
Combined assessment of the tumor-stroma ratio and tumor immune
cell infiltrate for immune checkpoint inhibitor therapy response
prediction in colon cancer
Ravensbergen, C.J.; Polack, M.; Roelands, J.; Crobach, S.; Putter, H.; Gelderblom, H.; ... ;
Mesker, W.E.

Citation
Ravensbergen, C. J., Polack, M., Roelands, J., Crobach, S., Putter, H., Gelderblom, H., …
Mesker, W. E. (2021). Combined assessment of the tumor-stroma ratio and tumor immune
cell infiltrate for immune checkpoint inhibitor therapy response prediction in colon cancer.
Cells, 10(11). doi:10.3390/cells10112935
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3277579
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3277579


cells

Article

Combined Assessment of the Tumor–Stroma Ratio and Tumor
Immune Cell Infiltrate for Immune Checkpoint Inhibitor
Therapy Response Prediction in Colon Cancer

Cor J. Ravensbergen 1 , Meaghan Polack 1, Jessica Roelands 2 , Stijn Crobach 2, Hein Putter 3 ,
Hans Gelderblom 4 , Rob A. E. M. Tollenaar 1,† and Wilma E. Mesker 1,*,†

����������
�������

Citation: Ravensbergen, C.J.; Polack,

M.; Roelands, J.; Crobach, S.; Putter,

H.; Gelderblom, H.; Tollenaar,

R.A.E.M.; Mesker, W.E. Combined

Assessment of the Tumor–Stroma

Ratio and Tumor Immune Cell

Infiltrate for Immune Checkpoint

Inhibitor Therapy Response

Prediction in Colon Cancer. Cells 2021,

10, 2935. https://doi.org/10.3390/

cells10112935

Academic Editor: Nina Zidar

Received: 29 September 2021

Accepted: 25 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden, The Netherlands;
c.j.ravensbergen@lumc.nl (C.J.R.); m.polack@lumc.nl (M.P.); R.A.E.M.Tollenaar@lumc.nl (R.A.E.M.T.)

2 Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden,
The Netherlands; j.p.roelands@lumc.nl (J.R.); a.s.l.p.crobach@lumc.nl (S.C.)

3 Department of Medical Statistics, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden,
The Netherlands; h.putter@lumc.nl

4 Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2300RC Leiden,
The Netherlands; A.J.Gelderblom@lumc.nl

* Correspondence: w.e.mesker@lumc.nl; Tel.: +31-715262987
† Authors equally contributed to this work.

Abstract: The best current biomarker strategies for predicting response to immune checkpoint in-
hibitor (ICI) therapy fail to account for interpatient variability in response rates. The histologic
tumor–stroma ratio (TSR) quantifies intratumoral stromal content and was recently found to be
predictive of response to neoadjuvant therapy in multiple cancer types. In the current work, we
predicted the likelihood of ICI therapy responsivity of 335 therapy-naive colon adenocarcinoma
tumors from The Cancer Genome Atlas, using bioinformatics approaches. The TSR was scored on
diagnostic tissue slides, and tumor-infiltrating immune cells (TIICs) were inferred from transcrip-
tomic data. Tumors with high stromal content demonstrated increased T regulatory cell infiltration
(p = 0.014) but failed to predict ICI therapy response. Consequently, we devised a hybrid tumor
microenvironment classification of four stromal categories, based on histological stromal content
and transcriptomic-deconvoluted immune cell infiltration, which was associated with previously
established transcriptomic and genomic biomarkers for ICI therapy response. By integrating these
biomarkers, stroma-low/immune-high tumors were predicted to be most responsive to ICI therapy.
The framework described here provides evidence for expansion of current histological TIIC quantifi-
cation to include the TSR as a novel, easy-to-use biomarker for the prediction of ICI therapy response.

Keywords: tumor–stroma ratio; colon cancer; tumor-infiltrating immune cells; immunotherapy;
tumor microenvironment; checkpoint inhibitor

1. Introduction

The tumor microenvironment (TME), or tumor stroma, refers to the local environ-
ment in which malignant cells are embedded, and comprises a multitude of (sub)cellular
components [1]. The dynamic interactions that occur between the TME and malignant
cells promote tumorigenesis and are essential in cancer progression [2]. The tumor–stroma
ratio (TSR), previously discovered by our research group, is a prognostic tool that stratifies
patients into high-risk and low-risk categories based on the histologic quantification of
stromal content within the primary tumor (PT) [3]. Tumors with a high stromal content
were previously shown to have a poor patient outcomes in a variety of epithelial malig-
nancies [4–11]. In addition, the TSR was found to be a predictor of pathologic response to
neoadjuvant therapy in breast and esophageal cancer [12–14].
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Molecular modulation of the tumor stroma, as a key driver of cancer progression and
dissemination, has gained scientific interest over the past few years [15,16]. Considering
the molecular background of the TSR, our understanding of the molecular drivers behind
its prognostic value is gradually advancing. We recently identified a prognostic gene
expression ratio of stromal versus epithelial genes that correlates to the TSR [17]. Moreover,
cell membrane and gene expression markers associated with cancer-associated fibroblasts
(CAFs) were found to be increased in stroma-high tumors, compared with stroma-low
tumors [18]. Given the key role of CAFs in extracellular matrix (ECM) deposition and
remodeling and their association with poor prognosis, CAF enrichment in the TME is likely
to be a driver of high stromal content [19].

Besides mesenchymal cells, the immune system is considered to be a crucial compo-
nent of the tumor stroma, where tumor-infiltrating immune cells (TIICs) host a variety of
pro-tumorigenic and anti-tumorigenic roles [20]. Considering the interplay between the
immune system and the TSR, we recently observed a synergistic effect of high stromal
content and intratumoral HLA class I expression on patient survival, in which patients with
a stroma-high tumor and concurrent low HLA class I expression demonstrated poorer sur-
vival rates [21]. Moreover, stroma-high tumors were associated with increased infiltration
of selected macrophage and T cell subsets in breast cancer [22]. Nevertheless, a comprehen-
sive characterization of TIIC composition and its clinical relevance to intratumoral stromal
content is currently lacking.

Recently, advances in immune-system-derived treatment modalities, such as immune
checkpoint inhibitor (ICI) therapy, have resulted in a therapeutic paradigm shift in clinical
oncology [23]. Despite the clinical success of ICI therapy, the considerable interpatient
variability in objective response rates remains a major challenge, with an estimated per-
centage of responders across eligible primary tumor types of approximately 13% in U.S.
patients in 2018 [24]. To maximize therapeutic benefit and avoid unnecessary toxicity, the
establishment of predictive biomarkers to guide the treatment decision-making process is
warranted. Over the past few years, multiple biomarker strategies have been proposed as
predictors of ICI therapy response; amongst others, tumor-infiltrating lymphocyte density,
microsatellite instability (MSI), immunohistochemistry-based PD-L1 expression, and tumor
mutational burden (TMB) [25]. However, a cumulative number of reports demonstrate
ambiguous results in the application of these biomarkers [26,27].

Given its recent discovery as a predictor of response to (neo)adjuvant therapy and the
key role of the ECM in TIIC composition, we hypothesize that the TSR may have additive
clinical value in predicting response to ICI therapy. In the current work, we set out to
explore the TIIC composition in stroma-high and stroma-low colon carcinoma tumors
using bioinformatics approaches. We subsequently define a stromal classification, based
on intratumoral stromal content and TIIC composition, which has been associated with
previously established transcriptomic and genomic biomarkers for ICI therapy response.

2. Materials and Methods
2.1. Data Acquisition

We analyzed gene expression profiles obtained from The Cancer Genome Atlas
(TCGA). Illumina HiSeq Level 3 mRNA bulk sequencing data and clinical metadata from
the TCGA colon adenocarcinoma (COAD) project were obtained from the Genomic Data
Commons (GDC; https://gdc.cancer.gov, accessed on 1 June 2021) by R/Bioconductor
package TCGAbiolinks (version 2.18.0) [28]. Samples were included based on colon adeno-
carcinoma histological subtype and complete microsatellite status data (n = 366). Patient
identifiers of the included cohort are available in Supplementary Data S1. Absolute gene
expression data were gene length normalized, adjusted for within-lane and between-lane
effects using Python package HTSeq, and expressed as fragments per kilobase million
mapped reads (FPKM) [29].

For the validation cohort, we analyzed gene expression profiles (n = 106) from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) prospective proteogenomic

https://gdc.cancer.gov
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analysis of colon adenocarcinoma [30]. Level 3 mRNA bulk sequencing data and clin-
ical metadata from the CPTAC cohort were obtained from the LinkedOmics repository
(http://linkedomics.org/login.php, accessed on 1 June 2021). Absolute gene expression
data were gene length normalized and expressed as transcripts per million mapped reads
(TPM). Patient identifiers of the included cohort are available in Supplementary Data S1.

2.2. CIBERSORTx Digital Cytometry

The CIBERSORTx web portal (https://cibersortx.stanford.edu/, accessed on 1 July
2021) was utilized to run the validated 22-phenotype leukocyte signature (LM22) in absolute
mode with 100 permutations and B-mode batch correction [31]. The LM22 signature infers
immune cell populations based on the expression of 547 immune cell-expressed genes;
a list of the 22 leukocyte phenotypes can be found in Supplementary Table S1. A total
of 6 (1.1%) of the 547 genes of the LM22 signature matrix were missing from the input
mRNA sequencing data. The CIBERSORTx absolute mode scales relative cellular fractions
into an absolute score that reflects the absolute proportion of each cell type in a tumor,
which can subsequently be compared amongst cell types [32]. Gene-length normalized
FPKM gene expression data were used as input data. Samples with accurate CIBERSORTx
deconvolution (p < 0.05) were considered to be eligible for further immunophenotyping
analysis. For assessment of relative intra-tumoral TIIC heterogeneity, absolute scores were
normalized to 1.

2.3. Tumor–Stroma Ratio

The TSR was scored on digital diagnostic hematoxylin and eosin (H&E)-stained slides
of primary tumors from the TCGA COAD project, retrieved from the GDC portal. The
TSR was scored using Aperio Imagescope (version 12.4.3) digital slide viewer software.
The area with the highest amount of stroma was selected, according to the previously
published protocol for colon cancer; a detailed description of the methodology and scoring
eligibility criteria can be found in this protocol [33]. The percentage of stroma was scored
in increments per ten percent (i.e., 10%, 20%, etc.) and the tumor was subsequently
categorized as a stroma-high (>50%) or stroma-low (≤50%) tumor. Observers (CR and
MP) were trained with the TSR E-learning module constructed for the Uniform Noting for
International Application of the Tumor-Stroma Ratio as an Easy Diagnostic Tool (UNITED)
study [34,35]. In 33% percent of the slides, blinded visual scoring was performed by a
second observer; subsequently, the interobserver agreement was assessed by Cohen’s
kappa coefficient. When consensus could not be reached, the assessment of a third observer
(S.C., board-certified pathologist) was decisive.

2.4. Definition of Stromal Categories

We defined 4 stromal categories based on histological stromal content and molecular-
derived immune cell infiltration data. First, the TSR was used to categorize patients in
stroma-low and stroma-high groups as described in detail above. Next, the 2 groups
were further categorized based on total immune cell infiltration, as computed by the
CIBERSORTx absolute mode, by using the median of the total cohort as a cut-off value. The
resulting stromal categories were a combination of intra-tumoral stromal content and total
immune cell infiltration. Due to a lack of tissue slides in the validation cohort, we stratified
intra-tumoral stromal content based on the stromal score of the Estimation of STromal and
Immune cells in MAlignant Tumours using Expression data (ESTIMATE) computational
method for tumor purity [36], described elsewhere in the methods section. To secure
maximum comparability in the validation cohort, we applied the same stroma-high and
stroma-low distribution as scored by the TSR in the discovery cohort. ESTIMATE’s immune
score was used as a surrogate to CIBERSORTx immune quantification and the validation
cohort was stratified into immune-high or immune-low groups by the median immune
score of the total cohort.

http://linkedomics.org/login.php
https://cibersortx.stanford.edu/
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2.5. Microsatellite Instability, Tumor Mutational Burden, and Single Nucleotide Variants

Microsatellite status data for the TCGA COAD cohort were obtained through the GDC
portal (https://gdc.cancer.gov, accessed on 1 June 2021). Data for the CPTAC validation
cohort were obtained at the LinkedOmics online repository (http://linkedomics.org/
login.php, accessed on 1 June 2021). A detailed description of MSI testing methodology
can be found in the methods section of the original publications [30,37]. Precomputed
tumor mutational load data were acquired from the Supplementary Materials of the
TCGA Immune Landscape of Cancer publication [38]. Mutational load was defined as
the sum of silent and non-silent mutations per megabase (Mb). Using the recently FDA-
approved cut-off of 10 mutations per megabase (mut/Mb), the tumors were categorized
into a TMB-low (TMB-L, ≤10 mut/Mb) and a TMB-high (TMB-L, >10 mut/Mb) group for
further analysis [39]. As a genomic classifier in the CPTAC validation cohort, we analyzed
synonymous and non-synonymous single nucleotide variants (SNV).

2.6. MIRACLE and TIDE Prediction Scores

The Mediators of Immune Response Against Cancer in soLid microEnvironments
(MIRACLE) score is a novel computational approach to predict response to ICI therapy
without the need for dataset-specific normalization [40]. A detailed description of the
MIRACLE score and its methodology can be found in the respective publication. In short,
the MIRACLE score integrates stimulatory and suppressive immunological signals, derived
from transcriptomic data, into a balance score that captures the local immune landscape
present in the tumor. MIRACLE scores were computed using the web application (available
at: https://miracle.shinyapps.io/miracle_shinyapp/, accessed on 1 June 2021) with gene
expression profiles as input.

In addition to MIRACLE, the Tumor Immune Dysfunction and Exclusion (TIDE) al-
gorithm is a computational method to predict response to ICI therapy by modeling two
primary mechanisms of tumor immune evasion—namely the induction of T cell dysfunc-
tion, depicted by a dysfunction signature, and the prevention of tumor infiltration, depicted
by an exclusion signature [41]. Precomputed TIDE signature scores for the TCGA data were
obtained through the TIDE web portal (http://tide.dfci.harvard.edu/, accessed on 1 June
2021). The TIDE prediction score was subsequently generated as the standard-deviation-
normalized dysfunction score for the tumor samples with high cytotoxic-lymphocyte (CTL)
infiltration, and as the standard-deviation-normalized exclusion score for the tumor sam-
ples with low CTL infiltration, as per recommendations given by the original authors [41].
Tumors were categorized as CTL-high if the average expression of CTL markers (CD8A,
CD8B, GZMA, GZMB, and PRF1) per sample was greater than the average expression of
these markers in the total cohort. The remaining tumors were categorized as CTL-low
tumors. For the validation cohort, de novo TIDE prediction scores were computed using the
TIDE web portal. The gene expression matrix was normalized by the average expression
value per gene. All computed scores in this study can be found in Supplementary Data S1.

2.7. Gene Set Enrichment Analysis

Single sample gene set enrichment analysis (ssGSEA) was performed on the nor-
malized gene expression data to define gene enrichment of specific stromal and immune
pathways [42]. The TGF-β and CXCR4 signaling pathway gene sets used in this study were
obtained from the Molecular Signatures Database (MSigDB) [43]. The checkpoint genes
included in the checkpoint gene set were selected based on a literature search. All gene
sets used in this study are available in Supplementary Data S1.

2.8. Statistical Analysis

The R programming language (version 4.0.5; https://www.r-project.org/, accessed
on 1 June 2021) was used for statistical analysis and data visualization (packages EDASeq,
tidyverse, viridis, corrplot, ggExtra, GSVA, factoextra, and igraph). Variable distribution
was evaluated with the Shapiro–Wilk test. For comparison analysis, Fisher’s exact test or

https://gdc.cancer.gov
http://linkedomics.org/login.php
http://linkedomics.org/login.php
https://miracle.shinyapps.io/miracle_shinyapp/
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the Chi-squared test were used for categorical variables and the Mann–Whitney U test was
used for continuous variables, following the assessment of variable distribution. Likewise,
parametric (Pearson’s r) or non-parametric (Spearman’s rho) correlation coefficients were
computed, depending on the variable distribution. For comparative analysis, gene ex-
pression values were log base 2 transformed. The expression of the checkpoint genes was
summarized by computing the geometric mean expression per tumor sample. A two-tailed
p-value of ≤0.05 was considered statistically significant.

3. Results
3.1. Sample Characteristics and TIIC Composition

We selected 366 gene expression profiles from the TCGA COAD project for digital
cytometric analysis with CIBERSORTx. Patients were selected based on adenocarcinoma
histological subtype and complete microsatellite status data. All patients were therapy-
naive upon data acquisition. Additional patient characteristics can be found in Supplemen-
tary Table S2. Using CIBERSORTx, immune cell composition could be accurately inferred
(p < 0.05) in 359 samples, which were subsequently included for further analysis in this
study. In the remaining seven samples, the imputed cell fractions did not differ from
cell fractions obtained by random chance (p > 0.05) and were therefore excluded from
further analysis.

We first analyzed the relative composition of TIIC subsets in the total cohort of colon
adenocarcinoma patients. Interestingly, mean relative percentages for the presence of
TIICs of lymphoid and myeloid origin were comparable (50.7% and 49.3%, respectively).
Likewise, TIIC proportions, classified on functional annotation of the immune system, were
similar (adaptive 53.0% vs. innate 47.0%). Despite evident intertumoral heterogeneity in
immune cell infiltration, the five most abundant cell subsets with the highest absolute TIIC
score were M0 macrophages (median absolute TIIC score 0.357), resting CD4 T memory
cells (0.285), M2 macrophages (0.239), CD8 T cells (0.158), and activated CD4 T memory
cells (0.125; Figure 1).

3.2. Tumor Microsatellite Status Relates to Immune Cell Infiltration but Is Not Associated with
Stromal Content

Given the clinical association of DNA mismatch repair deficiency and response to
ICI therapy, we then aimed to assess the TIIC composition and microsatellite status in
stroma-high and stroma-low tumors. A total of 335 tumors were eligible for TSR scoring
and were included for further analysis, as slides from nine (2.5%) tumors were not available
(Supplementary Figure S1). The Cohen’s kappa coefficient for interobserver variability
was 0.85, indicating near-perfect agreement. A third review by an independent observer
was necessary to reach a complete agreement in 12 (3.5%) slides. Illustrative images of
stroma-high and stroma-low tumors can be found in Figure 2A,B. Baseline characteristics
of the stroma-low (n = 200, 59.7%) and stroma-high (n = 135, 40.3%) tumors can be found
in Supplementary Table S3.

We observed a significant increase in absolute infiltration of total TIICs; i.e., the
22 measured immune cell phenotypes combined, in MSI-high (MSI-H) in comparison
to MSI-low (MSI-L) and microsatellite stable (MSS) tumors (median 2.43 vs. 1.76 vs.
1.86, p < 0.001; Figure 2C). Upon closer inspection, the expansion of the TIICs in MSI-H
tumors was largely attributed to the enrichment of T cell (median 0.92 vs. 0.69, p < 0.001)
and macrophage (median 0.89 vs. 0.73, p = 0.006) populations, which demonstrated the
largest increase in median infiltration score in comparison to MSS tumors (Figure 2D).
Microsatellite status was not associated with stromal content (Figure 2E).

3.3. Stroma-High Tumors Demonstrate Increased Infiltration of T Regulatory Cells but Are Not
Associated with Increased Expression of T Cell Exhaustion Markers

We then studied TIIC composition in stroma-low and stroma-high tumors and detected
a nearly identical distribution of total TIIC scores (Figure 3A). In addition, we observed no
significant differences in total TIICs in stroma-low versus stroma-high tumors stratified by
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tumor stage (Figure 3B). Subsequent analysis of the infiltration of the 22 distinct immune
cell subsets demonstrated increased infiltration of T regulatory (Treg) cells (p = 0.014) and
decreased infiltration of neutrophils (p = 0.017) in the stroma-high versus the stroma-low
tumors (Figure 3C). When stratified by tumor stage, Treg infiltration was only significantly
different in stage III (p = 0.039); however, stroma-high tumors in all stages demonstrated a
trend towards increased Treg infiltration (Figure 3D).

Since Tregs are believed to host a key role in the suppression of antitumor immunity,
we then tested whether increased Treg infiltration was associated with the expression of
canonical T cell exhaustion markers PD-1, LAG3, TIM3, TIGIT, CTLA-4, SLAMF4, and
VISTA [44]. High expression of these inhibitory markers can be identified on T cells with
a poor effector function [45]. We found significant (p < 0.05) positive correlations for
Treg infiltration and expression of all exhaustion markers, except SLAMF4, indicative of
dysfunctional T cell effector function and an immune-suppressive TME. In addition, CD8
T cell infiltration was associated with both Treg infiltration and checkpoint expression
(Figure 3E). These findings support previous reports on checkpoint expression, suggesting
that increases in immune cell infiltration can be accompanied by paradoxical activation
of immune-suppressive pathways, such as checkpoint expression [45,46]. Despite the
increased infiltration of Tregs in stroma-high tumors, we did not observe significant differ-
ences in checkpoint gene enrichment scores between stroma-high and stroma-low tumors
(Figure 3F). The same trend was observed when we analyzed the expression of the check-
point genes separately (Supplementary Figure S2).

Figure 1. Distribution of tumor-infiltrating immune cell (TIIC) subsets in 359 colon adenocarcinoma
tumors. Ridgeline plot of absolute infiltration of the 22 TIIC subsets, as defined by CIBERSORTx.
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Figure 2. Tumor-infiltrating immune cells (TIICs) and microsatellite status. Representative illustrations of (A) stroma-high
and (B) stroma-low tumors, as scored by the tumor–stroma ratio (TSR). (C) Total TIIC infiltration in microsatellite stable
(MSS), low microsatellite instability (MSI-L), and high microsatellite instability (MSI-H) tumors. (D) Specification of 5 large
TIIC subsets in MSS versus MSI-H tumors. (E) Proportion of stroma-high and stroma-low tumors in the microsatellite status
subgroups. NS, non-significant; X2, chi-squared test.
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Figure 3. The tumor–stroma ratio (TSR), T regulatory cells (Tregs), and T cell exhaustion markers. (A) Total TIIC infiltration
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in stroma-high and stroma-low tumors, as scored by the TSR. (B) Total TIIC infiltration, stratified by tumor stage. (C) Speci-
fication of the infiltration of 22 immune cell subsets in stroma-high and stroma-low tumors. (D) Treg infiltration stratified by
tumor stage. (E) Correlation matrix of CD8 T cells, Tregs, and canonical T cell exhaustion markers. (F) Gene set enrichment
analysis of 7 checkpoint genes (i.e., PD1, LAG3, TIM3, TIGIT, CTLA-4, SLAMF4, and VISTA) in stroma-high and stroma-low
tumors. NS, non-significant.

3.4. Defining Stromal Categories Based on Stromal Content and Immune Cell Infiltrate That Are
Predictive of Response to ICI Therapy

We aimed to assess the role of the TSR in predicting response to ICI therapy. The
recently established MIRACLE score is a computational approach for predicting response
to ICI therapy, where a high MIRACLE score predicts favorable therapy response [40].
MIRACLE scores were computed per tumor sample and compared between stroma-high
and stroma-low tumors. We observed no significant difference in MIRACLE scores between
the stroma-high and stroma-low tumors (median 0.85 vs. 0.85, p = 0.263; Figure 4A).
In concordance with MIRACLE, using the established TIDE algorithm for predicting
immune evasion potential, we failed to demonstrate a difference in ICI therapy responsivity
between stroma-high and stroma-low tumors (p = 0.257; Figure 4B). MIRACLE and TIDE
prediction scores demonstrated a weak negative correlation coefficient (rho = −0.142,
p = 0.009; Figure 4C).

Considering the nearly identical distribution of TIICs in stroma-high and stroma-low
tumors (Figure 3A), we analyzed whether MIRACLE scores were associated with total
immune cell infiltration, and found a significant positive correlation (rho = 0.423, p < 0.001;
Figure 4D). Subsequently, we hypothesized that the combination of the TSR and immune
cell infiltrate provides for a superior predictive biomarker. To test our hypothesis, we
defined four stromal categories based on stromal content, using the TSR, and total immune
cell infiltrate, as computed by CIBERSORTx. Representative histological images for the
newly defined stromal categories can be found in Figure 4E. Total immune cell infiltration
was not significantly different between the stroma-low/immune-high (SLIH, n = 107) group
and the stroma-high/immune-high (SHIH, n = 93) group (median 2.39 vs. 2.45, p = 0.47;
Figure 4F). The SLIH and SHIH groups demonstrated higher MIRACLE scores than the
stroma-low/immune-low (SLIL, n = 107) and stroma-high/immune-low (SHIL, n = 61)
groups (Figure 4G). In addition, the SLIH tumors showed higher MIRACLE scores than the
SHIL tumors (Figure 4G). However, there was no significant difference in MIRACLE scores
between the SHIH and SLIH groups (median MIRACLE score 0.88 vs. 0.87, p = 0.687),
suggesting that both groups predict response to ICI therapy equally well. Likewise, there
were no significant differences in total TIICs or MIRACLE scores between the SLIL and
SHIL groups. In accord with these observations, gene expression of T-cell exhaustion
markers only demonstrated significant differences between the immune-high and immune-
low groups (Supplementary Figure S3).

Since MIRACLE was recently postulated to complement the established TIDE al-
gorithm for ICI therapy response prediction, we also analyzed TIDE prediction scores
for our TME classification [40,41]. Interestingly, although the TIDE prediction scores
were not informative between the immune-high and the immune-low groups, the SHIL
group demonstrated a higher TIDE prediction score than the SLIL group (median score
0.013 vs. −0.010, p = 0.014; Figure 4H), indicating increased immune evasion potential of
the SHIL tumors in comparison to the SLIL tumors. The TIDE prediction scores were not
significantly different between the SLIH and SHIH groups.

3.5. SLIH Tumors Are Associated with Current Biomarkers for ICI Therapy Response Prediction

Next, in light of our earlier observation of increased Treg infiltration in stroma-high
tumors, we assessed quantitative differences in CD8 T cell and Treg infiltration between the
newly defined stromal groups. CD8 T cell infiltration was significantly different between
SLIH and SHIH groups (median 0.242 vs. 0.205, p < 0.001) and the immune-high and the
immune-low groups (p < 0.001; Figure 5A). CD8 T cell infiltration was positively correlated
to MIRACLE score (rho = 0.509, p < 0.001; Figure 5B) but not to TIDE prediction score
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(rho = 0.056, p = 0.307; Figure 5C). Interestingly, Treg infiltration was increased in the SHIH
versus the SLIH group (0.069 vs. 0.048, p = 0.017; Figure 5D), and significantly correlated to
the TIDE prediction score (rho = 0.179, p < 0.001; Figure 5F), but not to the MIRACLE score
(rho = 0.104, p = 0.058; Figure 5E).

Figure 4. Defining stromal categories based on stromal content and immune cell infiltration. (A) MIRACLE scores in
stroma-high and stroma-low tumors. (B) TIDE prediction scores in stroma-high and stroma-low tumors. (C) Correlation
plot of MIRACLE and TIDE prediction scores. (D) Correlation plot of MIRACLE scores and total tumor-infiltrating immune
cells (TIICs). (E) Representative illustrations of newly defined stromal categories based on stromal content and total TIICs.
(F) The stromal categories and total TIICs. (G) The stromal categories and MIRACLE scores. (H) The stromal categories
and TIDE prediction scores. Rho, Spearman’s rho; SLIL, stroma-low/immune-low; SLIH, stroma-low/immune-high; SHIL,
stroma-high/immune-low; SHIH, stroma-high/immune-high.
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Figure 5. The stromal categories and current biomarkers for ICI therapy response prediction. (A) CD8 T cell infiltration in
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the newly defined stromal categories. Correlation plots of CD8 T cell infiltration and (B) MIRACLE scores, and (C) TIDE
prediction scores. (D) Stromal categories and T regulatory cell (Treg) infiltration. Correlation plots of Treg infiltration and
(E) MIRACLE scores, and (F) TIDE prediction scores. Enrichment analysis of (G) the TGF-β and (H) the CXCR4 signaling
pathways. (I) Stromal categories and the CD8-to-Treg ratio. (J) Proportion of the microsatellite subgroups, stratified by
stromal categories. (K) Proportion of the TMB subgroups, stratified by stromal categories. Rho, Spearman’s rho; SLIL,
stroma-low/immune-low; SLIH, stroma-low/immune-high; SHIL, stroma-high/immune-low; SHIH, stroma-high/immune-
high; MSS, microsatellite stable; MSI-L, microsatellite instability-low; MSI-H, microsatellite instability-high; X2, chi-squared
test; TMB-H, tumor mutational burden-high; TMB-L, tumor mutational burden-low.

To further address this difference in Treg infiltration, we performed enrichment anal-
ysis of the TGF-β and CXCR4 signaling pathways that were previously demonstrated
to promote the differentiation of CD4 T cells into Tregs [47,48]. Although we observed
significant enrichment of the TGF-β and CXCR4 signaling pathways in the immune-high
versus the immune-low groups, enrichment of the signaling pathways was not significantly
different between the SHIH and SLIH groups (Figure 5G,H). This finding suggests that the
observed differences in CD8 T cell and Treg infiltration between the SHIH and SLIH groups
cannot be readily explained by TGF-ß and CXCR4 signaling and are likely driven by other
factors. However, key genes from the TGF-β and CXCR4 signaling pathways are included
in the CIBERSORTx LM22 signature, used here to define the stromal categories. Therefore,
due to the nature of our hybrid transcriptomic classification, caution is warranted in in-
terpreting the results from gene enrichment analyses. Nevertheless, the difference in CD8
T cell and Treg infiltration consequently resulted in an increased CD8-to-Treg ratio in the
SLIH group in comparison to the SHIH group (median ratio 1.95 and 1.42, respectively,
p = 0.005; Figure 5I), a biomarker that was recently found to be predictive of ICI therapy
response in non-small cell lung cancer (NSCLC) [49].

In addition to the CD8-to-Treg ratio, MSI has been proposed as a predictive biomarker
for response to ICI therapy. As described above, there was no significant association
between MSI and the TSR (Figure 3E). We then tested whether MSI was related to the
newly defined stromal categories. Notably, in concordance with our finding of an increased
CD8-to-Treg ratio in SLIH tumors, the SLIH tumors demonstrated the largest proportion
of MSI-H tumors (X2 = 21.119, p = 0.002; Figure 5J). Lastly, we tested whether the stro-
mal categories were associated with TMB, a genomic parameter closely related to MSI.
Mutational load data were available for a subset of the tumors (n = 268). Similar to MSI,
SLIH tumors demonstrated the largest proportion of TMB-H tumors (X2 = 11.225, p = 0.011;
Figure 5K). Interestingly, despite the enrichment of MSI-high and TMB-high tumors in
the SLIH category, MSI-H and TMB-H tumors were present across all stromal categories.
This suggests that the stromal categories defined here may provide additional predictive
information that is not captured by current biomarkers for ICI therapy response prediction.

3.6. Validation in an External Cohort

Lastly, we aimed to validate our findings in an external cohort of 106 colon adenocarci-
noma samples, previously reported by Vasaikar et al. [30]. Patient and tumor characteristics
of the validation cohort can be found in Supplementary Table S2. Due to a lack of datasets
containing both whole transcriptome sequencing data and histological tissue slides in
colon cancer, we were not able to mimic the analyses performed in the discovery cohort.
However, since we recently reported an association between histologic stromal content and
the transcriptomic ESTIMATE algorithm for tumor purity, we then decided to simulate
the stromal categories using said algorithm [17,50]. To define the four stromal categories,
we utilized ESTIMATE’s stromal score to categorize tumors as stroma-high or stroma-low,
maintaining the same distribution as in the discovery cohort (40.3% stroma-high, 59.7%
stroma-low). In addition, ESTIMATE’s immune score was used to categorize tumors as
either immune-high or immune-low.

We then computed MIRACLE and TIDE prediction scores for the categorized tumors.
In concordance with the discovery cohort, the immune-high tumors demonstrated the
highest MIRACLE scores but were not significantly different between the SLIH and the
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SHIH groups (Figure 6A). Interestingly, although not discriminative in the discovery cohort,
the TIDE prediction scores in the validation cohort were the lowest in the SLIH group
(Figure 6B), suggesting that these tumors demonstrate the least immune evasion potential
of the stromal categories. We then noticed a trend of increased TIDE prediction scores in
the SHIL tumors in comparison to the SLIL tumors; however, the TIDE prediction scores
were not significantly statistically different, possibly due to the small sample size of the
SHIL group.

Figure 6. Validation of the stromal categories in an external cohort. The stromal categories and (A) MIRACLE scores,
and (B) TIDE prediction scores. (C) Proportions of microsatellite status subgroups per stromal category. (D) Bar chart of
single nucleotide variant (SNV) rate per sample. (E) SNV rate per stromal category. SLIL, stroma-low/immune-low; SLIH,
stroma-low/immune-high; SHIL, stroma-high/immune-low; SHIH, stroma-high/immune-high. MSS, microsatellite stable;
MSI-H, microsatellite instability-high; X2, chi-squared test.

In addition to relatively low TIDE prediction scores, the SLIH stromal category con-
tained the highest proportion of MSI-H tumors (X2 = 14.974, p = 0.020; Figure 6C). We then
compared single nucleotide variants (SNV) between the different stromal categories and
observed extensive heterogeneity (Figure 6D). Although the SNV rate in both immune-high
groups was significantly different from the SHIL group, we did not observe significant
differences between the immune-high groups and the SLIL group (Figure 6E). Neverthe-
less, although based on transcriptomic categorization only, the results in the validation
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cohort provide further support for the TME classification as a predictive biomarker for
immunotherapy response.

4. Discussion

In the current work, we aimed to characterize the TIIC composition in stroma-high
and stroma-low tumors using bioinformatics approaches. Recent advances in onco-
immunology have established TIICs as novel targets in cancer therapeutics, resulting in the
widespread application of ICI therapy in solid primary tumors. To account for interpatient
variability in treatment response and optimize precision medicine, detailed characteriza-
tion of the TME is warranted. Recently, the previously proposed TMB biomarker for ICI
therapy response was proven to be predictive in only a subset of primary tumor types [26].
In addition, an explorative study of neoadjuvant ICI therapy in early-stage colon cancer
demonstrated pathologic responses in both MSS and MSI tumors [51]. The recent emer-
gence of computational oncology has given rise to algorithms that accurately predict ICI
therapy response based on pre-treatment tumor profiles, but require thorough transcrip-
tomic analyses that have not been adopted in clinical practice so far [40,41]. These findings
highlight the need for a clinically feasible biomarker capable of accurate prediction of
response to ICI therapy. Here, we demonstrate how a combination of two quantitative
TME parameters, stromal content and total immune cell infiltration, correlate to multiple
previously established predictive biomarkers of ICI therapy response, and may provide
a stromal alternative to the conventional malignant-cell-oriented biomarkers, such as
microsatellite status, TMB, and PD-L1 expression.

The TSR has been recognized as an independent predictor of survival in a multitude
of epithelial malignancies and is currently subject to prospective validation for colon cancer
in the international UNITED study [34,35]. At the molecular level, histologically defined
stroma-high tumors demonstrated increased expression of CAF markers when compared
to stroma-low tumors [18]. Moreover, a recent functional report on CAF subtypes described
an important role for CAFs in the attraction of Tregs towards the TME, thereby contributing
to a local immune-suppressive environment [47,52]. Interestingly, we observed increased
infiltration of Tregs in stroma-high tumors, one of few immune-compositional differences
between stroma-high and stroma-low tumors. Nevertheless, when we interrogated the TSR
to the recently developed MIRACLE score and the previously established TIDE prediction
score, we did not observe a discriminative capacity of the TSR in predicting ICI therapy
response [40,41]. Apart from its prognostic value in solid primary tumors, it is therefore
likely that stromal-content, on its own, is insufficient for predicting ICI therapy response.

The nearly identical distribution of total TIICs in stroma-high and stroma-low tumors
observed here led us to define a TME classification based on the combined assessment
of stromal content and immune cell infiltration. MIRACLE scores were higher in the
immune-high tumors in comparison to the immune-low tumors. The MIRACLE score
did not, however, discriminate between the SLIH and SHIH groups, suggesting that these
groups show comparable responsivity to ICI therapy. However, when we evaluated the
complementary TIDE prediction score, an algorithm that captures the immune evasion po-
tential of the tumor, we noticed a decreased responsivity to ICI therapy in the stroma-high
subgroups versus the stroma-low subgroups in both the discovery and validation cohort.
This suggests that stromal content affects ICI therapy responsivity, and that combined as-
sessment of stromal content and immune infiltration may provide for a superior biomarker
compared to either singular parameter. Of note, a particularly interesting observation
in the discovery cohort was an increased TIDE prediction score, surrogate for increased
immune evasion potential, in the SHIL tumors versus the SLIL tumors. This suggests that
stromal content is likely to be involved in distinct mechanisms of immune evasion. Insight
into these distinct immune evasion mechanisms may increase our understanding of the
determinants of tumor immunogenicity and should be the subject of future studies.

The results described here do not stand on their own. Classification of TME subtypes
has been proposed as a capable predictor of ICI therapy response [38,53]. Recently, a
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comprehensive analysis of gene expression profiles from >10,000 tumor samples across
20 primary tumor types identified four conserved pan-cancer TME subclasses based on
previously published stromal and immune gene signatures [53]. The TME subclasses were
found to be associated with response to immunotherapy. Notably, the immune-enriched,
non-fibrotic TME subclass, an equivalent to our SLIH stromal group, demonstrated the
highest responsivity to immunotherapy, a finding that supports the results described here.
In addition, the SLIH tumors in this study were associated with current biomarkers for ICI
therapy response prediction, namely MSI, TMB, and the CD8-to-Treg infiltration ratio. We
therefore postulate that SLIH tumors exhibit the highest responsivity to ICI therapy and
are likely to demonstrate the highest response rates of the four stromal categories.

In contrast to the transcriptomic classification by Bagaev et al., we defined a hybrid
TME classification of histologically quantified stromal content and transcriptome decon-
voluted immune cell infiltration [53]. Ultimately, for feasible clinical application, we aim
to validate our findings and develop a standardized approach to stromal content and
immune cell infiltration, using histological quantification only. Recent reports by our group
found significant correlations between stromal gene expression and histological stromal
content [17,50]. Indeed, here we found comparable results between the histological-defined
discovery cohort and the transcriptomic-defined validation cohort. However, it remains
to be tested how transcriptomic-derived immune cell infiltration relates to standardized
histological TIIC quantification, which should be the subject of future studies.

There are some limitations to our study. The TME classification described here com-
prises a hybrid classification based on histologic and transcriptomic quantification data.
For clinical application, an inexpensive, easily applicable, and time-efficient tool, such
as a singular histological approach similar to the current TSR, is desirable. In addition,
the categorization into immune-high and immune-low groups was arbitrarily based on a
median cut-off of the total TIIC infiltration. For improved performance, an optimal cut-off
value should be investigated in future studies. Of note, pathway analyses had limited
interpretability due to overlap between immune-related gene sets and the CIBERSORTx
LM22 signature used to categorize tumors in this study. Therefore, we did not perform
comprehensive immune pathway analyses. Lastly, although a similar TME classifica-
tion was recently validated in a pan-cancer cohort, due to the explorative nature of this
study, the TME classification requires further validation in ICI-therapy-treated colon cancer
cohorts [53].

The current work provides a compact overview of immune cell infiltration in histolog-
ical stroma-high and stroma-low tumors. We report an increased infiltration of Tregs in
stroma-high tumors, and a lack of discriminative capacity of the TSR as a single parameter
in predicting the response to ICI therapy. Consequently, a newly defined TME classification
based on the combined assessment of stromal content and immune cell infiltration was as-
sociated with previously established biomarkers and improved the likelihood of predicting
ICI therapy response. We postulate that stroma-low/immune-high tumors demonstrate the
highest responsivity to ICI therapy. Although further validation is warranted, a combined
assessment of the TSR and tumor immune cell infiltration could potentially serve as an easy-
to-use predictor of ICI therapy response and guide the treatment decision-making process
accordingly. In addition, the biomarker described here could provide a stromal alternative
to conventional malignant-cell-oriented biomarkers for ICI therapy response prediction,
such as microsatellite status, TMB, and PD-L1 expression. Future studies should focus on
the clinical significance of the TME classification in immunotherapy-treated patient cohorts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10112935/s1, Figure S1: Flowchart of tumor–stroma ratio (TSR) scoring, Figure S2:
Checkpoint expression and the TSR, Figure S3: Checkpoint expression and the stromal categories,
Table S1: Immune cell phenotypes included in the CIBERSORTx LM22 signature, Table S2: Baseline
patient and tumor characteristics for the discovery and validation cohorts, Table S3: Baseline char-
acteristics of the stroma-low and stroma-high populations, as scored by the TSR, Data S1: TCGA
COAD patient identifiers and novel computed scores.
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