
Correlations between bone marrow radiation dose and hematologic
toxicity in locally advanced cervical cancer patients receiving
chemoradiation with cisplatin: a systematic review
Corbeau, A.; Kuipers, S.C.; Boer, S.M. de; Horeweg, N.; Hoogeman, M.S.; Godart, J.; Nout,
R.A.

Citation
Corbeau, A., Kuipers, S. C., Boer, S. M. de, Horeweg, N., Hoogeman, M. S., Godart, J., &
Nout, R. A. (2021). Correlations between bone marrow radiation dose and hematologic
toxicity in locally advanced cervical cancer patients receiving chemoradiation with
cisplatin: a systematic review. Radiotherapy And Oncology, 164, 128-137.
doi:10.1016/j.radonc.2021.09.009
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3277532
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3277532


Radiotherapy and Oncology 164 (2021) 128–137
Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal .com
Systematic Review
Correlations between bone marrow radiation dose and hematologic
toxicity in locally advanced cervical cancer patients receiving
chemoradiation with cisplatin: a systematic review
https://doi.org/10.1016/j.radonc.2021.09.009
0167-8140/� 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Department of Radiotherapy, Erasmus MC Cancer
Institute, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.

E-mail address: r.nout@erasmusmc.nl (R.A. Nout).
Anouk Corbeau a, Sander C. Kuipers a, Stephanie M. de Boer b, Nanda Horeweg b, Mischa S. Hoogeman a,c,
Jérémy Godart a,c, Remi A. Nout a,⇑
aDepartment of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; bDepartment of Radiation Oncology, Leiden University Medical Center, Leiden; and
cHollandPTC, Delft, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 June 2021
Received in revised form 10 September
2021
Accepted 13 September 2021
Available online 21 September 2021

Keywords:
Bone marrow
Hematologic toxicity
Uterine cervical neoplasms
Dose-response relationship
Radiation
Chemoradiotherapy
Proton therapy
Patients with locally advanced cervical cancer (LACC) treated with chemoradiation often experience
hematologic toxicity (HT), as chemoradiation can induce bone marrow (BM) suppression. Studies on
the relationship between BM dosimetric parameters and clinically significant HT might provide relevant
indices for developing BM sparing (BMS) radiotherapy techniques. This systematic review studied the
relationship between BM dose and HT in patients with LACC treated with primary cisplatin-based
chemoradiation. A systematic search was conducted in Embase, Medline, and Web of Science.
Eligibility criteria were treatment of LACC-patients with cisplatin-based chemoradiation and report of
HT or complete blood cell count (CBC). The search identified 1346 papers, which were screened on title
and abstract before two reviewers independently evaluated the full-text. 17 articles were included and
scored according to a selection of the TRIPOD criteria. The mean TRIPOD score was 12.1 out of 29.
Fourteen studies defining BM as the whole pelvic bone contour (PB) detected significant associations with
V10 (3/14), V20 (6/14), and V40 (4/11). Recommended cut-off values were V10 > 95–75%, V20 > 80–65%,
and V40 > 37–28%. The studies using lower density marrow spaces (PBM) or active bone marrow (ABM)
as a proxy for BM only found limited associations with HT. Our study was the first literature review pro-
viding an overview of articles evaluating the correlation between BM and HT for patients with LACC
undergoing cisplatin-based chemoradiation. There is a scarcity of studies independently validating devel-
oped prediction models between BM dose and HT. Future studies may use PB contouring to develop nor-
mal tissue complication probability models.
� 2021 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 164 (2021) 128–137 This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Bone marrow (BM) is made up of the active red marrow,
comprising mostly hematopoietic tissue, and inactive yellow
marrow, containing mostly fatty tissue [1]. Most of the red marrow
can be found within the axial skeleton and upper half of the limbs
[2]. Within the BM, hematopoietic stem cells are important for
hematopoiesis, which is the process of generation of all the cell
types present in the blood [3]. While circulating blood cells have
no self-renewal ability, stem cells can undergo a self-renewing pro-
liferation [4]. However, if the stem cells are injured, the
hematopoietic system suffers long-term or permanent damage
and BM failure may occur, resulting in immunosuppression.
Chemoradiation for cancer patients can damage stem cells and
therefore induce hematologic toxicities (HT), including
lymphopenia, neutropenia, and anemia [5–9]. Such decrease in
BM and blood cells may lead to infection, bleeding, or transfusions,
and can be graded following the toxicity criteria of the Common
Terminology Criteria for Adverse Events (CTCAE) or the Radiation
Therapy Oncology Group (RTOG) [10,11]. McGuire et al. reported
a dose threshold for BM suppression of 4 Gy, with no benefit from
fractionation, for pelvic cancer patients undergoing chemoradia-
tion [12]. During external beam radiotherapy (EBRT) both BM
and circulating blood cells are exposed to possibly toxic radiation
doses leading to an increased risk of lymphopenia [13]. An increase
in BM toxicity was demonstrated when adding chemotherapy to
the treatment in comparison to radiotherapy (RT) alone [6,14].
The extrapelvic compensatory response was decreased with inten-
sive chemotherapy regimens, which may lead to increased HT. The
BM tolerance to chemotherapy differs among chemotherapy regi-
mens [15–17]. Patients receiving pelvic radiotherapy with concur-
rent chemotherapy have a higher BM tolerance when comparing
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cisplatin-based to mitomycin-C (MMC) based chemotherapy but a
lower BM tolerance when comparing cisplatin to 5-fluorouracil
(5FU) [17].

The standard chemoradiation treatment for patients with locally
advanced cervical cancer (LACC) combines EBRT with concurrent
platinum-based chemotherapy followed by brachytherapy [18].
Huang et al. showed HT grade 2 or higher in 69.5% of cervical cancer
patientsundergoing chemoradiation [19].High-gradeHTmight lead
to postponing or stopping chemotherapy and hospitalizations or
blood transfusions for cancer patients [5,20]. It was demonstrated
that patients with LACC can have HT during chemoradiation until
at least three months post-treatment [21]. The slow recovery of
the immune suppression underlines the importance to decrease
the incidence of HT in this patient group [9,21].

Currently, the development of effective pelvic bone marrow
sparing (BMS) RT techniques is limited. The introduction of proton
therapy raises interest in the correlation between RT dose and HT.
The beneficial physical characteristics of proton therapy and its
ability to achieve satisfactory target dose distributions using only
a few beams enable BMS [22,23]. Gort et al. and Dinges et al.
showed significantly better BMS for proton therapy when com-
pared to photon therapy [22,24]. However, knowledge on the spa-
tial location of bone marrow sparing and the required degree of
sparing is essential for the development of BMS radiotherapy tech-
niques [25]. Assessing the relationship between BM dose-volume
histogram (DVH) parameters and clinically relevant HT can provide
indices for BMS, such as the Vdose (e.g. V20 and V30), defined as
the percentage of organ volume receiving a dose greater than a
threshold (20 and 30 Gy, respectively). The occurrence of HT might
depend on multiple factors in addition to dosimetric parameters,
such as chemotherapy regimen [17].

The aim of this systematic review is to provide an overview of
the medical literature evaluating the relationship between the
dose to (subsites of) pelvic BM and HT in patients with LACC trea-
ted with primary cisplatin-based chemoradiation. Interpretation
and discussion of the literature can give guidance on BM contour-
ing methods and the clinical utilization of detected relationships.
Methods

Search strategy

We conducted a systematic search based on Embase, Medline,
and Web of Science for the period from the earliest data to Febru-
ary 24th, 2021. The search term consisted of three parts focusing
on pelvic cancer, radiotherapy, and BM. The search term can be
found in supplementary material A. Firstly, two reviewers screened
the studies on eligibility by title and abstract. The results were
reviewed within the authors group. Then, a full-text evaluation
was independently performed by two reviewers. Disagreements
on the inclusion of articles were resolved by consensus-based dis-
cussion. The following inclusion criteria were used: (1) patients
had cervical cancer, (2) received chemoradiation as primary or
postoperative treatment, (3) the first choice of a chemotherapeutic
agent was cisplatin, another platinum-based chemotherapy was
allowed in case of contraindications for cisplatin, (4) the correla-
tion between HT or complete blood count (CBC) and dose-
volume parameters of the BMwas analyzed, (5) the study was pub-
lished in English.
Data extraction and analysis

Clinical and methodological data were extracted using prespec-
ified data collection forms covering the reference, study design,
number of patients, number of patients treated postoperatively,
the chemotherapeutic agent used, radiation technique, delineation
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method for BM, whether BMS was applied, method for HT scoring
(following the toxicity criteria of the CTCAE or the RTOG), time
points of endpoint measurements, definition of endpoints (grade
of HT or blood counts nadirs), and the (dosimetric) predictors for
the risk of the endpoints. For each dosimetric parameter that was
identified, both the number of studies investigating that particular
dosimetric parameter and the percentage of those studies showing
a significant correlation of that parameter with HT were deter-
mined. Corresponding dose cut-off values, which are values of
specific dose-volume parameters for predicting HT, were described
and visualized in graphs. The data points in the graphs were con-
nected with a mean line.
Quality assessment

The included papers were evaluated using a checklist depicting
whether key items from the transparent reporting of a multivari-
able prediction model for individual prognosis or diagnosis (TRI-
POD) consensus statement on model development and validation
were addressed [26]. The selected key items were based on the
selection as performed by Brodin et al. and highlight the variation
in statistical methodology in the various models [27]. The number
of items to be checked is listed in supplementary material B and
summed to a total score of 29. Additionally, the studies were clas-
sified according to the type of prediction model depending on
whether the investigators developed or validated a model, using
the classification from Collins et al. [26]:

� Type Ia defines the development of a model where the predic-
tive performance is directly evaluated using the same data.

� Type Ib defines the development of a model where performance
is evaluated on the development dataset using resampling
techniques.

� Type IIa defines a model where a dataset is randomly split into
two groups, one used to develop a model and the other to eval-
uate its predictive performance.

� Type IIb applies a more robust technique by non-random split-
ting of data (by location, time, etc.).

� Type III defines a model developed and evaluated on separate
datasets by the model developers.

� Type IV defines an external validation of an existing prediction
model.

Results

Eligible studies

Seventeen studies were included in this systematic review. A
study flowchart diagram is visualized in Fig. 1. During the full-
text evaluation, the selection of three studies showed discrepancy
from the two independent reviewers, which was discussed and
resolved during a consensus meeting. Table 1 provides an overview
of the characteristics and outcomes of the included studies. The
included articles had a mean TRIPOD adherence score of 12.1 (SD
3.3) out of 29. A detailed overview of the TRIPOD scoring per item
and study is provided in Supplementary Table C.1. The paper by
Rose et al. had the highest TRIPOD adherence score (22 out of
29) and was the only IV prediction model included. The majority
of the included articles used all data from a single data set to
develop a prediction model without validation and were therefore
type IA prediction models. In total, three delineation methods for
BM were identified. Seven articles only delineated the whole pelvic
bone (PB), four articles used the lower density marrow spaces
(PBM) as a proxy for BM and compared this with PB, and six arti-
cles contoured both the active bone marrow (ABM) and the PB
for comparison. The ABM was visualized using fluorodeoxyglucose



Fig. 1. PRISMA flowchart [26]. BM = bone marrow, HT = hematologic toxicity.

Correlations between bone marrow radiation dose and hematologic toxicity in locally advanced cervical cancer patients receiving chemoradiation with cisplatin: a systematic review
positron emission tomography (FDG-PET) or technetium-99m
(99mTc) sulfur colloid single-photon emission tomography (SPET).
Six articles not only recorded dosimetric parameters for the whole
pelvic bone but also divided the pelvic bone into subregions and
analyzed dosimetric parameters per subsite [8,19,28–31]. In this
systematic review, the correlation between BM and HT will be
described per delineation method.
Whole pelvic bone contour (PB)

Delineation method specified
In total, sixteen out of the seventeen included articles reported

correlations between BM, approximated by the CT-based whole
bone contour (PB), and the development of HT. The majority of
these articles, including the studies by Rose et al., Zhu et al., Lewis
et al., Kumar et al., Chang et al., and Albuquerque et al., based their
contouring method on the strategy as proposed by Mell et al. [8].
Mell et al. delineated the external contour of all bones within the
pelvis, extending from L5 to the inferior border of the ischial
tuberosities, as a proxy for the BM in order to ensure reproducibil-
ity. Other methods applied specified CT window settings or
anatomical landmarks of the vertebrae, ischium, and/or femora.

Whole pelvic bone
Table 2 describes that three out of fourteen articles found a sig-

nificant correlation between V10 of the whole bone and grade 2 or
higher HT [8,32,33]. Six out of fourteen articles demonstrated a sig-
nificant relationship between V20 and HT [8,30,32,34–36]. Fur-
thermore, four out of eleven articles showed that V40 is a
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significant predictor for HT2+ or HT3+ [14,19,31,34]. An overview
of the cut-off values for dosimetric parameters as recommended
by the included studies is provided in Fig. 2. The recommended
cut-off values for HT2+ and HT3+ for the whole pelvic bone were
similar. V10 < 75–95% [8,32,33], V20 < 65–80% [30,32,35,36], and
V40 < 28–37% [14,19] were recommended to reduce HT. Some
other significant relationships were reported, including the V30
and V45 of the whole pelvic bone. Additionally, one article investi-
gated the volume of the whole pelvic bone spared 10, 20, and 40 Gy
and found the volume of whole pelvic bone spared 10 Gy < 230 cc
to be associated with HT2+ (not visualized in Fig. 2) [37]. Lastly, the
mean or median dose to the whole pelvic bone was found to be
associated with HT by two out of eight articles [14,36]. These stud-
ies recommended keeping the Dmean and Dmedian below respec-
tively 30.3 Gy and 34.1 Gy (not visualized in Fig. 2) [14,36].

Subsites of the pelvic bone
Six articles analyzed the correlation between three subsites of

the pelvic bone and HT but the studies detected different relation-
ships, as can be concluded from Supplementary Table D.2 [8,19,29–
31,35]. An overview of the corresponding cut-off values can be
found in Fig. 2. The lumbosacral spine (LSS) includes the lumbar
vertebrae and the entire sacrum, the lower pelvis (LOW) consists
of the pubes, ischia, acetabula, and femoral heads, and the ilium
extends from the iliac crests to the superior border of the femoral
heads. For LSS, the V10 [19], Dmean [19], and V20 [8] were each
found significant by one article. Dmean was recommended to
be < 39 Gy (not visualized in Fig. 2) and V10 < 87% [19]. Although
significant LSS sparing might be difficult due to its proximity to the



Table 1
Characteristics of the included studies.

TRIPOD
score

Author Year Study design No of patients No of patients
treated
postoperatively

Chemotherapeutic
regimen

RT
technique

BM definition BM
optimization

HT
scoring
scale

Time points of
measurements

Endpoint Dosimetric
predictors

22 Rose, B.S. et al 2011 Validate NTCP
on
retrospective
data

81 0 (0%) Cisplatin 40 mg/m2

(81, 100%)
IMRT CT-based PB

contour [Mell]
No RTOG Weekly during

CRT
WBCa

ANCb

HgBc

HT3+f

PB-V10a,b,f, V20a,b,
c,f, V30a,b, Dmean

a,b

PB-V10 > 95%f

PB-V20 > 76%f

17 Huang J. et al 2020 Prospective
RCT

164 0 (0%) Cisplatin 40 mg/m2

(164, 100%)
IMRT CT-based PB

contour and
low-density
marrow spaces
(PBM)

Yes, using
PB and LSS

RTOG Weekly to end
of CRT

HT2+e PB-V40e

PB-V40 > 28%e

LSS-V10 > 87%e

LSS-Dmean > 39Gye

PBM-V40e

LSSM-mean
e , V10e,

V20e, V40e

15 Chang, Y. et al 2016 Retrospective
case series,
officially
cohort

100 0 (0%) Cisplatin 25 mg/
m2 (100, 100%)

3DCRT,
IMRT,
RapidARC

CT-based PB
contour [Mell]

No Unknown Weekly during
treatment

WBCa

ANCb

HgBc

PLTd

HT2+e

HT3+f

PB-V20a,b,f, V40e,f

13 Klopp, A.H. 2013 Retrospective
case series

43 43 (100%) Cisplatin 40 mg/m2

(43, 100%)
IMRT CT-based PB

contour
No CTCAEv3 < 90 days from

start RT
HT2+e PB-V40 > 37%e

PB-
Dmedian > 34.1Gye

12 Kumar, T. et al 2019 Retrospective
case series

114 0 (0%) Cisplatin 40 mg/m2

(102, 89.5%) or
carboplatin (12,
10.5%)

3DCRT,
IMRT

CT-based PB
contour [Mell]
and low-
density marrow
spaces (PBM)

No CTCAEv4 Weekly during
CRT prior to
brachytherapy
implantation

HT4+g LP-PB-V5 > 95%g

LP-PB-V20 > 45%g

Iliac crests-PB-
Dmean > 31 Gyg

PB-V20 > 65%g

12 Rose, B.S. et al. 2012 Retrospective
case series

26 5 (19%) Cisplatin 40 mg/m2

(26, 100%)
IMRT CT-based PB

contour
FDG-PET
(>SUVmean
WB) based
ABM
inactive BM
(IBM) = PB -
ABM

No RTOG Weekly during
CRT

WBCa

ANCb

HgBc

PLTd

HT3+f

ABM-Dmean
a,b,c,d,V10a,

V20a, V30a

PB-V10a

ABM-
Dmean < 26.8Gyf

No correlation
with IBM

12 Wang, S.B. et al 2019 Prospective
clinical trial

39 0 (0%) Cisplatin 30–
40 mg/m2 (39,
100%)

VMAT CT-based PB
contour
Tc-99m SPET
(>SUVmean TB)
based ABM

No CTCAEv3 Weekly to two
weeks after
CRT

HT3+f ABM
volume > 387.5
cm3f

ABM-V30 > 46.5%f

ABM-V40 > 23.5%f

12 Zhu, H. et al 2015 Retrospective
multicenter
cohort

102 Unknown Cisplatin 40 mg/m2

(102, 100%)
IMRT,
3DCRT

CT-based PB
contour [Mell]

According to
the
discretion of
the treating
oncologist

/ Weekly during
CRT

WBCa

ANCb

HgBc

PLTd

PB-Dmean
a,b , V20a,b,

V30a,b, V40a,b

LSS-V10a,b, V40a,b

LOW-V20a,b, V30a,
b

11 Lewis, S. et al 2018 Retrospective
case series

75 75 (100%) Cisplatin 40 mg/m2

(75, 98.5%) and
carboplatin (1,
1.5%)

IMRT,
3DCRT

CT-based PB
contour [Mell]
and low-
density marrow
spaces (PBM)

No CTCAEv3 Weekly during
CRT

HT2+e Ilium PB-
V20 > 90%e

11 Albuquerque,
K. et al

2011 Retrospective
case series

40 0 (0%) Cisplatin 40 mg/m2

(40, 100%)
3DCRT CT-based PB

contour [Mell]
No CTCAEv3 During RT HT2+e PB-V20 > 80%e

11 Khullar K. et al 2017 Retrospective
case series

21 0 (0%) Cisplatin (21,
100%)

3DCRT,
IMRT

FDG-PET
(>SUVmean TB)
based ABM

No CTCAEv4 Weekly to
6 weeks after
end of CRT

HT3+f ABM
volume < 1201
mlf

ABM-V40f

(continued on next page)
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Table 1 (continued)

TRIPOD
score

Author Year Study design No of patients No of patients
treated
postoperatively

Chemotherapeutic
regimen

RT
technique

BM definition BM
optimization

HT
scoring
scale

Time points of
measurements

Endpoint Dosimetric
predictors

10 Elicin, O. et al. 2014 Retrospective
case series

17 0 (0%) Cisplatin 40 mg/m2

(17, 100%)
IMRT CT-based PB

contour
FDG-PET
(>SUVmean
WB) based
ABM

No RTOG FDG-PET: Pre-
and 3 months
post-treatment
CBC: 1 week
before, weekly
during,
3 months
after, and at
last follow-up
after treatment

WBCa

ANCb

HgBc

PLTd

3m post-
treatment: ABM-
SUVa, PB-Dmean

a ,
V10a, V20a, V30a,
V40a, ABM-V40a

Late follow-up:
PB-Dmean

a , V10a,
V20a, V30a, V40a,
ABM-V20a, V30a,
V40a

10 Mell, L.K. et al 2006 Retrospective
case series

37 3 (8.1%) Cisplatin 40 mg/m2

(37, 100%)
IMRT CT-based PB

contour
No RTOG Weekly during

CRT
WBCa

ANCb

HgBc

PLTd

HT2+e

HT1+g

PB-V10a,c,e,g, V20c,
e,g

LSS-V10a,b,e, V20a,
c,e

LP-V10c,e,g, V20e,g

PB-V10 > 90%a,e,
V20 > 75%c,e

LSS-V10 > 90%b

LP-V10 > 90%c

10 Yan, K. et al 2018 Retrospective
case series

38 0 Cisplatin 40 mg/m2

(38, 100%)
3DCRT,
IMRT

CT-based PB
contour
FDG-PET
(>SUVmean WB)
based ABM

No CTCAEv4 Weekly to end
treatment

HT3+f PB-V20 > 78.6%f,
V30 > 47.1%f,
V45 > 20.4%f,
Dmean > 30.3Gyf

ABM-
V10 > 95.5%f,
V20 > 80.5%f,
V30 > 59.6%f,
V45 > 31.7%f,
Dmean > 32.4Gyf

9 Mahantshetty,
U. et al

2012 Retrospective
case series

47 0 Cisplatin 40 mg/m2

(47, 100%)
IMRT CT-based PB

contour and
low-density
marrow spaces
(PBM)

No RTOG Weekly during
CRT

WBCa

ANCb

HgBcPLTd

HT2+e

Baseline HgB and
PLTc,d

PBM-V40 > 40%e

9 Gupta, N. et al 2019 Retrospective
case series

43 (16 excluded
for this review
(neo-adjuvant
chemotherapy))

4 out of 43 (8%) Cisplatin 40 mg/m2

(37, 97%)
IMRT CT-based PB

contour
No CTCAEv4 Weekly during

CRT and
6 weeks after
treatment

WBCa

ANCb

HgBc

PLTd

HT2+e

HT3+f

PB-V10 > 75%e

9 Zhou, Y.M.
et al

2018 Retrospective
case series

31 0 Cisplatin 40 mg/m2

(31, 100%)
IMRT,
3DCRT

CT-based PB
contour
FDG-PET
(>SUVmean TB)
based ABM

No CTCAEv4 Weekly and
one week after
treatment

WBCa

ANCb

HgBc

PLTd

HT3+f

Volume spared of
PB: 10 Gy < 230ccf

of ABM:
V10 < 179ccf OR
V20 < 186ccf OR
V40 < 738ccf

HT = hematologic toxicity. 3DCRT = 3D conformal radiation therapy, IMRT = intensity modulated radiation therapy, IMPT = intensity modulated proton therapy, CT = computed tomography, FDG-PET = fluorodeoxyglucose positron emission
tomography, SPET = single-photon emission tomography, SUV = standardized uptake value, TB = total body, WB = whole bone, RTOG = Radiation Therapy Oncology Group, CTCAE = Common Terminology Criteria for Adverse Events.
CRT = chemoradiotherapy, RT = radiation therapy, BM = bone marrow, PB = whole pelvic bone, LSS = lumbosacral spine, LOW = lower pelvic bones, PBM = pelvic bone marrow (lower density marrow spaces), LSSM = lumbosacral spine marrow
(lower density marrow spaces), ABM = active bone marrow, IBM = inactive bone marrow (PB minus ABM), CBC = complete blood cell counts. a = WBC (white blood cells), b = ANC (absolute neutrophil count), c = HgB (hemoglobin), d = PLT
(platelets), e = HT2+, f = HT3+, g = HT1+.

Correlations
betw

een
bone

m
arrow

radiation
dose

and
hem

atologic
toxicity

in
locally

advanced
cervicalcancer

patients
receiving

chem
oradiation

w
ith

cisplatin:
a
system

atic
review

132



Table 2
Relationship between various dosimetric parameters of the whole pelvic bone contour (PB) and hematologic toxicity (HT).

Dosimetric parameter Number of studies showing significant correlation/number of studies employing dosimetric parameter HT2+ HT3+ HT4+

V5 0/2 (0%) 0/1 0/1 0/1
V10 3/14 (21%) 2/8 1/7 0/1
V15 0/1 (0%) – – 0/1
V20 6/14 (43%) 3/8 2/7 1/1
V30 1/10 (10%) 0/7 1/4 0/1
V40 4/11 (36%) 4/7 1/5 0/1
V45 1/2 (50%) 0/1 1/1 -
Dmean/Dmedian 2/8 (25%) 1/4 1/3 0/1
Spared 10 Gy 1/1 (100%) – 1/1 –
Spared 20 Gy 0/1 (0%) – 0/1 –
Spared 40 Gy 0/1 (0%) – 0/1 –

For each dosimetric parameter that was identified, both the number of studies investigating that particular dosimetric parameter and the percentage of those studies showing
a significant correlation of that parameter with HT are provided. HT = hematologic toxicity.

Fig. 2. Dose cut-off values for the whole pelvic bone contour (PB) and correlation to
hematologic toxicity (HT) as recommended by included studies. HT = hematologic
toxicity, WB = whole bone, LSS = lumbosacral spine, LOW = lower pelvic bones.
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target volume, efforts to constrict the dose of the LSS and whole
pelvic bone simultaneously were expected to result in a more
homogeneous dose distribution of the pelvic region [8,19]. The
V5 [30], V10 [8], and V20 [8,30] of LOWwere reported to be predic-
tive of HT. V5 was recommended to be < 95% and V20 < 45% to
decrease HT4+ [30]. Only two dosimetric parameters of the ilium,
the Dmean [30] and V20 [29], were demonstrated to be correlated
to HT and it was recommended that Dmean < 31 Gy [30] (not visu-
alized in Fig. 2) and V20 < 90% [29]. One study additionally ana-
lyzed the hip bone (HIP), which was defined as the total area of
LOW and ilium, but did not find any dosimetric parameters that
were associated with HT (results not visualized in Supplementary
Table D.2) [19].

Relationship with blood cell nadirs
Lastly, some articles demonstrated a significant relationship

between the dose received by PB and nadirs of blood cells, includ-
ing white blood cells (WBC), absolute neutrophil count (ANC),
hemoglobin (HgB), and platelets (PLT), as visualized in Supplemen-
tary Table E.3. However, the reported dose cut-offs for HT vary
widely. Several studies detected a correlation between V10
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[8,21,32,38], V20 [21,28,32,34], V30 [21,28,32], Dmean [21,28,32]
and WBC nadirs. Elicin et al. noted that the V10, V20, V30, and
V40 even have an effect on the WBC count three months after
treatment and during late follow-up [21]. Similar dosimetric find-
ings were reported for ANC nadirs, with the exception of a lower
number of studies demonstrating V10 to be a significant predictor.
Only the dosimetric parameters V10 [8] and V20 [8,32] were signif-
icantly correlated with HgB nadirs. None of the dosimetric param-
eters analyzed had any statistically significant association with PLT
nadirs. Only three articles evaluated the dosimetric parameters of
pelvic bone subsites and the consequences for nadirs of blood cells
(results not visualized in this article) [8,28,31]. Dosimetric param-
eters of the LOW and LSS were found to be significantly related to
nadirs in ANC, WBC, and HgB [8,28]. For the ilium, V20 was predic-
tive for HgB [8]. None of the dose-volume parameters influenced
the PLT count.

Lower density marrow spaces (PBM)
Four articles included the marrow cavity (PBM) as a surrogate

for BM in their analyses [19,29–31]. Table 3 shows that only the
V40 is determined to be associated with HT by two out of four arti-
cles [19,31]. V40 < 40% might decrease the risk of HT2+ (see Fig. 3)
[31]. Two other studies did not demonstrate any associations of the
PBM with HT [29,30]. All authors noted that other contouring
methods might be more suitable for BM definition.
Active bone marrow (ABM)

Delineation method specified
Six of the included studies examined the correlation between

radiation dose to the active bone marrow (ABM) and the develop-
ment of HT [21,36–40]. 18F-FDG-PET-CT was used by five studies
and the technetium-99 m (Tc-99m) sulfur colloid SPET was used
by one study to quantify standardized uptake values (SUVs). Two
methods for identifying ABM were applied: defining ABM as
>SUVmean of the total body or as >SUVmean of the whole bone.

>SUVmean of the total body
ABM was defined as the region within the pelvic bone with an

SUV greater than the SUVmean of the total body using the 18F-
FDG-PET-CT, applied by two studies [37,39], or the Tc-99m sulfur
colloid SPET, used by one study [40]. A volume consisting of SUVs
higher than the SUVmean and the total pelvic bone was defined as
the ABM. Similar mean PB volumes (1553 cm3 (range 1117–
1920 cm3) [39] vs. 1433 cm3 (range 901–1920 cm3) [37]) and
ABM volumes (1227 cm3 (range 793–1671 cm3) [39] vs.
1098 cm3 (range 387–1671 cm3) [37]) were reported in the articles
applying 18F-FDG-PET-CT. The article focusing on Tc-99m sulfur



Table 3
Relationship between various dosimetric parameters of CT-based lower density marrow spaces (PBM) or active bone marrow (ABM) and hematologic toxicity (HT).

Dosimetric parameter Number of studies showing significant correlation/number of studies employing dosimetric parameter

CT-based PBM ABM (>SUVmean TB FDG-PET) ABM (>SUVmean TB SPET) ABM (>SUVmean WB FDG-PET)

V5 0/1 (0%) – – –
V10 0/4 (0%) 0/2 (0%) 0/1 (0%) 1/1(100%)
V15 0/1 (0%) – – –
V20 0/4 (0%) 0/2 (0%) 0/1 (0%) 1/1 (100%)
V30 0/3 (0%) – 1/1 (100%) 1/1 (100%)
V40 2/4 (50%) 1/2 (50%) 1/1 (100%) –
V45 – – – 1/1 (100%)
Dmean 0/2 (0%) 0/2 (0%) 0/1 (0%) 1/1(100%)
Spared 10 Gy – 1/1 (100%) – –
Spared 20 Gy – 1/1 (100%) – –
Spared 40 Gy – 1/1 (100%) – –

For each dosimetric parameter that was identified, both the number of studies investigating that particular dosimetric parameter and the percentage of those studies showing
a significant correlation of that parameter with HT are provided. HT = hematologic toxicity, CT = computed tomography, SUV = standardized uptake value, TB = total body, FDG-
PET = fluorodeoxyglucose positron emission tomography, SPET = single-photon emission tomography, WB = whole bone.

Fig. 3. Dose cut-off values for the (subsites of) the pelvic bone delineated as lower
density marrow spaces (PBM) or active bone marrow (ABM) and correlation to
hematologic toxicity (HT) as recommended by the included studies.HT = hematologic
toxicity, PBM = lower density marrow spaces, ABM = active bone marrow, SUV = stan-
dardized uptake value, TB = total body, WB = whole bone.
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colloid SPET showed lower volumes as the mean PB volume was
954 (156) cm3 and the mean ABM volume was 355 (173) cm3,
which might be due to the different imaging modality used [40].
All three authors agreed that patients with a low pretreatment
ABM volume were more likely to develop HT3+ than patients with
a larger ABM volume before irradiation. Cut-off values of <
1201 mL [39] and 387.5 cm3 [40] were suggested. The V30 [40]
and V40 were highly predictive for HT [39,40] and V30 > 46.5%
and V40 > 23.5% [40] were correlated with HT (see Fig. 3). Addi-
tionally, V40 was also identified as a predictor of lymphocytes
nadir [39]. Lastly, the volume of ABM spared was compared against
HT and correlations were found for the volume spared 10, 20, and
40 Gy when < 179 cc, < 186 cc, and < 738 cc, respectively [37].

>SUVmean of the whole bone
A different method for determining ABM defines the SUVmean of

the pelvic bones to be the threshold instead of the SUVmean of the
total body. Three articles applied this method and studied the cor-
relation between ABM and HT or nadirs of blood cells [21,36,38].
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All three articles defined the ABM following the method as
described by Rose et al. [38]. ABM was contoured by selecting
the subset of the pelvic bones that had an SUV greater than or
equal to the individual’s SUVmean in the pelvic bones. Two authors
reported similar mean values for the whole pelvic bone contour
(1278.0 (SD 224.7) cm3 [38] and 1406.7 (SD 232.6) cm3 [21]) and
ABM (553.0 (SD 133.1) cm3) [38] and 651.5 (SD 188.4) cm3 [21]).
The researchers also evaluated inactive bone marrow (IBM),
defined as the whole pelvic bone contour minus the ABM, and
reported similar volumes (respectively 695.5 (SD 147.0) cm3 [38]
and 755.2 (SD 144.1) cm3 [21]). These two articles analyzed the
correlation between dosimetric parameters and complete blood
cell counts (results not visualized in a table). Most associations
were identified for WBC. One article found the V10, V20, V30,
and Dmean to be highly predictive for WBC nadirs [38], while the
other demonstrated that V20, V30, and V40 were predictors [21].
For ANC, HgB, and PLT-count, only Dmean was associated [38].
Lastly, Rose et al. found no correlation between the Dmean of IBM
and blood cell nadirs [38]. A mean relative SUV-reduction in the
whole pelvic bone and ABM of respectively 27% and 38% in com-
parison to the SUVs at pre-treatment was described [21]. This even
occurred in parts of the ABM receiving relatively small doses (<
5 Gy). The third article compared dosimetric parameters of ABM
to HT (see Table 3) [36]. It showed that for patients with para-
aortic lymph node metastasis (PALN), the V20, V30, and V45 of
the PB were significant predictors for HT3+ at 78.6%, 47.1%, 20.4%
and V10, V20, V30, and V45 of the ABM at 95.5%, 80.5%, 59.6%
and 31.7%, visualized in Fig. 3, respectively [36]. In addition, the
Dmean to PB and ABM 30.3 and 32.4 Gy were associated with HT
(not visualized in Fig. 3). Due to the large irradiation field for
patients with PALN, an additional value of ABM when compared
to PB could not be detected [36].
Other predictors

All studies evaluated other predictors, besides dose-volume
characteristics, for HT except for four studies [29,33,37,40]. The
baseline WBC, ANC, HgB, and PLT were demonstrated to be predic-
tive for their nadir values [31,34]. The use of para-aortic irradiation
was also associated with HT3+ [21], in contrast to other findings
[30]. Lastly, articles did report different outcomes for the association
between body mass index (BMI) and HT. While some articles found
BMI to be highly predictive for WBC nadir [32] or HT3+ [31], other
articles did not show this correlation [14,21,28,30,34,35,38]. No
associations were found between HT and race [14,21,28,32,35,38],
age [14,21,28,30–32,34–36,38,39], stage [21,32,35,36,38,39], BM
volume [34,35], comorbidity [28,32,36], PTV volume [21,31,38],
pre-treatment transfusions [36], positive lymph nodes [21], inten-
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sity or number of cycles of chemotherapy [21,30,31,39], perfor-
mance status [30], chemotherapy regimen (cisplatin vs. carboplatin)
[30], and smoking history [39].
Discussion

To our knowledge, this systematic review is the first literature
review providing an overview of articles evaluating the correlation
between irradiation of the bone marrow (BM) in patients with
locally advanced cervical cancer and the development of hemato-
logic toxicity (HT). Seventeen articles were included. Three BM
delineation methods were identified: contouring of the whole pel-
vic bone (PB), lower density marrow spaces (PBM), and nuclear
imaging-based active bone marrow (ABM). Dosimetric parameters
of (subsites of) the pelvic bone associated with HT or nadirs of
blood cells were identified for each delineationmethod. The major-
ity of the studies defining BM as the whole pelvic bone found a sig-
nificant association between BM and HT, in contrast to studies
evaluating lower density marrow spaces or active bone marrow.
A significant increase in hematologic toxicity was observed for
whole pelvic bone doses of V10 > 95–75%, V20 > 80–65%, and
V40 > 37–28%. Except for the article by Rose et al., all included arti-
cles used a single dataset to develop an HT prediction model.

Knowledge on the effect of BM dose for patients with LACC
could aid in the development of bone marrow sparing (BMS) tech-
niques. Dose constraints are important to minimize the occurrence
of HT and can be applied during treatment planning. Studies by
Platta et al. and Mell et al. were excluded in this systematic review,
since their articles did not analyze the correlation between BM
dosimetric parameters and HT, but showed a significant decrease
in dosimetric parameters with the use of BMS techniques [41,42].
Platta et al. applied the method proposed by Mell et al. to contour
the PB for cervical or endometrial cancer patients and created a
standard and BMS IMRT plan [41]. For the standard IMRT plan
and BMS IMRT plan, the resulting PB-V10, V20, and V40 were
respectively 94%, 74%, and 37% and 83%, 65%, and 35%. Secondly,
Mell et al. demonstrated that PET-CT-based BMS-IMRT, sparing
the ABM, showed significantly lower rates of HT3+ (neutropenia)
when compared to CT-based BMS-IMRT, sparing the PB [42]. The
authors suggested that this difference could be related to an overall
reduced pelvic bone marrow dose in patients undergoing PET-CT-
based BMS-IMRT, rather than sparing ABM per se.

The effect of various dose delivery techniques on BMS has been
investigated in multiple planning studies. The dose in the BM could
be significantly reduced without increasing the dose in the bladder,
rectum, and bowels with both IMRT and VMAT compared to 3D
conventional RT [43]. The developments in intensity-modulated
proton therapy (IMPT) technique are promising for BMS. A study
wherein IMPT plans were designed to spare ABM, identified on
18F-fluorothymidine (FLT) PET, in cervical cancer patients showed
a significant reduction in median volume with IMPT compared to
IMRT for all dose levels, with reductions from 23% to 41% [22].
IMPT could not only reduce the dose directly received by the BM
but also reduce the field size and the volume of the body exposed
to radiation [13,44]. A large field size bears a higher risk of BM sup-
pression, as more circulating cells receive irradiation dose. This
effect is more profound on lymphocytes, which are highly sensitive
to radiation [13,44]. However, a readily available method to mea-
sure and control radiation effects on circulating blood cells is lack-
ing [13,44,45]. The impact of such dose reductions on the risk of HT
should be further evaluated and compared among radiation tech-
niques before certain techniques can be recommended.

In general, volume-based metrics might be a better predictor for
HT when compared to dose-volume metrics. Included studies
emphasized the importance of sparing a threshold volume and
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believed that BM acts as a parallel organ, similar to the liver
[37,39,40]. As long as there are enough active functional cells left,
HT will not occur. The detected correlation between a low baseline
BM volume and HT supports the idea of sparing threshold volumes.
However, further evaluation of a volume-based model is
warranted.

Studies have evaluated delineation methods different from
those included in this systematic review for other pelvic cancers
than LACC. FLT-PET can identify and spare ABM in patients with
pelvic cancer. FLT detects chronic suppression of BM by correlating
FLT uptake to complete blood cell counts. IMRT plans sparing the
FLT-identified pelvic BM significantly reduced the dose to the pel-
vic BM [12]. Additionally, fat fraction imaging can be utilized to
measure BM composition changes during chemoradiation treat-
ment in patients [46,47]. With water-fat imaging methods, fat frac-
tion maps can be acquired. The fat fraction in BM can significantly
increase during the treatment, especially in areas close to the tar-
get radiation field, and is associated with declining peripheral
blood cell counts [47]. The increase in the fat fraction is the highest
in regions close to the target volume, whereas chemotherapy gives
more uniform changes [46]. Continued efforts should be made to
identify functional pelvic BM using PET-tracers, MR-imaging, or
other imaging modalities. Since functional imaging is expensive
and not commonly available, earlier studies proposed an atlas-
based method for delineating the ABM in patients with cervical
cancer [48,49]. Atlas-based BMS-IMRT can reduce the dose to the
ABM. Future studies on delineation and sparing methods for BM
in patients with LACC are required to establish the most optimal
sparing strategy.

It should be noted that the majority of the included studies in
this systematic review had a retrospective design and a limited
sample size. We utilized the TRIPOD system as a way to quantita-
tively analyze the prediction strength of models. Only one of the
articles was dedicated to model validation. The majority of the
included articles, however, did not develop a complete dose–re-
sponse model but evaluated selected dosimetric parameters. For
these articles, the overall adherence to the TRIPOD statement
was low. Our review demonstrated therefore scarcity of studies
independently validating developed prediction models. Ideally,
studies should include both the development and external valida-
tion of a complete dose–response model before implementing it as
a normal tissue complication probability (NTCP) tool in the clinic to
support decision-making during treatment planning. External val-
idation studies are important to improve a model’s generalizabil-
ity, validity, and clinical usefulness.

Recommended cut-off values for the whole pelvic bone were
similar for HT2+ and HT3+. A possible explanation could be that
in some studies, for instance by Albuquerque et al. and Huang
et al., chemotherapy was held when leukopenia or neutropenia
grade 3 or higher was observed in order to prevent high-grade
HT [19,35]. Limiting chemotherapy dose could impact the correla-
tion between BM dose and high-grade HT and therefore eliminate
differences in recommended cut-off values between HT2+ and HT3
+. However, studies evaluating the effect of chemotherapy inten-
sity or the number of chemotherapy cycles on HT found no signif-
icant correlation [21,30,31,39]. In future studies, the impact of the
chemotherapy scheme delivered on HT should be considered.

Furthermore, the majority of the articles measured endpoints
only during treatment and focused on acute toxicity. Nonetheless,
Elicin et al. reported that BM dose affected WBC hematological
counts even at three months post-treatment and at last follow-
up [21]. A study by Terrones-Campos et al. evaluated the kinetics
of circulating blood cells in patients who received curative radio-
therapy for solid tumor diagnoses [44]. It was demonstrated that
the lymphocyte count remains low within one year after radiother-
apy. Radiation-induced lymphopenia might be associated with
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poor response to adjuvant therapies, including immunotherapy,
and decreased survival [50,51]. However, studies evaluating the
occurrence, effect on the patient, and therapeutic approaches to
reduce the incidence and severity of long-term HT after treatment
of LACC are lacking.

Additionally, studies reported contradicting results on dosimet-
ric parameters correlated with HT. Some articles defining BM as
the whole bone contour (PB) detected a correlation between low
dose-volume parameters and HT [8,32,33], while other articles
only reported high dose parameters to be associated [14,19]. A rea-
son for this could be multicollinearity. It is highly likely that dose-
volume parameters are correlated. Entry of multiple dose parame-
ters in one model could lead to incorrect estimates. Likewise, mul-
tiple studies investigating ABM reported difficulties in finding a
correlation between dose-volume parameters of the BM and HT
[14,36,39]. The inability to detect associations might be due to a
lack of low-dose regions targeting the sensitive BM resulting from
characteristics of the patient cohort, radiation therapy technique
used, or proximity of the BM to the target volume. For instance,
lumbar and pelvic BM receives high doses in the irradiation of
patients with PALN [36]. 3DCRT leads to a sharper gradient
between moderate and low isodose levels when compared to IMRT
and may therefore limit dose-volume associations [35,39]. Lastly,
the proximity of pelvic bone subsites, including the lumbosacral
spine, to the target volume leads to high BM dose [30].

This systematic review is the first literature review providing an
overview of articles evaluating the correlation between irradiation
of the bone marrow in patients with locally advanced cervical can-
cer and the development of hematologic toxicity (HT). The major-
ity of the studies defining bone marrow as the whole pelvic bone
found a significant association between bone marrow and HT, in
contrast to studies evaluating lower density marrow spaces or
active bone marrow. A significant increase in HT was observed
for whole pelvic bone doses of V10 > 95–75%, V20 > 80–65%, and
V40 > 37–28%. Only a limited number of studies have investigated
the relationship between bone marrow dose and HT in patients
with LACC treated with primary cisplatin-based chemoradiation
and clinically useful predictions models are currently not available.
Future studies may use whole pelvic bone contouring to develop
normal tissue complication probability models.
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