; 0) is a principal G-spectral
triple and D − (D0 − Z) = Dh[0] − (D0)h[Z ] is a relative gauge potential;

2. itsgauge groupGof noncommutative global gauge transformations,which is a certain
metrizable group of G-invariant unitaries that acts continuously by conjugation on
the set At.

This noncommutative framework generalises the commutative case up to a groupoid
cocycle; moreover, using the factorisation of Sect. 2, we show that for all D ∈ At,

[D] = [D0] ∈ K K G• (A,C),
[DG[0]] = [(D0)

G[Z ]] ∈ K K G• (Clm ̂⊗ (Cl(g∗) ̂⊗ A)G),
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so that noncommutative gauge theory is indeed invisible at the level of index theory as
would be required by a noncommutative Chern–Weil theory.We then restrict to the unital
case, where we use results of Lesch–Mesland [75] to show that At correctly defines a
topological R-affine space modelled on the normed R-vector space at of relative gauge
potentials for D0 in a naturally G-equivariant manner.

As a purely noncommutative test of our framework, we investigate the Tm-gauge
theory of the crossed product spectral triple (ZM

� B, H, D) à la Hawkins–Skalski–
White–Zacharias [57] of a unital spectral triple (B, H0, D0) by a metrically equicontin-
uous action of Zm . In this case, we find a canonical isomorphism

Z1(Zm,�1
D0,sa ∩ B′) ∼→ {

A ∈ At : A|HTm = 0
}

,

where �1
D0,sa

is the normed R-space of self-adjoint noncommutative de Rham 1-forms
on (B, H0, D0); in fact, this isomorphism descends to a canonical surjection

H1(Zm,�1
D0,sa ∩ B′) � at/(at ∩ L(H)).

Thus, the Tm-gauge theory of a crossed product by Zm reduces more-or-less to the first
group cohomology of Zm with certain geometrically relevant coefficients.

Finally, in Sect. 4, we relate our results to Connes–Landi deformation [31], the
adaptation of Rieffel’s strict deformation quantisation [92] to TN -equivariant spectral
triples. We refine our earlier definitions to the TN -equivariant case and show that all
TN -equivariant structures, when correctly defined, persist under Connes–Landi defor-
mation; in particular, it follows that the noncommutative principal U(1)-bundles studied
by Brain–Mesland–Van Suijlekom [20] and the θ -deformed quaternionic Hopf fibra-
tion of Landi–Van Suijlekom [74] are accommodated by our framework. Moreover, we
show that the noncommutative wrong-way class of Sect. 1 is natural with respect to the
canonical K K -equivalences between nuclear TN -C∗-algebras and their strict deforma-
tion quantisations. We then conclude in Sect. 5 by outlining several directions for future
investigation, including the study of vertical spinCstructures and noncommutative asso-
ciated vector bundles and associated connections, which we leave to future work.

Notation

We fix, once and for all, a compact connected Lie group G of dimension m with nor-
malised bi-invariant Haar measure dg and Lie algebra g; recall that g carries the adjoint
representation Ad : G → GL(g) of G. Let us also fix an Ad-invariant positive-definite
inner product 〈·, ·〉 on g, such that the volume form volG induced by the correspond-
ing bi-invariant Riemannian metric on G satisfies

∫

G volG = 1; observe that any other
Ad-invariant positive definite inner product on g is of the form 〈·, K (·)〉 for unique
positive-definite K ∈ End(g)G . By mild abuse of notation, we shall also denote by 〈·, ·〉
the dual inner product on g∗ induced by π on g. Let ̂G denote the dual of G, which is the
set of all equivalence classes of irreducible representations of G; for each class [π ] ∈ ̂G,
fix a unitary representative π : G → U (Vπ ), let χπ := Tr ◦π denote the character of π ,
and let dπ := dim Vπ = χπ(1). Finally, as a notational convenience, {ε1, . . . , εm} will
always denote an arbitrary basis for g with corresponding dual basis {ε1, . . . , εm} for
g∗, and we shall always use Einstein summation. For details and further notation related
to harmonic analysis on G, we refer to Appendix A.

In what follows, we will systematically use the conventions of super linear algebra
as outlined, for instance, in [14, Sect. 1.2]. This means that [S, T ] will always denote
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the supercommutator of operators S and T , so that for a subalgebra B of an algebra A,
we define the supercommutant of B in A to be B ′ := {b ∈ B : ∀a ∈ A, [a, b] = 0}
and the supercentre of B to be Z(B) := B ∩ B ′. If B is a Z2-graded C∗-algebra, we
denote by Aut+(B) the group of all even ∗-automorphisms of B. Note that all algebra
representations by bounded operators will be Z2-graded and non-degenerate.

We shall also make extensive use of Clifford algebra; in particular, the systematic use
of multigradings (cf. [56, Sect. A.3]) will allow us to treat even- and odd-dimensional
objects on a completely equal footing and in a manner fully compatible with the formal-
ism of K K -theory. If V is a finite-dimensional real Hilbert space, then Cl(V ) denotes
the complexified Clifford algebra of V , which is the finite-dimensional C∗-algebra gen-
erated by V in odd degree subject to the relations

∀v ∈ V, v2 = −〈v, v〉1Cl(V ), v∗ = −v;
if V is even-dimensional and oriented, we denote by /S(V ) the unique irreducible Z2-
graded ∗-representation ofCl(V )whoseZ2-grading is given by the Clifford action of the
chirality element in/2v1 · · · vn , where {v1, . . . , vn} is any positively oriented orthonormal
basis for V . In the case that V = Rn , which we will always endow with the Euclidean
inner product and positive orientation, we denoteCl(V ) byCln . In the commutative case,
all Dirac bundles (E,∇E ) will be n-multigraded for some n ∈ Z≥0 in the sense that E
is Z2-graded, ∇E is an odd operator, and E admits a smooth fibrewise ∗-representation
of Cln that supercommute with the Clifford action on E and is parallel with respect to
∇E . In the noncommutative case, given a ∗-representation of Cln on a Z2-graded Hilbert
C∗-module E , we will say that a densely defined operator T on E is n-odd whenever
T is odd, Cln ·Dom(T ) ⊂ Dom(T ), and T supercommutes with Cln ; note that this
convention differs from that of [56, Sect. A.3], where Cln acts on the right, so that an
n-odd operator T must commute with Cln .

Finally, for notational convenience, we will only distinguish between a closable
operator T and its minimal closure T when discussing domain-related issues.

1. Topological Principal Bundles

In the commutative case, a locally compact Polish space endowed with a locally free
action of a connected Lie group gives rise to a foliated space, thereby admitting fully
developed longitudinal geometry, global analysis, and index theory [34,37,82]. In this
section, we generalise these considerations to a C∗-algebra A endowed with a principal
G-action, viewed as a noncommutative topological principal G-bundle A ←↩ AG . In
particular, we construct an unbounded K K G-cycle modelled on Kostant’s cubic Dirac
operator [69] that encodes a choice of vertical Riemannian geometry and whose K K G-
class is the analogue of the canonical wrong-way class [37] of a topological principal
bundle. This generalises earlier constructions [28,52,99] in a canonically G-equivariant
fashion to the case where G is non-Abelian and the vertical Riemannian metric has
non-trivial transverse dependence.

1.1. Complete G-equivariant unbounded K K -cycles. The context of the present paper
is that of unbounded K K -theory. Here, we present the relevant definitions and assemble
them into a coherent geometric picture. This requires the theory of unbounded operators
on Hilbert C∗-modules—an introductory account can be found in [71].
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Let us first recall that if D is a homogeneous, densely-defined self-adjoint operator
on a Z2-graded Hilbert space H , then its Lipschitz algebra is defined to be

Lip(D) := {S ∈ L(H) : S Dom(D) ⊆ Dom(D), [D, S] ∈ L(H)},
where [D, S] is the supercommutator of D and S. The Lipschitz norm ‖·‖D defined by

∀S ∈ Lip(D), ‖S‖D := ‖S‖L(H) + ‖[D, S]‖L(H)

makes Lip(D) into a Banach ∗-algebra with contractive inclusion Lip(D) ↪→ L(H),
closed under the holomorphic functional calculus. In general, if E is a Hilbert C∗-
module over a C∗-algebra B and S is a self-adjoint regular operator on E , one defines
Lip(S) ↪→ LB(E) with the same properties.

Definition 1.1. Let A be a separableC∗-algebra andn ∈ Z≥0.Ann-multigraded spectral
triple (A, H, D) for A consists of:

1. a faithful, graded, non-degenerate ∗-representation of Cln ̂⊗ A on a Z2-graded sep-
arable Hilbert space H , such that A · H = H ;

2. an n-odd densely-defined self-adjoint operator D on H ;
3. a dense ∗-subalgebra A of A, such that A ⊂ Lip(D) and A · (D + i)−1 ⊂ K(H).

We call Cln the multigrading and A the differentiable algebra. We say that (A, H, D)
is complete if it comes endowed with an approximate unit {φk}k∈N ⊂ A for A, such that
supk∈N‖[D, φk]‖ < +∞, which we call the adequate approximate unit. We denote by
[D] or [(A, H, D)] the class in K Kn(A,C) ∼= K n(A) represented by (A, H, D).

Mutatis mutandis, given C∗-algebras A and B, one can define an unbounded K Kn-
cycle (A, E, S) for (A, B), where E is a Hilbert B-module and S is an n-odd densely-
defined self-adjoint regular B-linear operator on E , so that the triple (A, E, S) represents
a class [S] ∈ K Kn(A, B).

Remark 1.2. Suppose that (A, H, D) is a complete spectral triple for a C∗-algebra A
with adequate approximate unit {φk}k∈N. Then the approximate unit {φk}k∈N is indeed
adequate in the sense of Mesland–Rennie [76, Sect. 2] and Van den Dungen [47], and
the subspace {φk |k ∈ N} · Dom(D) ⊂ A · Dom D is a core for D. In the case of
a commutative (symmetric) spectral triple on a Riemannian manifold M , an adequate
approximate unit exists if and only if M is geodesically complete [76, Sect. 2].

Note that an unbounded K K -cycle carries more than just the topological information
of its K K -class—it also carries more refined geometric information. Indeed, just as
spectral triples generalise Riemannian manifolds (and not just their fundamental class
in K -homology), unbounded K K -cycles should be viewed as generalised morphisms
between (Riemannian) manifolds.

Following Connes–Skandalis [37], given smooth manifolds M and N , one can rep-
resent elements of the group K Kn(C0(M),C0(N )) by geometric correspondences, i.e.,
diagrams of the form

M
f←− (Z , E)

g−→ N ,

where Z is a manifold, E → Z is a vector bundle, f : Z → M is a proper smooth
map, and g : Z → N is a smooth K -oriented map. For example, a smooth principal
G-bundle π : P � B gives rise to the canonical geometric correspondence
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P
idP←−− (P,C× P)

π−→ B,

and thus in particular defines an element in K Km(C0(P),C0(B)).

Roughly speaking, a geometric correspondence M
f←− (Z , E)

g−→ N gives rise to
an unbounded K Kn-cycle (C∞c (M), X, S), where n = dim Z − dim N , where X is a
completion of the space of sections of a certain bundle ofHilbert spaces overY , andwhere
S is a family of Dirac-type operators whose existence is guaranteed by K -orientability of
the map g. In this way, unbounded K K -cycles can be used to make sense of (sufficiently
well-behaved) noncommutative fibrations; together, spectral triples and unbounded K K -
cycles will provide the mathematical setting for our theory of noncommutative principal
bundles. We now refine these definitions accordingly to the G-equivariant case.

Definition 1.3. Let (A, α) be a G-C∗-algebra; let n ∈ Z≥0. An n-multigraded G-
spectral triple for (A, α) is an n-multigraded spectral triple (A, H, D) for A with a
strongly continuous unitary representation U : G → U+(H) of G on H by even oper-
ators supercommuting with the multigrading, such that:

1. the differentiable algebra A is G-invariant and consists of C1 vectors for α;
2. the ∗-subalgebra AG := A ∩ AG is dense in AG := {a ∈ A : αg(a) = a};
3. the representation U spatially implements α, in the sense that

∀g ∈ G, ∀a ∈ A, UgaU∗
g = αg(a);

4. the operator D is G-invariant, and the G-invariant core Dom D∩A ·H ⊇ A ·Dom D
for D consists of C1 vectors for U .

We say that (A, H, D;U ) is complete if it comes endowedwith an adequate approximate
unit {φk}k∈N ⊂ AG for A. We denote by [D] or [(A, H, D;U )] the class in the group
K K G

n (A,C) ∼= K n
G(A) with unbounded representative (A, H, D;U ).

Mutatis mutandis, forG-C∗-algebras (A, α) and (B, β), one can define an unbounded
K K G

n -cycle (A, E, S;W ) for the pair ((A, α), (B, β)), where (E,W ) is a G-Hilbert B-
module, so that it represents a class [S] ∈ K K G

n (A, B).

Remark 1.4. Conditions 1 and 2 hold automatically whenever A is G-invariant and
defines aO(G)-comodule algebra with respect to α, whereO(G) is the Hopf ∗-algebra
of matrix coefficients of G.

Remark 1.5. For m ≤ n ∈ N, we shall fix, once and for all, an orthogonal decomposition
Rn ∼= Rm ⊕ Rn−m , thereby yielding a decomposition Cln ∼= Clm ̂⊗ Cln−m .

1.2. Vertical Riemannian geometry on G-C∗-algebras. Let (A, α) be a G-C∗-algebra.
In this subsection, we shall develop the noncommutative vertical Riemannian geometry
of (A, α) as a noncommutative G-space. We begin by defining a noncommutative gen-
eralisation of an orbitwise bi-invariant Riemannian metric on the vertical tangent bundle
of a locally free G-space; recall that Z(B) denotes the supercentre of a C∗-algebra B.

Definition 1.6. Let (A, α) be a G-C∗-algebra. A vertical metric on (A, α) is a positive
invertible element ρ ∈ Z(M(A))Geven ̂⊗ End(g∗C)G , such that

∀λ,μ ∈ g∗, 〈λ, ρμ〉∗ = 〈λ, ρμ〉 = 〈ρλ,μ〉.
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Example 1.7. For every Ad-invariant inner product 〈·, ·〉′ on g, there exists positive-
definite ρ ∈ End(g∗)G , such that 〈·, ·〉′g = 〈·, ρ−T (·)〉, where

ρ−T := (ρ−1)T = (ρT )−1.

Conversely, for every positive-definite ρ ∈ End(g∗)G , the form 〈·, ·〉′ := 〈·, ρ−T (·)〉 on
g defines an Ad-invariant inner product on g.

Example 1.8. (cf. Dąbrowski–Sitarz [42, Def. 4.3]) Consider U(1) ∼= R/2πZ, so that
the normalised inner product 〈·, ·〉 on u(1) ∼= R ∂

∂θ
is given by 〈 ∂

∂θ
, ∂
∂θ
〉 = (4π2)−1.

Then the datum of a vertical metric ρ on a U(1)-C∗-algebra (A, α) is equivalent to the
datum of a positive element � ∈ Z(M(A))U(1)even , the length of the U(1)-orbits, via

〈dθ, ρ dθ〉 = 4π2�−2, � = 2π〈dθ, ρ dθ〉−1/2.
Example 1.9. Let P be a locally compact Polish space endowed with a locally free
G-action, let α : G → Aut+(C0(P)) be the induced G-action, and let V P be the
longitudinal tangent bundle of the foliation of P by G-orbits. For each p ∈ P , let
Op : G � G · p ⊆ P denote the orbit map G � g �→ g · p, and say that a G-invariant
bundle metric gV P on V P is orbitwise bi-invariant if

1. the Riemannian metric O∗pgV P on T G is bi-invariant for each p ∈ P;
2. for all X,Y ∈ �(T G), the function p �→ O∗pgV P (X,Y ) is bounded on P .

Then the canonical G-equivariant vector bundle isomorphism g× P
∼→ V P defined by

mapping X ∈ g to the left fundamental vector field X P ∈ �(V P) induces a bijective
correspondence between the set of verticalmetrics on (C0(P), α) and the set of orbitwise
bi-invariant bundle metrics on V P .

Although (A, α) is noncommutative, the transverse dependence of a vertical metric
ρ on (A, α) is nonetheless fully encoded by a certain commutative unital ∗-algebra
M(ρ) of even G-invariant central multipliers of A, which yields a minimal commutative
proxy for the orbit space of (A, α). As such, the algebra M(ρ) can be compared to the
canonical commutative complex ∗-algebra AJ of a real spectral triple (A, H, D; J ),
whose interpretation as an emergent commutative base space has been explored by Van
Suijlekom [48].

Definition 1.10. Let ρ be a vertical metric on (A, α). Its generalised coefficient algebra
is the unital ∗-subalgebra

M(ρ) := C[{〈λ,√ρμ〉 : λ,μ ∈ g∗} ∪ {det(√ρ)−1}],
of Z(M(A))Geven, where det denotes the formal determinant on Z(M(A))Geven̂⊗End(g∗C).
We denote the C∗-closure of M(ρ) by M(ρ).

Remark 1.11. By Gel’fand–Naı̆mark duality applied to M(ρ), a vertical metric ρ is
a continuous family of Ad∗-invariant inner products on g∗ parameterised by M̂(ρ).
Equivalently,

ρ−T := (ρ−1)T ∈M(ρ) ̂⊗ End(gC)
G

defines a continuous family of Ad-invariant inner products on g parameterised by M̂(ρ).
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Example 1.12. Suppose that G = U(1) and � = 2π〈dθ, ρ dθ〉−1/2. Then
M(ρ) = C[�, �−1] ∼= { f |σM(A)(�) : f ∈ C[z, z−1]}, M(ρ) ∼= C(σM(A)(�)).

ThatM(ρ) is indeed a ∗-algebra follows from the self-adjointness of its generators.

Proposition 1.13. Let ρ be a vertical metric on (A, α). The elements

ρ−1,√ρ,√ρ−1 ∈M(ρ) ̂⊗ End(g∗C)G,
are positive and invertible, and for every λ,μ ∈ g∗, the matrix coefficients

〈λ, ρ−1μ〉, 〈λ,√ρμ〉, 〈λ,√ρ−1μ〉 ∈ Z(M(A))Geven

are self-adjoint. Moreover, the elements

ρT ,

√

ρT = (√ρ)T , ρ−T := (ρ−1)T ,
√

ρ−T = (√ρ)−T ∈M(ρ) ̂⊗ End(gC)
G

are positive and invertible, and for every X,Y ∈ g, the matrix coefficients

〈X, ρT Y 〉, 〈X,
√

ρT Y 〉, 〈X, ρ−T Y 〉, 〈X,
√

ρ−T Y 〉 ∈ Z(M(A))Geven

are self-adjoint.

Proof. By the holomorphic functional calculus, we can construct ρ−1, √ρ, and √ρ−1
as positive invertible elements of Z(M(A))Geven ̂⊗ End(g∗C)G . By the duality between
g∗ and g as inner product spaces, it follows that ρT is also positive and invertible in
Z(M(A))Geven ⊗ End(gC)

G and 〈X, ρY 〉 ∈ Z(M(A))Geven is self-adjoint for all vectors
X,Y ∈ g. By the holomorphic functional calculus, we can construct ρ−T ,

√

ρT , and
√

ρ−T as positive invertible elements of Z(M(A))Geven ⊗ End(gC)
G .

Let us now check that ρ−1, √ρ, and √ρ−1 have self-adjoint matrix coefficients;

the same argument, mutatis mutandis, will also apply to ρ−T ,
√

ρT , and
√

ρ−T . In
general, let f : {z ∈ C : �z > 0} → C be holomorphic and satisfy f (z) = f (z)
whenever �z > 0. Let {ε j }mj=1 be an orthonormal basis for g with respect to 〈·, ·〉. By
the holomorphic functional calculus together with Cramer’s rule,

∀1 ≤ j, k ≤ m, 〈ε j , f (ρ)εk〉 =
∫

γ

f (z) cofk j (z I − ρ) (det(z I − ρ))−1 dz,

where γ is any positively oriented closed curve in {z ∈ C|�z > 0} enclosing the
spectrum of ρ, and where cofk j denotes the (k, j)-cofactor with respect to {ε j }mj=1.
Since ρ is positive and invertible, we can choose γ to be a positively oriented circle with
centre on the real axis, so that for every 1 ≤ j, k ≤ m,

〈ε j , f (ρ)εk〉∗ =
(∫

γ

f (z) cofk j (z I − ρ) (det(z I − ρ))−1 dz

)∗

=
∫

γ

f (z̄) cofk j (z̄ I − ρ) (det(z̄ I − ρ))−1 dz̄ = 〈ε j , f (ρ)εk〉.

Finally, matrix multiplication and Cramer’s rule now imply that

ρ, ρ−1,√ρ,√ρ−1 ∈M(ρ) ̂⊗ End(g∗C), ρT , ρ−T ,

√

ρT ,

√

ρ−T ∈M(ρ) ̂⊗ End(gC).
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Let ρ be a vertical metric on (A, α).We now develop Clifford algebra on the noncom-
mutative G-space (A, α) with respect to the G-invariant positive-definiteM(ρ)-valued
inner product on g∗ induced by ρ. This will provide a noncommutative generalisation of
the Clifford bundle of (the dual of the) vertical tangent bundle of a locally free G-space.

Let �0
v(A; ρ) be the trivial Hilbert G-(A, A)-bimodule A. For 1 ≤ k ≤ m, let

�k
v(A; ρ) be

∧k g∗C ̂⊗ A together with the A-valued inner product given by

∀a, a′ ∈ A, ∀ω1, . . . , ωk, ω
′
1, . . . , ω

′
k ∈ g∗,

(

ω1 ∧ · · · ∧ ωk ⊗ a, ω′1 ∧ · · · ∧ ω′k ⊗ a′
)

A := det(〈ωi , ρω
′
j 〉)ki, j=1a∗a′,

and finally, let �v(A; ρ) := ⊕m
k=0�k

v(A; ρ). By exact analogy with the commutative
case, the Hilbert G-(A, A)-bimodule �v(A; ρ) now admits a G-equivariant vertical
Clifford action with respect to the positive-definite M(ρ)-valued inner product ρ.

Proposition 1.14. Define a map c : g∗ → EndC(�v(A; ρ)) in degree 0 by

∀λ ∈ g∗, ∀a ∈ A, c(λ)a := λ ̂⊗ a,

and in degree 1 ≤ k ≤ m, for λ ∈ g∗, a ∈ A, and ω1, . . . , ωk ∈ g∗, by

c(λ)(ω1 ∧ . . . ∧ ωk ̂⊗ a)

:= λ ∧ ω1 ∧ · · · ∧ ωk ̂⊗ a +
n
∑

j=1
(−1) jω1 ∧ · · · ω̂ j ∧ · · · ∧ ωk ̂⊗ 〈λ, ρω j 〉a.,

where ω̂ j denotes omission of ω j from the product. Then c defines a G-equivariant
linear map g∗ → LA(�v(A; ρ)), such that for every λ ∈ g∗, the operator c(λ) is odd,
is skew-adjoint, supercommutes with the left A-module structure, and satisfies

c(λ)2 = −〈λ, ρλ〉 id . (1.1)

Thus, we can now define the Clifford algebra of g∗ with respect to ρ, and hence a
noncommutative analogue of the vertical Clifford bundle for the G-C∗-algebra (A, α).

Definition 1.15. Let ρ be a vertical metric on (A, α).

1. The Clifford algebra of g∗ with respect to ρ is the G-invariant unital ∗-subalgebra
Cl(g∗; ρ) of LA(�v(A; ρ)) generated by M(ρ) and c(g∗).

2. The vertical algebra of (A, α) with respect to ρ is the G-invariant ∗-subalgebra
Vρ A := Clm ̂⊗ Cl(g∗) ̂⊗ A ⊆ Clm ̂⊗ LA(�v(A; ρ)).

Note that the vertical algebra Vρ A contains an additional Clifford algebra Clm , which
is there solely to facilitate the consistent use of multigradings (and hence K K -theoretic
bookkeeping). Although it is not obvious from the definition, the ∗-subalgebra Vρ A of
Clm ̂⊗ LA(�v(A; ρ)) turns out to be closed, thereby defining a G-C∗-algebra.

Proposition 1.16. Let ρ be a vertical metric on (A, α). Define c0 : g∗ → Cl(g∗; ρ) by

∀λ ∈ g∗, c0(λ) :=
(

ρ−1/2λ, εi

)

c(εi ). (1.2)
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Then c0 extends to a G-equivariant even ∗-isomorphism Cl(g∗)̂⊗M(ρ)
∼→ Cl(g∗; ρ),

and hence induces a G-equivariant even ∗-isomorphism

Clm ̂⊗ Cl(g∗) ̂⊗ A
∼→ Vρ A,

so that Vρ A is closed in Clm̂⊗LA(�v(A; ρ)). As a result, if Vρα denotes the restriction of
the G-action on Clm̂⊗LA(�v(A; ρ)) to Vρ A, then (Vρ A, Vρα) defines a G-C∗-algebra.

Proof. Let ιClm : Clm ↪→ Clm ̂⊗ LA(�v(A; ρ)) and ιA : A ↪→ Clm ̂⊗ LA(�v(A; ρ))
be the obvious inclusions, which are trivially even and G-equivariant. Observe that for
every λ ∈ g∗, the operator c0(λ) is odd and skew-adjoint and satisfies

c0(λ)
2 = 1

2
[1 ̂⊗ c0(λ), 1 ̂⊗ c0(λ)]

= 1

2

(

ρ−1/2λ, εi

) (

ρ−1/2λ, ε j

)

[1 ̂⊗ c(εi ), 1 ̂⊗ c(ε j )]
= −

(

λ, (ρ−1/2)T εi

) (

λ, (ρ−1/2)T ε j

)

〈ρ1/2εi , ρ1/2ε j 〉1Vρ A

= −〈λ, λ〉1 ̂⊗ id�v(A;ρ),

so that c0 : g∗ → Cl(g∗; ρ) extends to an even G-equivariant ∗-monomorphism

Cl(g∗)→ Cl(g∗; ρ) ⊂ LA(�v(A; ρ))
with closed range contained in Cl(g∗; ρ). Since Clm and Cl(g∗) are finite-dimensional
and ιClm (Clm), (Cl(V ) ̂⊗ c0)(Cl(g∗)), and ιA(A) pairwise supercommute,

c̃0 := Clm ̂⊗ (1 ̂⊗ c0) ̂⊗ ιA : Clm ̂⊗ Cl(g∗) ̂⊗ A → Vρ A ⊂ Clm ̂⊗ LA(�v(A; ρ)),
is an even G-equivariant ∗-monomorphism, which therefore has closed range contained
in Vρ A. Thus, it remains to show that Cl(g∗; ρ) is contained in the range of c0 and that
Vρ A is contained in the range of c̃0. To do so, it suffices to show that c(g∗) is contained
in the range of c0, and indeed, for all λ ∈ g∗,

c(λ) = (λ, εi ) c(εi ) =
(

λ, (ρ1/2)T ε j

) (

ρ−1/2ε j , εi

)

c(εi )

= c̃0
(

1 ̂⊗ ε j
̂⊗
(

λ, (ρ1/2)T ε j

))

.

Thus, c0 and c̃0 are even G-equivariant ∗-isomorphisms compatible in the sense that

c̃0((1 ̂⊗ ω ⊗ 1M(A))x) = (1 ̂⊗ c0(ω))c̃0(x)

for all ω ∈ Cl(g∗) and x ∈ Clm ̂⊗ Cl(g∗) ̂⊗ A.

Example 1.17. Let P be a locally compact Polish space with a locally free G-action and
a orbitwise bi-invariant bundle metric on V P; let ρ denote the resulting vertical metric
on C0(P). The Serre–Swan theorem yields compatible Hilbert G-C0(P)-module and
C0(P)-module ∗-algebra isomorphisms

�v(C0(P), ρ) ∼= C0(P,
∧

V P∗), VρC0(P) ∼= C0(P,Clm ̂⊗ Cl(V P∗)),

respectively, that intertwine the defining representation ofCl(g∗; ρ)·A on�v(C0(P), ρ)
with the Clifford action of C0(P,Cl(V P∗)) on

∧

V P∗C. Note that C0(P,Cl(V P∗)) =
ClV P∗(P) in the notation of [68, Def. 2.1] and that C0(P,ClV P∗) ∼= Cl�(P)(X) for
� := V P ∼= g× P in the notation of [68, Def. 7.1].
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The algebrasCl(g∗; ρ) andVρ Awere defined in terms of the defining vertical Clifford
action g∗ → LA(�v(A; ρ)). More generally, we can consider vertical Clifford actions
on G-equivariant ∗-representations of A on Hilbert C∗-modules.

Definition 1.18. Let (A, α) and (B, β) be G-C∗-algebras, let ρ be a vertical metric
for (A, α), and let (E,U ) be a Hilbert G-(Cln ̂⊗ A, B)-bimodule for m ≤ n ∈ Z≤0.
A vertical Clifford action on (E,U ) with respect to ρ is a G-equivariant linear map
c : g∗ → LB(E), such that for every λ ∈ g∗, the operator c(λ) is n-odd, skew-adjoint,
and satisfies

c(λ)2 = −〈λ, ρλ〉 idLB (E) .

Example 1.19. Suppose that G = U(1) and � := 2π〈dθ, ρ dθ〉−1/2. Then the datum of
a vertical Clifford action c : g∗ → LB(H) for ρ is equivalent to the datum of an odd
U(1)-invariant self-adjoint unitary �v ∈ LB(H) supercommuting with � via

c(dθ) = 2π i�−1�v.

Moreover, we can induce isomorphisms Cl(u(1)∗) ̂⊗ C[�, �−1] ∼→ Cl(g∗; ρ) and
Cl(u(1)∗) ̂⊗ A

∼→ Vρ A by means of the mapping u(1)∗ → M(Vρ A) defined by

dθ �→ �dθ ∈ M(Vρ A).

By the proof of Proposition 1.16, mutatis mutandis, a vertical Clifford action c : g∗ →
LB(E) extends canonically to a G-equivariant ∗-homomorphism Cl(g∗; ρ)→ LB(E).
In otherwords, theClifford algebraCl(g∗; ρ) satisfies the appropriate universal property.
In fact, so too does the vertical algebra Vρ A.

Proposition 1.20. Let (A, α) and (B, β) be G-C∗-algebras, let ρ be a vertical metric
for (A, α), and let (E,U ) be a Hilbert G-(Cln ̂⊗ A, B)-bimodule for m ≤ n ∈ Z≤0.
Any vertical Clifford action c : g∗ → LB(E) for ρ extends to a G-equivariant ∗-
monomorphism Vρ A → LB(E) via

∀x ∈ Clm, ∀λ ∈ g∗, ∀a ∈ A, ∀ξ ∈ E, c(x ̂⊗ λ · a)ξ := x · c(λ) · a · ξ,
thereby making (E,U ) into a Hilbert G-(Cln−m ̂⊗ Vρ A,C)-bimodule.

Proof. Define a map c′ : g∗ → LB(E) by g∗ � λ �→ c′(λ) := (

ρ−1/2λ, εi
)

c(εi ), and

let c̃0 : Clm ̂⊗Cl(g∗)̂⊗ A
∼→ Vρ A be the canonical even G-equivariant ∗-isomorphism

of Proposition 1.16. By the proof of Proposition 1.16, mutatis mutandis, together with
the definition of the algebra VρA, the map c′ extends to an even G-equivariant ∗-
monomorphism˜c′ : Clm ̂⊗Cl(g∗)̂⊗ A ↪→ LB(E), such that c̃0−1 ◦˜c′ : Vρ A ↪→ LB(E)
yields the desired extension of c, which is unique by the universal property of the Clifford
algebra Clm ̂⊗ Cl(g∗) ∼= Cl(R∗ ⊕ g∗) applied to ˜c′ = c̃0 ◦ (c̃0−1 ◦˜c′).

Finally, observe that, by analogy with the commutative case, one can define the
orbitwise volume of (A, α) with respect to a vertical metric ρ by

VolG,ρ := det
√
ρ
−T = (det√ρ)−1 ∈M(ρ).

By Jacobi’s formula applied toM(ρ) with the universal differential calculus, it follows
that the (universal) logarithmic differential of Volρ is given by

Vol−1G,ρ du VolG,ρ = −1

2
(det ρ)−1 du det ρ = −1

2
〈εi , ρ

−T ε j 〉 du〈εi , ρε j 〉 ∈ �1
u(M(ρ)),

so that VolG,ρ is constant if and only if 〈εi , ρ
−T ε j 〉 du〈εi , ρε j 〉 = 0.
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Example 1.21. Suppose that G = U(1) and � := 2π〈dθ, ρ dθ〉−1/2. Then

VolG,ρ = �, Vol−1G,ρ dVolG,ρ = �−1d�.

1.3. Vertical global analysis on G-C∗-algebras. Wewill nowuse thequantum Weil alge-
bra of Alekseev–Meinrenken [2] as a suitable algebra of vertical differential operators
on a G-C∗-algebra (A, α), e.g., orbitwise Casimir and cubic Dirac operators. Together
with non-Abelian harmonic analysis, this will provide for practicable vertical global
analysis on the noncommutative G-space (A, α) in a way compatible with unbounded
K K -theory. For a brief review of the relevant non-Abelian harmonic analysis (together
with our notations and conventions), see Appendix A.

First, recall that the universal enveloping algebra U(g) of the Lie algebra g is the
quotient of the tensor algebra of g by the ideal generated by

[{X ⊗ Y − Y ⊗ X − [X,Y ] : X,Y ∈ g}],

endowed with the coproduct � and counit ε defined by

∀X ∈ g, �(X) := X ⊗ 1 + 1⊗ X, ε(X) := 0.

We endow the Hopf algebra U(g) with the trivial even Z2-grading and the ∗-algebra
structure with respect to which elements of g are skew-adjoint; as a result, the adjoint
representation Ad : G → End(g) extends to an action G → Aut(U(g)) of G on U(g)
by even Hopf ∗-automorphisms.

By abuse of notation, if ρ is a vertical metric on (A, α), let ad∗ : g→ Der(Cl(g∗; ρ))
be the differential of Ad∗ : G → Aut(Cl(g∗; ρ)), which canonically extends to a G-
equivariant action of U(g) on Cl(g∗; ρ) byM(ρ)-linear operators. If we view Cl(g∗; ρ)
as consisting of order 0 abstract vertical differential operators and g as consisting of order
1 abstract vertical differential operators, then we can view Cl(g∗; ρ) and g as generating
the following algebra of abstract vertical differential operators of all orders.

Definition 1.22 (Alekseev–Meinrenken [2, Sect. 3.2]). Let ρ be a vertical metric on
(A, α). The quantum Weil algebra of gwith respect to ρ is the algebraic crossed product

W(g; ρ) := U(g)�
alg
ad∗ Cl(g∗; ρ)

of theZ2-gradedG-∗-algebraCl(g∗; ρ)by theZ2-gradedHopfG-∗-algebraU(g).More-
over, we define the analytic filtration on W(g; ρ) by declaring elements of Cl(g∗; ρ)
to have filtration degree 0 and generators in g to have filtration degree 1; we denote the
analytic filtration degree of x ∈W(g; ρ) by |x |.
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Remark 1.23. This filtration is different from that used by Alekseev–Meinrenken.

Since we are now dealing in tandem with g and g∗, which carry the compatible
positive-definite M(ρ)-valued inner products ρ and ρ−T respectively, we will find it
useful to define appropriate versions of the musical isomorphisms.

Proposition-Definition 1.24. Let ρ be a vertical metric on (A, α). The musical isomor-
phisms are the G-equivariant C-linear maps

� :M(ρ) ̂⊗ g∗C →M(ρ) ̂⊗ gC, � :M(ρ) ̂⊗ gC →M(ρ) ̂⊗ g∗C,

defined by

∀ f ∈M(ρ), ∀λ ∈ g∗, ( f ̂⊗ λ)� := f 〈λ, ρεi 〉 ̂⊗ εi , (1.3)

∀ f ∈M(ρ), ∀X ∈ g, ( f ̂⊗ X)� := f 〈X, ρ−T εi 〉 ̂⊗ εi , (1.4)

which are invertible with �−1 = �.
We can now define abstract orbitwise Casimir and cubic Dirac operators for (A, α)

with respect to a vertical metric ρ and summarise their properties.

Proposition-Definition 1.25 (Alekseev–Meinrenken [2, Sect. 3.2], Kostant [66, Sect.
2]). Let (A, α) be a G-C∗-algebra with vertical metric ρ. The Casimir element with
respect to ρ is the even G-invariant self-adjoint element

�g,ρ := −〈εi , ρε j 〉εiε j ∈M(ρ) · U(g) ⊂W(g; ρ), (1.5)

of analytic filtration degree 2, and the cubic Dirac element with respect to ρ is the odd
G-invariant self-adjoint element

/Dg,ρ := εiεi − 1

6
〈εi , ρ

−T [ε j , εk]〉εiε jεk ∈W(g; ρ) (1.6)

of analytic filtration degree 1. Both �g,ρ and /Dg,ρ supercommute withM(ρ), and the
difference /D2

g,ρ −�g,ρ has analytic filtration degree 1. Moreover,

∀X ∈ g, [ /Dg,ρ, X ] = 0, (1.7)

∀α ∈ g∗, [ /Dg,ρ, α] = −2α�, (1.8)

∀ω ∈W(g; ρ), [ /D2
g,ρ, ω] = 0. (1.9)

Proof Because this presentation of the formalism differs considerably from the standard
presentation in the literature, wewill derive (1.7), (1.8), and (1.9) from the corresponding
results in [74, Sect. 7.2.2]. By working pointwise in M̂(ρ), we may assume that ρ ∈
End(g∗C)G ; by replacing the Ad-invariant inner product 〈·, ·〉 on g with 〈·, ρ−T (·)〉, we
may further assume that ρ = idg∗C .

Identify g with g ⊕ 0 ⊂ g ⊕ g, and for X ∈ g, let X := (0, X) ∈ g ⊕ g; let [·, ·]g
denote the Lie bracket in g. The quantum Weil algebra as defined in [74, Sect. 7.2.2] is
the Z2-graded unital G-∗-algebra Wgenerated by g⊕ g, where elements of g are odd
and self-adjoint and elements of {X : X ∈ g} = 0⊕g are even and skew-adjoint, subject
to the following relations: for all X,Y ∈ g,

[X,Y ] = 2〈X,Y 〉, [X ,Y ] = 2[X,Y ]g, [X ,Y ] = 2[X,Y ]g;
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in particular, it follows that ig generates a copy of Cl(g). Now, define a G-equivariant
∗-preserving surjection φ : g⊕ g→ g∗ ⊕ g ⊂W(g; ρ) by

∀X,Y ∈ g, φ(X + Y ) := iX � + 2Y.

Then, for all X,Y ∈ g,

[φ(X), φ(Y )] = [iX �, iY �] = −[X �,Y �] = 2〈X �,Y �〉 = 2〈X,Y 〉,
[φ(X), φ(Y )] = [2X, iY �] = 2i ad∗(X)(Y �) = 2i(ad(X)Y )� = φ(2[X,Y ]g),
[φ(X), φ(Y )] = [2X, 2Y ] = 4[X,Y ]g = 2φ([X,Y ]g),

so that φ extends to a G-equivariant even ∗-epimorphism φ : W→ W(g; ρ). Since
φ−1 : g∗ ⊕ g→ g⊕ g ⊂ W is given by

∀λ ∈ g∗, ∀Y ∈ g, φ−1(λ + Y ) = −iλ� + 1
2Y,

one can similarly show that φ : W→W(g; ρ) is, in fact, an isomorphism.
Now, fix an orthonormal basis {ε1, . . . , εm} for g with respect to 〈·, ·〉, so that the

dual basis {ε1, . . . , εm} is given by εi = (εi )
� for i ∈ {1, . . . ,m}. Following [74, Sect.

7.2.3], one can now construct the Casimir element � := δi jεiε j ∈ W and cubic Dirac
element D ∈ Wby

D= 1

2
δi jεiε j +

1

6
δilδ jmδkn〈[εi , ε j ], εk〉εlεmεn

= 1

2
δi jεiε j +

1

6
δilδ jmδkn〈εi , [ε j , εk]〉εlεmεn

which, by [74, Thm. 7.1], satisfy D2 − 1
4� ∈ Cl(g) · {X : X ∈ g} together with the

following relations: for all X ∈ g and ω ∈ W,

[D, X ] = 0, [D, X ] = X , [D2, ω] = 0.

But now, φ(�) = δi j2εi2ε j = 4〈εi , ε j 〉εiε j = −4�g;ρ , while

φ(D) = 1

2
δi j i(εi )

�2ε j +
1

6
δilδ jmδkn〈εi , [ε j , εk]〉i(εl)�i(εm)

�i(εn)
�

= iεiε j − i

6
〈εi , [ε j , εk]〉εiε jεk

= i /Dg;ρ,

so that /D2
g;ρ−�g;ρ = −φ(D2− 1

4�) has analytic degree 1, while for all X ∈ g, λ ∈ g∗,
and ω ∈W(g; ρ), by the above relations,

[ /Dg;ρ, X ] = [−iφ(D), φ( 12 X)] = − i

2
φ([D, X ]) = 0,

[ /Dg;ρ, λ] = [−iφ(D),−iφ(λ�)] = −φ([D, λ�]) = −φ(λ�) = −2λ�,
[ /D2

g;ρ, ω] = [ − φ(D2), φ(φ−1(ω))] = −φ([D2, φ−1(ω)]) = 0,

which proves (1.7), (1.8), and (1.9).
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Example 1.26 Suppose that G = U(1) and � := 2π〈dθ, ρdθ〉−1/2. ThenW(g; ρ) is the
Z2-graded commutative unital ∗-algebra generated by the even self-adjoint elements �
and �−1, the odd skew-adjoint element dθ , and the even skew-adjoint element ∂

∂θ
, subject

to the relations �−1� = ��−1 = 1 and dθ2 = −4π2�−2. Moreover,

dθ� = 4π2�−2 ∂
∂θ
,
(

∂
∂θ

)� = (4π2)−1�2dθ, /Dg,ρ = dθ ∂
∂θ
, �g,ρ = −4π2�−2

(

∂
∂θ

)2
.

Now suppose that (E,U ) is a Hilbert G-(Vρ A, B)-bimodule, which is to say, a
Hilbert G-(Cln ̂⊗ A, B)-bimodule for m ≤ n ∈ Z≥0 with a vertical Clifford action
c : g∗ → LB(E). We will define a G-equivariant ∗-representation of W(g; ρ) on E by
adjointable unbounded B-linear operators with domain the right B-submodule Ealg ⊂ E
of algebraic vectors

Ealg := Ealg;U :=
alg
⊕

π∈̂G
Eπ

for the representation U : G → GL(E) (see Equation A.1), so that we can represent the
abstract cubic Dirac element /Dg,ρ as a concrete noncommutative family of cubic Dirac
operators c( /Dg,ρ) on Ealg. Consider the unital algebra of B-linear operators

SRB(E
alg) :=

{

S : Ealg → Ealg : Ealg ⊂ Dom S∗
}

.

Every element of SRB(Ealg) is a densely defined closable B-linear operator on
the Hilbert B-module E with semiregular minimal closure [62, Lem. 2.1]. We G-
equivariantly extend the differential dU : g → SRB(Ealg) of the G-action U to
M(ρ)⊗ g→ SRB(Ealg) by

∀ f ∈M(ρ), ∀X ∈ g, ∀e ∈ E, dU ( f ⊗ X)(e) := f dU (X)(e). (1.10)

Then left multiplication by c(1Clm ̂⊗ Cl(g∗; ρ)) and dU : M(ρ) ⊗ g → SRB(Ealg)

together define an even map c :W(g; ρ)→ SRB(Ealg), satisfying

∀λ,μ ∈ C, ∀x, y ∈W(g; ρ), c(λx + μy) = λc(x) + μc(y), (1.11)

∀x, y ∈W(g; ρ), c(xy) = c(x)c(y), (1.12)

∀x ∈W(g; ρ), c(x∗) ⊆ c(x)∗, (1.13)

∀g ∈ G, ∀x ∈W(g; ρ), Ugc(x) = c(x)Ug|Ealg . (1.14)

We can view c as an even G-equivariant ∗-representation ofW(g; ρ) on the Hilbert B-
module E with dense G- and W(g; ρ)-invariant common domain Ealg. Note that such
∗-representations of ∗-algebras by unbounded operators have already been considered
by Pierrot [85] and Meyer [81].

Example 1.27 In the context of Example 1.17, let L2
v(VρC0(P)) denote the right Hilbert

VρC0(P)G-module completion of VρC0(P) with respect to the conditional expectation
onto VρC0(P)G defined by averaging over the G-action—for details, see Appendix A.
Then the operators c(�g,ρ) and c( /Dg,ρ) on

L2
v(VρC0(P))

alg = VρC0(P)
alg ∼= C0(P,Cl(V P∗))alg

can be identified with the G-orbitwise Casimir operator and cubic Dirac operator on
Cl(V P∗), respectively.
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Next, we use harmonic analysis to construct a noncommutative vertical Sobolev the-
ory that controls the analytic behaviour of this unbounded ∗-representation of W(g; ρ)
using c(�g;ρ), and hence the analytic behaviour of the represented cubic Dirac element
c( /Dg,ρ). Before continuing, fix a Cartan subalgebra t ≤ g with corresponding maximal
torus T ≤ G, and for any finite-dimensional representation π : G → GL(Vρ) of G, let

Wπ := {λ ∈ t∗ : ∀H ∈ t, dπ(H)− iλ(H) idVπ /∈ GL(Vπ )}
be the set of weights ofπ ; in particular, letP := WAd be the set of roots corresponding to
this choice of t, i.e., the set of weights of the adjoint representation G → GL(g). Choose
a half-space t∗+ ⊂ t∗, such that P ∩ ∂t+ = ∅, let P+ := P ∩ t∗+ be the corresponding set
of positive roots, and let ρ+ := 1

2

∑

α∈P+
α be the corresponding half sum of positive

roots. With respect to these fixed choices of Cartan subalgebra t and suitable half-space
t∗+ of t∗, every irreducible representation π ∈ ̂G now admits a unique highest weight
λπ , i.e., the unique weight λπ ∈ Wπ , such that Wπ = λπ −P+. Observe that all of these
choices can be made independently of any choice of Ad-invariant inner product on g (cf.
[5, Sect. 2.5]). As a result, for any Ad-invariant inner product 〈·, ·〉′ on g, the eigenvalue
of the positive Casimir operator corresponding to 〈·, ·〉′ on the eigenspace in L2(G, dg)
consisting of matrix coefficients for some π ∈ ̂G is simply 〈λπ + ρ+, λπ 〉′ ≥ 0, which
is non-zero if and only if π is non-trivial.

Remark 1.28 If G = T ∼= Tm is Abelian, then P = P+ = ∅, so that π �→ λπ recovers
the canonical isomorphism of the Pontrjagin dual group ̂G with the full rank lattice

{λ ∈ g∗ : ∀X ∈ ker exp, (λ, X) ∈ 2πZ} ∼= Zm,

where exp : g � G is the exponential map.

First, we block-diagonalise c(�g,ρ) in terms of orbitwise Casimir eigenvalues.

Lemma 1.29 For each π ∈ ̂G, let

�π,ρ := 〈λπ + ρ+, ρλπ 〉 ∈M(ρ). (1.15)

Then �π,ρ is strictly positive for any non-trivial irreducible representation π and van-
ishes for π the trivial irreducible representation, and

∀π ∈ ̂G, c(�g,ρ)|Eπ = �π,ρ.
Proof By the independence of the choices of root system and set of positive roots from
any choice of Ad-invariant inner product on g, by the G-equivariant unitary equivalence
Vρ Aπ � Vπ⊗HomG(Vπ , Vρ A) � (Vπ⊗M(ρ))⊗M(ρ)HomG(Vπ , Vρ A), and bySerre–
Swan applied to the M(ρ)-module Vπ ⊗M(ρ), we can apply the usual calculation of
the eigenvalues of the Casimir operator of g pointwise in M̂(ρ).

Example 1.30 Suppose that G = U(1) and � := 2π〈dθ, ρ dθ〉−1/2; recall that Û(1) ∼= Z
by Pontrjagin duality, i.e., via Z � n �→ (C, (ζ �→ ζ n idC)) ∈ Û(1). Then,

∀n ∈ Z, �n,ρ = 4π2n2�−2.

Next, we use the orbitwise Casimir eigenvalues to control the operator norms of the
derivatives of the irreducible representations of G.
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Lemma 1.31 For every X ∈ g, π ∈ ̂G, and v ∈ Vπ , the operator inequality

‖dπ(X)v‖21Z(A) ≤ (1 +�π,ρ)‖ρ−T ‖‖X‖2‖v‖2,

holds in M(ρ). Consequently, we have the norm estimate

‖dπ(X)‖B(Vπ ) ≤ ‖(1 +�π,ρ)−1/2‖−1‖ρ−T ‖1/2‖X‖. (1.16)

Proof. Fix X ∈ g and π ∈ ̂G. Without loss of generality, we can assume that X ∈ t. Let
{v1, . . . , vdπ } be an orthonormal basis for Vπ consisting of eigenvectors for dπ |t and let
{λ1, . . . , λdπ } ⊂ t∗ be the corresponding set of weights for Vπ , so that

∀Y ∈ t, ∀v ∈ Vπ , dπ(Y )(v) =
dπ
∑

k=1
iλk(Y )〈vk, v〉vk .

By uniqueness of highest weights (see [5, Proof of Thm. 2.5.3]), we can compute point-
wise on M̂(ρ) to find that

max
1≤i≤dπ

〈λi , ρλi 〉 = 〈λπ , ρλπ 〉 ≤ 〈λπ , ρλπ 〉 + 〈ρ+, ρλπ 〉 = �π,ρ ≤ 1 +�π,ρ.

Thus, for any v ∈ Vπ ,

‖dπ(X)v‖21A =
dπ
∑

k=1
‖λk(X)‖2‖〈vk, v〉‖21A

≤
dπ
∑

k=1
(1 +�π,ρ)〈X, (ρ−1)T X〉‖〈vk, v〉‖2

= (1 +�π,ρ)〈X, ρ−T X〉‖v‖2

in the commutative unital C∗-algebra M(ρ), so that

‖dπ(X)v‖ ≤ min
φ∈ ̂Z(M(A))G+

φ((1 +�π,ρ)
1/2)‖ρ−T ‖1/2‖X‖‖v‖

= ‖(1 +�π,ρ)−1/2‖−1‖ρ−T ‖1/2‖X‖‖v‖.

We can now use the represented Casimir element c(�g;ρ) to control the analytic
behaviour of the unbounded ∗-representation of W(g; ρ), and hence, of c( /Dg,ρ).

Proposition 1.32 Let (A, α) be a G-C∗-algebra with vertical Riemannian metric ρ, let
B be a C∗-algebra, and let (E,U ) be a Hilbert G-(Vρ A, B)-bimodule. Then c(�g,ρ)

is a positive G-invariant regular essentially self-adjoint operator on E, such that

∀x ∈W(g; ρ), c(x)
(

1 + c(�g,ρ)
)−|x |/2 ∈ LB(E).
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Proof First, let us show that the operator c(�g,ρ) is G-invariant, regular, and essentially
self-adjoint. By G-invariance of�g,ρ ∈W(g∗; ρ) and G-equivariance of c, the operator
c(�g,ρ) : Ealg → Ealg is G-invariant; in fact, by Lemma 1.29, it is actually block
diagonal in the sense that c(�g,ρ)|Ealg =⊕

π∈̂G �π,ρ idEπ , where each �π,ρ ∈M(ρ)

is positive. Thus, the operator c(�g) is a countable direct sum of positive self-adjoint
regular operators, and as such is positive, regular, and essentially self-adjoint [20, Lemma
2.28].

Now, let us show that for any x ∈ W(g; ρ), the operator c(x)(1 + c(�g,ρ))
−|x |/2

extends to a bounded adjointable operator on E . Without loss of generality, suppose that
x = X1 · · · X |x | for X1, . . . , X |x | ∈ g. Then the operators c(x)

(

1 + c(�g,ρ)
)−|x |/2 and

(

1 + c(�g,ρ)
)−|x |/2

c(x∗) are block diagonal on Ealg with

c(x)
(

1 + c(�g,ρ)
)−|x |/2|Eπ = (1 +�π,ρ)−|x |/2dU (X1)|Eπ · · · dU (X |x |)|Eπ ,

(

1 + c(�g,ρ)
)−|x |/2

c(x∗)
∣

∣

∣

Eπ
= (−1)|x |(1 +�π,ρ)−|x |/2dU (X |x |)|Eπ · · · dU (X1)|Eπ ,

so that by Lemma 1.31 together with the G-equivariant unitary equivalences

Eπ ∼= Vπ ⊗ HomG(Vπ , E) ∼= (Vπ ⊗M(ρ))⊗M(ρ) HomG(Vπ , E),

and the fact that �π,ρ ∈ M(ρ), we derive the estimates
∥

∥

∥

∥

c(x)
(

1 + c(�g,ρ)
)−|x |/2∣∣

∣

Eπ

∥

∥

∥

∥

2

op
≤ ‖ρ−T ‖|x |‖X1‖2 · · · ‖X |x |‖2,

∥

∥

∥

∥

(

1 + c(�g,ρ)
)−|x |/2

c(x∗)
∣

∣

∣

Eπ

∥

∥

∥

∥

2

op
≤ ‖ρ−T ‖|x |‖X1‖2 · · · ‖X |x |‖2,

and hence that the block diagonal operator c(x)
(

1 + c(�g,ρ)
)−|x |/2 on Ealg extends to

a bounded adjointable operator on E .

In particular, we can conclude that any G-invariant element of W(g; ρ), e.g., the cubic
Dirac element /Dg,ρ , really does give rise to a regular operator on E .

Corollary 1.33 Let (A, α) be a G-C∗-algebra with vertical Riemannian metric ρ, B
a unital C∗-algebra, and (E,U ) a Hilbert G-(Vρ A, B)-bimodule. For every x ∈
W(g; ρ)G, the minimal closure of c(x) is regular.

Proof By G-invariance of x and G-equivariance of c together with Proposition 1.32,
the operator c(x) : Ealg → Ealg is G-invariant and hence block-diagonal with respect
to the decomposition Ealg = ⊕

π∈̂G Eπ , with c(x)|Eπ ∈ LB(Eπ ) for every π ∈ ̂G.
Thus, the closable operator c(x) is a countable direct sum of regular operators, so that
its minimal closure is indeed regular [20, Lemma 2.28].

Let us now restrict our attention to the represented cubic Dirac element c( /Dg,ρ),
which should define an orbitwise cubic Dirac operator on the noncommutative G-space
(A, α). We first establish its basic analytic properties; in particular, we record the com-
patibility of c( /Dg,ρ) and c(�g,ρ) with the abstract vertical Sobolev theory on a Hilbert
G-(Vρ A, B)-bimodule (E,U ) induced by the G-representation U , cf. [99, Sect. 4]. In
what follows, given a strongly continuous representation π : G → V on a Banach
space, we denote by V k the G-invariant subspace of Ck-vectors for π , as defined in
Equation A.2.
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Proposition 1.34 Let (A, α) be a G-C∗-algebra with vertical Riemannian metric ρ, let
B be a C∗-algebra with trivial G-action, and let (E,U ) be a Hilbert G-(Vρ A, B)-
bimodule. Then

Dom c( /Dg,ρ) = Dom(1 + c(�g,ρ))
1/2 = E1,

Dom c( /D2
g,ρ) = Dom c(�g,ρ) = E2.

Moreover

∀a ∈ A, [c( /Dg,ρ), a] = c(εi )dα(εi )(a), (1.17)

∀β ∈ g∗, [c( /Dg,ρ), c(β)] = −2dU (β�), (1.18)

where dα : g → L(A1, A) and dU : g → L(E1, E) denote the differentials of α and
U, respectively.

Proof Let us first prove the results about domains. For notational convenience, let

S := c( /Dg,ρ), � := c(�g,ρ), M := c( /D2
g,ρ −�g,ρ),

and note that S and S2 = c( /D2
g,ρ) are essentially self-adjoint on Ealg by Corollary 1.33.

Observe that by [55, proof of Prop. 1.3], mutatis mutandis,

∀k ∈ N, Ek = Dom(1 +�)k/2,

so that by Proposition-Definition 1.25, it suffices to show that

Dom S = Dom(1 +�)1/2, Dom S2 = Dom�.

First, by Proposition 1.32, since /Dg,ρ and /D
2
g,ρ−�g,ρ have analytic filtration degree

1, it follows that (S ± i)(1 +�)−1/2, M(1 +�)−1/2, (1 + S2)(1 +�)−1 ∈ LB(E). By
working on the common core Ealg, one can check that

(1 + S2)−1 = (1 +�)−1 − (1 + S2)−1M(1 +�)−1,

and hence that (S ± i)−1 = �±(1 +�)−1/2, where
�± := (S ∓ i)(1 +�)−1/2 − (S ± i)−1M(1 +�)−1/2 ∈ LB(E);

by taking adjoints, it follows that (1 +�)1/2(S ± i)−1 = �∗∓ ∈ LB(E), so that

(S ± i)(1 +�)−1/2 ∈ GLB(E),

(1 +�)1/2(S ± i)−1 =
(

(S ± i)(1 +�)−1/2
)−1 ∈ GLB(E),

and hence Dom S = Dom(1 +�)1/2 with equivalent norms.
Finally, observe that (1 +�)1/2(S ± i)−1|E1 ∈ GLB(E1) by G-invariance, so that

(1 +�)(1 + S2)−1 = (1 +�)1/2 · (1 +�)1/2(S + i)−1 · (S − i)−1 ∈ LB(E),

and hence that Dom S2 = Dom�.



128 B. Ćaćić, B. Mesland

Let us now prove Eqs. 1.17 and 1.18 . Since c(g∗) andA consist of smooth vectors for
the induced G-action on L(E) in the sense of Appendix A, it follows that Dom S = E1

is invariant under both c(g∗) and A. On the one hand, for all a ∈ A,

[c( /Dg,ρ), a] =
[

c(εi )dU (εi )− 1
6 〈εi , ρ

−T [ε j , εk]〉c(εi )c(ε j )c(εk), a
]

= c(εi )[dU (εi ), a]
= c(εi ) dα(εi )(a)

on E1, so that (1.17) holds. On the other hand, for all β ∈ g∗,

[c( /Dg,ρ), c(β)] = c([ /Dg,ρ, β]) = c(β�) = dU (β�)

on E1, so that (1.18) also holds.

The represented Casimir element c(�g,ρ) and cubic Dirac element c( /Dg,ρ) define an
orbitwise Casimir operator and cubic Dirac operator, respectively, on the noncommuta-
tive G-space (A, α). Ideally, one expects them to be elliptic in the appropriate sense, in
which case, one further expects c( /Dg,ρ) to give rise to a class in K K G

n (A, B). As it turns
out, it suffices for c(�g,ρ) to have locally compact resolvent. In the following, recall
that A1 denotes the dense ∗-subalgebra of C1-vectors of the G-C∗-algebra (A, α), and
observe that any approximate unit {vk}k∈N for A gives rise to a G-invariant approximate
unit {∫G αg(vk) dg}k∈N ⊂ AG for A.

Theorem 1.35 (cf. Wahl [99, Sect. 9], Carey–Neshveyev–Nest–Rennie [28, Prop. 2.9],
Kasparov [68], Forsyth–Rennie [49, Prop. 2.14] Let (A, α) be a G-C∗-algebra with
vertical metric ρ, B be a C∗-algebra, (E,U ) a Hilbert G-(Cln−m ̂⊗Vρ A, B)-bimodule
for m ≤ n ∈ N. If, for some approximate unit {uk}k∈N ⊂ AG for A, the operator c(�g,ρ)

satisfies

∀k ∈ N, uk(1 + c(�g,ρ))
−1/2 ∈ KB(E),

then (A1, E, c( /Dg,ρ);U )defines a complete unbounded K K G
n -cycle for ((A, α), (B, id))

with adequate approximate unit {uk}k∈N.

Proof First, recall that /Dg,ρ ∈ W(g; ρ) is odd, G-invariant, self-adjoint and has ana-
lytic filtration degree 1, so that by Corollary 1.33, the unbounded operator c( /Dg,ρ) on
L2
v(Vρ A) is odd, G-invariant, essentially self-adjoint and regular. Moreover, by con-

struction, c( /Dg,ρ) supercommutes with left multiplication by Clm ̂⊗ 1 ⊂ M(Vρ A),
whilst for every a ∈ A1, we find that [c( /Dg,ρ), a] = c(εi )dα(εi )a ∈ LB(E). Since
[ /Dg,ρ, a] = 0 for all a ∈ AG , it follows that {uk} is adequate. Thus, it remains to check
that c( /Dg,ρ) has locally compact resolvent.

Observe that for any a ∈ A,

‖(1 + c( /Dg,ρ)
2)−1/2(una − a)‖ ≤ ‖una − a‖ · ‖(1 + c( /Dg,ρ)

2)−1/2‖ → 0, n → +∞
so that it suffices to show that (1 + c( /Dg,ρ)

2)−1/2un ∈ KB(E) for all n ∈ N. Let n ∈ N.
Let M := /D2

g,ρ−�g,ρ , which has analytic filtration degree 1, so that for every e ∈ Ealg,

((1 + c( /Dg,ρ)
2)−1une = (((1 + c(�g,ρ))

−1 − (1 + c( /Dg,ρ)
2)−1c(M)(1 + c(�g,ρ))

−1)une.
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On the one hand, by our hypothesis on c(�g,ρ),

(1 + c(�g,ρ))
−1/2un ∈ KB(E), c(M)(1 + c(�g,ρ))

−1/2 ∈ LB(E);
on the other hand, since c( /Dg,ρ) is essentially self-adjoint and regular, it follows that

(1 + c( /Dg,ρ)
2)−1 ∈ LB(E). Thus, we find that

(

1 + c( /Dg,ρ)
2
)−1

un ∈ KB(E).

1.4. Vertical index theory on principal G-C∗-algebras. At last,we specialise to noncom-
mutative topological principal G-bundles, i.e., to G-C∗-algebras, such that the G-action
is principal in the appropriate sense. Given a principal G-C∗-algebra (A, α)with vertical
metric ρ, we can complete Vρ A to a Hilbert G-(Vρ A, Vρ AG)-bimodule satisfying the
hypotheses of Theorem1.35, and hence construct a canonical unbounded K K G

m -cycle for
((A, α), (Vρ AG , id)), which can be interpreted as a noncommutative orbitwise family of
Kostant’s cubic Dirac operators on the noncommutative principal G-bundle A ←↩ AG

with vertical Riemannian metric ρ; the resulting class (A ←↩ AG)! ∈ K K G(A, V1AG),
which turns out to be independent of the choice of ρ, will then serve as the noncommu-
tative wrong-way class à la Connes [32] and Connes–Skandalis [37] of (A, α).

We begin by recalling Ellwood’s generalisation of the notion of principal G-action
to G-C∗-algebras [49]; since G is a compact Lie group, this is equivalent to Rieffel’s
notion of saturation [91] by a result of Wahl [99, Prop. 9.8] and to Brzeziński–Hajac’s
Hopf-algebraic generalisation of the notion of principal G-action [23] by a result of
Baum–De Commer–Hajac [12, Thm. 0.4].

Definition 1.36 (Ellwood [46, Def. 2.4]). A G-C∗-algebra (A, α) is called principal if
the map �A : A ̂⊗alg A → C(G, A) defined by

∀a1, a2 ∈ A, �A(a1 ̂⊗ a2)(g) := αg(a1) · a2 (1.19)

has norm-dense range.

Example 1.37 (Ellwood [46, Thm. 2.9]). Let P be a locally compact Hausdorff G-space
and let α : G → Aut(C0(P)) denote the induced action. Then (C0(P), α) is principal
if and only if the G-action on P is free (and hence principal [50, Thm. 3.6]).

Example 1.38 (Ellwood [46, Thm. 2.14]). Let B be a C∗-algebra equipped with a Zm-
action σ : Zm → Aut+(B), and let σ̂ : Tm → Aut+(B �r Zm) denote the dual action
of Tm = ̂Zm on B �r Zm . Then (B �r Zm, σ̂ ) is a principal Tm-C∗algebra.
Example 1.39 (Baum–De Commer–Hajac [13, p. 830]). Let (A, α) be a unital and triv-
ially Z2-graded G-C∗-algebra. Suppose that A contains a G-invariant dense unital ∗-
subalgebra A, such that (A,O(G),AG) defines a Hopf–Galois extension. Then (A, α)
is principal.

We will need the fact that a principal G-C∗-algebra remains principal after tensoring
with a unital C∗-algebra
Proposition 1.40. Let (A, α) be a principal G-C∗-algebra. For every unital G-C∗-
algebra (F, φ), the G-C∗-algebra (A ̂⊗min F, α ̂⊗ φ) is also principal.

Proof. Observe that for any f ∈ F and any a1, a2 ∈ A,

�Â⊗minF
((

a1 ̂⊗ 1F
)

̂⊗ (

a2 ̂⊗ f
))

(g) = α(g)(a1)a2 ̂⊗ f = (�A(a1 ⊗ a2)(g)) ̂⊗ f,

so that �Â⊗minF
((

A ̂⊗alg F
)

̂⊗ (

A ̂⊗alg F
)) ⊇ τ

(

�A
(

A ̂⊗alg A
)

̂⊗alg F
)

, where the

∗-isomorphism τ : C(G, A)̂⊗min F
∼→ F ̂⊗min C(G, A) permutes F and C(G, A).
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We will also need the following result, which, in particular, guarantees that all “non-
commutative vector bundles” associated to a unital principal G-C∗-algebra (A, α) are
actually finitely-generated and projective as right AG-modules; the following statement
will suffice for our purposes.

Theorem 1.41. (De Commer–Yamashita [44, Thm. 3.3, Prop. 4.1]) Let (A, α) be a
principal G-C∗-algebra. For any π ∈ ̂G, left multiplication by AG on Aπ defines a
non-degenerate ∗-representation AG → KAG (Aπ ); in particular, the right Hilbert AG-
module Aπ is countably generated.

Recall that if (B, β) is a G-C∗-algebra, then (L2
v(B), L2

v(β)) denotes its com-
pletion to a Hilbert G-(B, BG)-bimodule with respect to the canonical conditional
expectation of B onto BG defined by averaging with respect to the G-action β; for
more details, see Appendix A. For our purposes, the primary consequence of Theo-
rem 1.41 is that Theorem 1.35 applies to (L2

v(Vρ A), L2
v(Vρα)), so that the represented

cubic Dirac element c( /Dg,ρ) on L2
v(Vρα)) correctly defines an unbounded K K G

m -cycle
(A1, L2(Vρ A), c( /Dg,ρ), L2

v(Vρα)).

Corollary 1.42. Let (A, α) be a principal G-C∗-algebra with vertical metric ρ. The
Hilbert G-(Vρ A, Vρ AG)-bimodule (L2

v(Vρ A), L2
v(Vρα)) satisfies the hypotheses of

Theorem 1.35.

Proof. Let {un}n∈N ⊂ AG be any G-invariant approximate unit for A, e.g., {EA(vn)}n∈N
for {vn}n∈N any approximate unit for A, and fix n ∈ N. Let π ∈ ̂G; observe that
(Vρ A, Vρα) is principal by Propositions 1.16 and 1.40 , so that

un(1 + c(�g,ρ))
−1/2|Vρ Aπ = un(1 +�π,ρ)

−1/2 ∈ AG ⊂ KVρ AG (L2
v(Vρ A)π ).

by Theorem 1.41. By computing pointwise on M̂(ρ), we can conclude that

‖ρ−1‖−1〈λπ + ρ+, λπ 〉1A ≤ �π,ρ ≤ ‖ρ‖〈λπ + ρ+, λπ 〉1
in the commutative unitalC∗-algebraM(ρ). Since {〈λπ +ρ+, λπ 〉}π∈̂G is the spectrum of
the positive Casimir operator�g,1 on G induced by the fixed Ad-invariant inner product
〈·, ·〉, Proposition 1.32 and ellipticity of the Laplace-type operator �g,1 on L2(G, dg)
together imply that

∥

∥

∥un(1 + c(�g,ρ))
−1/2|Vρ Aπ

∥

∥

∥ = ‖un(1 +�π,ρ)
−1/2‖

≤ (1 + ‖ρ−1‖−1〈λπ + ρ+, λπ 〉)−1/2 → 0,

as ‖λπ‖ → +∞, and hence that un(1 + c(�g,ρ))
−1/2 ∈ KVρ AG (L2

v(Vρ A)).

What is more, the class in K K G
m (A, Vρ AG) represented by this cycle turns out to be

independent (up to canonical G-equivariant ∗-isomorphism) of the choice of ρ.

Proposition 1.43. Let (A, α) be a principal G-C∗-algebra. For any vertical metric ρ
on (A, α),

(c0,ρ)∗[(L2
v(V1A), c( /Dg,1))] = [(L2

v(Vρ A), c( /Dg,ρ))] ∈ K K G
m (A, Vρ AG),

where c0,ρ : V1A = Clm ̂⊗Cl(g∗)̂⊗ A
∼→ Vρ A is the isomorphism of Proposition 1.16.



Gauge Theory on Noncommutative... 131

Proof. The G-equivariant ∗-isomorphism c0,ρ : V1A = Clm ̂⊗ Cl(g∗) ̂⊗ A
∼→ Vρ A

of Proposition 1.16 extends to a G-equivariant isomorphism L2
v(V1A)

∼→ L2
v(Vρ A) of

Banach spaces that intertwines leftClm ̂⊗A-module structures and is unitary in the sense
that

∀ω ∈ L2
v(V1A), ∀η ∈ V1AG , c0,ρ(ωη) = c0,ρ(ω)c0,ρ(η),

∀ω1, ω2 ∈ L2
v(V1A), (c0,ρ(ω1), c0,ρ(ω2))Vρ AG = c0,ρ((ω1, ω2)V1 AG );

in particular, it follows that

c0,ρ ◦ c( /Dg,ρ) ◦ c−10,ρ = c

(

(

ρ−1/2εi , ε j

)

ε jεi − 1

6
〈εi , ρ

−T [ε j , εk]〉εiε jεk
)

.

But now, since ρ is positive definite and M(ρ) is closed under the holomorphic func-
tional calculus, we define a continuous family [0, 1] � t �→ ρt := exp(t log ρ) of
vertical Riemannian metrics that interpolates 1 = ρ0 with ρ = ρ1; it then follows that
[0, 1] � t �→ c0,ρt ◦ c( /Dg,ρt ) ◦ c−10,ρt

defines a G-equivariant homotopy of unbounded

K K G
m -cycles (see [46,66]) from c( /Dg,1) at t = 0 to c0,ρ ◦ c( /Dg,ρ) ◦ c−10,ρ at t = 1 that

demonstrates the equality (c−10,ρ)∗[(L2
v(Vρ A), c( /Dg,ρ))] = [(L2

v(V1A), c( /Dg,1))].
Thus, any principal G-C∗-algebra gives rise to a noncommutative (twisted) wrong-

way class in G-equivariant K K -theory, which admits a canonical G-equivariant
unbounded representative for each choice of vertical metric defined in terms of a canon-
ical noncommutative orbitwise family of Kostant’s cubic Dirac operators.

Definition 1.44. (cf. Wahl [99, Sect. 9], Carey–Neshveyev–Nest–Rennie [28, Sect. 2.1],
Forsyth–Rennie [49, Sect. 2.1]) Thewrong-way cycle of a principalG-C∗-algebra (A, α)
with vertical metric ρ is the complete unbounded K K G

m -cycle

(A1, L2
v(Vρ A), c( /Dg,ρ); L2

v(Vρα))

for (A, Vρ AG), and its wrong-way class is
(

A ←↩ AG
)

! ∈ K K G
m (A, V1AG) defined by

(

A ←↩ AG
)

! := (c
−1
0,ρ)∗[(L2

v(Vρ A), c( /Dg,ρ))] = [(L2
v(V1A), c( /Dg,1))]. (1.20)

Note that the factorClm in the algebra Vρ A ensures, in particular, that that the wrong-
way cycle correctly defines an unbounded K K G

m -cycle, where m := dim G is the fibre
dimension of the noncommutative fibration.

Remark 1.45. One can replace A1 by any G-invariant dense ∗-subalgebraA ⊆ A1 of A,
such that AG is dense in AG and contains an approximate identity for A.

Question 1.46. If G has torsion-free fundamental group, then (A, α) gives rise to a
natural class in K K G∗ (A, AG) ∼= K K G∗ (A, V1AG) by a general result of Goffeng [54].
How does this class relate to (A ←↩ AG)!?

Example 1.47. Let (P, g) be a complete Riemannian G-manifold, such that the G-action
is free (and hence principal); let π : P � P/G denote the canonical map, and let
π! ∈ K K G

m (C0(P),C0(P/G)) denote the resulting wrong-way class [32,37]. Suppose
that V P is G-equivariantly spinC and that the bundle metric g|V P is orbitwise bi-
invariant, so thatC0(P) andC0(P,Clm̂⊗Cl(V P∗)) areG-equivariantly stronglyMorita
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equivalent [86]; letMVρC0(P)G ,C0(P/G) ∈ K K G
0 (VρC0(P)G ,C0(P/G)) be the resulting

K K -equivalence. Then

(c0,ρ)∗(C0(P)←↩ C0(P/G))! ̂⊗Vρ AG MVρC0(P)G ,C0(P/G) = π!.
Moreover, the wrong-way class (C0(P)←↩ C0(P/G))! recovers the class of Kasparov’s
orbital Dirac operator D� [68, Def. 8.3] up to G-equivariant Morita equivalence and
algebraic Bott periodicity. Indeed, in the case of a free action of a compact Lie group,
D� recovers the operator /DE considered byWahl [99, Sect. 5], which, by [99, Prop. 9.4],
recovers c( /Dg,1) up to G-equivariant Morita equivalence and bounded perturbation.

Example 1.48 (cf. Carey–Neshveyev–Nest–Rennie [28, Sect. 2.1], Arici–Kaad–Landi
[6, Sect. 2.2]). Let (A, α) be a principal U(1)-C∗-algebra with vertical metric ρ;
let � := 2π〈dθ, ρdθ〉−1/2. Then, up to the relevant G-equivariant isomorphisms, the
wrong-way cycle of (A, α) with respect to ρ is given by

(A1,Cl1 ̂⊗ Cl(u(1)∗) ̂⊗ L2
v(A), 1 ̂⊗ dθ ̂⊗ �−1dα( ∂

∂θ
); id̂⊗ id̂⊗L2

v(α)).

Moreover, by a result of Rennie–Robertson–Sims [87, Thm.3.1] together with Theo-
rem 1.41 and Proposition 1.43, it follows that the image in K K1(A, AU(1)) of

(A ←↩ AU(1))! ∈ K KU(1)
1 (A,Cl1 ̂⊗ Cl(u(1)∗) ̂⊗ AU(1)) ∼= K KU(1)

1 (A, AU(1))

is equal to the extension class [∂] ∈ K K1(A, AU(1)) of A as a Pimsner algebra.

We will view the wrong-way cycle of a principal G-C∗-algebra with given vertical
metric as encoding the vertical Riemannian geometry and index theory of the underlying
noncommutative principal G-bundle.

2. Riemannian Principal Bundles

In the commutative case, a complete oriented Riemannian manifold P endowed with a
locally free orientation-preserving isometric action of the compact connected Lie group
G also admits well-defined horizontal geometry, global analysis, and even index the-
ory [3,21,50,88]. Moreover, if the G-action is actually free, then P � P/G canonically
defines a Riemannian principal G-bundle, and the Riemannian metric on P precisely
decomposes into a metric on the vertical tangent bundle, a Riemannian metric on the
base, and a principal (Ehresmann) connection. In this section, we generalise these con-
siderations to spectral triples endowed with appropriate notions of locally free and prin-
cipal G-action, respectively. In particular, we will use the framework of G-equivariant
unbounded K K -theory to yield a precise decomposition of a principal G-spectral triple
into a wrong-way cycle (encoding the vertical intrinsic geometry and index theory), a
basic spectral triple (encoding the basic geometry and index theory), and a module con-
nection (encoding the underlying principal connection and vertical extrinsic geometry).

2.1. Factorisation via G-correspondences. We now outline a set of definitions amount-
ing to the notion of equivariant correspondence along the lines of [63,78–80]. Such a
correspondence should be thought of as encoding the vertical geometry and index theory
of a noncommutative fibration via a noncommutative generalisation of a geometric cor-
respondence à la Connes–Skandalis [37] equipped with Quillen superconnection [89] à
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la Bismut [15]. Our definition of principalG-spectral tripleswill yield the prime example
of a noncommutative G-correspondence.

In Sect. 1, we focussed on describing the vertical geometry of a principal G-C∗-
algebra. Our goal for this section is to relate this vertical geometry to the total and basic
geometry and index theory, respectively, in amanner compatiblewith index theory.More
precisely, given aG-spectral triple (A, H, D;U ) for the total space of a noncommutative
Riemannian principal bundle, wish to decompose D as a sum

D = Dv + Dh + Z ,

where Dv is a vertical term induced by the vertical geometry, where Dh is a horizontal
term representing a horizontal lift of the basic geometry, and where Z is a remainder
carrying curvature information. Such a decomposition will permit us to view D − Z
as representing the twisting of the basic geometry by a noncommutative superconnec-
tion comprising the noncommutative orbitwise family of Kostant’s cubic Dirac operators
encoding the vertical geometry and a horizontal covariant derivative encoding the under-
lying principal connection.

First, we give a technical definition characterizing the analytic interaction of the
vertical geometry with the horizontal lift of the basic geometry.

Definition 2.1. Let X be a Z2-graded Hilbert C∗-module over a C∗-algebra B, let F ⊂
LB(X), and let S and T be densely-defined odd symmetric operators on X . We say that
(S, T ) is a F-vertically form-anticommuting pair if:

1. Dom S ∩ Dom T is dense in X and F · (Dom S ∩ Dom T ) ⊆ Dom S ∩ Dom T ;
2. for every a ∈ F and every ε > 0, there exists Cε,a > 0, such that

∀x ∈ Dom(S) ∩ Dom(T ),

± (〈Sax, T ax〉B + 〈T ax, Sax〉B) ≤ ε〈Sax, Sax〉B + Cε,a〈x, x〉B .
Next, we recall the relevant notion of connection, which will permit us to form the

horizontal lift of the basic geometry with respect to a choice of principal connection. In
what follows, given a Z2-graded vector space V , let γV denote the Z2-grading on V ;
where there is no confusion, we will denote γV by γ .

Let X be a Hilbert C∗-module over a C∗-algebra B. Let (B, H0, T ) be a spectral

triple for B, and write �1
T := B[T,B]L(H0). Denote by ̂⊗h

B the Haagerup module
tensor product (see, for instance, [17, Sect. 3.4]), and note that for Hilbert modules X
and Y , X ̂⊗B Y � X ̂⊗h

B Y [18, Thm. 4.3]. Recall [75, Def. 2.3] that a Hermitian T -
connection on X is aC-linear map∇ : X → X ̂⊗h

B�
1
T , defined on a denseB-submodule

X ⊂ X satisfying

∀x ∈ X , ∀b ∈ B, ∇(xb) = ∇(x)b + γX (x)⊗ [T, b],
∀x ∈ X , ∇(γX (x)) = −(γX ⊗ γL(H0))∇(x),
∀x, y ∈ X , [T, (x, y)B] = (γX (x),∇(y))− (∇(γX (x)), y)B .

By [75, Lemma 2.4], the operator

1 ̂⊗∇ T : X ⊗alg
B Dom T → X ̂⊗B H0, x ⊗ ξ �→ γX (x)⊗ T ξ + ∇(x)ξ,

is well-defined, odd and symmetric. If (B, β) is a G-C∗-algebra, (X,U ) a G-Hilbert
C∗-module, and (B, H0, T ; V ) a G-spectral triple, then we say that ∇ is G-equivariant
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if X is G-invariant and if ∇ is G-equivariant as a map X → X ̂⊗h
B �

1
T ; it follows

that the operator 1 ̂⊗∇ T : X ⊗alg
B Dom T → X ̂⊗B H0 is also G-equivariant. In the

context of noncommutative principal bundles, if T encodes the basic geometry and ∇
encodes the principal connection, then 1 ̂⊗∇ T will represent the horizontal lift of the
basic geometry.

Finally, we recall the basics of Van den Dungen’s framework of locally bounded
perturbations. This will permit us to work with noncommutative geodesically complete
(but not necessarily compact) Riemannian principal G-bundles in almost complete gen-
erality; in particular, this will provide the correct technical framework for remainder
terms.

Definition 2.2 (cf. Van den Dungen [47]). Let (A, H, D) be a spectral triple. A locally
bounded operator is an operator M : A · H → H , such that

∀a ∈ A, M · a ∈ L(H).

The following lemma establishes the basic properties of locally bounded operators.

Lemma 2.3 (Van den Dungen [96, Lemma 3.2]. Let (A, H, D) be a spectral triple.
Suppose that M is a densely-defined operator on H, such that A · Dom M ⊆ Dom M
and M · a ∈ L(H) for every a ∈ A. Then its closure M is locally bounded and satisfies

∀a ∈ A, M · a = M · a = a∗ · M∗.

Moreover, if M is symmetric, then

∀a ∈ A, [M, a] = [M, a] = M · a − (M∗ · a∗)∗.
Correcting the G-spectral triple of a total space by a suitable remainder will require

a well-defined theory of perturbation of complete spectral triples by locally bounded
operators. The following will provide a tractable class of locally bounded operators
together with a suitable analogue of the Kato–Rellich theorem.

Definition 2.4. Let (A, H, D) be a complete spectral triple with adequate approximate
unit {φk}k∈N. We say that a symmetric or skew-symmetric locally bounded operator M
is adequate if supk∈N‖[M, φk]‖ < +∞.

Theorem 2.5 (Van den Dungen [47]). Let (A, H, D) be an n-multigraded complete
spectral triple for a C∗-algebra A with adequate approximate identity {φk}k∈N. Let M
be an adequate locally bounded odd symmetric operator on H supercommuting with the
multigrading. Then (A, H, D + M) is an n-multigraded complete spectral triple for A
with adequate approximate identity {φk}k∈N, such that [D + M] = [D] in K Kn(A,C).

Without the benefit of the classical Kato–Rellich theorem, such perturbations need
not preserve operator domains, but they will preserve a certain canonical operator core.

Proposition 2.6. Under the hypotheses of Theorem 2.5

Dom D ∩A · H = Dom D + M ∩A · H,

and this subspace is a core for both D and D + M.
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Proof. On the one hand, by construction of D + M ,

A · Dom D ⊆ A · H, A · Dom D ⊆ Dom D ∩ Dom M ⊆ Dom D + M;

on the other hand, by the same argument applied to (A, H, D + M) and D + M − M ,

A · Dom D + M ⊆ A · H, A · Dom D + M ⊆ Dom D + M − M,

where D + M − M = D on the core A · Dom D ⊂ Dom D + M ∩A · H of D.

Remark 2.7. If M is bounded, then D + M is self-adjoint on Dom(D + M) = Dom D
by the Kato–Rellich theorem.

At last, we can give the main definition and result of this sub-section.

Definition 2.8. Let (A, α) and (B, β) be separable G-C∗-algebras, (A, H, D,U ) an
n-multigraded complete G-spectral triple for (A, α) with adequate approximate unit
{φk}k∈N ⊂ AG , and (B, H0, T, V ) a complete k-multigraded G-spectral triple for
(B, β), with n ≥ k. A G-correspondence for (A, H, D,U ) and (B, H0, T, V ) is a
quintuple (A, X, S,W ; ∇), where
1. (A, X, S,W ) is an unbounded K K G

n−k-cycle for ((A, α), (B, β)), such that

∀k ∈ N, [S, φk] = 0;
2. the map ∇ : X → X ̂⊗h

B �
1
T is a G-equivariant Hermitian connection defined on a

dense B-submodule X ⊂ Dom S, such that A · X ⊂ X and (S ̂⊗ 1, 1 ̂⊗∇ T ) is a
{φk}k∈N-vertically form-anticommuting pair on X ̂⊗B H0;

3. there is a G-equivariant unitary isomorphism u : H
∼→ X ̂⊗B H0 interwining the

A-representations and Clifford multigradings, such that:
(a) for every k ∈ N, we have Dom D ∩ φk · H ⊆ u∗(Dom S ̂⊗ 1);
(b) the subspace Dom D ∩ u∗(Dom S ̂⊗ 1 ∩ Dom 1 ̂⊗∇ T ) is dense in H , and
(c) the operator M := D − u∗

(

S ̂⊗ 1 + 1 ̂⊗∇ T
)

u satisfies

∀a ∈ A, M · a ∈ L(H), sup
k∈N
‖[M, φk]‖ < +∞.

In the above definition, (A, X, S,W ; ∇) can be viewed as a G-equivariant non-
commutative fibration equipped with G-equivariant noncommutative superconnection
(S,∇), such that the total geometry (A, H, D;U ) factorizes as the twisting of the basic
geometry (B, H0, T ; V ) by the noncommutative superconnection S + ∇ encoding the
vertical geometry (through S) and noncommutative Ehresmann connection (through
∇). The following theorem guarantees that this factorisation correctly yields an index-
theoretic factorisation at the level of K K -theory.

Theorem 2.9. Let (A, X, S,∇,W ) be a G-correspondence for the complete G-
equivariant spectral triples (A, H, D,U ) and (B, H0, T, V ) for (A, α) and (B, β)
respectively. Then

[(A, X, S;W )] ⊗B [(B, H0, T ; V )] = [(A, H, D;U )] ∈ K K G(A,C),

i.e., (A, H, D;U ) represents the Kasparov product of (A, X, S;W ) and (B, H0, T ; V ).
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Proof. By Proposition 2.6 applied to M and Theorem 2.5, (A, X ̂⊗B H0, u(D − M)u∗)
defines a spectral triple in the same K K -class as (A, H, D), where u(D − M)u∗ restricts
to S ̂⊗ 1+1̂⊗∇ T on Dom S ̂⊗ 1∩Dom 1̂⊗∇ T . We will apply [61, Thm. 34] to deduce

that (A, X ̂⊗B H0, u(D − M)u∗) represents the Kasparov product of (A, X, S) and
(B, H0, T ). In what follows, given x ∈ X , let |x〉 : H0 → X ̂⊗B H0 be the operator
defined by ξ �→ x ⊗ ξ .

First, observe that for all x ∈ X , the operator Dom T → H defined by

u∗ · ((S ̂⊗ 1 + 1 ̂⊗∇ T )|x〉 − |γ (x)〉T ) = u∗ · (|Sx〉 + ∇(x))
extends to a bounded operator H0 → H , so that the connection condition of [61, Thm.
34] is satisfied. Next, observe that {φk}k∈N is a localizing subset in the sense of [61, Def.
29] byDefinition 2.8.1 and the fact that it forms an approximate unit for A. Finally, for any
fixed 0 < ε < 2, Definition 2.1.2 implies that for every ξ ∈ Dom Ŝ⊗1∩Dom D1̂⊗∇ T
and k ∈ N,

〈(S ̂⊗ 1)φkξ, (S ̂⊗ 1 + 1 ̂⊗∇ T )φkξ 〉 + 〈(S ̂⊗ 1 + 1 ̂⊗∇ T )φkξ, (S ̂⊗ 1)φkξ 〉
= 2〈(S ̂⊗ 1)φkξ, (S ̂⊗ 1)φkξ 〉 + 〈(S ̂⊗ 1)φkξ, (1 ̂⊗∇ T )φkξ 〉
+ 〈(1 ̂⊗∇ T )φkξ, (S ̂⊗ 1)φkξ 〉
≥ (2− ε)〈(S ̂⊗ 1)φkξ, (S ̂⊗ 1)φkξ 〉 − Ck,ε〈ξ, ξ 〉
≥ −Ck,ε〈ξ, ξ 〉,

where Ck,ε > 0 is a constant depending only on k and ε. Thus, [61, Def. 29] is satisfied

for (A, H, u(D − M)u∗) and (A, X, S), so that the hypotheses of [61, Thm. 34] are

satisfied, and hence (A, H, u(D − M)u∗) represents the Kasparov product of (A, X, S)
and (B, H0, T ).

2.2. Vertical and horizontal Riemannian geometry on G-spectral triples. In this sub-
section, we will effectively define a locally free G-spectral triple to be a G-spectral triple
together with a vertical geometry and a remainder; given a choice of these additional
data, the Dirac operator of the G-spectral triple—after correction by the remainder—will
correctly decompose into vertical and horizontal components. In the case of commuta-
tive and noncommutative unital U(1)-spectral triples, some of these considerations are
already implicit, at least at a formal level, in the work of Ammann–Bär [4, Sect. 4] and
of Dąbrowski–Sitarz [42, Sect. 4], respectively.

In what follows, let {εi }mi=1 be a basis for g with dual basis {εi }mi=1 for g∗. Note that
all constructions involving {εi }mi=1 will be independent of the choice of basis for g.

First, in the commutative case of a complete oriented Riemannian G-manifold with
locally free G-action and orbitwise bi-invariant metric together with a G-equivariant
Dirac bundle, the vertical metric and Clifford action by vertical 1-forms will satisfy
certain algebraic and analytic compatibility conditions in relation to the resulting G-
equivariant generalised Dirac operator. The significance of the vertical Clifford action to
the noncommutative context was already observed by Forsyth–Rennie [49, Def. 2.18];
the complete picture can be generalised as follows.

Definition 2.10. Let (A, H, D;U ) be an n-multigraded complete G-spectral triple for
a G-C∗-algebra (A, α) with m ≤ n ∈ N. A vertical geometry on (A, H, D;U ) is a pair
(ρ, c), where ρ is a vertical metric for (A, α) and c : g∗ → L(H) is a vertical Clifford
action with respect to ρ, such that:
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1. M(ρ) ·A = A ·M(ρ) ⊆ A;
2. M(ρ) · (Dom D ∩A · H) ⊆ Dom D, and for every f ∈M(ρ), the operator [D, f ]

is locally bounded and adequate and supercommutes withM(ρ);
3. c(g∗) · (Dom D ∩ A · H) ⊆ Dom D, and for every X ∈ g, the skew-symmetric

operator

μ(X) := −1

2
[D, c(X �)] − dU (X) (2.1)

is locally bounded and adequate and supercommutes withM(ρ).

We call (ρ, c) bounded if [D, f ] ∈ L(H) for all f ∈M(ρ), c(g∗) ·Dom D ⊆ Dom D,
and μ(X) ∈ L(H) for all X ∈ g.

Note that, a priori, a vertical geometry need not exist or, if it does exist, be unique.

Example 2.11. Let (P, g) be an n-dimensional complete oriented Riemannian G-
manifold, such that the G-action is locally free and g|V P is orbitwise bi-invariant; let α
denote the resulting G-action onC0(P). Note that the foliation of P by G-orbits is a Rie-
mannian foliation with tangent bundle V P and normal bundle H P := V P⊥ [94, Chap-
ters 25, 26]. Let (E,∇E ) be a G-equivariant n-multigraded Dirac bundle on P , let DE

denote the resultingG-equivariantDirac operator on E , and letU E : G → U (L2(P, E))
be the induced unitary representation ofG, so that (C∞c (P), L2(P, E), DE ;U E ) defines
an n-multigraded G-spectral triple for (C0(P), α). Then the canonical vertical geometry
for (C∞c (P), L2(P, E), DE ;U E ) is the vertical geometry (ρ, c), where ρ is the vertical
metric on (C0(P), α) induced by g|V P and where c : g∗ → L(L2(P, E)) is induced by
the Clifford action on E . In particular, for all X ∈ g,

μ(X) =
(

μE , X P

)

+
1

2
cE (ιX PφV P )− cE (TV P (·, X P , ·)) + cE (AV P (·, ·, X P )),

where μE ∈ �(V P∗ ̂⊗ End(E))G is defined by

∀X ∈ g,
(

μE , X P

)

:= ∇E
X P
− dU E (X),

where φV P ∈ �(∧3 V P∗)G is the orbitwise Cartan 3-form defined by

∀X,Y, Z ∈ g, φV P (X P ,YP , Z P ) := g(X P , [YP , Z P ]),
and where TV P ∈ �(V P∗ ⊗∧2 T ∗P)G and AV P ∈ �(H P∗ ⊗∧2 T ∗P)G are, respec-
tively, the first and second O’Neill tensors [84,97, Chapters 5, 6] of V P , so that, in
particular,

∀X ∈ g, TV P (·, X P , ·) ∈ �2(P)G , AV P (·, ·, X P ) ∈ �2(P)G .

As a result, the canonical vertical geometry is bounded whenever μE is uniformly
bounded and the Riemannian foliation V P has bounded geometry [3], e.g., whenever
P is compact.

Example 2.12. Suppose thatG = U(1); let� := 2π〈dθ, ρ dθ〉−1/2,� := (2π i)−1�c(dθ).
Then (ρ, c) is a vertical geometry for (A, H, D;U ) only if (A, H, D;U ) endowed with
the additional Z2-grading � is projectable à la Dąbrowski–Sitarz [42, Sect. 4.1] (mutatis
mutandis) with fibres of length 2π�.
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Remark 2.13. Since M(ρ) and c(g∗) supercommute with A, conditions 2 and 3 imply,
in particular, that

M(ρ) · (Dom D ∩A · H) ⊆ Dom D ∩A · H,

c(g∗) · (Dom D ∩A · H) ⊆ Dom D ∩A · H.

Remark 2.14. If (ρ, c) is bounded, e.g., if A is unital, then conditions 2 and 3 together
with the closed graph theorem imply that {c(ω)|Dom(D) : ω ∈ Cl(g∗; ρ)} ⊂ L(Dom D),
so that

∀X ∈ g, dU (X)|Dom D = −1

2
[D, c(X �)] − μ(X) ∈ L(Dom D, H).

Remark 2.15. By the super-Jacobi identity applied on the dense subspaceDom D∩A·H ,

∀a ∈ A, ∀X ∈ g, dα(X)(a) = [μ(X), a] − 1
2 [[D, a], c(X �)], (2.2)

where [μ(X), a] ∈ L(H); similarly, since μ(g) supercommutes withM(ρ), it follows,
mutatis mutandis, that Cl(g∗; ρ) supercommutes with [D,M(ρ)].

Note that the combination of G-spectral triple (A, H, D;U ) and vertical geometry
(c, ρ) gives rise to a natural dense ∗-subalgebra of Vρ A.

Definition 2.16. The differentiable vertical algebra is the image VρA of the subalgebra

Clm ̂⊗ Cl(g∗) ̂⊗A under the canonical isomorphism Clm ̂⊗ Cl(g∗) ̂⊗ A
∼→ Vρ A.

It follows that VρA defines a G-invariant dense ∗-subalgebra of Vρ A consisting of
C1-vectors for Vρα and satisfying VρA ·Dom D ⊆ Dom D and VρA · (A ·H) ⊆ A ·H .
Again, note that the factor Clm is there to facilitate the consistent use of multigradings.

For the remainder of this subsection, let (A, H, D;U ) be an n-multigraded com-
plete G-spectral triple for a G-C∗-algebra (A, α) with vertical geometry (ρ, c) and
adequate approximate unit {φk}k∈N ⊂ AG . By the discussion following Proposition-
Definition 1.25, the vertical Clifford action c extends to an even G-equivariant ∗-
representation

c :W(g; ρ)→ SRC(H
alg) = {S ∈ EndC(H

alg) : H alg ⊂ Dom S∗},
where H alg is the dense subspace of algebraic vectors for the strongly continuous unitary
representation U : G → U(H). Hence, we can once again define an orbitwise cubic
Dirac operator by c( /Dg,ρ), which will be our candidate for the vertical part of D.

Definition 2.17. We define the vertical Dirac operator to be the n-odd G-invariant self-
adjoint operator Dv := c( /Dg,ρ), i.e.,

Dv|H alg := c( /Dg,ρ) = c(εi )dU (εi )− 1

6
〈εi , ρ

−T [ε j , εk]〉c(εiε jεk). (2.3)

ByProposition 1.34, Dv spatially implements the differential dα : g→ HomC(A, A)
of α in the sense that

∀a ∈ A, [Dv, a] = c(εi ) dα(εi )(a),

so that, in particular,

∀X ∈ g, ∀a ∈ A, dα(X)(a) = −1

2
[[Dv, a], c(X �)].

One may now be tempted to take D − Dv to be the horizontal part of the Dirac
operator D. However, the commutative case shows that this is not quite correct.
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Example 2.18 (Prokhorenkov–Richardson [85, Prop. 2.2, Thm. 3.1], cf. Ammann–Bär
[4, Sect. 4], Kaad–Van Suijlekom [62, Thm. 22]). In the context of Example 2.11, so
that V P defines a Riemannian foliation of (P, g) with normal bundle H P := V P⊥, let
DE

h be the resulting transverse Dirac operator for V P à la Brüning–Kamber [21, Sect.
3], cf. [85, Sect. 3]. Then

DE − Dv = DE
h + Z E ,

where

Z E := cE (μE ) + cE (φV P ) +
1

2
cE (κV P ) +

1

2
cE (�V P ) (2.4)

for κV P ∈ �(H P∗)G the mean curvature of V P and �V P ∈ �(V P∗ ⊗∧2 H P∗)G ⊂
�3(P)G given by

∀X ∈ �(V P), ∀Y, Z ∈ �(H P), �V P (X,Y, Z) := g(X, [Y, Z ]) = 2AV P (Y, Z , X),

where AV P is the obstruction to integrability of the horizontal distribution H P , and
hence, when the G-action is free, the curvature of the principal Ehresmann connection
on P induced by g. Thus, Z E will typically be non-zero whenever H P is non-integrable.

We view Z E in (2.4) above as the obstruction to an exact geometric factorisation of
DE into natural horizontal and vertical components. We now formalise this notion.

Definition 2.19. A remainder with respect to (ρ, c) is an n-odd G-invariant adequate
locally bounded symmetric operator Z on H that supercommutes with M(ρ); its cor-
responding horizontal Dirac operator for (A, H, D;U ) is the closure

Dh[Z ] := D − Dv − Z

of the densely-defined symmetric operator D − Dv − Z on Dom D ∩ A · H ; we will
denote Dh[Z ] by Dh wherever there is no ambiguity.

Note that the conditions defining a remainder are all R-linear, so that the setR(ρ, c)
of all remainders with respect to (ρ, c) is a R-linear subspace of L(H); however, a
priori, the spaceR(ρ, c) depends on the choice of adequate approximate unit {φk}k∈N.
One might expect the trivial remainder 0 to be the canonical element ofR(ρ, c), but the
above discussion of the commutative case suggests the following element:

Proposition-Definition 2.20. The canonical remainder for (A, H, D;U ) is the remain-
der Z(ρ,c) with respect to (ρ, c) given by

Z(ρ,c)[D]|Dom D∩A·H

:= c(εi )μ(εi )− 1

4
〈εi , ρ

−T ε j 〉[D, 〈εi , ρε j 〉] − 1

12
〈εi , ρ

−T [ε j , εk]〉c(εiε jεk), (2.5)

and the canonical horizontal Dirac operator is Dh[Z(ρ,c)].
Proof. The only non-trivial property of Z(ρ,c) is symmetry; since 〈εi , ρ

−T [ε j , εk]〉
c(εiε jεk) is self-adjoint, it suffices to check that Z̃ := c(εi )μ(εi ) satisfies

Z̃∗ = Z̃ + 1
2 〈εi , ρ

−T ε j 〉[D, 〈εi , ρε j 〉]
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on Dom D ∩A · H . For convenience, define

∀1 ≤ i, j ≤ m, ρi j := 〈εi , ρε j 〉 ∈M(ρ), ρi j := 〈εi , ρ
−T ε j 〉 ∈M(ρ),

so that, in particular,

∀X ∈ g, ∀β ∈ g∗, X � = ρi j

(

εi , X
)

ε j , β� = ρi j (β, εi ) ε j ,

∀i, k ∈ {1, . . . ,m}, ρi jρ
ik = ρ j iρ

ik = δk
j .

First, observe that for any X ∈M(ρ) ̂⊗ gC ⊂W(g; ρ), the operator

μ(X) := −1

2
[D, c(X �)] − c(X)

is well-defined on Dom D∩A · H and reduces to the operator of (2.1) in the case where
X ∈ g; in particular, for any f ∈M(ρ) and X ∈M(ρ) ̂⊗ gC, it follows that

μ( f X) = −1

2
[D, f ]c(X �) + f μ(X).

Now, by G-equivariance of � and �, for all i, j ∈ {1, . . . ,m},
[εi , ε j ] = −[ε j , (ε

i )�]� = −ρik[ε j , εk]� = ρik[εk, ε
�
j ] = −[ε�j , (εi )�],

inW(g; ρ), so that, more generally,

∀X ∈ g, ∀β ∈ g∗, [β, X ] = −[X �, β�].
inW(g; ρ). Hence, for all X ∈ g and β ∈ g∗, on Dom D ∩A · H (by Remark 2.13),

[c(β), μ(X)] = −1

2
[c(β), [D, c(X �)]] − [c(β), dU (X)]

= 1

2
[D, [c(X �), c(β)]] + 1

2
[c(X �), [c(β), D]] − c([β, X ])

= 1

2
[D, (β, X) 1A] + 1

2
[c(X �), [D, c((β�)�)] + c([X �, β�])

= [μ(β�), c(X �)]
= −[c(X �), μ(β�)].

Thus, if K := 1
2ρi j [D, ρi j ], then, on Dom D ∩A · H ,

[c(εi ), μ(εi )] = −[c(ε�i ), μ((εi )�)] = −[c(ρi j ε
j ), μ(ρikεk)]

= −ρi j [c(e j ),− 1

2
[D, ρik ]c(ε�k) + ρikμ(εk)]

= − 1

2
ρi j

(

−[c(ε j ), [D, ρik ]]c(ε�k) + [D, ρik ][c(ε j ), c(ε�k)] + 2ρik [c(e j ), μ(εk)]
)

=
(

ρi j [D, ρik ]δk
j − ρi jρ

jk [c(ε j ), μ(εk)]
)

= 2K − [c(εi ), μ(εi )],

so that [c(εi ), μ(εi )] = K , and hence

Z̃∗ = μ(εi )
∗c(εi )∗ = μ(εi )c(ε

i ) = −[c(εi ), μ(εi )] + c(εi )μ(εi ) = −K + Z̃ .
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Remark 2.21. If (ρ, c) is bounded, then Z(ρ,c) ∈ L(H).

Example 2.22 (Prokhorenkov–Richardson [85, Prop. 2.2, Thm. 3.1]. Continuing from
Example 2.18, we see that Z(ρ,c) = Z E , so that the canonical horizontal Dirac operator
DE [Z(ρ,c)] = DE

h correctly recovers the relevant tranverse Dirac operator, which is a
symmetric transversally elliptic first-order differential operator on E , satisfying

∀ f ∈ C∞c (M), [DE
h , f ] = cE (ProjH P∗ d f ) =

n
∑

j=m+1

e j ( f )cE (e j ) ∈ �c(H P∗),

∀ω ∈ C∞(P, V P∗), [DE
h , c

E (ω)] = −
n
∑

j=m+1

cE (e j · ∇V P∗
e j

ω) ∈ �(Cl(T ∗P)),

where ∇V P∗ is the connection on V P∗ induced by the compression of the Levi-Civita
connection on T P to V P , and where {e j }nj=m+1 is any local frame for H P with dual

frame {e j }nj=m+1 for H P∗.

Example 2.23. Suppose thatG = U(1); let� := 2π〈dθ, ρ dθ〉−1/2,� := (2π i)−1�c(dθ).
Then Dh[Z(ρ,c)] = 1

2�(�D − D�) recovers the horizontal Dirac operator à la
Dąbrowski–Sitarz [42, Sect. 4.1].

We now check that we can freely correct D by a remainder Z without changing the
(intrinsic) vertical geometry or index theory.

Proposition 2.24. Let Z ∈ R(ρ, c). The data (A, H, D−Z;U )define an n-multigraded
G-spectral triple for (A, α) that admits the same adequate approximate identity, admits
the same vertical geometry (ρ, c), and represents the same class [D] ∈ K K G

n (A,C) as
does (A, H, D;U ).
Proof. Let {φk}k∈N be the adequate approximate identity of (A, H, D;U ). First, observe
that (A, H, D− Z) is a spectral triple for A with adequate approximate identity {φk}k∈N
by Theorem 2.5. Next, since Z is G-invariant, the operator D− Z is G-invariant; more-
over, by Proposition 2.6, it follows that Dom D ∩A · H = Dom D − Z ∩A · H . Thus,
the data (A, H, D;U ) define a G-spectral triple for (A, α) with adequate approximate
identity {φk}k∈N, such that [D − Z ] = [D] in K K G

n (A,C). Finally, since

Dom(D − Z) ∩A · H = Dom D ∩A · H,

and Z supercommutes with M(ρ), it follows that (ρ, c) is a vertical geometry for the
G-spectral triple (A, H, D − Z;U ).

We now establish the basic properties of a horizontal Dirac operator Dh[Z ], including
its analytic interaction with the vertical Dirac operator Dv .

Proposition 2.25. Let Z ∈ R(ρ, c). Then the corresponding horizontal Dirac operator
Dh[Z ] is an n-odd, G-invariant self-adjoint operator that satisfies

[Dh[Z ], VρA] ⊂ L(H),

and for any G-invariant adequate approximate unit {φk}k∈N ⊂ AG for the G-spectral
triple (A, H, D − Z;U ), the operators Dv and Dh[Z ] form a {φk}k∈N-vertically form
anticommuting pair. Moreover, if (ρ, c) is bounded and Z is bounded (e.g, if A is uni-
tal), then the pair (Dv, Dh[Z ]) defines a vertically anticommuting pair in the sense of
Mesland–Rennie–Van Suijlekom [78] and a weakly anticommuting pair in the sense of
Lesch–Mesland [75].
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Proof. By Proposition 2.24 together with the observation that Dh[Z ] = (D − Z)h[0],
we may assume without loss of generality that Z = 0.

Since D and Dv are G-invariant, n-odd, and symmetric onA ·Dom D, it follows that
Dh := Dh[0] = D− Dv is G-invariant, n-odd, and symmetric onA ·Dom D; once we
know that D− Dv is essentially self-adjoint onA ·Dom D ⊂ Dom D ∩A · H , this will
imply that the unique self-adjoint closure Dh of D − Dv is also G-invariant and n-odd.

Now, since D is G-invariant, it follows that U : G → U (L(H)) restricts to a
strongly continuous unitary representation on the Hilbert space Dom(D); moreover, it
follows that for each π ∈ ̂G, the restriction D|Hπ of D to Hπ with domain Dom(D)π =
Dom(D)∩Hπ is self-adjoint [49, Proof of Lemma 2.16]. Since Dv restricts to a bounded
self-adjoint operator on each isotypic subspace Hπ , the Kato–Rellich theorem implies
that the operator D− Dv|Hπ = D|Hπ − Dv|Hπ is essentially self-adjoint on Dom(D)π .
As a result [20, Lemma 2.28], it follows that D − Dv is essentially self-adjoint on
Dom(D)alg := ⊕alg

π∈̂G Dom(D)π . But now, since the adequate approximate identity

{φk}k∈N ⊂ AG for (A, H, D;U ) satisfies
sup
k∈N
‖[D − Dv, φk]‖ = sup

k∈N
‖[D, φk]‖ < +∞,

inL(H), it followsbyRemark1.2,mutatis mutandis, thatAG ·Dom(D)alg ⊆ A·Dom(D)
is a core for D − Dv , so that D−Dv is, a fortiori, essentially self-adjoint onA ·Dom D.

Next, by working on Dom(D) ∩A · H , we see that for every X ∈ g,

[Dh, c(X
�)] = [D, c(X �)]−[Dv, c(X �)]= − 2dU (X)− 2μ(X) + 2dU (X)=− 2μ(X),

so that
{[Dh, ω] · a : ω ∈ Cl(g∗; ρ), a ∈ A} ⊂ L(H), and hence [Dh, VρA] ⊂ L(H).

Finally, let {φk}k∈N ⊂ AG be an adequate approximate unit for (A, H, D); let us
show that Dv and Dh define a {φk}k∈N-vertically form anticommuting pair. First, observe
that Dom Dv ∩ Dom Dh ⊃ A · Dom D is dense in H and satisfies

AG · (Dom Dv ∩ Dom Dh) ⊂ Dom Dv ∩ Dom Dh,

so that definition 2.1.1 holds. Next, since c : g∗ → L(H) is G-equivariant and

c(g∗) ·AG · Dom(D) ⊆ Dom(D),

it follows that Dv
(AG · Dom(D)alg) ⊂ Dom(D)alg ⊆ Dom(Dh), while by G-

invariance of Dh ,

Dh

(

AG · Dom(D)alg
)

⊂ H alg =
alg
⊕

π∈̂G
Hπ ⊂ Dom(Dv),

so that the anticommutator [Dv, Dh] is defined on the core AG · Dom(D)alg for Dh .
Moreover, since theG-invariant operator Dv restricts to a bounded symmetric operator on
the dense subspaceAG ·Dom(D)π of Hπ for eachπ ∈ ̂G, it follows thatAG ·Dom(D)alg
is a core for Dv as well as for Dh . But now, on this joint core AG · Dom(D)alg for Dv
and Dh ,

[Dv, Dh] = [Dh, c(ε
i )]dU (εi )− [Dh,

1

6
〈εi , ρ

−T [ε j , εk]〉c(εiε jεk)], (2.6)
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where the [Dh, c(εi )] =: σ i and −[Dh,
1
6 〈εi , ρ

−T [ε j , εk]〉c(εiε jεk)] =: T are locally
bounded and L(Dom Dv, H) � dU (εi ) =: ∂i by Propositions 1.32 and 1.34 ; choose
C > 0, such that

∀i ∈ {1, . . . ,m}, ∀ξ ∈ Dom Dv, 〈∂iξ, ∂iξ 〉 ≤ 2C

m
〈Dvξ, Dvξ 〉.

Then for every ε > 0, k ∈ N, and ξ ∈ AG · Dom(D)alg we have
±(〈Dvφkξ, Dhφkξ 〉 + 〈Dhφkξ, Dvφkξ 〉)
= ±1

2
(〈φkξ, [Dv, Dh]φkξ 〉 + 〈[Dv, Dh]φkξ, φkξ 〉)

= ±1

2

(

〈φkξ, σ
i∂iφkξ 〉 + 〈σ i∂iφkξ, φkξ 〉

)

± 1

2
(〈φkξ, Tφkξ 〉 + 〈Tφkξ, φkξ 〉)

≤ ε

2C

m
∑

i=1
〈∂iφkξ, ∂iφkξ 〉 + C

2ε

m
∑

i=1
〈σ iφkξ, σ

iφkξ 〉 + 1

2
〈φkξ, φkξ 〉 + 1

2
〈Tφkξ, Tφkξ 〉

≤ ε〈Dvφkξ, Dvφkξ 〉 + 1

2

(

mC

ε

m
∑

i=1
‖σ iφk‖2L(H) + ‖φk‖2L(H) + ‖Tφk‖2L(H)

)

〈ξ, ξ 〉,

so that condition 2 of Definition 2.1 is also satisfied.
Finally, suppose that (ρ, c) is bounded and Z is bounded. On the one hand, since

Dv|Hπ ∈ L(Hπ ) for every π ∈ ̂G, we have (Dv ± i)
(

Dom(D)alg
) = Dom(D)alg, so

that

(Dv ± i)−1
(

Dom(D)alg
)

= Dom(D)alg.

On the other hand, by (2.6), it follows that [Dv, Dh] ∈ L(Dom Dv, H). It now follows
that (Dv, Dh) is a vertically anticommuting pair in the sense of [75, Def. 2.10] and
hence, in particular, a weakly anticommuting pair in the sense of [72, Def. 2.1].

2.3. Orbitwise extrinsic geometry in G-spectral triples. We can now view a G-spectral
triple with vertical geometry and remainder as a locally free G-spectral triple with well-
defined vertical and horizontal Dirac operators. We will proceed to make sense of its
orbitwise extrinsic geometry in complete noncommutative generality.

Recall that R(ρ, c) denotes the R-vector space of all remainders with respect to
(ρ, c) that are compatible with a fixed adequate approximate unit for (A, H, D;U ).
Definition 2.26. Let Z ∈ R(ρ, c). We define the orbitwise shape operator to be the
map

T [Z ] : g→ { f ∈ HomC(Dom D ∩A · H, H)| f locally bounded and adequate},
∀X ∈ g, T [D; Z ](X) := [Dh[Z ], c(X �)] = −2μ(X)− [Z , c(X �)],

and we define the orbitwise mean curvature to be the adequate locally bounded operator

κ[Z ] := 1

2
〈εi , ρε j 〉[c(ε�i ), T [Z ](ε j )].
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Finally, we say that (A, H, D;U ) is orbitwise totally geodesic with respect to Z (or
that Z is D-geodesic with respect to D) whenever T [Z ] = 0 and, more generally, that
(A, H, D;U ) is orbitwise totally umbilic with respect to Z (or that Z is D-umbilic)
whenever there exists even λ[Z ] ∈ L(H) supercommuting with Cl(g∗; ρ), such that

∀X ∈ g, T [Z ](X) = λ[Z ]κ[Z ]c(X �).
Remark 2.27. Given Z ∈ R(ρ, c), the pair (ρ, c) is bounded as a vertical geometry for
the perturbed G-spectral triple (A, H, D− Z;U ) if and only if T [Z ] is valued in L(H).

Wenowestablish the basic properties of the orbitwise shapeoperator and the orbitwise
mean curvature, which will make the relation to the commutative case even clearer.

Proposition 2.28. Let Z ∈ R(ρ, c).
1. The orbitwise mean curvature κ[Z ] satisfies

κ[Z ] = −1

2
〈εi , ρ

−T ε j 〉[D, 〈εi , ρε j 〉] = Vol−1G,ρ[D,VolG,ρ],

where VolG,ρ := det(
√
ρ−T ) = det(

√
ρ)−1 ∈ M(ρ) is the orbitwise volume, so

that κ := κ[Z ] is independent of the remainder Z.
2. For every β ∈ g∗,

[Dh[Z ], c(β)]
= 〈β, ρεi 〉

(

T [Z ](εi )− 1

2
([c(ε�i ), T [Z ](ε j )] + [c(ε�j ), T [Z ](εi )])c(e j )

)

,

so that Z is D-geodesic if and only if [Dh[Z ], c(g∗)] = {0}.
3. If Z is D-umbilic, then λ[Z ] = 1

m 1L(H) without any loss of generality, and

∀β ∈ g∗, [Dh[Z ], c(β)] = − 1

m
κc(β) = 1

m
c(β)κ.

Proof. Let us use the notational conventions of the proof of Proposition-Definition 2.20.
First, observe that by the super-Jacobi identity applied on the domain Dom D ∩A · H ,

0 = ρi j
(

[c(ε�i ), [Dh[Z ], c(ε�j )]] + [Dh[Z ], [c(ε�i ), c(ε�j )]] + [c(ε�j ), [c(ε�i ), Dh[Z ]]]
)

= 2ρi j [c(ε�i ), [Dh[Z ], c(ε�j )] − 2ρi j [D, ρi j ]
= 4κ[Z ] + 2ρi j [D, ρi j ],

so that by Jacobi’s formula applied to M(ρ) with the de Rham calculus induced by D,

κ[Z ] = −1

2
〈εi , ρ

−T ε j 〉[D, 〈εi , ρε j 〉] = Vol−1G,ρ[D,VolG,ρ].
Next, by the super-Jacobi identity applied on the dense domain Dom D ∩A · H ,

∀ j, k ∈ {1, . . . ,m}, [Dh, ρ jk] = −1

2
[Dh[Z ], [c(ε�j ), c(ε�k)]]

= 1

2
([c(ε�j ), T [Z ](εk)] + [c(ε�k), T [Z ](ε j )]),
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so that for every i ∈ {1, . . . ,m},
[Dh[Z ], c(εi )] = [Dh[Z ], c(ρi jε

�
j )]

= [Dh[Z ], ρi j ]c(ε�j )] + ρi j [Dh[Z ], c(ε�j )]
= −ρi j [Dh[Z ], ρ jk]c(εk) + ρi j T [Z ](ε j )

= ρi j
(

T [Z ](ε j )− 1

2
([c(ε�j ), T [Z ](εk)] + [c(ε�k), T [Z ](ε j )])c(εk)

)

;

conversely, mutatis mutandis, this shows that for every i ∈ {1, . . . ,m},
T [Z ](εi ) = [Dh[Z ], c(ρi j ε

j )]
= ρi j

(

[D, c(ε j )] − 1

2
([c(ε j ), [Dh[Z ], c(εk)] + [c(εk), [Dh[Z ], c(ε j )])c(ε�k)

)

,

so that T [Z ] = 0 if and only if [Dh, c(g∗)] = {0}.
Finally, suppose that Z is D-umbilic. Observe that κ[Z ],Cl(g∗; ρ)] = {0} by the

first part combined with Remark 2.15, so that

1

m
κ[Z ] = 1

2m
ρi j [c(ε�i ), λ[Z ]κ[Z ]c(ε�j )]

= − 1

2m
ρi jλ[Z ]κ[Z ][c(ε�i ), c(ε�j )] = λ[Z ]κ[Z ],

and hence, for every i ∈ {1, . . . ,m},
[Dh , c(εi )] = ρi j

(

1

m
κ[Z ]c(ε�j )−

1

2

([

c(ε�j ),
1

m
κ[Z ]c(ε�k)

]

+

[

c(ε�k),
1

m
κ[Z ]c(ε�j )

])

c(εk)

)

= − 1

m
κ[Z ]c(εi ).

Example 2.29. Continuing from Example 2.22, one can show (cf. [97, Sect. 6]) that

∀X ∈ g, T [Z(ρ,c)](X) = [DE
h , c

E (X �)] = cE (TV P (·, X P , ·)),
where TV P (·, X P , ·) ∈ C∞(P, V P∗ ̂⊗ H P∗) ⊂ �2(P) for X ∈ g, so that T [Z(ρ,c)]
completely encodes the first O’Neill tensor TV P of the Riemannian foliation V P , whose
restriction to each G-orbit yields its shape operator as a submanifold of P . Moreover,

κ[Z(ρ,c)] = cE (κV P ) = cE (d logVolV P ),

where VolV P ∈ C∞(P)G is the map whose restriction to each G-orbit yields its vol-
ume as a Riemannian manifold. Thus, (C∞c (P), L2(P, E), DE ;U E ) endowed with the
canonical vertical geometry (ρ, c) and the canonical remainder Z(ρ,c) is orbitwise totally
geodesic if and only if the G-action on P has totally geodesic orbits [94, Thm. 5.23]
and orbitwise totally umbilic if and only if the G-action on P has totally umbilic orbits
(cf. [47, Sect. 1]).

Example 2.30. Suppose that G = U(1); let � := 2π〈dθ, ρ dθ〉−1/2. The canonical
remainder Z(ρ,c) is totally umbilic and κ = �−1[D, �].
Remark 2.31. Suppose that [D,M(ρ)] = {0}, e.g., ρ ∈ End(g∗)G . By part 1 of Propo-
sition 2.28, it follows that Z ∈ R(ρ, c) is D-umbilic if and only if it is geodesic.
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Remark 2.32. By part 2 of Proposition 2.28 together with the proof of Proposition 1.13,
it follows that Z is D-geodesic if and only if [Dh[Z ],Cl(g∗; ρ)] = {0}. Indeed, suppose
that Z is D-geodesic. Let j, k ∈ {1, . . . ,m}, so that

〈ε j ,
√
ρεk〉 =

∫

γ

√
z cof j,k(z I − ρ) det(z I − ρ)−1dz,

where γ is a suitable positively oriented circle in {z ∈ C : �z > 0} with centre on the
real axis. Since [Dh[Z ], c(g∗)] = {0}, for every z ∈ C, the self-adjoint operator Dh[Z ]
commutes with the even polynomials cof j,k(z I − ρ) and det(z I − ρ) in elements of
c(g∗) ⊂ Lip(Dh[Z ]). Thus, Dh[Z ] commutes with every Riemann sum for 〈ε j ,

√
ρεk〉,

and hence 〈ε j ,
√
ρεk〉 defines an element of Lip(Dh[Z ]) that commutes with Dh[Z ].

Remark 2.33. In general, the mean curvature κ is an extrinsic invariant of the vertical
geometry (ρ, c). Moreover, if there exists D-umbilic Z ∈ R(ρ, c), then the orbitwise
shape operator X �→ 1

m κc(X �) of any D-umbilic remainder is also an extrinsic invariant
of (ρ, c). Finally, for any Z , Z ′ ∈ R(ρ, c), one can check that T [Z ′] = T [Z ] if and
only if Z ′ − Z supercommutes with c(g∗).

We can now immediately use Proposition 2.28 to gain a better qualitative under-
standing of the supercommutator [Dv, Dh[Z ]]; this is of direct analytic significance
since

(D − Z)2 = D2
v + Dh[Z ]2 + [Dv, Dh[Z ]].

Corollary 2.34. Let Z ∈ R(ρ, c). On the joint core AG · Dom(D)alg for Dv and Dh,

[Dv, Dh[Z ]] = 〈εi , ρε j 〉
(

T [Z ](ε j )− [D, 〈ε j , ρ
−T εk〉]c(εk)

)

dU (εi )

−1

6

(

εl , [ε j , εk]
)

[Dh[Z ], 〈εi , ρ
−T εl〉c(εiε jεk)],

where each term of the form [D, 〈ε j , ρ
−T εk〉] or [Dh[Z ], 〈εi , ρ

−T εl〉c(εiε jεk)] is a

real polynomial in {T [Z ](εp)}mp=1, {c(ε p)}mp=1, and {c(ε�p)}mp=1. In particular, if Z is D-

geodesic, then [Dv, Dh[Z ]] = 0, and if Z is D-umbilic, then [Dv, Dh[Z ]] = − 1
m κ ·Dv .

Finally, let us record an index-theoretic consequence of these considerations, a non-
commutative variant of a classical result of Atiyah–Hirzebruch [10, Sect. 1] in the spirit
of Forsyth–Rennie [49, Sect. 7]. It is based on the following simple observation.

Proposition 2.35 (cf. Forsyth–Rennie [49, Proof of Prop. 7.1]). Let (B, β) be a separa-
ble G-C∗-algebra, let n ∈ N ∪ {0}, and let (C, E, S;U ) be an unbounded K K G

n -cycle
for (C, id) and (B, β). Suppose that S2 has closed range and that there exists an n-odd
G-invariant unitary ϒ on E supercommuting with S2. Then 2[(C, E, S;U )] = 0 in the
group K K G

n (C, B).

Proof. Since S2 has closed range, its restriction to ran(S2) = ker(S2)⊥ = ker(S)⊥ is
bijective, so that the bounded transform F := S(1+ S2)−1/2|ran(S2) of S|ran(S2) is invert-
ible by the closed graph theorem, and hence F̃ := F |F |−1 is an n-odd G-invariant self-
adjoint unitary satisfying [F̃, F] = 2F2|F |−1 = 2|F | ≥ 0. Thus, by [96, Lemma 11]
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the bounded transformof
(

C, ran(S2), S|ran(S2);U |ran(S2)
)

isG-equivariantly homotopic

to the degenerate cycle
(

C, ran(S2), F̃;U |ran(S2)
)

. Thus, in the group K K G
n (C, B),

[(C, E, S;U )] =
[(

C, ker(S2), 0;U |ker(S2)
)]

+
[(

C, ran(S2), S|ran(S2);U |ran(S2)
)]

=
[(

C, ker(S2), 0;U |ker(S2)
)]

.

Now, let ker(S2)opp denote the Hilbert G-(C, B)-module ker(S2) with the opposite
Z2-grading and the opposite n-multigrading. Since the G-invariant B-linear unitary ϒ
on E is n-odd and supercommutes with S2, it restricts to a G-equivariant even B-linear
unitary ker(S2)→ ker(S2)opp intertwining the respective n-multigradings, so that

[(

C, ker(S2), 0;U(·)|ker(S2)
)]

=
[(

C, ker(S2)opp,−0;U(·)|ker(S2)
)]

= −
[(

C, ker(S2), 0;U(·)|ker(S2)
)]

.

Recall that if (A, H, D;U ) is n-multigraded for n even, then its equivariant index is
the image indexG(D) ∈ R(G) of [(C, H, D)] under the natural isomorphism

K K G
n (C,C) := K K G

0 (Cln,C)
∼→ R(G).

Proposition 2.36. Let (A, H, D;U ) be an n-multigraded G-spectral triple for a unital
separable G-C∗-algebra (A, α). Suppose that it admits a D-geodesic remainder Z with
respect to some vertical geometry (ρ, c). Then 2[(C, H, D;U )] = 0 in K K G

n (C,C); in
particular, if n is even, then 2 indexG(D) = 0.

Proof. First, since (A, α) is unital, by Proposition 2.25, (Dv, Dh[Z ]) form a weakly
anticommuting pair in the sense of Lesch–Mesland [72, Thm. 1.1], so that, by
[72, Thm. 5.1], it follows that D2

v + Dh[Z ]2 is self-adjoint on
Dom(D2

v) ∩ Dom(Dh[Z ]2) = Dom((D − Z)2).

Next, since Z is D-geodesic, Corollary 2.34 implies that (D − Z)2 = D2
v + Dh[Z ]2.

Finally, since Dv = c( /D2
g,ρ) for /D

2
g,ρ even and central in W(g∗; ρ) and since Z is D-

geodesic, it follows that (D − Z)2 actually commutes with Cl(g∗; ρ). Thus, it suffices
to find odd G-invariant unitary ϒ ∈ c(Cl(g∗; ρ))Lip((D−Z)2)

, for then ϒ will satisfy the
hypotheses of Proposition 2.35.

On the one hand, if G is Abelian, we can take ω to be the normalisation (with respect
to ρ) of any non-zero vector in c(g∗). On the other hand, if G is non-Abelian, so that
the adjoint representation is non-trivial, then, by [74, Prop. 7.2], we can take ω to be the
appropriate multiple of 1

6 〈εi , ρ
−T [ε j , εk]〉εiε jεk ∈ Cl(g; ρ)G by an invertible element

of M(ρ)
Lip((D−Z)2)

. Either way, by Proposition 2.35, it now follows that

2[(C, H, D;U )] = 2[(C, H, D − Z;U )] = 0.

Thus, if (A, H, D;U ) is an G-spectral triple for a unital G-C∗-algebra (A, α), then
the class 2[(C, H, D;U )] ∈ K K G

n (C,C), which is just 2 indexG(D) in the even case,
is an obstruction to the existence of a D-geodesic remainder with respect to any vertical
geometry.
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2.4. Principal G-spectral triples and their factorisation. At last, we define principal
G-spectral triples and use unbounded K K -theory to decompose a principal G-spectral
triple into its noncommutative vertical geometry, noncommutative basic geometry, and
noncommutative principal connection. In what follows, let (A, α) be a principal G-C∗-
algebra.

Definition 2.37. A complete G-spectral triple (A, H, D;U ) for (A, α) is called princi-
pal with respect to a vertical geometry (ρ, c) and remainder Z if:

1. the ∗-subalgebra VρAG of Vρ AG is norm-dense;
2. the G-equivariant ∗-representation Vρ A → L(H) satisfies

Vρ Aalg · H G = H, {ω ∈ Vρ A|ω|H G = 0} = {0};
3. the resulting horizontal Dirac operator Dh[Z ] satisfies

[Dh[Z ],A] ⊂ A · [D − Z ,AG ]L(H), (2.7)

[Dh[Z ], VρA] ⊂ Vρ A · [Dh[Z ], VρAG ]L(H). (2.8)

In the case that Z = Z(ρ,c) is the canonical remainder, we say that (A, H, D;U )
is canonically principal with respect to (ρ, c); in the case that Z = 0, we say that
(A, H, D;U ) is exactly principal with respect to (ρ, c).

Remark 2.38. For any remainder Z , since Dv supercommutes with AG , it follows that

∀a ∈ AG, [D − Z , a] = [Dh[Z ], a].
Remark 2.39. Suppose that the remainder Z satisfies

∀a ∈ A, lim
k→∞‖[D − Z , φk]a‖ = 0, (2.9)

where {φk}k∈N ⊂ AG is the adequate approximate unit of (A, H, D;U ). If G is Abelian
or if Z is D-umbilic, then (2.7) implies (2.8). Moreover, even without assuming (2.9),
if Z is D-geodesic, then (2.7) implies (2.8).

Example 2.40. Continuing from Examples 2.18 and 2.22 , suppose that the G-action
on P is free (and hence principal). Using a partition of unity for P/G subordi-
nate to an atlas of local trivialisations for T (P/G) ∼= H P/G, one can show that
(C∞c (P), L2(P, E), DE ;U E ) is canonically principal; in particular, it follows that
(C∞c (P), L2(P, E), DE ;U E ) is orbitwise totally geodesic with respect to the canonical
remainder if and only if the principal G-action on P has totally geodesic orbits, if and
only if gV P is induced by a single bi-invariant metric on G [58].

We first show that a principal G-spectral triple naturally gives rise to a spectral triple
encoding the “base” of the noncommutative principal G-bundle; in the absence of any
vertical spinCstructure, this spectral triple will be analogous to an “almost-commutative”
spectral triple (in the more general sense of Ćaćić [25] and Boeijink–Van den Dungen
[19]) over the true noncommutative base.

Proposition 2.41. Suppose that (A, H, D;U ) is principal with respect to (ρ, c)
and Z. Let DG[Z ] be the closure of the restriction of Dh[Z ] to the domain
Dom(Dh[Z ])G. Then DG[Z ] is self-adjoint on Dom(Dh[Z ])G = Dom(D − Z)G,
the data (VρAG, H G , DG [Z ]; id) define an (n − m)-multigraded G-spectral triple for
(Vρ AG; id), and the class that it represents in K K G

n−m(Vρ AG ,C) is independent of the
choice of Z.
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Proof. By Proposition 2.25 and its proof, the operator DG[Z ] is essentially self-adjoint
on Dom(D − Z)G and satisfies [DG[Z ], VρAG] ⊆ L(H G). Observe that VρAG is
dense in Vρ AG by condition 1 and that the restricted ∗-representation Vρ AG → L(H G)

is faithful and nondegenerate by condition 2 of Definition 2.37.
Let us now show that DG [Z ] is self-adjoint onDom(Dh[Z ])G = Dom(D − Z)G and

has locally compact resolvent. Let DG[Z ]′ be the closure of the restriction of D − Z to
the domain Dom(D − Z)G ⊆ Dom(Dh[Z ])G . By the proof of Proposition 2.25, it fol-
lows that DG[Z ]′ is self-adjoint on Dom(D − Z)G and that DG[Z ]′−DG[Z ] = Dv|H G

on Dom(D − Z)G , so DG[Z ]′ and DG[Z ] are both self-adjoint on Dom(D − Z)G by
boundedness of Dv|H G together with the Kato–Rellich theorem; since for all λ ∈ C \R

(DG[Z ] − λ)−1 = (DG[Z ]′ − λ)−1 + (DG[Z ] − λ)−1Dv|H G (DG[Z ]′ − λ)−1,
it therefore suffices to show that that DG[Z ]′ has locally compact resolvent. On the one
hand, since Vρ A = Clm · c(Cl(g∗; ρ)) · A, it follows that

∀ω ∈ Vρ A, ∀λ ∈ C \ R, ω(D − Z − λ)−1 ∈ K(H).

On the other hand, since D−Z isG-invariant, it commuteswith the orthogonal projection
PH G ∈ U (G)′′ onto H G . Hence,

∀λ ∈ C \ R,∀ω ∈ Vρ AG , ω(DG[Z ]′ − λ)−1 = ω(D − Z − λ)−1PH G

∣

∣

∣

H G
∈ K(H G).

Finally, observe that any adequate approximate unit {φk}k∈N ⊂ AG for (A, H, D−Z)
still defines an adequate approximate unit for (VρA, H G , DG [Z ]); since all G-actions
are now trivial, independence of [DG[Z ]] of the choice of Z follows by Theorem 2.5
since Z |AG ·H G remains locally bounded and adequate.

Example 2.42. In the context of Example 2.40, the G-equivariant Dirac bundle structure
on E induces a Dirac bundle structure (cE/G ,∇E/G) on E/G [85, Prop. 2.2], such that
(VρC∞c (P)G , L2(P, E)G , (DE )0; id) can be identified with

(

�c(Cl(V P∗/G)), L2(P/G, E/G), DE/G; id
)

;

this, in turn, is an almost-commutative spectral triple with base P/G in the sense of
Ćaćić [25] and Boeijink–Van den Dungen [19].

We now show how the horizontal Dirac operator Dh[Z ] encodes the underlying
noncommutative principal connection.

Proposition 2.43. The densely defined G-equivariant ∗-derivation

[Dh[Z ], ·] : VρA→ Vρ A · [Dh[Z ], VρAG ]L(H) ⊂ L(H),

canonically induces a densely defined G-equivariant Hermitian connection

∇h : VρA→ L2
v(Vρ A) ̂⊗h

Vρ AG �
1
DG [Z ],

on the Hilbert Vρ AG-module L2
v(Vρ A).
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Proof. Let us apply Theorem B.3 to the ∗-derivation [Dh[Z ], ·]; for relevant definitions,
see Appendix B. Let EVρ A : Vρ A → Vρ AG denote the canonical faithful conditional
expectation, which is given by

∀ω ∈ Vρ A, EVρ A(ω) :=
∫

G
Vραg(ω) dg.

We first claim that (Vρ A,EVρ AVρA) defines a noncommutative fibration over the com-
plete spectral triple (VρAG, H G , DG [Z ]) for Vρ AG . Let {φk}k∈N ⊂ AG be the G-
invariant adequate approximate identity for (A, H, D;U ), which therefore defines the
adequate approximate identity for (VρAG , H G , DG [Z ]). First, the inclusion Vρ AG ↪→
Vρ A is a non-degenerate ∗-monomorphism precisely since {φk}k∈N continues to define
an approximate identity forVρ A. Next, byTheorem1.41, the rightHilbertVρ AG -module
L2
v(Vρ A) is countably generated and admits a frame in Vρ Aalg ⊂ Vρ A. Finally, VρA is

a dense ∗-subalgebra of Vρ A that contains VρAG .
Now, recall that LU (H) denotes the unital G-C∗-algebra of G-continuous elements

of L(H) with respect to the G-action induced by U (see Equation A.4 in Appendix A).
Let ELU (H) : LU (H)→ L(H G) be the positive contraction defined by defined by

∀T ∈ LU (H), ∀ξ ∈ H G, ELU (H)(T )ξ :=
∫

G
UgT U∗

g ξ dg.

Finally, by G-invariance of Dh[Z ], define ∇0 : VρA→ LU (H) by

∀ω ∈ VρA, ∇0(ω) := [Dh, ω].

We claim that (LU (H),EL(H),∇0) is a horizontal differential calculus for
(Vρ A,EVρ AVρA) satisfying the strong connection condition; by Theorem B.3, this will
complete the proof of this proposition. First, the inclusion of Vρ A as a C∗-subalgebra
of LU (H) provides the required monomorphism Vρ A ↪→ LU (H). Next, by point 2
together with the fact that U spatially implements α and hence Vρα, it follows that
ELU (H)

∣

∣

Vρ A
= EVρ A; the fact that Vρ AG consists of G-invariant operators now implies

that ELU (H) is left and right Vρ AG-linear. Next, since DG[Z ] = DH [Z ]|Dom(Dh [Z ])G , it
follows that for all ω ∈ Vρ A, η ∈ VρAG , and ξ ∈ Dom DG[Z ],

ELU (H)(ω∇0(η))ξ =
∫

G
Ugω [Dh[Z ], η]U∗

g ξ dg

=
∫

G
UgωU∗

g [DG[Z ], η]ξ dg = ELU (H)(ω)[DG[Z ], η]ξ,

it follows thatELU (H) satisifies (B.1). Finally, by construction of∇0, (B.2) in this context
is simply a restatement of (2.8) in Definition 2.37.

Finally, we record the unbounded K K -theoretic decomposition of a principal G-
spectral triple into its noncommutative vertical geometry (in the form of the relevant
wrong-way cycle), noncommutative basic geometry (in the form of the “basic” spectral
triple of Proposition 2.41), and noncommutative principal connection and orbitwise
extrinsic geometry (in the form of a suitable module connection).
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Theorem 2.44. Let (A, H, D;U )be a principal G-spectral triple for (A, α)with respect
to (ρ, c) and Z. Let ∇h : VρA → L2

v(Vρ A) ̂⊗h
Vρ AG �

1
DG [Z ] be the G-equivariant

Hermitian connection induced via Proposition 2.43. Then
(

A, L2
v(Vρ A), c( /Dg,ρ),∇h; L2

v(Vρα)
)

defines an m-multigraded G-equivariant A-VρAG correspondence from the G-spectral
triple (A, H, D;U ) to the G-spectral triple (VρAG, H G , DG [Z ]; id). In particular, the

multiplication map M : L2
v(Vρ A) ̂⊗h

Vρ AG H G → H defines a G-equivariant unitary
intertwiner of Vρ A-modules, such that

M(c( /Dg,ρ) ̂⊗ 1)M∗ = Dv, M
(

1 ̂⊗∇h DG [Z ]
)

M∗ = Dh[Z ],
∀ω ∈ VρA, M∇h(ω)M

∗ = [Dh[Z ], ω].
As a result,

(A, H, D − Z;U )
∼=
(

A, L2
v(Vρ A), c( /Dg,ρ),∇h; L2

v(Vρα)
)

̂⊗VρAG (VρAG, H G , DG [Z ]; id)
is a constructive factorisation in G-equivariant unbounded K K -theory, where the
required G-equivariant unitary equivalence is given by the multiplication map M.

Proof. Let us first check the main properties of the multiplication map M . A straight-
forward calculation shows that M is isometric, while Definition 2.37.2 implies that M is
surjective; hence, M is unitary. Next, by construction, M is a G-equivariant intertwiner
for the ∗-representations of Vρ A + Cl(g∗; ρ), so that Dv = M

(

c( /Dg,ρ) ̂⊗ 1
)

M∗ on

M
(

Vρ A1
̂⊗alg

Vρ AG H G
)

= Vρ A1 · H G .

Finally, by construction of∇h and 1̂⊗∇h Dh[Z ], we see that Dh[Z ] = M
(

1 ̂⊗∇h DG[Z ])
M∗ on the subspace

H := M
(

VρA ̂⊗alg
VρAG Dom DG[Z ]

)

= VρA · Dom DG[Z ] ⊂ M
(

Vρ A1
̂⊗alg

Vρ AG H G
)

;
indeed, for every ω ∈ VρA and ξ ∈ Dom DG[Z ], since DG[Z ] = Dh[Z ]|Dom(D−Z)G ,

M
(

1 ̂⊗∇h DG[Z ]
)

M∗(ω · ξ) = M
(

1 ̂⊗∇h DG [Z ]
)

(ω ̂⊗ ξ)
= M

(

[Dh[Z ], ω] ̂⊗ ξ + (−1)|ω|ω ̂⊗ DG [Z ]ξ
)

= [Dh[Z ], ω] · ξ + (−1)|ω|ω · Dh[Z ]ξ
= Dh[Z ](ω · ξ).

We can now proceed to checking conditions 1-3 of Definition 2.8 in turn. First,
sinceA consists ofC1-vectors for α, the data (A, L2

v(Vρ A), c( /Dg,ρ); L2
v(Vρα)) define a

complete unbounded K K G
m -cycle byProposition 1.34, Theorem1.35 andCorollary 1.42,

so that condition 1 is satisfied. Next, condition 2 follows from Propositions 2.25 and
2.43 and the observation that M(Dv ̂⊗1)M∗ = Dv and M(1̂⊗∇h DG[Z ])M∗ = Dh[Z ]
on H. Finally, condition 3 follows by using M as the required unitary and noting that
the adequate locally bounded operator Z restricts to D−M(Dv ̂⊗1+1̂⊗∇h DG[Z ])M∗
on H ⊂ A · Dom D.
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As a more-or-less immediate corollary, we obtain a final noncommutative variant
of Atiyah–Hirzebruch’s classical result on the vanishing of the G-equivariant index on
compact spin manifolds in the spirit of Forsyth–Rennie. We will need the following
lemma.

Lemma 2.45 (cf. Forsyth–Rennie [49, Prop. 7.1]). Let (A, α) be a principal unital G-
C∗-algebra. Suppose that Ad : G → SO(g) lifts to Spin. Then,

2[(C, A, 0;α)] ̂⊗A (A ←↩ AG)! = 0 ∈ K K G
m (C, V1AG) ∼= K K G

m (C, AG).

Proof. Fix a lift˜Ad∗ : G → Spin(Rm⊕g∗) of Ad∗ : G → SO(g∗), so that /S(Rm⊕g∗)
defines a G-equivariant faithful irreducible ∗-representation of Clm ̂⊗Cl(g∗) satisfying

∀X ∈ g, ∀σ ∈ /S(Rm ⊕ g∗), d˜Ad∗(X)σ = 1

4
〈X, [εi , ε j ]〉εiε j · σ.

Define the G-equivariant Hilbert (Clm ̂⊗ A, AG)-correspondence

(/S A, /Sα) :=
(

L2
v(/S(R

m ⊕ g∗) ̂⊗ A), L2
v(

˜Ad∗ ̂⊗ α)
)

=
(

/S(Rm ⊕ g∗) ̂⊗ L2
v(A),˜Ad

∗
̂⊗ L2

v(α)
)

,

which admits the vertical Clifford action γ : g∗ → LAG (/S A) given by

∀β ∈ g∗, ∀σ ∈ /S(Rm ⊕ g∗), ∀a ∈ A, γ (β)(σ ̂⊗ a) := (

(1 ̂⊗ β) · σ ) ̂⊗ a.

By Corollary 1.42 and its proof, mutatis mutandis, it follows that (/S A, /Sα) satisfies
the hypotheses of Theorem 1.35, so that (A1, /S A, γ ( /Dg,1); /Sα) defines an unbounded
K K G

m -cycle for ((A, α), (AG , id)). What is more, the quintuple
(

A1, L2
v(V1A), c( /Dg,1), 0; L2

v(V1α)
)

now defines an m-multigraded G-(A, V1AG)-

correspondence from (A1, /S A, γ ( /Dg,1); /Sα) to (V1AG , /S AG, 0; id), so that
[(A1, /S A, γ ( /Dg,ρ); /Sα)] = (A ←↩ AG)! ̂⊗V1 AG [(V1AG , /S AG , 0; id)],

where [(V1AG , /S AG , 0)] ∈ K K G
0 (V1AG , AG) is a K K G-equivalence by Proposi-

tion 1.16 together with the construction of /S A. We will use Proposition 2.35 to prove
the vanishing in K K G

m (C, AG) of the class

2[(C, A, 0;α)] ̂⊗A [(A1, /S A, γ ( /Dg,1); /Sα)] = 2[(C, /S A, γ ( /Dg,1); /Sα)].

In order to apply Proposition 2.35, we must show that γ ( /Dg,1)
2 = γ ( /D2

g,1) has
closed range. First, by applying the proof of Definition-Proposition 1.25 to the explicit
computation of /D2

g,1 provided by [77, Thm. 7.1 and Prop. 8.4], we find that

γ ( /D2
g,1) = −δi j

(

d/Sα(εi )− d˜Ad∗(εi ) ̂⊗ 1
) (

d/Sα(ε j )− d˜Ad∗(ε j ) ̂⊗ 1
)

+ ‖ρ+‖2g∗ id
= id̂⊗dα(�g,1 + ‖ρ+‖2g∗1),

on the core V1Aalg = Cl(Rm ⊕ g∗) ̂⊗ Aalg, where ρ+ ∈ g∗ denotes the half-sum of
positive weights of g. Next, we can apply Proposition A.6 to G-equivariantly decompose
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/S A as an orthogonal direct sum
⊕

π∈̂G /S(Rm ⊕ g∗) ̂⊗ Aπ , where, for each π ∈ ̂G, the
G-equivariant orthogonal projection onto /S(Rm ⊕ g∗) ̂⊗ Aπ is given by id̂⊗Pπ for
Pπ : L2

v(A)→ L2
v(A) the orthogonal projection onto Aπ of Proposition A.2. But now,

by above calculation of γ ( /D2
g,1) togetherwith the standard calculation of the eigenvalues

of �g,1 (see, e.g., [77, Prop. 8.1]), it follows that

∀π ∈ ̂G, γ ( /D2
g,1)|/S(Rm⊕g∗)̂⊗Aπ =

(

‖λπ‖2 + 〈λπ , ρπ 〉 + ‖ρ+‖2
)

id/S(Rm⊕g∗)̂⊗Aπ ,

where for each π ∈ ̂G, λπ ∈ g∗ denotes the highest weight of π per Sect. 1.3, so that,
in particular, ‖λπ‖2 + 〈λπ , ρ+〉 + ‖ρ+‖2 = 0 if and only if λπ = 0 and ρ+ = 0, if and
only if π is trivial and G is Abelian. Finally, define

Q :=
∑

π∈̂G
ker dπ(�g,1)=0

(

‖λπ‖2 + 〈λπ , ρ+〉 + ‖ρ+‖2
)−1

̂⊗ Pπ ∈ LAG (/S A),

which converges strongly by ellipticity of /D2
g,1 as a positive Laplace-type operator on

the compact Lie group G. Then, by the above diagonalisation of γ ( /Dg,1)
2
, it follows

that

γ ( /Dg,1)
2 · Q|

ker(γ ( /Dg,1)
2
)⊥ = id

ker(γ ( /Dg,1)
2
)⊥ ,

so that ran(γ ( /Dg,1)
2
) = ker(γ ( /Dg,1)

2
)⊥ is indeed closed.

By Proposition 2.35, it now suffices to find an n-odd G-invariant unitary Y on /S A

that supercommutes with γ ( /Dg,1)
2 = γ ( /D2

g,1). Since /D
2
g,1 is an even central element of

W(g; 1), it suffices to take Y = γ (ω) for a non-zero odd G-invariant unitaryω ∈ Cl(g∗).
If G is Abelian, takeω ∈ g∗ ⊂ Cl(g∗)G to be a unit vector; if G is not, so that the adjoint
representation is non-trivial, by [74, Prop. 7.2], take ω to be the appropriate non-zero
scalar multiple of 1

6 〈εi , [ε j , εk]〉εiε jεk ∈ Cl(g∗)G .
Corollary 2.46 (cf. Atiyah–Hirzebruch [10, Sect. 1], Forsyth–Rennie [49, Sect. 7]).
Suppose that Ad : G → SO(g) lifts to Spin(g). Let (A, H, D;U ) be an n-multigraded
G-spectral triple for a principal unital G-C∗-algebra (A, α), and suppose that it is
principal with respect to some choice of vertical geometry (ρ, c) and remainder Z. Then
2[(C, H, D;U )] = 0 in K K G

n (C,C); in particular, if n is even, then 2 indexG(D) = 0.

Proof. By Theorem 2.44 and Proposition 1.43,

[(C, H, D;U )] = [(C, A, 0;α)] ̂⊗A [(A, H, D;U )]
= [(C, A, 0;α)] ̂⊗A (c0,ρ)∗(A ←↩ AG)! ̂⊗Vρ AG [(VρAG, H G , DG; id)]
= [(C, A, 0;α)] ̂⊗A (A ←↩ AG)! ̂⊗V1 AG (c0,ρ)

∗[(VρAG, H G , DG; id)],
where 2[(C, A, 0;α)] ̂⊗A (A ←↩ AG)! = 0 by Lemma 2.45.

Example 2.47. (cf. Atiyah–Hirzebruch [10, Sect. 1]) In the case of Example 2.40, sup-
pose that Ad : G → SO(g) lifts to Spin(g), e.g., that G is a finite product of tori
and compact simply-connected Lie groups, and that P is compact. If the Dirac bundle
(E,∇E ) is n-multigraded for n-even, as generally occurs when P is even-dimensional,
then 2indexG(DE ) = 0.
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Thus, if Ad : G → SO(g) lifts to Spin, (A, α) is unital, and (A, H, D;U ) is n-
multigraded for n even, then IndexG(D) is an obstruction to the existence of any vertical
geometry (c, ρ) and remainder Z making (A, H, D;U ) into a principalG-spectral triple.

3. Foundations for Noncommutative Gauge Theory

In this section, we present a framework for gauge theory on noncommutative Rieman-
nian principal bundles. Given a suitable principal G-spectral triple (A, H, D0;U ) with
vertical geometry (ρ, c) and remainder Z , we view (ρ, c) as encoding a fixed vertical
Riemannian geometry, while we view the gauge comparability class of D0−Z as encod-
ing a fixed basic geometry. We can now define a noncommutative principal connection
to be a choice of noncommutative Dirac operator D within this class, which admits a
gauge action by the appropriate group of noncommutative gauge transformations. We
show that all these constructions are compatible with the canonical K K -factorisation
established in Theorem 2.44. Moreover, in the unital case, we show that the resulting
space of noncommutative principal connections is a R-affine space and that the gauge
action is by affine transformations. To motivate our definitions, we first review the case
of gauge theory on commutative principal bundles. As a noncommutative application,
we give a full description of the gauge theory of crossed products by Zn , viewed as a
noncommutative principal Tn-bundles via the dual action.

3.1. The commutative case revisited. Let P be an n-dimensional oriented principal left
G-manifold; suppose that B := G\P is given a complete Riemannian metric gB , and
fix an orbitwise bi-invariant metric gP/B on V P; let π : P → B be the canonical
map, let G(P) be the group of all gauge transformations of P � B, and let A(P) be
the R-affine space of all principal connections on P � B. Given these data, we will
construct a canonical G- and G(P)-equivariant metric connection on V P ⊕ π∗T B that
will serve as a principal connection-independent proxy for the Levi-Civita connection
on T P ∼= V P ⊕ π∗T B induced by a choice of principal connection. This, in turn, will
let us make precise how the affine space of principal connections A(P) together with
the gauge action of G(P) manifests itself at the level of generalised Dirac operators.

Recall Atiyah’s observation [8] that a principal connection for π : P � B can be
characterized as a splitting of the short exact sequence

0→ V P
ι−→ T P

π∗−→ π∗T B → 0 (3.1)

of G-equivariant vector bundles. Let σ = (λ, ρ) be any such splitting, where λ is the
corresponding left splitting and ρ is the corresponding right splitting, so that the G-
equivariant isomorphism λ⊕ π∗ : T P

∼→ V P ⊕ π∗T B induces a G-invariant metric

gP,σ := (λ⊕ π∗)∗
(

gP/B ⊕ π∗gB
)

on P that restricts to gP/B on V P and descends to gB on T B. By duality, we get a
splitting σ ∗ = (ρt , λt ) of the short exact sequence

0→ π∗T ∗B
π∗−→ T ∗P

ι∗−→ V P∗ → 0 (3.2)
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of G-equivariant vector bundles, so that ιt ⊕ρt = (λ⊕π∗)−t : T ∗P
∼→ V P∗⊕π∗T ∗B

induces

g−1P,σ = (ιt ⊕ π∗)∗
(

g−1P/B ⊕ π∗g−1B

)

.

on T ∗P . Finally, observe that if σ ′ = (λ′, ρ′) is another splitting of (3.1), then
im((λ′)t − λt ) ⊂ im π∗,

so that gP,σ and gP,σ ′ define the same Riemannian volume form (cf. [83, Sect. 3.4.5]).
Thus, we treat (T⊕P, g⊕) := (V P ⊕ π∗T B, gP/B ⊕ π∗gB) as a principal connection-
independent proxy for T P endowed with a G-invariant Riemannian metric compatible
with gB and gP/B .

Remark 3.1. For any σ ∈ A(P), the metric gP,σ is complete. Indeed, if γ : [0,+∞)→
P is a smooth, divergent parametrized curve (i.e., for every K ⊂ P compact, there exists
t > 0 such that γ (t) /∈ K ), then π ◦ γ : [0,+∞) → B is still smooth and divergent,
and hence

∫ ∞

0

√

gP,σ (γ ′(t), γ ′(t)) dt ≥
∫ ∞

0

√

gB((π ◦ γ )′(t), (π ◦ γ )′(t)) dt = +∞.

Now, recall that the gauge action of G(P) on the R-affine space A(P) is given by

∀ f ∈ G(P), ∀σ = (λ, ρ) ∈ A(P), f · σ := (λ ◦ ( f∗)−1, f∗ ◦ ρ).
Let f ∈ G(P). On the one hand, since π ◦ f = π , it follows that d f : T P → T P
restricts to a G-equivariant bundle isomorphism V P → V P covering f ; in fact, since
f : P → P is G-equivariant, it follows that f∗(X P ) = X P for every X ∈ g, so that
f ∗gP/B = gP/B by orbitwise bi-invariance of gP/B . On the other hand, sinceπ ◦ f = π ,
it follows that f lifts to a G-equivariant bundle morphism π∗T B → π∗T B covering f ,
such that f ∗π∗gB = π∗gB and the induced map f∗ : �(π∗T B)→ �(π∗T B) acts as
the identity on π∗X(B) = �(π∗T B)G . Thus, the Riemannian vector bundle (T⊕P, g⊕)
is not only G-equivariant but also G(P)-equivariant; indeed, we now endow it with a
canonical G- and G(P)-equivariant metric connection ∇⊕ that will serve as a principal
connection-independent proxy for the Levi-Civita connection.

Proposition 3.2. Let σ = (λ, ρ) ∈ A(P), and define ∇⊕ on T⊕P := V P ⊕ π∗T B by

∀X ∈ X(P), ∀V,W ∈ �(V P), gP/B(∇⊕X V,W ) := gP/B(λ∇T P,σ
X ιV,W ),

∀X ∈ X(P), ∀H, K ∈ �(π∗T B),
π∗gB(∇⊕X H, K ) := π∗gB(π∗∇T P,σ

X ρH, K ) + 1
2gP/B(λ[ρH, ρK ], λX),

where ∇T P,σ is the Levi-Civita connection of gP,σ . Then ∇⊕ defines a G- and G(P)-
equivariant metric connection on (T⊕P, g⊕) that is independent of the choice of σ .

Proof. Observe that ∇⊕ is a direct sum of connections on V P and π∗T B, respectively;
hence, it suffices to check the properties of ∇⊕ on V P and π∗T B separately. Note that
∇⊕ is already a G-equivariant metric connection on (T⊕P, g⊕) by its construction from
the Levi-Civita connection for a G-equivariant Riemannian metric on P .
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First, let X ∈ X(P) and let V,W ∈ �(V P); without loss of generality, suppose that
X is G-invariant and that V = vP , W = wP for v,w ∈ g. Then, by Koszul’s identity
and orbitwise bi-invariance of gP/B ,

2gP/B(λ∇T P,σ
X ιV,W ) = XgP/B(V,W ) + (ιV )gP/B(λX,W )− (ιW )gP/B(λX, V )

= XgP/B(V,W ) + gP/B(λX, [V,W ])− gP/B(λX, [W, V ])
= XgP/B(V,W ),

so that the restriction of ∇⊕ to V P is independent of σ ; moreover, for any f ∈ G(P),
since f∗V = V , f∗W = W , and f∗X ∈ X(P)G , it therefore follows that

gP/B( f∗∇⊕X V,W ) = 1

2
( f −1)∗

(

XgP/B(vP , wP )
)

= 1

2
( f∗X)gP/B(vP , wP ) = gP/B(∇⊕f∗X f∗V,W ),

so that the restriction of ∇⊕ to V P is G(P)-equivariant.
Now, let X ∈ X(P) and let H, K ∈ �(π∗T B); without loss of generality, suppose

that X , H , and K are all G-invariant, so that π∗X, H, K are lifts of X,H,K ∈ X(B),
respectively. Before continuing, note that

gP,σ ([ρH, ρK ], X) = (π∗gB)(π∗[ρH, ρK ], π∗X) + gP/B(λ[ρH, ρK ], λX)

= π∗gB([H,K],X) + gP/B(λ[ρH, ρK ], λX),

and that [λX, ρH ], [λX, ρK ] ∈ �(V P) by G-invariance of ρH and ρK , respectively.
Then, by Koszul’s identity,

2π∗gB(π∗∇T P,σ
X ρH, K ) = 2gP,σ (∇T P,σ

X ρH, ρK )

= XgP,σ (ρH, ρK ) + (ρH)gP,σ (X, ρK )− (ρK )gP,σ (X, ρH)

+ gP,σ ([X, ρH ], K )− gP,σ ([X, ρH ], ρK )− g([ρH, ρK ], X)

= π∗XgB(H,K) + π
∗HgB(X,K)− π∗KgB(X,X)

+
(

π∗gB([X,H],K) + gP,σ ([λX, ρH ], ρK )
)

− (

π∗gB([X,K],H) + gP,σ ([λX, ρK ], ρH)
)

− (

π∗gB([H,K],X) + gP/B(λ[ρH, ρK ], λX)
)

= 2π∗gB(∇T B
X H,K)− gP/B(λ[ρH, ρK ], λX),

so that the restriction of∇⊕ to π∗T B is independent of σ ; moreover, for any f ∈ G(P),
since f∗H = H , f∗K = K , and f∗X ∈ X(P)G with π∗( f∗X) = π∗X = X, it follows
that

π∗gB( f∗∇⊕X H, K ) = ( f −1)∗π∗gB(∇T B
X H,K)

= π∗gB(∇T B
X H,K) = π∗gB(∇⊕f∗X f∗H, K ),

so that ∇⊕ is indeed G(P)-equivariant.

Now, by abuse of notation, let∇⊕ also denote the dual connection on V P∗⊕π∗T ∗B.
For convenience, we say that a Hermitian vector bundle E is n-multigraded if it is Z2-
graded and admits a smooth fibrewise ∗-representation of Cln . We can finally define a
principal connection-independent analogue of Dirac bundle on P .
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Definition 3.3. Let E → P be a G-equivarant n-multigraded Hermitian vector bundle.
We define a pre-Dirac bundle structure on E to consist of the following:

1. a G-equivariant Clifford action c⊕ : (T⊕P∗, g−1⊕ )→ End(E) by odd skew-adjoint
bundle endomorphisms supercommuting with Cln ;

2. an even G-equivariant Hermitian connection∇E,⊕ on E supercommutingwithC Cln
and satisfying

∀ω ∈ �(P, T⊕P∗), ∀X ∈ X(P), [∇E,⊕
X , c⊕(ω)] = c⊕(∇⊕X ω);

in which case, we call E endowed with a (c⊕,∇E,⊕) a pre-Dirac bundle.

Let us now see how gauge transformations interact with a pre-Dirac bundle. For each
f ∈ G(P), let σ f : P → G be the unique smooth function, such that

∀p ∈ P, f (p) = σ f (p) · p;
since f is G-equivariant, it follows that σ f is G-equivariant with respect to the adjoint
action on G. Now, if E → P is a G-equivariant Hermitian vector bundle, then each
f ∈ G(P) yields a G-equivariant unitary bundle isomorphism !E

f : E → f ∗E given
by

∀p ∈ P, ∀e ∈ E p, !E
f (e) := σ f (p) · e ∈ E f (p) = ( f ∗E)p,

which, in turn, induces a G-invariant unitary SE
f ∈ U (L2(P, E)) by

∀η ∈ C∞c (P, E), SE
f η := !E

f ◦ η ◦ f −1 = ( f −1)∗(!E
f ◦ η).

In the case that E admits a pre-Dirac bundle structure, the lifted action of G(P) on E
interacts with that structure as follows.

Proposition 3.4. Let (E, c⊕,∇E,⊕) be a pre-Dirac bundle. For any f ∈ G(P), the
operator SE

f supercommutes with c⊕(ω) whenever ω = (X P )
� for X ∈ g or ω ∈

π∗�1(B) and gives rise to a pre-Dirac bundle structure (c⊕,∇E,⊕; f ) on E, where

∀X ∈ X(P), ∀η ∈ �(E), ∇E,⊕; f
X η := SE

f ∇E,⊕
( f −1)∗X

(SE
f )
∗η.

Proof. Fix f ∈ G(P). Let ∇ f ∗E denote the pullback connection on f ∗E and let
∇Hom(E, f ∗E) denote the induced connection onHom(E, f ∗E). Then, for any η ∈ �(E),

SE
f ∇E

X = ( f −1)∗!E
f ∇E

X η = ( f −1)
(

∇ f ∗E
X (!E

f η)−∇Hom(E, f ∗E)
X !E

f η
)

= ∇E,⊕
f∗X SE

f η −
(

∇Hom(E, f ∗E)
X !E

f ◦ (!E
f )
−1) SE

f η,

which shows that ∇E,⊕; f is a connection; since f and σ f are G-equivariant and ∇E,⊕
is G-equivariant and Hermitian, it now follows that ∇E,⊕; f is also G-equivariant and
Hermitian. It remains to show compatibility of ∇E,⊕; f with the metric connection ∇⊕
on T⊕P .

Now, by the defining properties of f together with G-equivariance of c⊕,

∀ω ∈ �(T⊕P∗), SE
f c⊕(ω)(SE

f )
∗ = c⊕( f ∗ω);
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now, if ω = (X P )
� for X ∈ g or ω ∈ π∗�1(B), then f ∗ω = ω by the proof of

Proposition 3.2, so that SE
f actually supercommutes with c⊕(ω), and hence

∀X ∈ X(P), ∀ω ∈ �(T⊕P∗),
[∇E,⊕; f

X , c⊕(ω)] = c⊕( f ∗∇⊕f∗Xω) = c⊕(∇⊕X f ∗ω) = c⊕(∇⊕X ω).

Since [∇E,⊕; f
X , c⊕(ω)] − c⊕(∇⊕X ω) is tensorial in X ∈ X(P) and ω ∈ �(T⊕P∗), it

now follows that ∇E,⊕; f is indeed compatible with ∇⊕ on V P∗ ⊕ π∗T ∗B.

Finally, if E → P is a G-equivariant n-multigraded Hermitian vector bundle, any
principal connection σ induces a canonical bijection between Dirac bundle structures
and pre-Dirac bundle structures on E ; in what follows, for any principal connection
σ = (λ, ρ), let ∇T P,σ denote the Levi-Civita connection on T P with respect to gP,σ .

Proposition 3.5 (Prokhorenkov–Richardson [88, Prop. 2.2 and Sect. 3]). Let E → P
be an n-multigraded G-equivariant Hermitian vector bundle. Then every principal con-
nection σ = (λ, ρ) on P � B defines a bijection

{Dirac bundle structures on E w.r.t. gP,σ } ∼→ {pre-Dirac bundle structures on E},
(cE ,∇E ) �→ (c⊕,∇E,⊕),

where c⊕ := cE ◦ (λt ⊕ π∗) and where ∇E,⊕ is defined by

∀X ∈ X(P),

∇E,⊕
X := ∇E

X −
1

2

m
∑

i=1
c⊕

(

ρt (∇T P,σ
X ei )

� · ei
)

+
1

4
c⊕(gP/B(λ[ρ(·), ρ(·)], λX)),

(3.3)

for {ei }mi=1 any local frame for V P. Moreover, for any Dirac bundle structure (cE ,∇E )

on E with resulting Dirac operator DE , the canonical horizontal Dirac operator DE
h is

given by

DE
h =

n
∑

j=m+1

c⊕(e j )∇E,⊕
ρ(e j )

, (3.4)

where {e j }nj=m+1 is any local frame for π∗T B.

Remark 3.6. As observed in Example 2.18, for any principal connection σ , the horizontal
Dirac operator DE

h of a Dirac bundle structure on E with respect to gP,σ is precisely the
transversal Dirac operator on E of the Riemannian foliation V P of (P, gP,σ ).

Remark 3.7. Prokhorenkov–Richardson formulate Proposition 3.2 differently in the con-
text of transverse Dirac operators for Riemannian foliations. Let ∇̃T P,σ be the compres-
sion of ∇T P,σ to a block-diagonal connection on T P = V P ⊕ ρπ∗T B. Then, in fact,
they correct ∇E to a connection ∇̃E on E compatible with ∇̃T P,σ by setting

∀X ∈ X(P), ∇̃E
X := ∇E

X −
1

2

m
∑

i=1
c⊕

(

ρt (∇T P,σ
X ei )

� · ei
)

.
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Now, the connection ∇T P,⊕ of Proposition 3.2 is related to ∇̃T P,σ by

∀X,Y, Z ∈ X(P), gP,σ (∇T P,⊕
X Y − ∇̃T P,σ

X Y, Z) = 1

2
gP/B(λ[ρπ∗Y, ρπ∗Z ], λX);

hence, by the proof of [85, Prop. 2.2], mutatis mutandis, we can further correct ∇̃E to a
connection ∇E,⊕ compatible with ∇⊕ by setting

∀X ∈ X(P), ∇E⊕
X := ∇̃E

X +
1

4
c⊕(gP/B(λ[ρ(·), ρ(·)], λX)).

Given a pre-Dirac bundle (E, c⊕,∇E,⊕), each principal connection σ gives rise to the
generalised Dirac operator DE

σ of the Dirac bundle structure induced by σ , and hence
to a principal G-spectral triple (C∞c (P), L2(P, E), DE

σ ;U E ) with canonical vertical
geometry and canonical remainder Z E

σ ; let DE
h,σ denote the resulting canonical horizontal

Dirac operator. The affine space of principal connections A(P) together with the gauge
action of G(P) manifests itself at the level of commutative principal G-spectral triples
as follows.

Theorem 3.8. Let (E, c⊕,∇E,⊕) be an n-multigraded pre-Dirac bundle.

1. For any σ1 = (λ1, ρ1), σ2 = (λ2, ρ2) ∈ A(P), the commutative principal G-spectral
triples defined by DE

σ1
and DE

σ2
have the same canonical vertical geometry, which

depends only on gP/B, and hence the same vertical Dirac operator, while

DE
h,σ2 − DE

h,σ1 =
n
∑

j=m+1

c⊕(e j )∇E,⊕
(ρ2−ρ1)(e j )

, (3.5)

where {e j }nj=m+1 is any local frame for π∗T B; moreover,

∀X ∈ g, [DE
h,σ2 − DE

h,σ1 , c
⊕((X P )

�)] = 0. (3.6)

2. For any f ∈ G(P) and σ ∈ A(P), the operator SE
f [DE

h,σ , (S
E
f )
∗] supercommutes

with {c⊕((X P )
�)|X ∈ g} and satisfies

SE
f [DE

h,σ , (S
E
f )
∗] − (DE

h, f ·σ − DE
h,σ ) = SE

f DE
h,σ (S

E
f )
∗ − DE

h, f ·σ ∈ �(End(E)).
(3.7)

Proof. First, for i = 1, 2, the vertical Clifford action ci : g∗ → B(L2(P, E)) is induced
by composing the isomorphism g∗ × P

∼→ V P∗ with

cE
i ◦ λt

i = c⊕ ◦ (ιti ⊕ ρt
i ) ◦ λt

i = c⊕|V P∗ ,

so that DE
σ1

and DE
σ2

do indeed admit the same canonical vertical geometry. In particular,
it follows that DE

σ1
and DE

σ2
admit the same vertical Dirac operator. Hence, by (3.4),

DE
h,σ2 − DE

h,σ1 =
n
∑

j=m+1

c⊕(e j )∇E,⊕
ρ2(e j )

−
n
∑

j=m+1

c⊕(e j )∇E,⊕
ρ1(e j )

=
n
∑

j=m+1

c⊕(e j )∇E,⊕
(ρ2−ρ1)(e j )

.
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Now, for σ = (λ, ρ) a principal connection, define Tσ ∈ C∞(P, S2V P∗ ̂⊗π∗T ∗B)
by

∀X,Y ∈ �(V P), ∀Z ∈ �(π∗T B), Tσ (X,Y, Z) := −1

2
Lρ(Z)gV P (X,Y ),

so that Tσ can be identifiedwith the second fundamental formof theRiemannian foliation
V P with respect to gP,σ . Then, by Example 2.22, to prove (3.6), it suffices to show that
Tσ1 = Tσ2 . So, let Z ∈ �(π∗T B)G . Then, for any X,Y ∈ g,

Tσ2(X P ,YP , Z)− Tσ1(X P ,YP , Z) = −1

2

(L(ρ2−ρ1)(Z)gV P
)

(X P ,YP )

= −1

2
(ρ2 − ρ1)(Z) (gV P (X P ,YP ))

− gV P ([(ρ2 − ρ1)(Z), X P ],YP )

− gV P (X P , [(ρ2 − ρ1)(Z),YP ])
= 0,

since gV P (X P ,YP ) ∈ C∞b (P)G and (ρ2 − ρ1)(Z) ∈ �(V P)G .
Finally, let f ∈ G(P) and σ ∈ A(P). Observe that by Proposition 3.4, the opera-

tor SE
f DE

h,σ (S
E
f )
∗ is simply the canonical horizontal Dirac operator on the Dirac bun-

dle defined by (E, c⊕,∇E,⊕; f ) together with the principal connection f · σ ; hence
SE

f DE
h,σ (S

E
f )
∗ − Dh, f ·σ is a bundle endomorphism supercommuting with c⊕((X P )

�)

for any X ∈ g. The rest follows by applying our calculations above to DE
h, f ·σ −DE

h,σ .

In conclusion, given a pre-Dirac bundle (E, c⊕,∇E,⊕), the map from A(P) to the
R-vector space of first-order differential operators defined by σ �→ DE

σ − Z E
σ is an

affine map that is G(P)-equivariant at the level of principal symbols—at the level of
differential operators, it is G(P)-equivariant up to the groupoid 1-cocycle

G(P)� A(P) � (σ, f ) �→ SE
f DE

h,σ (S
E
f )
∗ − DE

h, f ·σ ∈ �(End(E)),
on the action groupoid G(P)�A(P).Moreover, the range of thismap is anR-affine space
whose G(P)-invariant space of translations consists of first-order vertical differential
operators.

3.2. Noncommutative principal connections and gauge transformations. Let us now
generalise the above considerations to the noncommutative case. Fix a principal G-
C∗-algebra (A, α) as the underlying noncommutative topological principal G-bundle.
Just as we could extract a pre-Dirac bundle from a Dirac bundle and vary the principal
connection in a manner that is gauge-equivariant up to a certain groupoid 1-cocycle,
so too will we be able to take a suitable principal G-spectral triple for (A, α) and
vary the Dirac operator in a manner that will be gauge-equivariant in the appropriate
noncommutative sense.

First, let us make precise what we mean by a suitable principal G-spectral triple.

Definition 3.9. Let (A, H, D;U ) be a principal G-spectral triple for (A, α)with vertical
geometry (ρ, c) and remainder Z . We say that (A, H, D;U ) is gauge-admissible with
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respect to Z (or that Z is gauge-admissible) if Dom(D− Z)∩A ·Dom Dv is a core for
D − Z and

∀ω ∈ VρA, [Dh[Z ], ω] ⊂ Vρ A · [D − Z ,AG ]. (3.8)

Remark 3.10. By Proposition 2.6, it follows that

Dom(D − Z) ∩A · Dom Dv = (Dom(D − Z) ∩A · H) ∩A · Dom Dv
= (Dom D ∩A · H) ∩A · Dom Dv
= Dom D ∩A · Dom Dv.

Thus, ifA = A ·A, then by [47, Thm. 3.5], the operator D− Z is essentially self-adjoint
on Dom(D− Z)∩A ·Dom Dv = Dom D ∩A ·Dom Dv if and only if D is. Moreover,
if A is unital, then Dom(D − Z) ∩A · Dom Dv = Dom(D − Z).

Remark 3.11. If D − Z is essentially self-adjoint on Dom(D − Z) ∩A ·Dom Dv , then
it follows that Z is gauge-admissible whenever Z is totally umbilic, e.g., whenever Z is
totally geodesic.

Fix an n-multigraded gauge-admissible principal G-spectral triple (A, H, D base;U )
for (A, α) with vertical geometry (ρ, c), remainder Z , and adequate approximate unit
{φk}k∈N; by replacing D base with D base−Z , wemay assumewithout any loss of general-
ity that (A, H, D base;U ) is exactly principal. LetD denote the set of all densely-defined
self-adjoint operators D on H , such that (A, H, D;U ) is an n-multigraded gauge-
admissible exactly principalG-spectral triple for (A, α)with the same n-multigrading on
H , the same vertical geometry (ρ, c), and the same adequate approximate unit {φk}k∈N;
we denote their common vertical Dirac operator by /Dv and their common G-invariant
R-vector space of all remainders supercommuting with Cl(g∗; ρ) and AG by R. For
notational simplicity, if D ∈ D, then Dh := Dh[0] and DG := DG[0]; observe that
∀D1, D2 ∈ D, D2 − D1 = ( /Dv + (D2)h)− ( /Dv + (D1)h) = (D2)h − (D1)h,

so that a choice of D ∈ D is tantamount to a choice of horizontal Dirac operator Dh .

Definition 3.12. If D1, D2 ∈ D, then we call D1 and D2 gauge-comparable whenever:

1. Dom D1 ∩ Dom D2 ∩A · Dom( /Dv) is a joint core for D1, D2, and /Dv;
2. for every a ∈ A, the operator (D1−D2) ·a extends to an element of L(Dom /Dv, H);
3. D1 − D2 supercommutes with Cl(g∗; ρ) and AG .

We call the resulting binary relation gauge comparability.

Remark 3.13. If A is unital, then by Proposition 2.25, for any D ∈ D, the pair ( /Dv, Dh)

is a weakly anticommuting pair in the sense of [75], and hence

Dom D = Dom /Dv ∩ Dom Dh

with equivalent norms; as a result, condition 1 holds if and only if Dom D1 ∩ Dom D2
is a joint core for D1 and D2.

Proposition 3.14. Gauge comparability is an equivalence relation.
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Proof. The only non-trivial point is transitivity. Suppose that D1, D2 ∈ D are gauge
comparable; it suffices, then, to show that

Dom D1 ∩A · Dom /Dv = Dom D2 ∩A · Dom /Dv.

For convenience, let ω := D2 − D1 and letH := Dom D1 ∩Dom D2 ∩A ·Dom( /Dv).
First, let us show thatA ·Dom /Dv ⊂ Domω. Let a ∈ A and let ξ ∈ Dom /Dv; since

H is a core for /Dv , there exists a sequence {ξk}k∈N ⊂ H, such that limk→+∞ ξk = ξ in
Dom /Dv , but now, by continuity of ω · a : Dom /Dv → H ,

lim
k→+∞ω(aξk) = lim

k→+∞ω · a(ξk) = ω · a(ξ),
so that a · ξ ∈ Domω with ω(aξ) = ω · a(ξ).

Now, since A · Dom /Dv ⊆ Domω, it follows that

H ⊂ Dom D1 ∩A · Dom /Dv ⊂ Dom D1 ∩ Domω ⊂ Dom D1 + ω,

so that D2 = D1 + ωwithDom D2∩A·Dom /Dv ⊇ Dom D1∩A·Dom /Dv; by symmetry,
the same argument also shows that Dom D1 ∩A ·Dom /Dv ⊇ Dom D2 ∩A ·Dom /Dv ,
so that, indeed,

Dom D1 ∩A · Dom /Dv = Dom D2 ∩A · Dom /Dv.

Transitivity of gauge comparability is now immediate.

At last, we define the Atiyah space At[D base] of D base to be the gauge comparability
class of D base in D endowed with the weak topology induced by the countable family
{ν}k∈N of maps At→ L(Dom /Dv, H) defined by

∀k ∈ N, ∀D ∈ At, νk(D) := (D − D base) · φk |Dom /Dv ;
here, L(Dom Dv, H) is given the norm topology. Where there is no ambiguity, we will
denote At[D base] by At. Note that this topology on At is metrizable and independent of
the choice of base point in the gauge comparability class of D base. For the moment, At
is just a topological space, but when A is unital, it will, in fact, have the structure of a
topological R-affine space.

Example 3.15. Under the hypotheses of Sect. 3.1, fix an n-multigraded pre-Dirac bundle
(E, c⊕,∇E,⊕) on P . Let {ψk}k∈N ⊂ C∞c (P/G, [0, 1]) satisfyψk →k→+∞ 1 pointwise
and dψk →k→+∞ 0 uniformly, and for each k ∈ N, let φk be the pullback of ψk to P .
Thus, for any σ ∈ A(P), the sequence {φk}k∈N defines an adequate approximate unit
for (C∞c (P), L2(P, E), DE

σ ;U E ), which is gauge-admissible with respect to Zσ , since
DE
σ −Zσ is essentially self-adjoint onC∞c (P, E) ⊂ Dom(DE

σ −Zσ )∩C∞c (P)·Dom /Dv
and

[(Dσ )h[Zσ ],C∞c (P,Cl(V P∗))] ⊆ C∞c (P,Cl(V P∗) ̂⊗ π∗T ∗B)

⊆ C∞c (P,Cl(V P∗)) · π∗C∞c (B, T ∗B),

where the final inclusion follows by means of a local trivialisation atlas for T B together
with a subordinate partition of unity on B. In fact, by Chernoff’s criterion [30], the
vertical Dirac operator /Dv is also essentially self-adjoint on C∞c (P, E). Then for any
σ0 ∈ A(P), the space At induced by DE

σ0
− Zσ0 contains {DE

σ − Z E
σ : σ ∈ A(P)},

and so is independent of the choice of σ0; moreover, the inclusion A(P) ↪→ At defined
by σ �→ DE

σ − Zσ is continuous with respect to the topology on A(P) induced by the
Montel topology on �1(P, g) via the identification of a principal connection with its
g-valued connection 1-form.
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Since elements of At admit the same vertical geometry (ρ, c) and yield the same
spectral triple for Vρ AG up to a locally bounded and adequate perturbation supercom-
muting with AG , we can view At as encoding variation of principal connection with
respect to a fixed vertical geometry, basic geometry, and pre-Dirac bundle. Moreover, we
can now check that this noncommutative variation of principal connection is invisible
at the level of G-equivariant index theory. One would expect this, for instance, from
the commutative case, where the Chern–Weil homomorphism of a principal bundle is
independent of the choice of principal connection used.

Proposition 3.16. Let D1, D2 ∈ D be gauge comparable. Then

[D1] = [D2] ∈ K K G
n (A,C), [DG

1 ] = [DG
2 ] ∈ K K G

n−m(Vρ AG,C).

Proof. Since /Dv|H G : H G → H G is bounded and self-adjoint, the G-invariant operator
DG
2 − DG

1 = D1 − D2|Dom(D1)G∩Dom(D2)G∩AG ·H G on

Dom(D1)
G ∩ Dom(D2)

G ∩AG · H G = Dom(DG
1 ) ∩AG · H G

= Dom(DG
2 ) ∩AG · H G

extends to a (trivially) G-invariant adequate symmetric locally bounded operator on H G

supercommuting with Cln−m , so that [DG
1 ] = [DG

2 ]. Hence, by Theorem 2.44 applied
to D1 and D2, respectively,

[D1] = (A ←↩ AG)! ̂⊗Vρ AG [DG
1 ] = (A ←↩ AG)! ̂⊗Vρ AG [DG

2 ] = [D2].

Let us now generalise global gauge transformations to our noncommutative set-
ting; note that we are only considering global gauge transformations, as opposed to
infinitesimal gauge transformation, which have been recently been studied in a noncom-
mutative context by Brzeziński–Gaunt–Schenkel [22]. In light of (3.7), one should view
our constructions as morally generalising the gauge action up to an R-valued groupoid
1-cocycle.

Definition 3.17. Let D ∈ At. We define a gauge transformation of D to be an even
G-invariant unitary S ∈ U (H)G , supercommuting with Cln , Cl(g∗; ρ), and AG , such
that

1. SAS∗ = A;
2. S(Dom D∩A ·Dom /Dv) = Dom D∩A ·Dom /Dv , and for every a ∈ A, the operator
[D, S] · a extends to an element of L(Dom /Dv, H);

3. the operator [D, S] on Dom D ∩ A · Dom /Dv supercommutes with Cl(g∗; ρ)
and AG .

We denote the set of all gauge transformations of D by G(D).

Proposition 3.18. Let D ∈ At. Then:

1. for every S ∈ G(D), the operator SDS∗ on S Dom D defines an element of At;
2. the subset G(D) ⊂ U (H) is a subgroup;
3. for every D′ ∈ D, we have G(D′) = G(D).
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Proof. First, let S ∈ G(D); we wish to show that the operator D′ := SDS∗ with domain
S Dom D defines an element of At. First, by point 1 together with supercommutation
of the G-invariant unitary S with Cln , Cl(g∗; ρ), and AG , it follows that (A, H, D′;U )
still defines an n-multigraded exactly principal G-spectral triple with vertical geometry
(ρ, c).Next, since S commuteswithAG andwith /Dv , it follows that (A, H, D′;U ) is still
gauge admissible, so that D′ defines an element ofD. Now, by point 2 of Definition 3.17,

Dom D′ ∩ Dom D ∩A · Dom /Dv = S Dom D ∩ S(Dom D ∩A · Dom /Dv)

= S(Dom D ∩A · Dom /Dv),

where, in turn,

Dom D ∩A · Dom /Dv = S(Dom D ∩A · Dom /Dv) = Dom D′ ∩A · Dom /Dv,

so that Dom D′ ∩Dom D ∩A ·Dom /Dv is a joint core for both D and D′. Thus, on this
joint core, we can safely compute

D′ − D = SDS∗ − DSS∗ = −[D, S]S∗;
since SAS∗ = A, we can now conclude that point 2 of Definition 3.12 follows from
point 2 of Definition 3.17 and that point 3 of Definition 3.12 follows from point 3 of
Definition 3.17.

Let us show that G(D) is a subgroup of U (H). Observe that 1 ∈ G(D). Now,
suppose that S, T ∈ G(D). Then ST−1 automatically satisfies all the conditions of
Definition 3.17 except possibly 2 and 3 . But now, since

[D, ST−1] = [D, S]T−1 + S[D, T−1] = [D, S]T−1 − ST−1[D, T ]T−1,
on Dom D∩A ·Dom /Dv , where S and T−1 both supercommute withAG and Cl(g∗; ρ),
it follows that ST−1 also satisfies the remaining conditions.

Now, given D′ ∈ At, let us show that G(D′) = G(D); by symmetry, it suffices to
show that G(D) ⊂ G(D′). Now, let S ∈ G(D). Then S automatically satisfies all the
conditions of definition 3.17 for G(D2) except possibly 2 and 3 . But now, since

[D′, S] = [D, S] + S(D′ − D1)− (D′ − D)S

on Dom D ∩ A · Dom /Dv = Dom D′ ∩ A · Dom /Dv , where S supercommutes with
AG + M(ρ) and satisfies SAS∗ = A, it follows that S also satisfies the remaining
conditions for membership of G(D′).

Definition 3.19. We define the gauge group to be G := G(D) for any D ∈ At, and we
define the gauge action to be the action of G on At defined by

G× At→ At, (S, D) �→ SDS∗.

We endowGwith the weak topology induced by inclusionG ↪→ U (H) and the map

G→ At, S �→ SD baseS∗,

where U (H) is endowed with the norm topology and At is topologised as above. This
topology makes G into a metrizable group and the gauge action a continuous group
action; moreover, this topology is independent of the choice of basepoint D base ∈ At.
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Example 3.20. Continuing with Example 3.15, Proposition 3.4 and Corollary 3.8 imply
that the map G(P) � f �→ SE

f defines a group monomorphism G(P) ↪→ G that is
continuous with respect to the topology on G(P) induced by the Montel topology on
C∞(P,G). Moreover, by Corollary 3.8, the inclusion A(P) ↪→ At intertwines the
respective actions of G(P) and G up to the groupoid cocycle

G(P)� A(P) � ( f, σ ) �→ SE
f DE

σ (S
E
f )
∗ − DE

f ·σ
= SE

f [DE
h,σ , (S

E
f )
∗] − (DE

f ·σ − DE
σ ) ∈ R; (3.9)

in particular, for all f ∈ G(P) and σ ∈ A(P), the operators SE
f DE

σ (S
E
f )
∗ and DE

f ·σ
have the same principal symbol.

Remark 3.21. Let R be topologised by the family of seminorms R � Z �→ ‖Zφk‖L(H)
for k ∈ N, so that R defines a metrizable topological R-vector space admitting an
isometric R-linear representation of G given by

G×R � (S, Z) �→ SZ S∗ ∈ R.

By Proposition 2.24, it follows that R acts freely, continuously, and G-equivariantly as
a metrizable Abelian group on At via

At×R � (D, Z) �→ D + Z ∈ At.

Thus, the gauge action ofG on At descends to a continuous action on At/R; indeed, in
the case of Example 3.20, the resulting map A(P)→ At/R remains injective and now
exactly intertwines the respective actions of G(P) and G.

Question 3.22. When is the action of R on At proper? If it is proper, one could mean-
ingfully view the induced action of G on At/R as the gauge action on the true space
At/R of noncommutative principal connections.

3.3. Noncommutative relative gauge potentials. At last, we generalise relative connec-
tion 1-forms to our noncommutative setting, at least at the level of principal symbols. In
the case where (A, α) is unital, this will provide us with a G-equivariant realisation of
At as a real affine space of noncommutative relative gauge potentials.

Definition 3.23. Let D ∈ At. We define a relative gauge potential for D to be an n-odd,
symmetric, G-invariant operator ω on Dom D ∩ A · Dom /Dv , supercommuting with
Cl(g∗; ρ) and AG and satisfying the following:

1. for every a ∈ A, [ω, a] extends to an element of A · [D,AG ]L(H);
2. for every a ∈ A, ω · a extends to an element of L(Dom /Dv, H).

We denote the set of all relative gauge potentials for D by at(D).

Observe that D1, D2 ∈ D are gauge comparable if and only if D2 − D1 is a relative
gauge potential for D1, if and only if D1 − D2 is a relative gauge potential for D2.

Proposition 3.24. For every D ∈ At, the set at(D) is an R-vector space, and

∀D1, D2 ∈ At, at(D1) = at(D2).
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Proof. The only subtle point here is checking that

∀D1, D2 ∈ At, A · [D1,AG ]L(H) = A · [D2,AG ]L(H),

but D2 − D1 must supercommute with AG by definition of gauge comparability.

Definition 3.25. The space of relative gauge potentials is at := at(D) for any D ∈ At.

Observe that at defines ametrizable topological vector space for the separating family
of seminorms {‖·‖at,k}k∈N defined by

∀k ∈ N, ∀ω ∈ at, ‖ω‖at,k :=
∥

∥ω · φk |Dom( /Dv)
∥

∥

L(Dom( /Dv),H)
.

Note, moreover, that any bounded operator T ∈ L(H) satisfying T Dom /Dv ⊆ Dom /Dv
and [T, /Dv] = 0 restricts to a bounded operator T |Dom /Dv ∈ L(Dom /Dv) with

‖T |Dom /Dv‖L(Dom /Dv) ≤ ‖T ‖L(H).

Thus, the group G admits a strongly continuous isometric action on at defined by

∀S ∈ G, ∀ω ∈ at, (S, ω) �→ SωS∗.

Remark 3.26. It follows thatR is a G- andG-invariant R-linear subspace of at, and that
the inclusion R ↪→ at is continuous.

Remark 3.27. InExample 3.15, for everyσ1 = (λ1, ρ1),σ2 = (λ2, ρ2) ∈ A(P), by (3.5),
the operator

(DE
σ2
− Zσ2)− (DE

σ1
− Zσ1) = DE

h,σ2 − DE
h,σ1 =

n−m
∑

j=1
c⊕(e j )∇E,⊕

(ρ2−ρ1)(e j )
,

has principal symbol c⊕ ◦ (ι−1 ◦ (ρ2 − ρ1)
)∗
, which depends only on c⊕ and ρ2 − ρ1.

Moreover, for every f ∈ G(P) andσ = (λ, ρ) ∈ A(P), the operators SE
f DE

σ (S
E
f )
∗−DE

σ

and DE
f ·σ − DE

f differ by an element of at ∩ �(End(E)) and have the same principal

symbol c⊕ ◦ (ι−1 ◦ ( f∗ ◦ ρ − ρ)
)∗
.

Question 3.28. When isR closed in at? If it is closed, one could meaningfully view the
induced action ofG on at/R as the gauge action on the true space at/R of noncommu-
tative relative gauge potentials.

When (A, α) is unital, any element of At can be perturbed by an element of at to
yield another element of At. This will turn out to be the affine action of at qua vector
space of translations for the real affine space At.

Proposition 3.29. Suppose that (A, α) is unital. For every D ∈ At and ω ∈ at, the
operator Dω := D + ω defines an element of At.
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Proof. Let us first show that (A, H, Dω) is a spectral triple for A. First, for each π ∈ ̂G,
the bounded perturbation Dh |Dom(D)π + ω|Hπ of the self-adjoint operator Dh |Dom(D)π
on Hπ is self-adjoint by Kato–Rellich, so that the closure Dωh of Dh +ω on Dom(D)alg

is self-adjoint by [20, Lemma 2.27]; indeed, it follows that Dωh is G-invariant. Next, we
have

[ /Dv, Dωh ] = [ /Dv, Dh] = [Dh, c(ε
i )]dU (εi )− [Dh,

1
6 〈εi , ρ

−T [ε j , εk]〉c(εiε jεk)],

on the joint core Dom(D)alg for /Dv and Dωh , and ( /Dv + i)−1 Dom(D)alg = Dom(D)alg

(cf. the proof of Proposition 2.25). Hence, by G-invariance of Dωh , we have

Dωh ( /Dv + i)−1 Dom(D)alg = Dωh Dom(D)alg ⊂ H alg ⊂ Dom /Dv,

/Dv( /Dv + i)−1 Dom(D)alg = /Dv Dom(D)
alg ⊂ Dom(D)alg ⊂ Dom /Dωh .

Moreover [ /Dv, Dωh ] extends to an element of L(Dom /Dv, H) by boundedness of
[Dh, c(εi )] and [Dh,

1
6 〈εi , ρ

−T [ε j , εk]〉c(εiε jεk)] for each 1 ≤ i ≤ m. It follows
by [72, Prop. 2.3] that ( /Dv, Dωh ) define a weakly anticommuting pair in the sense
of [72, Def. 2.1]. Hence by [72, Thm. 1.1], Dω = /Dv + Dωh is self-adjoint on
Dom Dω = Dom /Dv ∩Dom Dωh (with equivalent norms) and essentially self-adjoint on
Dom(D)alg. Next, since ω is a relative gauge potential,

∀a ∈ A, [Dω, a] = [D, a] + [ω, a] ∈ L(H).

Finally, since ω ∈ L(Dom /Dv, H) and the inclusion

Dom Dω = Dom /Dv ∩ Dom Dωh ↪→ Dom /Dv

is continuous, it follows that

(Dω + i)−1 − (D + i)−1 = −(D + i)−1 ·
(

ω · (Dω + i)−1
)

∈ K(H),

so that (A, H, Dω) indeed defines an n-multigraded spectral triple for A.
Let us now show that Dω defines an element of At. First, by the above discussion

together with the definition of relative gauge potentials, the operator Dω is G-invariant
and Dom Dω ⊆ Dom /Dv consists of C1-vectors for U . Next, by definition, the oper-
ator ω supercommutes with Cl(g∗; ρ), so that (ρ, c) remains a vertical geometry for
(A, H, Dω;U ). Next, since D ∈ At and (Dω)h[0] = Dωh , it follows that

[(Dω)h[0],A] ⊂ [Dh,A] + [ω,A] ⊂ A · [D,AG ] = A · [Dω,AG ],
[(Dω)h[0],Cl(g∗; ρ)] = [Dh,Cl(g∗; ρ)] ⊂ Vρ A · [D,AG] = Vρ A · [Dω,AG ],

so that Dω defines an element of D. Finally, since ω is a relative gauge potential, it
follows that D and Dω are gauge comparable.

At last, in the case where (A, α) is unital, we can realise At as a R-affine space
modelled on at; this will gauge-equivariantly generalise the structure of A(P) as a
R-affine space modelled on �(π∗T B ̂⊗V P)G , at least at the level of principal symbols.
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Theorem 3.30. Suppose that (A, α) is unital. Then At is a topological R-affine space
modelled on at with subtraction $ : At× At→ at given by

∀D1, D2 ∈ At, $(D1, D2) := D1 − D2|Dom Dv .

Moreover, for every fixed D ∈ At, the homeomorphism $(·, D) : At→ at intertwines
the gauge action of G on At with isometric R-affine action on at defined by

∀S ∈ G, ∀ω ∈ at, (S, ω) �→ S[D, S∗] + SωS∗.

Proof. First, Proposition 3.29 immediately implies that $ : At× At→ at endows At
with the structure of a R-affine space modelled on at; the construction of the topologies
on At and at now implies that the translation action

At× at→ At, (D, ω) �→ Dω

is continuous, and hence, that$(·, D) : At→ at is a homeomorphism for every D ∈ At.
Finally, for any fixed D ∈ At, one can simply compute

SDωS∗ = S(D + ω)S∗ = D + S[D, S∗] + SωS∗

on Dom D, which establishes G-equivariance of $(·, D).

Remark 3.31. In the non-unital case, if one restricts to principal gauge admissible G-
spectral triples with bounded vertical geometry whose differences are /Dv-bounded,
gauge transformations S with [Dbase, S] ∈ L(Dom /Dv, H), and /Dv-bounded relative
gauge potentials, then [72, Thm. 1.1] remains applicable, so that, mutatis mutandis,
Proposition 3.29 and Theorem 3.30 still hold.

Remark 3.32. If (A, α) is unital, then At/R defines a topological R-affine space mod-
elled on the topological R-vector space at/R; in particular, for any fixed D ∈ At, the
homeomorphism $(·, D) : At → at descends to a G-equivariant homeomorphism
At/R→ at/R with respect to the R-affine G-action on at/R induced by the action on
at defined above.

Example 3.33. In Example 3.15, suppose that P is compact, and let σ0 = (λ0, ρ0) ∈
A(P). Besides the canonical inclusion A(P) ↪→ At and the affine-linear homeomor-
phism $(·, DE

σ0
− Z E

σ0
) : At→ at, we also have maps

�(π∗T ∗B ̂⊗ V P)G → at, ω �→ c⊕(
(

(εi )P , ω
)

)∇E,⊕
(εi )P

,

A(P)→ �(π∗T ∗B ̂⊗ V P)G , σ = (λ, ρ) �→ ι−1 ◦ (ρ − ρ0).
By passing toAt/R and at/R and using the canonical inclusion G(P) ↪→ G, we finally
obtain a G(P)-equivariant commutative diagram

A(P) At/R

�(π∗T ∗B ̂⊗ V P)G at/R.

∼= ∼=
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3.4. The noncommutative Tm-gauge theory of crossed products by Zm. We now apply
Theorem 3.30 to compute the noncommutative gauge theory of crossed products by
metrically equicontinuousZm-actions as noncommutative principalTm -bundles. Inwhat
follows, let TN := Rn/Zn with the duality pairing (·, ·) : Zm ×Tm → U(1) defined by

∀n ∈ Zm, ∀t ∈ Tm, (m, t) := exp(2π imktk).

Let (B, β) be a trivially Z2-graded unital Zm-C∗-algebra, and let (B, H0, D0) be an
(n−m)-multigraded spectral triple for B withm ≤ n ∈ Z≥0, such thatB isZm-invariant
and satisfies

∀b ∈ B, sup
k∈Zm

‖[D0, βk(b)]‖ <∞;

in the commutative case, thismeans that the geodesic distance on the underlying compact
Riemannian manifold is equivalent to a Zm-invariant metric [54, Prop. 3.1]. Let

A := Zm
�r B, A := Zm

�alg B,
and let α : Tm → Aut(Zm

�r B) be the dual action, so that (A, α) defines a trivially
Z2-graded unital principalTm-C∗-algebrawith denseTm-invariant ∗-subalgebraA. One
can now construct a canonical exactly principal Tm-spectral triple for (A, α)with totally
geodesic fibres; our goal will be to compute its noncommutative gauge theory.

Let V := /S(Rm ⊕ (Rm)∗) carry an irreducible Z2-graded ∗-representation of

Clm ̂⊗ Cl((Rm)∗) ∼= Cl(Rm ⊕ (Rm)∗),

and let c0 : Cl((Rm)∗) → L(V ) be its restriction to the ∗-subalgebra Cl((Rm)∗) ∼=
1 ̂⊗ Cl((Rm)∗). Let H := �2(Zm, V ̂⊗ H0), let U : Tm → U (H) be the strongly
continuous unitary representation defined by

∀t ∈ Tm, ∀ξ ∈ H, ∀ p ∈ Zm, Utξ( p) := ( p, t) ξ( p),
and let λ : Zm → U (H) be the translation representation, which is given by

∀k ∈ Zm, ∀ξ ∈ H, ∀ p ∈ Zm, λkξ( p) := ξ( p− k).

Thus, given t : Zm → L(V ̂⊗ H0), we can define Op(t) to be the closed operator with
domain Dom(Op(t)) ⊃ H alg = Cc(Zm, V ̂⊗ H0) given by

∀ξ ∈ H alg, ∀k ∈ Zm, (Op(t)ξ) (k) := t(k)ξ(k);
in particular, we can now define a Zm-equivariant ∗-representation B → L(H) by

∀b ∈ B, ∀ξ ∈ H, ∀k ∈ Zm, (bξ)(k) := (

Op(id̂⊗β•(b))ξ
)

(k) = (id̂⊗βk(b))ξ(k),
which therefore extends to a Tm-equivariant ∗-representation A := Zm

�r B → L(H)
by even operators supercommuting with Clm . Finally, view Zm as the integer lattice in
(Rm)∗ spanned by the dual of the standard basis, let s := −2π ic0|Zm : Zm → L(V ),
and let

D := Op(s ̂⊗ idH0) + id�2(Zm ,V ) ̂⊗D0.
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Proposition 3.34 (Bellissard–Marcolli–Reihani [13], Hawkins–Skalski–White–Zacha-
rias [54, Thm. 2.14]). The data (A, H, D;U ) define an n-multigraded Tm-spectral triple
for the Tm-C∗-algebra (A, α).

Now, if c := id�2(Zm )
̂⊗c0̂⊗ idH0 , then (1, c) is a vertical geometry for (A, H, D;U )

satisfying

Dv = Op(s ̂⊗ idH0), Dh := Dh[0] = id�2(Zm ,V ) ̂⊗D0,

so that the trivial remainder 0 is D-geodesic. Using Remark 2.39, it is now easy to check
that (A, H, D;U ) is exactly principal (and hence, in particular, gauge-admissible); in
particular, the resulting basic spectral triple is the external Kasparov product

Clm ̂⊗ Cl((Rm)∗), V, 0) ̂⊗C (B, H0, D0).

Thus, let At be the resulting Atiyah space, let at be the resulting space of relative
gauge potentials, and let G be the resulting gauge group. By Theorem 3.30, it follows
thatAt is a topological R-affine space modelled on theR-subspace at ofL(Dom Dv, H)
endowed with the operator norm and that, after fixing D ∈ At as a basepoint, the gauge
action of G on At corresponds to the R-affine action on at defined by

∀S ∈ G, ∀ω ∈ at, (S, ω) �→ S[D, S∗] + SωS∗.

Our goal is to find explicit characterisations of the subspace at ⊂ L(Dom Dv, H)T
m

and the subgroup G ⊂ U (H)T
m
.

Remark 3.35. Let r ⊂ L(H0) be the closed R-linear subspace of all odd self-adjoint
bounded operators on H0 supercommuting with B and with Cln−m . It follows that
R ∼= �∞(Zm, r) via the map r � M �→ Op(idV ̂⊗M) ∈ R.

Let BD0,β be the closure of B under the norm ‖·‖D0,β defined by

∀b ∈ B, ‖b‖D0,β := ‖b‖B + sup
k∈Zm

‖[D0, βk(b)]‖L(H0) = ‖b‖L(H) + ‖[D, b]‖L(H),

so that BD0,β defines an Banach ∗-algebra. By our assumptions, the Zm-action β on the
C∗-algebra B restricts to a Zm-action on BD0,β , thereby inducing a diagonal Zm-action

on B ̂⊗h
C BD0,β . Let �

1
D0
:= B · [D0,B]L(H0) and let πD0 : B ̂⊗h

C BD0,β → �1
D0

be
given by

∀b1 ∈ B, ∀b2 ∈ B, πD0(b1 ⊗ b2) := b1[D0, b2].
Finally let Z D0(B) := {b ∈ Z(B) : [D0, b] ∈ B′} and �1

D0,sa
:= {ω ∈ �1

D0
: ω∗ = ω}.

From now on, let us make the following assumptions:

1. the subspace ker πD0 of B ̂⊗h
C BD0,β is Zm-invariant, so that the diagonal Zm-action

on B ̂⊗h
C BD0,β descends to the Zm-action β on the operator space �1

D0
given by

∀k ∈ Zm, ∀b1 ∈ B, ∀b2 ∈ B, βk(b1[D0, b2]) = βk(b1)[D0, βk(b2)];
2. the subspace �1

D0,sa
∩ B′ of �1

D0
is Zm-invariant.
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Thus, theZm-action β on B canonically induces isometric actions on theAbelianmetriz-
able groupU (Z D0(B)) ⊂ U (BD0,β) and the normedR-space�1

D0,sa
∩B′, both of which,

by abuse of notation, we also denote by β.
Lastly, let Z1(Zm,U (Z D(B))) denote the Abelian group of all 1-cocycles on Zm

valued inU (Z D0(B)), endowed with the metrizable topology inherited from the Banach
space �∞(Zm,L(H0)), let Z1(Zm,�1

D0,sa
∩B′) be the R-vector space of all 1-cocycles

on Zm valued in �1
D0,sa

∩ B′, endowed with the norm ‖·‖ defined by

∀ω ∈ Z1(Zm,�1
D0,sa ∩ B′), ‖ω‖ := sup

k∈Zm
(4π2‖k‖2 + 1)−1/2‖ω(k)‖L(H0) < +∞,

let B1(Zm,�1
D0,sa

∩ B′) be the subspace of all 1-coboundaries, let
H1(Zm,�1

D0,sa ∩ B′) := Z1(Zm,�1
D0,sa ∩ B′)/B1(Zm,�1

D0,sa ∩ B′)
be the resulting first cohomology group of Zm with coefficients in �1

D0,sa
∩ B′, and let

W denote the subgroup of all evenw ∈ U (H) supercommuting with B and Cln−m , such
that w · Dom D0 ⊂ Dom D0 and [D0,w] ∈ L(H).

Theorem 3.36. Assume that ker πD0 is Zm-invariant and that �1
D0,sa

∩ B′ is Zm-
invariant.

1. The map F : Z1(Zm,�1
D0,sa

∩ B′)× r→ at defined by

∀(ω,M) ∈ Z1(Zm,�1
D0,sa ∩ B′)× r, F(ω,M) := Op(idV ̂⊗(ω + M))

is an isomorphism of normed R-spaces that descends to a surjection

H1(Zm,�1
D0,sa ∩ B′) � at/R.

2. The map U : Z1(Zm,U (Z D0(B)))×W→ G defined by

∀(υ,w) ∈ Z1(Zm,U (Z D0(B)))×W, U(υ,w) := Op(idV ̂⊗w · υ)
is an isomorphism of topological groups.

3. For every (ω,M) ∈ Z1(Zm,�1
D0,sa

∩B′)×rand (υ,w) ∈ Z1(Zm,U (Z D0(B)))×W,

U(υ,w)[D,U(υ,w)∗] + U(υ,w)F(ω,M)U(υ,w)∗ = F(ω + υ[D0,υ
∗],wMw∗).

(3.10)

To prove this theorem, we will need the following elementary lemma.

Lemma 3.37. Let E be a real Banach space, and let λ : Zm → GL(E) be an isometric
representation of Zm on E. Let η : Zm → E be a 1-cocycle valued in λ. Then

sup
k∈Zm

(4π2‖k‖2 + 1)−1/2‖η(k)‖ < +∞.

Proof. Let {e1, . . . , em} be the standard basis of Rm ∼= (Rm)∗ ⊃ Zm , let

C := max{‖η(ei )‖E |1 ≤ i ≤ m},
and for p ≥ 1, let ‖·‖p denote the p-normonRm ; by equivalence of the norms ‖·‖ = ‖·‖2
and ‖·‖1 on Rm , it suffices to show that

∀k ∈ Zm, ‖η(k)‖E ≤ C‖k‖1,
but this now follows by induction on ‖k‖1.
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Proof of Theorem 3.36. Lemma 3.37 implies that F is well-defined; a simple check of
definitions shows that U is well-defined and that F is a continuous R-linear map, that U
is a continuous group homomorphism, that F(B1(Zm,�1

D0,sa
∩ B′)× r) ⊂ R, and that

(3.10) is satisfied. It remains to show that F and U are both bijective with continuous
inverses.

Let us show that F is bijective with continuous inverse; mutatis mutandis, the same
argument will show that U is bijective with continuous inverse. Let ω ∈ at = at(D).
First, since ω is Tm-invariant, odd, self-adjoint, and supercommutes with Cl((Rm)∗),
Cln , and B, it follows that ω = Op(id̂⊗V s) for unique s : Zm → r, which one can
recover by

∀k ∈ Zn, ∀h1, h2 ∈ H0, 〈h1, s(k)h2〉 := 〈δk ̂⊗ h1, ω(δk ̂⊗ h2)〉.
Next, let ω := s − s(0) : Zm → r, and observe that

∀k ∈ Zm, idδ0̂⊗V ̂⊗ω(k) = λ∗k[ω, λk]|HTm ,

which, sinceλ∗k[ω, λk] ⊂ ((Zm
� B) · [D,B])Tm

, implies thatω ∈ Z1(Zm,�1
D0,sa

∩B′)
and satisfies

∀k ∈ Zm, λ∗k[ω, λk] = Op
(

idV ̂⊗β•(ω(k))
)

.

Finally, set F−1(ω) := (ω, s(0)). One can now check that the mapping ω �→ F−1(ω)
does indeed define an inverse map to F, which is continuous by Lemma 3.37 together
with the definitions of the relevant topologies.

Remark 3.38. By Theorem 3.30, the group cohomology of Zm with coefficients in the
Banach space�1

D0,sa
∩B′manifests itself as the noncommutative gauge theory ofZm

�B
as a noncommutative principal Tm-bundle

Example 3.39. Let θ ∈ R be irrational, and let β : Z → Aut(C(T)) be generated by
rotation by θ , so that A := Z�C(T) ∼= C(T2

θ ) via the unique ∗-isomorphism, such that

δ1 �→ U := Ue1 , (t �→ e2π it ) �→ V := Ue2 ,

where, for n ∈ Z2, we define Un := (n, ·) = (t �→ e2π i(n1t1+n2t2)). Let

σ1 :=
(

0 1
1 0

)

, σ2 :=
(

0 −i
i 0

)

, σ3 :=
(

1 0
0 −1

)

,

and consider the canonical 1-multigraded spectral triple

(B, H0, D0) := (C∞(T),C2 ⊗ L2(T),−iσ2 ⊗ d
dt ),

for C(T), where the Z2-grading on H0 is given by σ3 ⊗ I and the 1-multigrading is
generated by iσ1 ⊗ I . Then the unitary W : H → C2

̂⊗ L2(T2,C) given by

∀m ∈ Z, ∀x, v ∈ C2, ∀ f ∈ C∞(T),

W (δm ⊗ x ⊗ v ⊗ f ) := i√
2
(σ3x ⊗ v + σ2x ⊗ σ1v)⊗

(

t �→ e2π imt1 f (t2)
)

defines a T-equivariant unitary equivalence

(A, H, D) ∼= (C∞(T2
θ )

alg,C2
̂⊗ L2(T2,C2), idC2 ̂⊗ /DT2,i),
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where C∞(T2
θ )

alg consists of algebraic vectors in C∞(T2
θ ) for the translation action of

the subgroup T× {0} ≤ T2, where, for τ ∈ {z ∈ C : $z > 0},

/DT2,τ :=
1

i

(

0 τ/i
τ/i 0

)

∂

∂t1
+

(

0 −1
1 0

)

∂

∂t2
= 1

i

(

(�τ · σ2 + $τ · σ1) ∂
∂t1

+ σ2
∂

∂t2

)

is the spin Dirac operator for the trivial spin structure on

T2 ∼= C/( τi Z + iZ) ∼= C/(Z + τZ),

and where the additional factor C2 carries the 2-multigrading. On the one hand, the
isomorphism F of Theorem 3.36 induces a R-linear isomorphism

FW : Z1(Z,C(T,R))
∼→ {WωW ∗ : ω ∈ at, ω|HT = 0}

given by

∀ω ∈ Z1(Z,C(T,R)), ∀x, v ∈ C2, ∀n ∈ Z2,

FW (ω)(x ̂⊗ v ̂⊗Un) := σ3x ⊗ σ2v ⊗ ω(n1)Un;
in particular, if ω ∈ Z1(Z,C(T,R)) is a homomorphism, so that ω = (m �→ 2πsm)
for some s ∈ R, then

W (D + F(iω dt))W ∗ = idC2 ̂⊗ /DT2,i + FW (ω)

= idC2 ̂⊗1

i

(

σ1
∂

∂t1
+ σ2

∂

∂t2

)

+
1

i
s idC2 ̂⊗σ2 ∂

∂t1

= idC2 ̂⊗ /DT2,s+i.

On the other hand, the isomorphism U of Theorem 3.36 induces a group isomorphism

UW : Z1(Z,C∞(T,U(1))) ∼→ {W SW ∗|S ∈ G, S|HT = id}
given by

∀υ ∈ Z1(Z,C∞(T,U(1))), ∀x, v ∈ C2, ∀n ∈ Z2,

UW (υ)(x ̂⊗ v ̂⊗Un) := x ⊗ v ⊗ υ(n1)Un,

which satisfies

∀υ ∈ Z1(Z,C∞(T,U(1))), UW (υ)[idC2 ̂⊗ /DT2 ,UW (υ)
∗] = FW

(

iυ(·)−1 d
dt υ(·)

)

;

in particular, given k ∈ Z, if υk ∈ Z1(Z,C∞(T,U(1))) is the unique 1-cocycle satisfy-
ing υk(1) := (t �→ exp(−2π ikt)), then iυk(·)−1 d

dt υk(·) = (n �→ 2πkn), so that

W
(

U(υk)DU(υk)
∗)W ∗ = UW (υk)

(

idC2 ̂⊗ /DT2,i
)

UW (υk)
∗ = idC2 ̂⊗ /DT2,k+i.

In fact, this calculation can be used to show that s1, s2 ∈ R yield gauge-equivalent
elements

W ∗ (idC2 ̂⊗ /DT2,s1+i
)

W, W ∗ (idC2 ̂⊗ /DT2,s2+i
)

W

of At if and only if s1 − s2 ∈ Z.
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Finally, we can immediately combine the results of this last theorem with Theo-
rem 3.30 to yield the following concrete realisation of At/G.

Corollary 3.40. Assume that ker πD0 is Zm-invariant and that �1
D0,sa

∩ B′ is Zm-

invariant. Give Z1(Zm,�1
D0,sa

∩B′) the isometric R-affine action of Z1(Zm,U (Z D0(B)))
defined by

(υ,ω) �→ ω + υ[D0,υ
∗],

and give r the isometric R-linear action of W defined by

(w,M) �→ wMw∗.

Then $(·, D)−1 ◦ F : At ∼→ Z1(Zm,�1
D0,sa

∩ B′)× r→ At descends to a homeomor-
phism

At/G
∼→

(

Z1(Zm,�1
D0,sa ∩ B′)/Z1(Zm,U (Z D0(B)))

)

× (r/W) .

4. Connes–Landi Deformations of TN -Equivariant Principal Bundles

As was first observed by Connes–Landi [31], any compact Riemannian spin TN -mani-
fold can be deformed isospectrally to yield a noncommutative spectral triple qua non-
commutative spin manifold. This procedure, for instance, recovers the usual flat spectral
triples for noncommutative tori—following Yamashita [100], who first recorded its gen-
eralisation to TN -equivariant spectral triples, we may call this procedure Connes–Landi
deformation. As was quickly observed by Sitarz [95] and by Várilly [98], Connes–Landi
deformation can be viewed as the refinement to spectral triples of Rieffel’s strict defor-
mation quantisation [92] along an action of TN . In this section, we refine our earlier
definitions and constructions to the TN -equivariant case and show that all relevant TN -
equivariant structures, when correctly defined, persist under Connes–Landi deformation.
For example, this will imply that the θ -deformed quaternionic Hopf fibration is covered
by our framework as a noncommutative principal SU(2)-bundle.

In what follows, let TN := RN/ZN with the flat bi-invariant Riemannian metric
on Lie(TN ) ∼= RN , whose Riemannian volume form yields the normalised bi-invariant
Haarmeasure onTN ; recall thatZN ∼= ̂TN via n �→ en := (t �→ exp(2π i〈n, t〉)). Again,
further details and notation related to harmonic analysis can be found in Appendix A.
In this section, all C∗-algebras will be unital and nuclear unless otherwise noted.

4.1. Naturality of the wrong-way class. As it turns out, a TN -equivariant principal G-
C∗-algebra, suitably defined, remains a principal G-C∗-algebra after strict deformation
quantisation à la Rieffel [92]. Our goal in this sub-section is to show that its wrong-way
class is natural with respect to the canonical K K -equivalences between a nuclear uni-
tal TN -C∗-algebra and its strict deformation quantisation [93]. Our technique of proof,
which interpolates (up to G-equivariant Morita equivalence) between a TN -equivariant
principal G-C∗-algebra and its deformation by means of a certain (non-unital) princi-
pal G-C([0, 1])-algebra, bears a striking formal resemblance to the discussion of [22,
Sect. 6].

Let us begin by recalling the theory of strict deformation quantisation as adapted to
our G-equivariant context; details can be found, for instance, in [26, Sect. 6] but the
definitive reference, especially for technical subtleties, is Rieffel’s own account [92].
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Definition 4.1. A TN -equivariant G-C∗algebra is a C∗-algebra A together with homo-
morphisms α : G → Aut(A) and β : TN → Aut(A), such that (A, α) is a G-C∗-
algebra, (A, β) is a TN -C∗-algebra, and αgβt = βtαg for all g ∈ G and t ∈ TN .

Now, suppose that (A, α, β) is a TN -equivariant G-C∗-algebra. Observe that the
Casimir element �TN := �Lie(TN ) of TN canonically topologises the dense ∗-
subalgebra

A∞;β := {a ∈ A : (t �→ βt (a)) ∈ C∞(TN , A)},
of A as a Fréchet ∗-algebra in such a way that the inclusion A∞;β ↪→ A is continuous,
the G-action α restricts to a strongly continuous G-action on A∞;β , and the TN -action β
restricts to a strongly smooth isometric TN -action onA. Thus, every element a ∈ A∞;β
admits an absolutely convergent Fourier expansion a =∑

n∈ZN â(n) in A∞;β , where

∀a ∈ A, ∀n ∈ ZN , â(n) :=
∫

TN
en(t)βt (a) dt.

This now permits the following result; recall that L2
v,β(A) denotes the completion of

A to a right Hilbert AG-module with respect to the conditional expectation A � AG

defined by averaging with respect to the G-action β.

Theorem 4.2 (Rieffel [92]). Let (A, α, β) be a TN -equivariant G-C∗-algebra, and let
& ∈ gl(N ,R). Define maps '& : A∞;β × A∞;β → A∞;β and ∗& : A∞;β → A∞;β by

∀a, b ∈ A∞;β, a '& b :=
∑

x, y∈ZN

exp(−2π i〈x − y,& y〉)â(x − y)b̂( y), (4.1)

∀a ∈ A∞;β, a∗& :=
∑

x∈ZN

exp(2π i〈x,&x〉)â(−x)∗, (4.2)

respectively, and define ‖·‖& : A∞;β → [0,+∞) by

∀a ∈ A∞;β, ‖a‖& := sup
b∈A∞;β\{0}

‖a '& b‖L2
v;β (A)

‖b‖L2
v;β (A)

. (4.3)

Then the Fréchet space A∞;β endowed with '&, ∗&, and ‖·‖& is a pre-C∗-algebra.
Moreover, the G-action α and TN -action β on A respectively induce a G-action α&
and TN -action β& on the resulting C∗-algebra A&, such that (A&, α&, β&) is a TN -
equivariant G-C∗-algebra satisfying (A&)∞;β = A∞;β as Fréchet spaces and

α&(·)|(A&)∞;β = α(·)|A∞;β , β&(·)|(A&)∞;β = β(·)|A∞;β .
Given a TN -equivariant G-C∗-algebra (A, α, β) and & ∈ gl(N ,R), we call

(A&, α&, β&) the strict deformation quantisation of (A, α, β)with deformation param-
eter &.

Remark 4.3. That (4.3) yields the C∗-norm on A& is an immediate consequence of
Abadie and Exel’s Fell bundle-theoretic description of strict deformation along a torus
action [1]; that (A&, α&, β&) still defines a TN -equivariant G-C∗algebra follows,
mutatis mutandis, from Rieffel’s analysis of the functoriality of strict deformation quan-
tisation at the level of C∗-algebras [89, p. 44].
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Up to G-invariant stabilisation, the deformed C∗-algebra A& can also be expressed
as an interated crossed product of A by RN .

Proposition 4.4 (Rieffel [90, Sect. 3], cf. Yamashita [100, Sect. 3-4]). Let (A, α, β) be
a TN -equivariant G-C∗-algebra and let β̃ : RN → Aut+(A) denote the lift of β to RN .
Let & ∈ gl(N ,R), and let ρ& : RN → Aut+(RN

�β̃ A) be the G-equivariant strongly

continuous RN -action on RN
�β̃ A defined by

∀k ∈ RN , ∀ f ∈ S(RN , A∞;β), ∀t ∈ RN , ρ&k ( f )(t) := ei〈k,t〉β[&(k)]( f (t)).

Then the map Q& : S(RN × RN , A∞;β)→ L
ATN (L2(RN ) ̂⊗h L2

v;β(A)) defined by

∀ f ∈ S(RN × RN , A∞;β), ∀ξ ∈ S(RN , A∞;β), ∀t ∈ RN ,

(Q&( f )ξ) (t) :=
∫

RN

∫

RN
ei〈k,t〉 f (k, s)β̃s+&(k) (ξ(t − s)) ds dk

defines a G-equivariant ∗-isomorphism RN
�ρ&

(

RN
�β̃ A

) ∼→ K(L2(RN )) ̂⊗ A&.

Remark 4.5. Yamashita’s account actually works with ran(&T ) �ρ& (ran(&
T ) �β̃ A);

however, since RN = ran(&T )⊕ ker(&), where ρ&|ker(&) = ̂

β̃|ker(&), these results can
be safely restated as above.

This iterated crossed product construction allows one to interpolate G-equivariantly
between K(L2(RN )) ̂⊗ A and any stabilised deformation K(L2(RN )) ̂⊗ A& by means
of an explicit continuous field of G-C∗-algebras over [0, 1], thereby yielding a G-
equivariant K K -equivalence between A and A&.

Theorem 4.6. (Rieffel [90, p. 213], cf. Yamashita [100, Cor. 10]Under the hypotheses of
Proposition 4.4, let σ& : RN → Aut+((RN

�β̃ A)⊗min C([0, 1])) be the G-equivariant

RN -action defined by

∀k ∈ RN , ∀ f ∈ S(RN ,C∞([0, 1], A∞;β)), ∀(s, �) ∈ RN × [0, 1],
σ&k ( f )(s)(�) := ρ�&

k ( f (·)(�))(s) = ei〈k,s〉β[�&(k)]( f (s)(�)),

so that X&(A) := RN
�σ&

(

(RN
�β̃ A)⊗min C([0, 1])

)

defines a G-C∗-algebra for

the G-action X&(α) induced by α. For every � ∈ [0, 1], the evaluation map

ev
�
: X&(A)→ RN

�ρ�&

(

RN
�β̃ A

)

given by

∀ f ∈ S(RN × RN ,C∞([0, 1], A∞;β)), ev
�
( f ) := f (·, ·)(�) ∈ S(RN × RN , A∞;β),

yields a G-equivariant K K -equivalence

YA,&,� := [Q�& ◦ ev�
] ∈ K K G

0

(

X&(A),K(L2(RN )) ̂⊗ A
�&

) ∼= K K G
0 (X&(A), A

�&).

In particular, it follows that

ϒA,& := Y−1A,&,1
̂⊗X&(A) YA,&,0 ∈ K K G

0 (A&, A) (4.4)

is a G-equivariant K K -equivalence.
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We now refine Ellwood’s definition of principal G-C∗-algebra into a notion of TN -
equivariant noncommutative topological principal bundle compatible with strict defor-
mation quantisation.

Definition 4.7. Let (A, α, β) be a TN -equivariant G-C∗-algebra. We say that (A, α, β)
is principal if the canonical map �(A,α) of the G-C∗-algebra (A, α) satisfies

�(A,α)(A∞;β ̂⊗alg A∞;β)
C∞(G,A∞;β) = C∞(G, A∞;β).

Remark 4.8. A TN -equivariant principal G-C∗algebra is, in particular, a principal G-
C∗-algebra.

Example 4.9. AnyTN -equivariant principal G-bundle P � B of closedmanifolds gives
rise to a TN -equivariant principal G-C∗-algebra (C(P), α), since the canonical map
�C(P) is the Gel’fand dual of the principal map G × P → P × P , which is smooth—

indeed, it descends to a diffeomorphism G × P
∼→ P ×B P .

Example 4.10 (Baum–DeCommer–Hajac [12]). Let (A, α) be a principal unitalTN -C∗-
algebra; since TN is Abelian, we can set β := α and view (A, α, β) as a TN -equivariant
TN -C∗-algebra. Since Aalg, as a G-∗-algebra, satisfies the Peter–Weyl–Galois condition
[12, Thm. 0.4], it follows that (A, α, β) defines a TN -equivariant principal TN -C∗-
algebra.

A straightforward argument now shows that a strict deformation quantisation of a TN -
equivariant principal G-C∗-algebra remains a TN -equivariant principal G-C∗-algebra.

Proposition 4.11 (Landi–Van Suijlekom [70, Prop. 34]). Let (A, α, β) be a TN -
equivariant G-C∗-algebra and & ∈ gl(N ,R). If (A, α, β) is principal, then so too
is (A&, α&, β&).

Proof. Let �(A,α) and �(A&,α&) denote the canonical maps of (A, α) and (A&, α&),
respectively, and observe that (A&)alg;β& = Aalg;β , so that

�(A&,α&)((A&)
alg;β&

̂⊗alg (A&)
alg,β&) = �(A,α)(Aalg;β

̂⊗alg Aalg;β).

But now, since Aalg;β is dense in A∞;β , since the subspace�(A,α)(A∞;β ̂⊗alg A∞;β) is
dense in C∞(G, A∞;β), and since A∞;β = (A&)∞;β& as Fréchet spaces, it follows that
the subspace�(A&,α&)((A&)

alg;β&
̂⊗alg (A&)alg;β&) is dense in C∞(G, (A&)∞;β&).

We now also make precise our notion of TN -invariant vertical metric.

Definition 4.12. Let (A, α, β) be a TN -equivariant G-C∗-algebra. A vertical metric for
(A, α, β) is a vertical metric ρ for (A, α), such that M(ρ) ⊂ ATN

.

Remark 4.13. It is enough to check that 〈ξ1, ρξ2〉 ∈ ATN
for all ξ1, ξ2 ∈ g∗.

Example 4.14. Let (P, g) be a compact orientedRiemannianG×TN -manifold, such that
the G-action is locally free. Let V P be the vertical tangent bundle of P as a G-manifold,
and suppose that gV P := g|V P is orbitwise bi-invariant. Then the vertical metric ρ on
C(P) induced by gV P is a vertical metric on the TN -equivariant G-C∗-algebra C(P).
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Now, suppose that ρ is a verticalmetric for aTN -equivariantG-C∗-algebra (A, α, β);
then β : TN → Aut+(A) induces Vρβ : TN → Aut+(Vρ A) making (Vρ A, Vρα, Vρβ)
into a TN -equivariant G-C∗-algebra, which is principal whenever (A, α, β) is. More-
over, for any & ∈ gl(N ,R), the vertical metric ρ for (A, α, β) automatically also
defines a vertical metric for (A&, α&, β&) and a vertical metric for the non-unital G-
C∗-algebra (X&(A), X&(α)). By untangling definitions and repeatedly using Proposi-
tion 1.20 together with technical results of Rieffel [89, Sect. 5], we obtain canonical TN -
and G-equivariant ∗-isomorphisms

Vρ(A&)
∼→ (Vρ A)&, Vρ(X&(A))

∼→ X&(Vρ A), Vρ(X&(A))
G ∼→ X&(Vρ AG).

At last, we can state and prove themain result of this subsection, which establishes the
naturality of our noncommutative wrong-way classes with respect to the G-equivariant
K K -equivalences of Theorem 4.6.

Theorem 4.15. Let (A, α, β) be a principal TN -equivariant G-C∗-algebra; let & ∈
gl(N ,R). Then (X&(A), X&(α)) is principal. Moreover, if ρ is a vertical metric for
(A, α, β), then for every � ∈ [0, 1],

YA,&,� ̂⊗A
�&

(

A
�&←↩ (A�&)

G
)

! =
(

X&(A)←↩ X&(A)
G
)

!
̂⊗X&(Vρ AG ) YVρ AG ,&,�,

(4.5)

and hence ϒA,& ̂⊗A
(

A ←↩ AG
)

! =
(

A&←↩ AG
&

)

! ̂⊗Vρ AG
&
ϒVρ AG ,&.

Before proceeding with the proof of Theorem 4.15, we will need a technical result
that will guarantee that (X&(A), X&(α)) is principal whenever (A, α, β) is. Recall that
for X a compact Hausdorff space, a G-C(X)-algebra is a (not necessarily unital) G-
C∗-algebra (A, α) together with a unital ∗-homomorphism C(X)→ Z(M(A))Geven, in
which case, for every x ∈ X , the fibre of (A, α) at x is the G-C∗-algebra (A(x), α(x)),
where A(x) := A/(C0(X \ {0}) · A) and where α(x) is G-action on A(x) induced by α.

Proposition 4.16 (Baum–De Commer–Hajac [12, Thm. 5.2]). Let X be a compact Haus-
dorff space, and let (A, α) be a (not necessarily unital) G-C(X)-algebra. Suppose that
for every x ∈ K , the G-C∗-algebra (A(x), α(x)) is principal. Then (A, α) is principal.

Proof. Let h ∈ C(G, A). Fix ε > 0. For every x ∈ X , since (A(x), α(x)) is a principal
G-C∗-algebra, let zx ∈ im�Ax be such that‖(h−zx )(x)‖ < ε

2 ; by upper semi-continuity
of X ∈ y �→ ‖(h − zx )(y)‖, there exists an open neighbourhood Ux of x , such that

∀y ∈ Ux , ‖(h − zx )(y)‖ ≤ ‖(h − zx )(x)‖ + ε
2
< ε.

Now, by compactness of X , let { f1, . . . , fk} be a partition of unity subordinate to a finite
subcover {Ux1, . . . ,Uxk } of {Ux }x∈X ; let z :=∑k

j=1 f j zx j ∈ im�A. Then,

‖h − z‖ = sup
x∈X
‖(h − z)(x)‖ ≤ sup

x∈X

k
∑

j=1
fk(x)‖(h − zxk )(x)‖ < ε.
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Proof. (Proof of Theorem 4.15) Let us first show that (X&(A), X&(α)) is principal.
Observe that the obvious map C[0, 1] → Z(M(X&(A)))G manifests (X&(A), X&(α))
as a G-equivariant C[0, 1]-algebra. For each � ∈ [0, 1], one can use an approximate unit
for C0([0, 1] \ {�}) to show that C0([0, 1] \ {�}) = ker ev

�
, so that Q

�& ◦ ev�
descends

to a G-equivariant ∗-isomorphism

(X&(A)(�), X&(α)(�)) ∼= (K(L2(RN )) ̂⊗ A
�&, id̂⊗α�&).

Hence, by Propositions 1.40 and 4.16 , the G-C∗-algebra (X&(A), X&(α)) is princi-
pal. Equation 4.5 now follows by G-equivariance of the ∗-homomorphisms defining
YA,&,� and YVρ AG ,&,�, respectively, by G-equivariance of the canonical ∗-isomorphism

Vρ(X&(A))G ∼= X&(Vρ AG), and by the observation that

1K(L2(RN ))
̂⊗C

(

A
�& ←↩ (A�&)

G
)

! =
(

K(L2(RN )) ̂⊗ A
�& ←↩ (K(L2(RN )) ̂⊗ A

�&)
G
)

! .

Example 4.17. Continuing from Examples 1.47 and 4.14, suppose that the vertical tan-
gent bundle V P is G-equivariantly spinC. Then for any & ∈ gl(N ,R),

C(P)& ←↩ C(P/G)&)! ̂⊗VρC(P)G&
ϒVρC(P)G ,& ̂⊗VρC(P)G MVρC(P)G ,C(P/G) = π!.

4.2. Persistence of TN -equivariant structures. As we shall see, a TN -equivariant prin-
cipal G-spectral triple, suitably defined, remains a TN -equivariant principal G-spectral
triple after Connes–Landi deformation [31,100]. Our goal in this sub-section is to show
that this is indeed the case and, moreover, that its TN -invariant noncommutative gauge
theory is preserved by Connes–Landi deformation; in particular, this will finally imply
that the θ -deformed quaternionic Hopf fibration C∞(S7

θ ) ←↩ C∞(S4
θ ) is fully accom-

modated by our framework. In what follows, let (A, α, β) be a TN -equivariant G-C∗-
algebra.

We begin by recalling Yamashita’s noncommutative formulation of Connes–Landi
deformation as adapted to our G-equivariant context.

Definition 4.18. We define a TN -equivariant G-spectral triple for (A, α, β) to be a
spectral triple (A, H, D) for A together with commuting strongly continuous unitary
representations U : G → U+(H) and V : TN → U+(H) of G and T , respectively,
such that:

1. (A, H, D;U ) is a G-spectral triple for (A, α);
2. (A, H, D; V ) is a TN -spectral triple for (A, β);
3. A is topologised as a Fréchet ∗-algebra, so that the inclusion A ↪→ Lip(D) is

continuous, the G-action α restricts to a strongly continuous G-action onA, and the
TN -action β restricts to a strongly smooth isometric TN -action on A.

In what follows, recall that if U : G → U (H) and V : Tm → U (H) are commuting
unitary representations on the same Hilbert space H , then LU×V (H) denotes resulting
the G × Tm-C∗-algebra of G × Tm-continuous elements in L(H) (see Equation A.4).
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Theorem 4.19 (Connes–Landi [31, Thm. 6], Yamashita [100, Prop. 5]). Suppose that
(A, H, D;U, V ) is a TN -equivariant G-spectral triple for (A, α, β); let& ∈ gl(N ,R).
Define the map L& : LU×V (H)∞;Ad V → L(H) by

∀a ∈ A, ∀ξ ∈ H, L&(a)ξ :=
∑

x∈ZN

â(x)V−[&T (x)]ξ. (4.6)

Finally, let A& be A endowed with the multiplication ∗& and ∗-operation ∗&. Then
L& defines a continuous G- and TN -equivariant ∗-monomorphism A& ↪→ L(H) that
extends to a ∗-monomorphism A& ↪→ L(H) that makes (A&, H, D;U, V ) into a TN -
equivariant G-spectral triple for (A&, α&, β&).

Following Yamashita, given a TN -equivariant G-C∗-algebra (A, α, β), a TN -
equivariant G-spectral triple (A, H, D;U, V ) for (A, α, β), and & ∈ gl(N ,R), we
call (A&, H, D;U, V ) the Connes–Landi deformation of (A, H, D;U, V ) with defor-
mation parameter &.

Remark 4.20. Injectivity and G- and Tn-equivariance of L& : A& → L(H) is actually
a somewhat subtle consequence of [89, Sect. 5].

It is also worth recalling Higson’s observation (as recorded by Yamashita) that
Connes–Landi deformation is natural with respect to the K K -equivalences of Theo-
rem 4.15.

Proposition 4.21. (Higson apud Yamashita [100, Remark 9]). Let (A, H, D;U, V ) be
a TN -equivariant G-spectral triple for (A, α, β). Then

∀& ∈ gl(N ,R), [(A&, H, D;U )] = YA,& ̂⊗A [(A, H, D;U )].
Now, let (A, H, D;U, V ) be a TN -equivariant G-spectral triple for (A, α, β). We

define a vertical geometry for (A, H, D;U, V ) to be a vertical geometry (ρ, c) for
(A, H, D;U ), such that M(ρ) ⊂ ATN

and c(g∗) ⊂ L(H)T
N
. Given a vertical geom-

etry (ρ, c) for (A, H, D;U, V ), TN -invariance of all elements of M(ρ) and c(g∗)
implies that for any & ∈ gl(N ,R), the data (ρ, c) still define a vertical geometry for
(A&, H, D;U, V ). Similarly, given a vertical geometry (ρ, c) for (A, H, D;U, V ),
we define a remainder for (A, H, D;U, V ) with respect to (ρ, c) to be a remainder
Z for (A, H, D;U ) with respect to (ρ, c), such that Z ∈ L(H)T

N
. Given a remain-

der Z for (A, H, D;U, V ) with respect to (ρ, c), TN -invariance implies that for any
& ∈ gl(N ,R), Z remains a remainder for (A&, H, D;U, V ) with respect to (ρ, c).
In this TN -equivariant context, it turns out that constructing the differentiable vertical
algebra from the original differentiable algebra and the vertical geometry commutes
with strict deformation quantisation at the level of Fréchet ∗-algebras.
Proposition 4.22. Let (A, H, D;U, V ) be a TN -equivariant G-spectral triple for
(A, α, β) with vertical geometry (ρ, c) and remainder Z. Endow VρA with the Fréchet
topology induced by the Fréchet topology on A via the canonical ∗-isomorphism

c0,ρ : Clm ̂⊗ Cl(g∗) ̂⊗ A → Vρ A

of Proposition 1.16. Then VρA is a Fréchet ∗-algebra, the inclusion homomorphism
VρA ↪→ Lip(Dh[Z ]) is continuous, α restricts to a strongly continuous G-action on
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A, and β restricts to a strongly smooth isometric TN -action on A. Moreover, for every
& ∈ gl(N ,R),

(VρA)& = VρA& (4.7)

as Fréchet ∗-algebras, where (VρA)& denotes the Fréchet space VρA endowed with the
multiplication and ∗-operation inherited from ((Vρ A)&)∞;(Ad V )& .

Proof. By G− and TN -equivariance of c0,ρ and the properties ofA, it remains to show
thatVρA ↪→ Lip(Dh[Z ]) is continuous; by construction of theFréchet topologyonVρA,
it suffices to show that c0,ρ : (Clm ̂⊗Cl(g∗))̂⊗alg A→ Lip(Dh[Z ]) is continuous with
respect to the projective tensor product norm ‖·‖∧ on (Clm ̂⊗Cl(g∗))̂⊗alg (A∩Lip(D)).
Let

K0 := sup

{‖c0,ρ(ω)‖L(H)

‖ω‖∧ : ω ∈ (Clm ̂⊗ Cl(g∗)) ̂⊗alg (A ∩ Lip(D)) \ {0}
}

,

K1 := sup

{‖[Dh[Z ], c0,ρ(σ )]‖L(H)

‖σ‖Clm̂⊗Cl(g∗)
: σ ∈ Clm ̂⊗ Cl(g∗) \ {0}

}

,

K2 := sup

{‖c(εi )[μ(εi ), T ]‖L(H)

‖T ‖L(H)
: T ∈ L(H) \ {0}

}

,

K3 := sup

{

‖c(εi )[T, c(ε�i )]‖L(H)

‖T ‖L(H)
: T ∈ L(H) \ {0}

}

and let M := 1 + max{2‖Z‖L(H), K2, K3} ∈ [1,+∞). In particular, for any a ∈ A,
since

[Dh[Z ], a] = [D − Z , a] − [Dv, a]
= [D, a] − [Z , a] − c(εi )dα(εi )(a)

= [D, a] − [Z , a] − c(εi )[μ(εi ), a] + 1

2
c(εi )[[D, a], c(ε�i )],

it follows that

‖a‖Lip(Dh [Z ]) ≤ ‖a‖A + ‖[D, a]‖L(H) + 2‖Z‖L(H)‖a‖L(H) + K2‖a‖L(H) + K3‖[D, a]‖L(H)

≤ M‖a‖Lip(D).

Now, let ω ∈ Clm ̂⊗Cl(g∗)̂⊗A, and consider a decomposition ω =∑m
k=1 σk ̂⊗ ak ,

where {σk}Nk=1 ⊂ Clm ̂⊗ Cl(g∗) and {ak}Nk=1 ⊂ A. Let � denote the Z2-grading on
Clm ̂⊗ Cl(g∗). Then

[Dh[Z ], c0,ρ(ω)] =
m
∑

k=1
[Dh[Z ], c0,ρ(σk)]ak +

m
∑

k=1
c0,ρ(�(σk))[Dh[Z ], a],
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so that

‖[Dh[Z ], c0,ρ(ω)]‖L(H) ≤ K1

m
∑

k=1
‖σk‖Clm̂⊗Cl(g∗)‖ak‖A + K0M

m
∑

k=1
‖σk‖Clm̂⊗Cl(g∗‖ak‖Lip(D)

≤ (K1 + K0M)
m
∑

k=1
‖σk‖Clm̂⊗Cl(g∗)‖ak‖Lip(D).

Since the decomposition ω =∑m
k=1 σk ̂⊗ ak is arbitrary, this now implies that

‖[Dh[Z ], c0,ρ(ω)]‖L(H) ≤ (K1 + K0M)‖ω‖∧,
and hence that

‖c0,ρ(ω)‖Lip(Dh [Z ]) = ‖c0,ρ(ω)‖L(H) + ‖[Dh[Z ], c0,ρ(ω)]‖L(H)

≤ (K0 + K1 + K0M)‖ω‖∧.
Finally, since c0,ρ is TN -equivariant, since TN acts trivially on Cl(g∗) and Cl(g∗; ρ),

and since the inclusion A ↪→ A∞;β is TN -equivariant and continuous, it follows that
the inclusion VρA ↪→ (Vρ A)∞;Vρβ is also TN -equivariant and continuous, so that (4.7)
holds for all & ∈ gl(N ,R).

At last, let us refine our definition of a principalG-spectral triple to theTN -equivariant
context, viz, to a notion ofTN -equivariant noncommutativeRiemannian principal bundle
compatible with Connes–Landi deformation. Before continuing, given aTN -equivariant
spectral triple (A, H, D;U, V ) for (A, α, β), observe that (LU×V (H),AdU,Ad V )
defines a TN -equivariant G-C∗-algebra, where the required group homomorphisms
AdU : G → Aut(LU×V (H)) and Ad V : TN → Aut(LU×V (H)) are defined by

∀g ∈ G, ∀T ∈ L(H), (AdU )g(T ) := UgT U∗
g ,

∀t ∈ TN , ∀T ∈ L(H), (Ad V )t (T ) := Vt T V ∗t .

Definition 4.23. Suppose that (A, α, β) is principal. Let (A, H, D;U, V ) be a TN -
equivariant G-spectral triple for (A, α, β) with vertical geometry (ρ, c) and remainder
Z . We say that (A, H, D;U, V ) is principal with respect to (ρ, c) and Z if:

1. the G- and TN -equivariant ∗-representation Vρ A ↪→ L(H) satisfies

VρAalg;Vρα · H G = H, {ω ∈ Vρ A : ω|H G = 0} = {0};
2. the resulting horizontal Dirac operator Dh[Z ] satisfies

[Dh[Z ],A] ⊂ A∞;β · [D − Z ,A]L
U×V (H)∞;Ad V

, (4.8)

[Dh[Z ], VρA] ⊂ (Vρ A)∞;Vρβ · [Dh[Z ], VρAG ]L
U×V (H)∞;Ad V

. (4.9)

Moreover, we say that (A, H, D;U, V ) is gauge-admissible with respect to (ρ, c) and
Z if, in addition,

∀ω ∈ VρA, [Dh[Z ], ω] ⊂ (Vρ A)∞;Vρβ · [Dh[Z ],AG ]L
U×V (H)∞;Ad V

. (4.10)
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This definition is sufficiently different from Definition 2.37 to necessitate the follow-
ing Proposition.

Proposition 4.24. Suppose that (A, α, β) is principal. Let (A, H, D;U, V ) be a prin-
cipal TN -equivariant G-spectral triple for (A, α, β) with vertical geometry (ρ, c) and
remainder Z. The G-spectral triple (A, H, D;U ) for (A, α) is principal with respect
to (ρ, c) and Z, and

(VρAG, H G , DG [Z ]; id, V•|H G ),

is a TN -equivariant {1}-spectral triple; moreover, if (A, H, D;U, V ) is gauge-
admissible with respect to (ρ, c) and Z, then (A, H, D;U ) is gauge-admissible with
respect to (ρ, c) and Z.

Proof. Let us first show that the G-spectral triple (A, H, D;U ) is principal with respect
to (ρ, c) and Z . Observe that we can use the G-equivariant (and triviallyTN -equivariant)
∗-isomorphism c0,ρ : Clm ̂⊗ Cl(g) ̂⊗ A

∼→ Vρ A of Proposition 1.16 and the Fréchet
topology on A to endow VρA with the structure of a Fréchet ∗-algebra, so that the
inclusion VρA ↪→ Vρ A is continuous, Vρα restricts to a strongly continuous action of
G on VρA, and Vρβ restricts to a strongly smooth action of TN on VρA. As a result,
the conditional expectation Vρ A � Vρ AG induced by the Haar measure on G restricts
to a conditional expectation VρA � VρAG , so that condition 1 of Definition 2.37
is satisfied. Next, since VρAalg;Vρα ⊂ Vρ Aalg, it follows that condition 2 is satisfied.
Finally, (4.8) and (4.9) immediately imply (2.7) and (2.8), respectively, while (4.10)
immediately implies (3.8).

Now, let us show that (VρAG , H G , DG [Z ]; id, V•|H G ) is a TN -equivariant {1}-
spectral triple, where VρAG is topologised as a closed ∗-subalgebra of a Fréchet ∗-
algebra VρA; the only non-trivial point is continuity of the inclusion homomorphism
VρAG ↪→ Lip(DG[Z ]). By construction of DG[Z ] from Dh[Z ], it suffices to show that
the inclusion VρA ↪→ Lip(Dh[Z ]) is continuous, but this follows by Proposition 4.22.

Now, suppose that (A, α, β) is principal and that ! := (A, H, D;U, V ) is a TN -
equivariant G-spectral triple for (A, α, β) that is principal and gauge admissible with
respect to (ρ, c) and Z . Let At(!) be the resulting Atiyah space, G(!) the resulting
gauge group, and at(!) the resulting space of relative gauge potentials. LetAtT

N
(!) be

the subset of all D′ ∈ At(!)making (A, H, D′;U, V ) into aTN -equivariant G-spectral
triple for (A, α, β) that is principal and gauge admissible with respect to (ρ, c) and 0,
letGTN

(!) := G(!)∩LU×V (H)T
N
, and let atT

N
(!) be the subset of all TN -invariant

ω ∈ at(!), such that

∀a ∈ A, [ω, a] ∈ A∞;β · [D − Z ,AG ]L
U×V (H)∞;Ad V

. (4.11)

Finally, observe that the gauge actions ofG(!) onAt(!) and at(!) restrict to actions of
GTN

(!) onAtT
N
(!) and atT

N
(!), respectively, and thatAtT

N
(!) is an affine subspace

of At(!) with space of translations atT
N
(!). At last, we can state and prove the main

result of this sub-section, which says that a principal TN -equivariant G-spectral triple
θ -deforms to a principal TN -equivariant G-spectral triple with the same TN -equivariant
gauge theory—note that there are no guarantees about the non-TN -equivariant part of
the gauge theory.
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Theorem 4.25. Suppose that (A, α, β) is principal, and let ! := (A, H, D;U, V )
be a principal TN -equivariant G-spectral triple for (A, α, β) with vertical geometry
(ρ, c) and remainder Z. Let & ∈ gl(N ,R). Then the TN -equivariant spectral triple
!& := (A&, H, D;U, V ) for (A, α, β) is also principal with respect to (ρ, c) and Z,
and

(Vρ(A&)G , H G , DG [Z ]; id, V•|H G ) = ((VρAG)&, H G , DG [Z ]; id, V•|H G ).

Moreover, if ! is gauge-admissible, then so too is !&, in which case,

AtT
N
(!&) = AtT

N
(!), GTN

(!&) = GTN
(!), atT

N
(!&) = atT

N
(!).

Proof. Let us first show that (A&, H, D;U, V ) is principal with respect to (ρ, c) and
Z ; since VρA = Vρ(A&) as Fréchet spaces, condition 1 continues to be satisfied, so it
remains to show that (4.8) and (4.9) continue to be satisfied.By abuse of notation, let L& :
LU×V (H)∞;AdV

& → LU×V (H)∞;AdV be the G- and TN -equivariant ∗-monomorphism
defined by (4.6). Since VρA · Dom Dh[Z ] ⊂ Dom Dh[Z ] and A · Dom(D − Z) ⊆
Dom(D − Z), where D − Z and Dh[Z ] are TN -equivariant, it follows that

∀a ∈ VρA, [Dh[Z ], L&(a)] = L&([Dh[Z ], a]).
Now, for convenience, let us say that X ⊆ LU×V (H)∞;Ad V is Fourier-closed if

∀x ∈ X, ∀k ∈ ZN , x̂(k) ∈ X.

Observe that A∞;β are Vρ A∞;Vρβ are Fourier-closed by construction and that the oper-
ators [D− Z ,AG ] and [Dh[Z ], VρAG ] are Fourier-closed by strong smoothness of the
TN -actions onAG and VρAG , respectively, together with TN -invariance of D− Z and
Dh[Z ] and continuity of the inclusionsAG ↪→ Lip(D− Z) and VρAG ↪→ Lip(Dh[Z ]).
Hence, it suffices to show that for any two Fourier-closed subspaces X and Y of the C∗-
algebra LU×V (H)∞;Ad V ,

L&(X · Y ) ⊂ L&(X) · L&(Y )
Lc(H)∞;Ad V

.

So, let x ∈ X and y ∈ Y . Observe that x = ∑

k∈ZN x̂(k) and y = ∑

k∈ZN ŷ(k) with
absolute convergence in LU (H)∞;Ad V , so that, in particular,

xy =
∑

k1,k2∈ZN

x̂(k1)ŷ(k2)

with absolute convergence in LU×V (H)∞;Ad V . Since L& is continuous as a linear map
between Fréchet spaces, it follows that

L&(xy) =
∑

k1,k1∈ZN

x̂(k1)ŷ(k2)V−[&t (k1+k2)]

=
∑

k1,k2∈ZN

L&(x̂(k1))L&(e2π i〈k1,&k2〉 ŷ(k2))

with absolute convergence in LU×V (H)∞;Ad V , so that

L&(xy) ∈ L&(X) · L&(Y )
LU×V (H)∞;Ad V

.
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Next, by Proposition 4.22, (VρA)& = VρA&, so that, a fortiori,

(VρAG)& =
(

(VρA)&
)G = Vρ(A&)G .

Now, suppose that (A, H, D;U, V ) is gauge admissible with respect to Z ; by the
above argument, mutatis mutandis, so too is (A&, H, D;U, V ). Since (A, H, D;U, V )
can be recovered from (A&, H, D;U, V ) via Connes–Landi deformation with defor-
mation parameter −&, it only remains to show that

AtT
N
(!) ⊂ AtT

N
(!&), GTN

(!) ⊂ GTN
(!&), atT

N
(!) ⊂ atT

N
(!&);

in particular, observe that AtT
N
(!) ⊂ AtT

N
(!&), again, by the same argument above.

Now, let us show thatGTN
(!) ⊂ GTN

(!&). Let S ∈ GTN
(!). Since S isTN -invariant,

∀a ∈ A, SL&(a)S
∗ = L&(SaS∗),

which implies that SL&(A&)S∗ ⊂ L&(A&) and that S supercommutes with
L&((A&)G) and hence with L&(A&). Since [D − Z , S] ∈ L(Dom /Dv, H), it now
follows that

[D − Z , S] = W ( /Dv + i), W := [D − Z , S]( /Dv + i)−1 ∈ LU (H)T
N
,

where [ /Dv, ·] : A → LU (H)∞;Ad V is G- and TN -equivariant and continuous by the
proof of Proposition 4.22; thus, supercommutation of [D, S] with AG implies super-
commutation with ((A&)G)alg;β& , and hence, by continuity of [[D − Z , S], ·], super-
commutation with (A&)G = (AG)&. Thus, S ∈ GTN

(!&).
Finally, let us show that atT

N
(!) ⊂ atT

N
(!&). Let ω ∈ atT

N
(!). On the one

hand, by the above argument, mutatis mutandis, supercommutation of ω with AG

implies supercommutation with (A&)G = (AG)&; on the other hand, by the proof that
(A&, H, D;U, V ) satisfies (4.8) and (4.9), mutatis mutandis, it follows that ω satisfies
(4.11) with respect to !&. Thus, ω ∈ atT

N
(!&).

Let us conclude by relating these generalities to Connes–Landi deformations of TN -
equivariant principalG-bundles. Let (P, gP ) be a compact orientedRiemannianG×TN -
manifold, and suppose that the G-action on P is free and that the vertical Riemannian
metric with respect to the G-action is orbitwise bi-invariant; let (C(P), α, β) be the
resulting principal TN -equivariant G-C∗-algebra. Let (E,∇E ) be a G×TN -equivariant
dim P-multigradedDirac bundle on P , and let! := (C∞(P), L2(P, E), DE ;U E , V E )

be the resulting principal and gauge-admissible TN -equivariant G-spectral triple with
canonical vertical geometry (ρ, c) and canonical remainder Z(ρ,c). Then, for any & ∈
gl(N ,R), the Connes–Landi deformation !& := (C∞(P&), L2(P, E), DE ;U E , V E )

remains a principal and gauge-admissible TN -equivariant G-spectral triple with respect
to (ρ, c) and Z(ρ,c), with

A(P)T
N
↪→ AtT

N
(!) = AtT

N
(!&), G(P)T

N
↪→ GTN

(!) = GTN
(!&).

In particular, then, this recovers the unbounded K K -theoretic factorisations of Brain–
Mesland–Van Suijlekom [20] as follows.
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Example 4.26. (Brain–Mesland–Van Suijlekom [20, Sect. 5]). Fix θ ∈ R. Let P := T2

with the flat metric and the translation actions of T2 and U(1) ∼= T× {0}, and let

E := T2 × /S(R2 ⊕ Lie(T2)∗).

where ∇E is the flat connection. Finally, let & := −θ ( 0 0
1 0

)

. Then !& is a canonically
principal and gauge-admissibleT2-equivariant U(1)-spectral triple with totally geodesic
orbits that recovers the noncommutative principal U(1)-bundleC∞(T2

θ )←↩ C∞(T1) up
tomultigrading.When θ is irrational, this can also be identifiedwith the noncommutative
principal U(1)-bundle of Example 3.39 using the unitary equivalence W .

Example 4.27. (Brain–Mesland–Van Suijlekom [20, Sect. 6]). Let P := SU(2) with the
metric induced by the positive-definite Killing form, let T ≤ SU(2) be the diagonal
maximal torus, let U(1) ∼= T act by left translation, and let T2 ∼= T × T act via left
translation by the first factor and right translation by the second; note that standard
diffeomorphism SU(2)

∼→ S3 ⊂ C2 defined by A �→ Ae1 intertwines the above T2-
action on SU(2) with the diagonal action of T2 ∼= U(1)× U(1) on S3 up to the double
cover

T2 � T2, (t1, t2) �→ (t1 + t2, t1 − t2)

and exactly entwines the above U(1) action on SU(2) with the diagonal action of U(1)
on S3. Following Homma [60], endow SU(2) with the spin structure

Spin(SU(2)) := Spin(4) ∼= SU(2)× SU(2),

where Spin(3) ∼= SU(2) acts diagonally on the right, let

E := Spin(SU(2))×Spin(3) /S(R3 ⊕ su(2)∗)

with ∇E the spin Levi-Civita connection, so that the commuting actions of U(1) and T2

on SU(2) lift to commuting actions of U(1) and T2 on Spin(SU(2)) (and hence on E)
via left multiplication by the ranges of

T ↪→ SU(2)× SU(2), ζ �→ (ζ, 1),

T × T ↪→ SU(2)× SU(2), (ζ1, ζ2) �→ (ζ1, ζ2),

respectively. Finally, let θ ∈ R and let& := θ
2

(

0 0
1 0

)

. Then!& is a canonically principal
and gauge-admissible T2-equivariant U(1)-spectral triple with totally geodesic orbits
that recovers the noncommutative principal U(1)-bundle C∞(S3

θ ) ←↩ C∞(S2) up to
multigrading; in particular, up to multigrading, the canonical remainder Z(ρ,c) recovers
the obstruction 1

2 to exact factorisation in unbounded K K -theory observed by Brain–
Mesland–Van Suijlekom [20, Remark 6.9].

Finally, let us observe that our machinery can accommodate Connes–Landi defor-
mation of the quaternionic Hopf fibration S7 � S4 as a T2-equivariant principal SU(2)-
bundle, as first studied by Landi andVan Suijlekom [74]. To the authors’ best knowledge,
the resulting unbounded K K -theoretic factorisation of (the total space of) the noncom-
mutative principal SU(2)-bundle C∞(S7

θ )←↩ C∞(S4
θ ) is novel.
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Example 4.28. Fix θ ∈ R. Let P := S7 ∼= {(q1, q2) ∈ H2 : ‖q1‖2 + ‖q2‖2 = 1} with
the round metric, let SU(2) ∼= Sp(1) act diagonally via left multiplication on S7, let
T ≤ SU(2) be the diagonal maximal torus, and let

T2 ∼= T × T ⊂ SU(2)× SU(2) ∼= Sp(1)× Sp(1)

act block-diagonally via right multiplication on S7. Following Homma [60], endow S7

with the spin structure Spin(S7) := Spin(8), where Spin(7) acts freely on Spin(8) via
right translation by the stabilizer of (1, 0) ∈ H2 ∼= R8, and let

E := Spin(S7)×Spin(7) /S(R7 ⊕ T ∗(1,0)S
7)

with ∇E the spin Levi-Civita connection. Since the map SU(2) × T2 → SO(8)
defined by the commuting Lie actions of SU(2) and T2 on S7 lifts to a homomor-
phism SU(2)× T2 → Spin(8) (cf. [27, Sect. 2]), it follows that the commuting actions
of SU(2) and T2 on S7 lift to to commuting actions on Spin(S7) (and hence on E) via
left translation by the range of SU (2) × T2 → Spin(8). Finally, let & := − θ

2

(

0 0
1 0

)

.
Then!& is a canonically principal and gauge-admissibleT2-equivariant SU(2)-spectral
triple with totally geodesic orbits encoding the noncommutative principal SU(2)-bundle
C∞(S7

θ )←↩ C∞(S4
θ ) up to multigrading.

Question 4.29. Can one construct an extension of C∗-algebras that represents the image
of the class

(C(S7
θ )←↩ C(S4

θ ))! ∈ K K SU(2)
3 (C(S7

θ ), V1C(S7
θ )

SU(2)) ∼= K K SU(2)
1 (C(S7

θ ),C(S
4
θ ))

in K K1(C(S7
θ ),C(S

4
θ ))
∼= Ext1(C(S7

θ ),C(S
4
θ ))?

5. Outlook

In this work, we have laid foundations for noncommutative gauge theory with compact
connected Lie structure group within the framework of noncommutative Riemannian
geometry via spectral triples. In so doing, we have used the methods of unbounded K K -
theory to start bridging the gap between the algebraic framework of strong connections
on principal comodule algebras with the functional-analytic framework of the spectral
action principle in a manner that is explicitly consistent with index theory. There are two
outstanding issues, however, that should be addressed in the short-term.

First, given a principal G-spectral triple (A, H, D;U ; ρ, c; Z) for a principal G-
C∗-algebra (A, α), the resulting basic spectral triple (VρAG , H G , DG [Z ]) is a spectral
triple for Vρ AG , not AG , for which one would need a vertical spinCstructure. In the case
where G is Abelian and Z is totally geodesic, one can simply use the canonical Morita
equivalence of Clm ̂⊗ Cl(g∗) and C as Z2-graded C∗-algebras with trivial G-actions.
The general case, however, will necessarily involve certain additional functional-analytic
subtleties, especially in the non-unital case—these will be addressed in future work,
which will also provide all the functional-analytic groundwork needed for a satisfactory
account of associated vector bundles and associated connections.

Second, the requirement that a vertical metric ρ for a G-C∗-algebra (A, α) be valued
in Z(M(A)) is rather restrictive, but a straightforward generalisation is suggested by
work of Dąbrowski–Sitarz [39,40]. Indeed, given a G-spectral triple (A, H, D;U ) for
(A, α), one can just as easily consider ρ valued in a suitable commutative unital (∗)-
subalgebra of G-invariant even elements of the supercommutant A′ ⊂ L(H). In this
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case, one can consider vertical geometries (in the strict sense) for the G-spectral triple

(A ·M(ρ), H, D;U ) for Aρ := A ·M(ρ)
L(H)

endowed with the trivial extension of
α; in particular, one can check that (Aρ, α) is principal whenever (A, α) is. However, in
the absence of any obvious relation between A and Vρ Aρ or between AG and (Vρ Aρ)G ,
the dependence of noncommutative (algebraic) topology, noncommutative Riemannian
geometry, and noncommutative gauge theory on the choice of ρ will now require detailed
examination.

At the same time, our framework is complete enough to shed a new and unifying
light on a number of key examples in the noncommutative-geometric literature and to
motivate foundational questions in the theory of spectral triples, with its rich interplay
of noncommutative differential calculus, spectral theory, and index theory. We conclude
by sketching three concrete directions for future investigation.

The first example of a genuinely noncommutative principal bundle in the noncom-
mutative geometry literature is the q-deformed complex Hopf fibration

O(SUq(2))←↩ O(S2
q )

constructed by Brzeziński–Majid [24] with base the standard Podleś sphere [87]; more-
over, in the same paper, Brzeziński–Majid also construct the q-monopole, which is
probably the first example of a genuinely noncommutative principal connection on a
noncommutative principal bundle. As Das–Ó Buachalla–Somberg observe [43, Sect. 1],
there is a canonical spectral triple for the base space S2

q , namely, the one constructed by
Dąbrowski–Sitarz [41], but there is no canonical choice of spectral triple for the total
space SUq(2). Even worse, as Senior demonstrated in his Ph.D. thesis [91, Chapters 5,
6], the straightforward unbounded K K -theoretic reverse-engineering of a spectral triple
for SUq(2) from the canonical spectral triple for S2

q does not result in a spectral triple.
However, by our results, any principal U(1)-spectral triple for SUq(2)would canonically
induce a spectral triple for S2

q , which, in turn, can be compared to the spectral triple of
Dąbrowski–Sitarz.

Question 5.1. Does the compact quantum group SUq(2) admit a principal U(1)-spectral
triple (O(SUq(2)), H, D;U ; ρ, c; Z)? If so, does (VρO(SUq(2)), HU(1), DU(1)[Z ])
recover, up to the canonical Morita equivalence of Cl1 ̂⊗Cl(u(1)∗) and C as Z2-graded
C∗-algebras, the canonical spectral triple for the standard Podleś sphere S2

q , and does
the ∗-derivation [Dh[Z ], ·] recover the q-monopole?

Thefirst computationally tractable example of a non-trivial noncommutative principal
bundle with non-Abelian structure group is arguably the θ -deformed quaternionic Hopf
fibration C∞(S7

θ )←↩ C∞(S4
θ ) of Landi–Van Suijlekom [74], which, by Example 4.28,

can be recovered from our framework, at least up to the canonical Morita equivalence
of the Z2-graded Fréchet T2-pre-C∗-algebras

V1C∞(S7
θ )

G ∼= C∞(S4,Clm ̂⊗ Cl(su(2)∗)×SU(2) S7)θ and C.

There is a rich literature on generalising the ADHM construction [7,9] of instantons on
the classical quaternionic Hopf fibration S7 � S4 to the θ -deformed case [72–74], but
for lack of a direct approach to noncommutative principal bundles within the framework
of spectral triples, one is essentially forced to construct noncommutative instantons on
C∞(S7

θ )←↩ C∞(S4
θ ) implicitly via maps of the form

ŜU(2) � π �→
(

E (π) := HomSU(2)(Vπ ,C
∞(S7

θ )), Hermitian connection on E (π)
)

.
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Since the framework of Sect. 3 is directly applicable to the gauge admissible principal
SU(2)-spectral triple for S7

θ of Example 4.28, this raises the following question.

Question 5.2. Do the “basic” noncommutative instantons of Landi–Van Suijlekom [74]
and the families of noncommutative instantons constructed by Landi–Van Suijlekom
[73] and Landi–Pagani–Reina–Van Suijlekom [72] correspond to explicit elements of
the Atiyah space At of the spectral triple for S7

θ of Example 4.28? If so, do gauge-
inequivalent noncommutative instantons remain inequivalent with respect to the gauge
action on At of the corresponding noncommutative gauge group G?

Finally, although unbounded K K -theory has been developed primarily to facilitate
noncommutative index theory, an explicit factorisation in unbounded K K -theory such
as that of Theorem 2.44 also involves highly non-trivial exact relationships between
unbounded operators, whose implications for spectral theory—and hence noncommu-
tative integration theory (see [76]) and noncommutative spectral geometry (see [51])—
have not yet been studied. In the longer term, the relationship between noncommutative
integration on a principal G-spectral triple (A, H, D;U ; ρ, c; Z) and noncommuta-
tive integration on the resulting basic spectral triple (VρAG , H G , DG [Z ]) begs to be
understood; at a bare minimum, such a relationship would naïvely require that the met-
ric dimension of the spectral triple (A, H, D) be at least dim G, which suggests the
following question.

Question 5.3. Let (A, H, D;U ) be a G-spectral triple for a unital G-C∗-algebra (A, α).
Suppose that (A, H, D;U ) admits a vertical geometry. Does it necessarily follow that

inf{p ∈ [0,∞) : (D2 + 1)−p/2 is trace class} ≥ dim G?

In particular, does this follow when (A, α) is principal and (A, H, D;U ; ρ, c; Z) is
principal?

Note that an answer to this question would also provide crucial technical insight towards
relating the spectral actions on the base space (possibly twisted by an associated vector
bundle) and the total space of a noncommutative Riemannian principal bundle with
compact connected Lie structure group; establishing such a relation, in turn, would
arguably bridge the two solitudes of noncommutative gauge theory.
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Appendix A: Peter–Weyl Theory and G-Hilbert Modules

In this appendix,weprovide a sketchofPeter–Weyl theory for continuous representations
of compact connected Lie groups on Fréchet spaces in general and for actions on C∗-
algebras and Hilbert C∗-modules in particular. A detailed account of the general picture
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can be found in [45, Chapter 4]; specifics related toC∗-algebras and HilbertC∗-modules
can be found, for instance, in [16, Sect. VIII.20; 44, Sect. 2].

For the moment, let E be a Z2-graded Fréchet space topologised by a countable family
of seminorms {‖·‖E;i }i∈N, and ρ : G → GL(E) a strongly continuous representation
of G on E by even isometries.

Definition A.1. For every π ∈ ̂G, the π -isotypical component of E is the closed sub-
space

Eπ := Eρπ := {T (v) : T ∈ HomG(Vπ , E), v ∈ Vπ },
which is the range of the idempotent Pπ ∈ L(E) defined by

∀e ∈ E, Pπ (e) := dπ

∫

G
χπ(g)ρg(e) dg.

In particular, the isotypical component of the trivial representation 1 ∈ ̂G is the subspace
EG of fixed points, while the corresponding projection P1 simply averages with respect
to the Haar measure.

Proposition A.2. The family of idempotents {Pπ }π∈̂G defines an orthogonal resolution
of the identity in the sense that

∀π1, π2 ∈ ̂G, Pπ1 Pπ2 =
{

Pπ1 if π1 = π2,
0 else,

while
∑

π∈̂G Pπ = idE pointwise on the dense subspace

Ealg := Ealg;ρ :=
alg
⊕

π∈̂G
Eπ ; (A.1)

if E is a Hilbert space and ρ is unitary, then
∑

π∈̂G Pπ = idE strongly in L(E).

Now, for each k ∈ N, define the subspace of Ck vectors by

Ek := Ek;ρ := {e ∈ E |(g �→ ρg(e)) ∈ Ck(G, E)}. (A.2)

The infinitesimal representation dρ : g→ HomC(E1, E) then permits us to topologise
Ek as a Fréchet space with the family of seminorms {‖·‖E; j,m}( j,m)∈N×Nk defined by

∀ j ∈ N, ∀m ∈ Nk, ∀e ∈ Ek, ‖e‖E; j,m := ‖
(

dρ(εm1) ◦ · · · ◦ dρ(εmk )
)

(e)E; j‖.
As a result, the subspace of smooth vectors

E∞ := E∞;ρ :=
∞
⋂

k=1
Ek,ρ ⊃ Ealg;ρ

also defines a Fréchet space, and dρ extends to a representation dρ : U(g)→ L(E) of
the universal enveloping algebra U(g) of g; in particular, it follows that

∀e ∈ E∞, e =
∑

π∈̂G
Pπ (e),
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with absolute convergence in E∞. Finally, in this regard, note that ifρ is strongly smooth,
then E = E∞ as vector spaces and idE : E∞ → E is a continuous bijection.

We now specialise to strongly continuous actions on C∗-algebras and Hilbert modules.

Definition A.3. A G-C∗-algebra is a Z2-graded C∗-algebra A together with a strongly
continuous action α : G → Aut+(A) of G on A by even ∗-automorphisms. The fixed
point algebra is the C∗-subalgebra AG := {a ∈ A : αg(a) = a, ∀g ∈ G} of G-fixed
vectors.

Suppose that (A, α) is a G-C∗-algebra. The map EA := P1 : A � AG is a faithful
conditional expectation onto AG . More generally, for every π ∈ ̂G, the π -isotypical
component Aπ defines Hilbert (AG , AG)-bimodule with respect to left and right multi-
plication by AG and the Hermitian metric defined by

∀a1, a2 ∈ A, (a1, a2)AG := EA(a
∗
1a2) =

∫

G
αg(a

∗
1a2) dg. (A.3)

In fact, for every π ∈ ̂G, it follows that (Aπ )∗ = Aπ∗ , where π∗ is the contragredient of
π , so that Aalg defines a dense ∗-subalgebra of A; moreover, A∞ defines a dense Fréchet
pre-C∗-algebra closed under the holomorphic functional calculus.

Definition A.4. Let (A, α) and (B, β) are G-C∗-algebras. Then a Hilbert G-(A, B)-
bimodule is a Z2-graded Hilbert (A, B)-bimodule E together with a strongly continuous
representation U : G → GL+(E) of G on E by even Banach space automorphisms,
such that

∀g ∈ G, ∀a ∈ A, ∀e ∈ E, ∀b ∈ B, Ug(aeb) = αg(a)Ug(e)βg(b);
∀g ∈ G, ∀e1, e2 ∈ E,

(

Ug(e1),Ug(e2)
)

B = βg((e1, e2)B).

For E a G-(A, B) Hilbert module, LB(E) denotes the C∗-algebra of adjointable
endomorphisms, while KB(E) denotes the C∗-subalgebra of compact endomorphisms.
Although KB(E) naturally defines a G-C∗-algebra, LB(E) does not. This motivates the
definition of the C∗-subalgebra

LU
B (E) := {T ∈ LB(E) : g �→ UgT U∗

g ∈ C(G,LB(E))} ⊂ LB(E), (A.4)

of G-continuous adjointable operators, which is a G-C∗-algebra by construction.

Example A.5. One can complete theG-equivariantZ2-graded (A, AG)-bimodule A with
respect to the AG -valued Hermitian metric (·, ·)AG defined by Equation (A.3) to obtain
a Hilbert G-(A, AG)-bimodule L2

v(A) := L2
v(A;α). In particular, α : G → Aut+(A)

extends to its own spatial implementation L2
v(α) : G → UAG (L2

v(A
G)).

Finally, suppose that (A, α) is a G-C∗-algebra and that B is a C∗-algebra with trivial
G-action. Then, for every π ∈ ̂G, the π -isotypical component Eπ defines a right Hilbert
B-submodule of E that is G-equivariantly unitarily equivalent to Vπ ⊗ HomG(Vπ , E)
endowed with the AG-linear Hermitian metric given by

∀v1, v2 ∈ Vπ , ∀T1, T2 ∈ HomG(Vπ , E),

(v1 ⊗ T1, v2 ⊗ T2)B := d−1π (T1(v1), T2(v2))B ;
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an explicit unitary equivalence φπ : Vπ ⊗ HomG(Vπ , E)→ Eπ is given by

∀v ∈ Vπ , ∀T ∈ HomG(Vπ , E), φπ (v ⊗ T ) := d1/2
π T (v)

with inverse φ−1π : Eπ → Vπ ⊗ HomG(Vπ , E) given by

∀e ∈ Eπ , φ−1π (e) := d1/2
π

dπ
∑

i=1
vi ⊗

∫

G
Ug(e)⊗ 〈vi , π(g

−1)(·)〉 dg,

where {v1, . . . , vdπ } is any orthonormal basis for Vπ .

Proposition A.6. (Peter-Weyl theorem for Hilbert modules). Let (A, α) be a G-C∗-
algebra and B a C∗-algebra with trivial G-action. For every π ∈ ̂G, the Hilbert B-
submodule Eπ is complemented in E with G-invariant orthogonal projection Pπ ∈
LB(E); moreover, the map

E →
⊕

π∈̂G
Eπ , e �→ (Pπ (e))π∈̂G (A.5)

is an isomorphism of right Hilbert G-B-modules (i.e., Hilbert G-(C, B)-bimodules).

In the special case of theHilbertG-(A, AG)-bimodule (L2
v(A), L2

v(α)), for everyπ ∈ ̂G,
the norm on Aπ = L2

v(A)π as a right Hilbert B-submodule of L2
v(A) is equivalent to the

restriction of theC∗-norm of A [44, Cor. 2.6], andHomG(Vπ , L2
v(A)) = HomG(Vπ , A).

Appendix B: Hermitian Module Connections from Strong Connections

Wepresent a generalmethod for constructingHilbertmodule connections (in the sense of
Mesland [80]) from strong connections [56] relative to a spectral triple. This reconciles
two prominent notions of connection in the noncommutative geometry literature.

We begin with a minimalistic definition of noncommutative fibration over a spectral
triple admitting well-defined integration over the fibres (but without presupposing any
noncommutative fibrewise family of Dirac operators).

Definition B.1. Let (B, H0, T ) be a complete spectral triple for a separable C∗-algebra
B with adequate approximate identity {φk}k∈N. We define a noncommutative fibration
over (B, H0, T ) to be a triple (A,EA,A) consisting of:
1. a C∗-algebra A together with non-degenerate ∗-monomorphism B ↪→ A, such that
{φk}k∈N defines an approximate identity of A;

2. a faithful conditional expectation EA : A → B, such that the resulting completion
L2(A;EA) of A to a Hilbert B-module admits a countable frame contained in A;

3. a dense ∗-subalgebra A ⊂ A, such that B ⊂ A.

We now define a notion of horizontal differential calculus on a noncommutative fibration
compatible with the de Rham calculus on the base—this gives us a suitable functional
analytic setting for the strong connection condition as identified by Hajac [56].

Definition B.2. Let (B, H0, T ) be a complete spectral triple for a separable C∗-algebra
B, and let (A,EA,A) be a noncommutative fibration over (B, H0, T ). We define a
horizontal differential calculus for (A,EA,A) to be a triple (�,E�,∇0) consisting of:

1. a C∗-algebra � together with a ∗-mononorphism A ↪→ �;
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2. a positive contraction E� : �→ L(H0), such that E�|A = EA and

∀b ∈ B, ∀ω ∈ �, E�(bω) = bE�(ω), E�(ωb) = E�(ω)b;
3. a ∗-derivation ∇0 : A→ �, such that

∀a ∈ A, ∀b ∈ B, E�(a · ∇0(b)) = EA(a) · [T, b]. (B.1)

Moreover, we say that (�,E�,∇0) satisfies the strong connection condition whenever

∀a ∈ A, ∇0(a) ∈ A · ∇0(B)�. (B.2)

Finally, we show that the horizontal exterior derivative of a horizontal differential cal-
culus satisfying the strong connection condition canonically induces a Hilbert module
connection. Recall that ̂⊗h denotes the Haagerup tensor product.

Theorem B.3. Let (B, H0, T ) be a complete spectral triple for a separable C∗-algebra
B, let (A,EA,A) be a noncommutative fibration over (B, H0, T ), and let (�,E�,∇0)

be a horizontal differential calculus for (A,EA,A) that satisfies the strong connec-
tion condition. Then ∇0 canonically induces a Hermitian T -connection ∇ : A →
L2(A;EA) ̂⊗h

B �
1
T on L2(A;EA) by

∀a ∈ A, ∇(a) :=
∑

i∈N

ξi ̂⊗ E�
(

ξ∗i ∇0(a)
)

, (B.3)

where {ξi }i∈N is any frame for L2(A;EA) contained in A.

Proof. Given a frame {ξi }i∈N ⊆ A for L2(A;EA), which exists by assumption, we show
that (B.3) defines a B-module connection∇. Let a ∈ A, andwrite∇(a) =∑

k ak∇0(bk)

for ak ∈ A and bk ∈ B, so that, by continuity of E� and closure of �1
T in L(H0),

∀i ∈ N, E�(ξ∗i ∇0(a)) = E�

(

∑

k

ξ∗i ak∇0(bk)

)

=
∑

k

EA(ξ
∗
i ak)[T, bk] ∈ �1

T ;

without loss of generality, we may assume that ‖∇0(a)‖ ≤ 1.
Choose K large enough that

∥

∥

∑

k>K ak∇0(bk)
∥

∥

2
< ε/6, so that for any n, N ,

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

ξi ⊗ E�(ξ∗i ∇0(a))

∥

∥

∥

∥

∥

∥

2

h

≤ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k≤K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

+ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k>K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

≤ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k≤K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

+ 2

∥

∥

∥

∥

∥

∑

k>K

ak∇0(bk)

∥

∥

∥

∥

∥

2

h

≤ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k≤K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

+
ε

3
.
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Now choose m and n large enough, so that

∥

∥

∥

∥

∥

∥

∑

k≤K

(φmak − ak)∇0(bk)

∥

∥

∥

∥

∥

∥

2

�

<
ε

12
,

∥

∥

∥

∥

∥

∥

∑

|i |≥n

φmξi EA(ξ
∗
i φm)

∥

∥

∥

∥

∥

∥

L2(A,EA)

<
ε

12
∥

∥

∑

k≤K ak∇0(bk)
∥

∥

2 .

Then, for any N ≥ n we can estimate

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k≤K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

≤
∥

∥

∥

∥

∥

EA

(

∑

i

ξiξ
∗
i

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k,�≤K

∇0(bk)
∗EA

(

a∗k ξi
)

EA
(

ξ∗i a�
)∇0(b�)

∥

∥

∥

∥

∥

∥

≤ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k,�≤K

∇0(bk)
∗EA(a

∗
kφmξi )EA

(

ξ∗i φma�
)∇0(b�)

∥

∥

∥

∥

∥

∥

+ 2

∥

∥

∥

∥

∥

∥

∑

k,�≤K

∇0(bk)
∗(φmak − ak)

∗(φma� − a�)∇0(b�)

∥

∥

∥

∥

∥

∥

≤ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k,�≤K

∇0(bk)
∗EA(a

∗
kφmξi )EA

(

ξ∗i φma�
)∇0(b�)

∥

∥

∥

∥

∥

∥

+
ε

6

Now observe that by [68, Lemma 4.2], we can estimate

⎛

⎝

∑

|i |≥n

EA(a
∗
kφmξi )EA

(

ξ∗i φma�
)

⎞

⎠

k,�≤K

=
⎛

⎝EA

⎛

⎝a∗k

⎛

⎝

∑

|i |≥n

φmξi EA
(

ξ∗i φm
)

⎞

⎠ a�

⎞

⎠

⎞

⎠

k,�≤K

≤
∥

∥

∥

∥

∥

∥

∑

|i |≥n

φmξi EA
(

ξ∗i φm
)

∥

∥

∥

∥

∥

∥

(

EA(a
∗
k a�)

)

k,�≤K

≤ ε

12
∥

∥

∑

k≤K ak∇0(bk)
∥

∥

2

(

EA(a
∗
k a�)

)

k,�≤K ,

as matrices. Therefore

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k,�≤K

∇0(bk)
∗E(a∗kφmξi )E

(

ξ∗i φma�
) [T, b�]

∥

∥

∥

∥

∥

∥

≤ ε

12
,
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and we continue to estimate
∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

ξi ⊗ E�(ξ∗i ∇0(a))

∥

∥

∥

∥

∥

∥

2

h

≤ ε

3
+ 2

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k≤K

ξi ⊗ E�(ξ∗i ak∇0(bk))

∥

∥

∥

∥

∥

∥

2

h

≤ ε

3
+
ε

3
+ 4

∥

∥

∥

∥

∥

∥

∑

n≤|i |≤N

∑

k,�≤K

∇0(bk)
∗EA(a

∗
kφmξi )EA

(

ξ∗i φma�
)∇0(b�)

∥

∥

∥

∥

∥

∥

≤ ε

3
+
ε

3
+
ε

3
= ε.

This proves that the series is convergent in the Haagerup norm. Independence of the
choice of frame {ξi } ⊂ A now follows, for if {η j } ⊂ A is another countable frame we
write
∑

i

ξi ⊗ E�(ξ∗i ∇0(a)) =
∑

i, j

η j ⊗ EA(η
∗
j ξi )E�(ξ

∗
i ∇0(a)) =

∑

i, j

η j ⊗ E�
(

EA(η
∗
j ξi )ξ

∗
i ∇0(a)

)

=
∑

j

η j ⊗ E�

(

∑

i

(

ξi EA(ξ
∗
i η j )

)∗ ∇0(a)

)

=
∑

j

η j ⊗ E�(η∗j∇0(a)),

where convergence of the relevant sums follows from continuity of EA and E�.
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196 B. Ćaćić, B. Mesland

18. Blecher, D.P.: A new approach to Hilbert C∗-modules. Math. Ann. 307(2), 253–290 (1997)
19. Boeijink, J., van den Dungen, K.: On globally non-trivial almost-commutative manifolds. J. Math. Phys.

55(10), 103508 (2014), 33. Available at arXiv:1405.5368
20. Brain, S.,Mesland,B., vanSuijlekom,W.D.:Gauge theory for spectral triples and theunboundedKasparov

product. J. Noncommut. Geom. 10(1), 135–206 (2016). Available at arXiv:1306.1951
21. Bruning, J., Kamber, F.W.: On the spectrum and index of transversal Dirac operators associated to Rie-

mannian foliations. Preprint
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